HOMOLOGICAL CHARACTERIZATION OF LEAN ALGEBRAS

ISTVÁN ÁGOSTON¹, VLASTIMIL DLAB² AND ERZSÉBET LUKÁCS¹

Abstract. Certain classes of lean quasi-hereditary algebras play a central role in the representation theory of semisimple complex Lie algebras and algebraic groups. The concept of a lean semiprimary ring, introduced recently in [ADL] is given here a homological characterization in terms of the surjectivity of certain induced maps between Ext^1 -groups. A stronger condition requiring the surjectivity of the induced maps between Ext^k -groups for all $k \geq 1$, which appears in the recent work of Cline, Parshall and Scott on Kazhdan–Lusztig theory, is shown to hold for a large class of lean quasi-hereditary algebras.

Throughout the paper R will denote a basic semiprimary ring with identity; thus the (Jacobson) radical J of R is nilpotent and R/J is a finite product of division rings. Let us fix a complete ordered set of primitive orthogonal idempotents (e_1, e_2, \ldots, e_n) and define for $1 \leq i \leq n$ the idempotent elements $\varepsilon_i = e_i + e_{i+1} + \ldots + e_n$; set $\varepsilon_{n+1} = 0$. Thus, we have fixed an order on the set of the corresponding simple (right) R-modules S(i) and their projective covers $P(i) \simeq e_i R$, $1 \leq i \leq n$. The corresponding left R-modules will be denoted by $S^{\circ}(i)$ and $P^{\circ}(i)$, respectively.

The (right) standard modules $\Delta(i)$ are defined by $\Delta(i) \simeq e_i R/e_i R \varepsilon_{i+1} R$. The submodule $e_i R \varepsilon_{i+1} R$ will be denoted by V(i). Thus we have the exact sequence $0 \to V(i) \to P(i) \to \Delta(i) \to 0$. Similarly, we can define the left standard modules $\Delta^{\circ}(i)$ and the corresponding kernels $V^{\circ}(i)$.

The module $\Delta(i)$ is Schurian if $\operatorname{End}_R(\Delta(i))$ is a division ring. It is easy to see that $\Delta(i)$ is Schurian if and only if $\Delta^{\circ}(i)$ is Schurian.

The ring R is quasi-hereditary (see [CPS]) with respect to the order (e_1, e_2, \ldots, e_n) if $\Delta(i)$ is Schurian for every $1 \le i \le n$ and the regular module R_R has a filtration $R_R = X_1 \supseteq X_2 \supseteq \ldots \supseteq X_\ell \supseteq X_{\ell+1} = 0$ such that every factor X_i/X_{i+1} , $1 \le i \le \ell$ is isomorphic to a standard module $\Delta(j)$ for some

¹⁹⁹¹ Mathematics Subject Classification. Primary 16E99, 16S99. Secondary 17B10

Research partially supported by NSERC of Canada and by Hungarian National Foundation for Scientific Research grant no. T1903

² Research partially supported by NSERC of Canada

 $1 \le j \le n$. For basic facts concerning quasi-hereditary algebras we refer the reader to [DR1] and [DR2].

Let us now recall the definition of a top embedding ([ADL]). Let X and Y be arbitrary (right) R-modules. An embedding $f: X \to Y$ is called a top embedding if it induces an embedding $\bar{f}: X/\operatorname{rad} X = \operatorname{top} X \to \operatorname{top} Y = Y/\operatorname{rad} Y$. In this case we write $X \subseteq Y$. Note that, for a submodule $X \subseteq Y$, the condition $X \subseteq Y$ is equivalent to $\operatorname{rad} X = \operatorname{rad} Y \cap X$. A filtration $X = X_1 \supseteq X_2 \supseteq \ldots \supseteq X_m \supseteq X_{m+1} = 0$ of a module X is called a top filtration of X if $X_i \subseteq X$ for every $1 \subseteq X_i \subseteq X_i$. If $X_i \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for $1 \subseteq X_i \subseteq X_i$ and $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. If $X_i \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for $1 \subseteq X_i \subseteq X_i$ for $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. If $X_i \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq X_i \subseteq X_i$. The first interval $1 \subseteq X_i \subseteq X_i$ for every $1 \subseteq$

The semiprimary ring R is called lean with respect to the order (e_1, e_2, \ldots, e_n) if $e_i J^2 e_j \subseteq e_i J \varepsilon_m J e_j$ for $m = \min\{i, j\}$ and $1 \leq i, j \leq n$. Theorem 2.1 of [ADL] asserts that A is lean if and only if $V(i) \subseteq \operatorname{rad} P(i)$ and $V^{\circ}(i) \subseteq \operatorname{rad} P^{\circ}(i)$ for all $1 \leq i \leq n$.

