HOMOLOGICAL CHARACTERIZATION OF
LEAN ALGEBRAS

IsTVAN AcosToN!, VLASTIMIL DLAB? AND ERZSEBET LUKACSs!

Abstract. Certain classes of lean quasi-hereditary algebras play a central role in
the representation theory of semisimple complex Lie algebras and algebraic groups.
The concept of a lean semiprimary ring, introduced recently in [ADL] is given
here a homological characterization in terms of the surjectivity of certain induced
maps between Ext!'-groups. A stronger condition requiring the surjectivity of the
induced maps between Extk—groups for all £ > 1, which appears in the recent work
of Cline, Parshall and Scott on Kazhdan-Lusztig theory, is shown to hold for a
large class of lean quasi-hereditary algebras.

Throughout the paper R will denote a basic semiprimary ring with identity;
thus the (Jacobson) radical J of R is nilpotent and R/.J is a finite product
of division rings. Let us fix a complete ordered set of primitive orthogonal
idempotents (ej,ea,...,e,) and define for 1 < i < n the idempotent elements
gi=e€;+eiy1+...+ey;set e,401 = 0. Thus, we have fixed an order on the set
of the corresponding simple (right) R-modules S(i) and their projective covers
P(i) ~ e;R, 1 <1 < n. The corresponding left R-modules will be denoted by
S°(i) and P°(7), respectively.

The (right) standard modules A(i) are defined by A(i) ~ e;R/e;Re;t+1 R.
The submodule e;Re; 1 R will be denoted by V(i). Thus we have the exact
sequence 0 = V(i) = P(i) = A(i) = 0. Similarly, we can define the left standard
modules A°(i) and the corresponding kernels V°(i).

The module A(i) is Schurian if Endg (A(i)) is a division ring. It is easy
to see that A(i) is Schurian if and only if A°(i) is Schurian.

The ring R is quasi-hereditary (see [CPS]) with respect to the order
(e1,€a,...,en) if A(i) is Schurian for every 1 < i < n and the regular module
Rp has a filtration Rp = X3 D X2 D ... 2 X; O Xy41 = 0 such that every
factor X;/X;41, 1 < i < £ is isomorphic to a standard module A(j) for some
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1 < j < n. For basic facts concerning quasi-hereditary algebras we refer the
reader to [DR1] and [DR2].

Let us now recall the definition of a top embedding ([ADL]). Let X and YV
be arbitrary (right) R-modules. An embedding f : X =Y is called a top em-
bedding if it induces an embedding f : X/rad X =top X —topY = Y/radY.
In this case we write X é Y. Note that, for a submodule X C Y, the condition
XéY is equivalent to rad X =radY N X. A filtration X = X; D X, D ... D
Xm 2 Xm41 = 0 of a module X is called a top filtration of X if XiéX for
every 2 < i < m. If M is a class of modules, then we will say that X has a top
filtration by M if X has a top filtration X = X1 D X9 D ... D X}y 2 X1 =0
such that the factor modules X;/X;;1 belong to M for 1 < i < m.

The semiprimary ring R is called lean with respect to the order
(e1,€2,...,e,) if €;J%¢; C e;JepmJe; for m = min{i,j} and 1 < i,j < n.
Theorem 2.1 of [ADL] asserts that A is lean if and only if V (i) érad P(i) and
Vo(i) Erad P°(i) for all 1 < i < n.

LEMMA 1. Let X be an arbitrary R-module and S a semisimple submodule of
rad X. Denote by Y the factor module X/S. Then the following statements are
equivalent:

(a) S é rad X ;

(b) there exists an extension ¢ € Ext! (topY, S) such that the following diagram

1s commutative:
¢:0 — S — X — Y — 0

[ | |

(:0 — S — X' — topY — 0
(¢) there exists a semisimple module T and an extension p € Ext' (T, S) such
that the following diagram is commutative:
pt:0 — S — X — Y — 0

e

p:0 — S H X' — T — 0.

Proof. To prove (a) = (b), observe that since S is semisimple, S é rad X implies
that S is a direct summand of rad X. Let C be a direct complement of S in
rad X. Then we have the following diagram with the natural maps:

C = C

J l

0O — § — X — 'Y — 0

[ | |

0 — S — X/C — Y — 0.
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Note that V' ~ X /(C & S) = X/rad X = top X ~ topY'.

Since the implication (b) = (c) is trivial, we have to show only that
(c) = (a). We need that X.J2N S = 0. Let us assume that 0 # S’ = X.J?N S.
Then 0 # 1(S") = p(S") C p(XJ?) = p(X)J?. But p(X) C X" and X" J? =0,
a contradiction. Thus S é rad X. a

ProprosiTiON 2. Let Pr be an indecomposable projective R-module and

V Crad P. Denote by W the factor module P/V. Then the following are

equivalent:

(a) VéradP;

(b) Ext'(topW,S)— Ext'(W,S) is an epimorphism for every simple mod-
ule S.