LEMMA 1. Let X be an arbitrary R-module and S a semisimple submodule of rad X. Denote by Y the factor module X/S. Then the following statements are equivalent:

- (a) $S \subset \operatorname{rad} X$;
- (b) there exists an extension $\zeta \in \operatorname{Ext}^1(\operatorname{top} Y, S)$ such that the following diagram is commutative:

(c) there exists a semisimple module T and an extension $\rho \in \operatorname{Ext}^1(T, S)$ such that the following diagram is commutative:

Proof. To prove $(a) \Rightarrow (b)$, observe that since S is semisimple, $S \subseteq \operatorname{rad} X$ implies that S is a direct summand of rad X. Let C be a direct complement of S in rad X. Then we have the following diagram with the natural maps:

Note that $Y' \simeq X/(C \oplus S) = X/\operatorname{rad} X = \operatorname{top} X \simeq \operatorname{top} Y$.

Since the implication $(b) \Rightarrow (c)$ is trivial, we have to show only that $(c) \Rightarrow (a)$. We need that $XJ^2 \cap S = 0$. Let us assume that $0 \neq S' = XJ^2 \cap S$. Then $0 \neq \iota(S') = \varphi(S') \subseteq \varphi(XJ^2) = \varphi(X)J^2$. But $\varphi(X) \subseteq X''$ and $X''J^2 = 0$, a contradiction. Thus $S \subseteq \operatorname{rad} X$.

PROPOSITION 2. Let P_R be an indecomposable projective R-module and $V \subseteq \operatorname{rad} P$. Denote by W the factor module P/V. Then the following are equivalent:

- (a) $V \subset \operatorname{rad} P$;
- (b) $\operatorname{Ext}^1(\operatorname{top} W,S) \to \operatorname{Ext}^1(W,S)$ is an epimorphism for every simple module S.

Proof. (a) \Rightarrow (b) Consider a non-split exact sequence $0 \rightarrow S \rightarrow X \rightarrow W \rightarrow 0$; thus $S \subseteq \operatorname{rad} X$. Using the projectivity of P we get the following commutative diagram:

Here ψ is an epimorphism, since $S \subseteq \operatorname{rad} X$. It follows that φ is also an epimorphism. We get that $S \subseteq \operatorname{rad} X$ since $V \subseteq \operatorname{rad} P$ by assumption. Thus, by Lemma 1, the sequence $0 \to S \to X \to W \to 0$ is a lifting of a sequence $0 \to S \to X' \to \operatorname{top} W \to 0$ along the natural map $W \to \operatorname{top} W$, so it is in the image of $\operatorname{Ext}^1(\operatorname{top} W, S) \to \operatorname{Ext}^1(W, S)$.

 $(b) \Rightarrow (a)$ To prove that $V \subseteq \operatorname{rad} P$, it is sufficient to show that $V/V' \subseteq \operatorname{rad} P/V'$ for an arbitrary maximal submodule V' of the module V. Hence consider the following commutative diagram:

Since V/V' is simple, (b) implies that there is a commutative diagram

By Lemma 1, we get that $V/V' \stackrel{t}{\subseteq} \operatorname{rad} P/V'$.

Using Proposition 2 and the left dual version of it, we get immediately the following characterization of lean semiprimary rings.

THEOREM 3. Let (e_1, e_2, \ldots, e_n) be a complete set of primitive orthogonal idempotents of the semiprimary ring R and let all standard modules $\Delta(i)$ be Schurian. Then R is lean with respect to the given order of idempotents if and only if the natural maps $\operatorname{Ext}^1\left(S(i),S(j)\right)\to\operatorname{Ext}^1\left(\Delta(i),S(j)\right)$ and $\operatorname{Ext}^1\left(S^\circ(i),S^\circ(j)\right)\to\operatorname{Ext}^1\left(\Delta^\circ(i),S^\circ(j)\right)$ are epimorphisms for all $1\leq i,j\leq n$.

Proof. Proposition 2 implies that the surjectivity of the maps given above is equivalent to the condition that $V(i) \subseteq \operatorname{rad} P(i)$ and $V^{\circ}(i) \subseteq \operatorname{rad} P^{\circ}(i)$ for all $1 \le i \le n$. In turn, by Theorem 2.1 of [ADL], this is equivalent to the fact that R is lean.

In what follows, let us restrict our attention to the case when R=A is a finite dimensional K-algebra, where K is a field. For every $1 \leq i \leq n$, denote by $\nabla(i)$ the K-dual of $\Delta^{\circ}(i)$, and call the modules $\nabla(i)$ the (right) costandard modules. Using this terminology, we get the following characterization of lean quasi-hereditary K-algebras.

COROLLARY 4. Let A be a quasi-hereditary K-algebra with respect to the order (e_1, e_2, \ldots, e_n) . Then A is lean with respect to the same order if and only if the natural maps $\operatorname{Ext}^1(S(i), S(j)) \to \operatorname{Ext}^1(\Delta(i), S(j))$ and $\operatorname{Ext}^1(S(j), S(i)) \to \operatorname{Ext}^1(S(j), \nabla(i))$ are epimorphisms for $1 \leq i, j \leq n$.

In their contributions to the Workshop on Representation Theory held in Ottawa in August 1992, B.J. Parshall and L.L. Scott emphasized the importance of the surjectivity of all natural maps $\operatorname{Ext}^k\left(S(i),S(j)\right)\to\operatorname{Ext}^k\left(\Delta(i),S(j)\right)$, $k\geq 1$, for the Kazhdan–Lusztig theory. In this connection, the following theorem and its corollary seem to be of some interest.

THEOREM 5. Let A be a quasi-hereditary K-algebra with respect to the order (e_1, e_2, \ldots, e_n) such that $V(i) \subseteq \operatorname{rad} P(i)$ for $1 \leq i \leq n$. Suppose that for every $1 \leq i \leq n$, the module V(i) has a top filtration by $\Delta(j)$'s and P(j)'s, $i+1 \leq j \leq n$. Then the natural maps $\operatorname{Ext}^k\left(S(i), S(j)\right) \to \operatorname{Ext}^k\left(\Delta(i), S(j)\right)$ are surjective for all $1 \leq i, j \leq n$ and $k \geq 1$.

For the proof of Theorem 5 we shall need the following simple lemma.

LEMMA 6. Let $0 \to X \xrightarrow{\mu} Y \to Z \to 0$ be a short exact sequence with a top embedding μ . If, for a module S and for some $k \geq 1$, the natural maps $\operatorname{Ext}^k(\operatorname{top} X, S) \to \operatorname{Ext}^k(X, S)$ and $\operatorname{Ext}^k(\operatorname{top} Z, S) \to \operatorname{Ext}^k(Z, S)$ are surjective, then so is the natural map $\operatorname{Ext}^k(\operatorname{top} Y, S) \to \operatorname{Ext}^k(Y, S)$.

Proof. The bottom sequence of the following commutative diagram

clearly splits. Thus, applying the functor Hom(-,S), we can derive easily the following commutative diagram from the long exact sequences:

$$\operatorname{Ext}^{k-1}(X,S) \to \operatorname{Ext}^k(Z,S) \to \operatorname{Ext}^k(Y,S) \to \operatorname{Ext}^k(X,S) \to \operatorname{Ext}^{k+1}(Z,S)$$

$$\uparrow \qquad \qquad \uparrow^{\gamma} \qquad \qquad \uparrow^{\beta} \qquad \qquad \uparrow^{\alpha} \qquad \qquad \uparrow$$

$$0 \to \operatorname{Ext}^k(\operatorname{top} Z,S) \to \operatorname{Ext}^k(\operatorname{top} Y,S) \to \operatorname{Ext}^k(\operatorname{top} X,S) \to 0.$$

Since α and γ are surjective, we get that β is surjective as well.

Proof of Theorem 5. We proceed by induction. Proposition 2 implies that the statement holds for k = 1. Thus assuming the statement for some $k \geq 1$, we want to show that for every exact sequence

(*)
$$0 \to S(i) \to X_1 \to \dots \to X_k \to X_{k+1} \to \Delta(i) \to 0$$

there is a commutative diagram of exact sequences with the natural projection $\Delta(i) \to S(i)$:

in which the first row is equivalent to (*).

Let us write (*) as the Yoneda composite of the following exact sequences:

$$0 \to S(j) \to X_1 \to \dots \to X_k \to N \to 0$$
 and $0 \to N \to X_{k+1} \to \Delta(i) \to 0$.

In view of the commutative diagrams

and

the sequence (*) is equivalent to

$$0 \to S(j) \to Y_1 \to \ldots \to Y_k \to P(i) \to \Delta(i) \to 0$$
.

Now, by the induction hypothesis and by repeated use of Lemma 6, we get a commutative diagram of exact sequences

Furthermore, in view of Proposition 2, there is a commutative diagram of short exact sequences

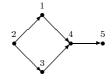
Hence the theorem follows.

COROLLARY 7. Let A be a shallow, medial or replete quasi-hereditary algebra with respect to (e_1, e_2, \ldots, e_n) . Then the natural maps $\operatorname{Ext}^k\left(S(i), S(j)\right) \to \operatorname{Ext}^k\left(\Delta(i), S(j)\right)$ and $\operatorname{Ext}^k\left(S^\circ(i), S^\circ(j)\right) \to \operatorname{Ext}^k\left(\Delta^\circ(i), S^\circ(j)\right)$ are surjective for all $1 \leq i, j \leq n$ and $k \geq 1$.

The definition of shallow, right medial, left medial and replete algebras can be found in [ADL]. For the convenience of the reader, we wish to recall that these algebras are defined by the fact that $V(i) \subseteq \operatorname{rad} P(i)$, $V^{\circ}(i) \subseteq \operatorname{rad} P^{\circ}(i)$ and, respectively, V(i) and $V^{\circ}(i)$ have top filtrations by $\Delta(j)$'s and $\Delta^{\circ}(j)$'s, by $\Delta(j)$'s and $P^{\circ}(j)$'s, by P(j)'s and $P^{\circ}(j)$'s and $P^{\circ}(j)$'s.

REMARK 8. Let us point out that, in general, lean quasi-hereditary algebras do not satisfy the above surjectivity conditions for higher Ext-groups. Here is a simple example.

Let A be the path algebra of the graph



modulo the relations $\alpha_{14}\alpha_{45} = 0$ and $\alpha_{21}\alpha_{14} = \alpha_{23}\alpha_{34}$ (where α_{ij} denotes the arrow from i to j). Thus the right regular representation of A can be described by the following charts of composition factors:

$$A_A = {1 \atop 4} \oplus {1 \atop 4}^2 \oplus {1 \atop 4}^3 \oplus {1 \atop 5} \oplus {1 \atop 5} \oplus {1 \atop 5} \oplus {1 \atop 5}$$
.

One can check easily that A is lean. On the other hand $\operatorname{Ext}^2\left(S(2),S(5)\right)=0$, while $\operatorname{Ext}^2\left(\Delta(2),S(5)\right)\neq 0$.

References

- [ADL] Ágoston, I., Dlab, V., Lukács, E., Lean quasi-hereditary algebras, Can. Math. Soc. Conference Proceedings Series Vol. 13 (1993), 1–14.
- [CPS] Cline, E., Parshall, B.J., Scott, L.L., Finite dimensional algebras and highest weight categories, *J. Reine Angew. Math.* **391** (1988), 85–99.
- [DR1] Dlab, V., Ringel, C.M., Quasi-hereditary algebras, *Illinois J. of Math.* **35** (1989), 280–291.
- [DR2] Dlab, V., Ringel, C.M., The module theoretical approach to quasihereditary algebras, *Representations of Algebras and Related Topics*, London Math. Soc. Lecture Note Series **168**, Cambridge Univ. Press 1992, 200–224.

Mathematical Institute of the Hungarian Academy of Sciences, P.O.Box $127,\,1364$ Budapest, Hungary

E-mail address: h4134ago@ella.hu

DEPARTMENT OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, K1S 5B6, CANADA

E-mail address: vdlab@ccs.carleton.ca

DEPARTMENT OF MATHEMATICS, FACULTY OF TRANSPORT ENGINEERING, TECHNICAL UNIVERSITY OF BUDAPEST, 1111 BUDAPEST, HUNGARY *E-mail address:* h4091luk@ella.hu