Proof. (a) = (b) Consider a non-split exact sequence 0 =S — X =W —0;
thus S C rad X. Using the projectivity of P we get the following commutative

diagram:
O -V —- P = W = 0

| |
1 I |
o - S - X - W = 0.
Here 1 is an epimorphism, since S C rad X. It follows that ¢ is also an
epimorphism. We get that SéradX since VéradP by assumption. Thus,
by Lemma 1, the sequence 0—S— X —W — 0 is a lifting of a sequence
0—S—X'"—=topW —0 along the natural map W — top W, so it is in the
image of Ext' (top W, S) = Ext' (W, S).
(b) = (a) To prove that VéradP, it is sufficient to show that

V/V’érad P/V' for an arbitrary maximal submodule V' of the module V.
Hence consider the following commutative diagram:

O - VvV - P = W = 0

| | [

o —- V/Vi —» P/V —- W — 0.
Since V/V' is simple, (b) implies that there is a commutative diagram

0 = V/V' = PV 5 W 5 0

[ | |

o - V/V! = Z = topW — 0.

By Lemma 1, we get that V/V' érad P/vV'. O
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Using Proposition 2 and the left dual version of it, we get immediately the
following characterization of lean semiprimary rings.

THEOREM 3. Let (e1,ea,...,e,) be a complete set of primitive orthogonal
idempotents of the semiprimary ring R and let all standard modules A(7)
be Schurian. Then R is lean with respect to the given order of idempo-
tents if and only if the natural maps Ext' (S(i), S(j)) = Ext' (A(i), S(j)) and
Ext' (S°(i), S°(j)) = Ext' (A°(i), S°(j)) are epimorphisms for all 1 <1i,j < n.

Proof. Proposition 2 implies that the surjectivity of the maps given above is
equivalent to the condition that V(i) érad P(i) and V°(7) irad P°(7) for all
1 <4 < n. In turn, by Theorem 2.1 of [ADL], this is equivalent to the fact that
R is lean. O

In what follows, let us restrict our attention to the case when R = A is a
finite dimensional K-algebra, where K is a field. For every 1 < i < n, denote
by V(i) the K-dual of A°(i), and call the modules V(i) the (right) costandard
modules. Using this terminology, we get the following characterization of lean
quasi-hereditary K-algebras.

COROLLARY 4. Let A be a quasi-hereditary K-algebra with respect to the
order (e1,ea,...,ep). Then A is lean with respect to the same order
if and only if the natural maps Ext' (S(i),S(j)) = Ext' (A(i), S(j)) and
Ext! (S(j),S(i)) — Ext! (S(j),V(i)) are epimorphisms for 1 <i,j < n.

In their contributions to the Workshop on Representation Theory held in
Ottawain August 1992, B.J. Parshall and L.L. Scott emphasized the importance
of the surjectivity of all natural maps Ext® (S(1),S(5)) — Ext* (A(i), (7)),
k > 1, for the Kazhdan—Lusztig theory. In this connection, the following theo-
rem and its corollary seem to be of some interest.

THEOREM 5. Let A be a quasi-hereditary K -algebra with respect to the or-
der (e1,ea,...,en) such that V(i) érad P(i) for 1 < i < n. Suppose that for
every 1 < i < n, the module V(i) has a top filtration by A(j)’s and P(j)’s,
i+1<j<n. Then the natural maps Ext" (5(i),S(5)) — Extk (A(i),5(4)) are
surjective for all 1 <i,j <mn and k> 1.

For the proof of Theorem 5 we shall need the following simple lemma.

LEMMA 6. Let 0= X 5Y —Z—0 be a short exact sequence with a top em-
bedding . 1If, for a module S and for some k > 1, the natural maps
Ext®(top X, S) — Ext* (X, S) and Ext"(top Z,S) — Ext¥(Z,S) are surjective,
then so is the natural map Ext® (top Y, S) = Ext* (Y, S).
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Proof. The bottom sequence of the following commutative diagram

O —- X =Y = Z =0

J J !

0 = topX — topY — topZ — 0

clearly splits. Thus, applying the functor Hom(—, S), we can derive easily the
following commutative diagram from the long exact sequences:

Ext"'(X,S) = Extf(Z,5) — Ext*(Y,5) — BExtf(X,5) = Extft'(Z,S)
| [ & [ I
0 — Ext*(top Z,S) = Ext*(topY,S) — Ext*(top X,S) — 0.

Since a and 7y are surjective, we get that 3 is surjective as well. O

Proof of Theorem 5. We proceed by induction. Proposition 2 implies that the
statement holds for £ = 1. Thus assuming the statement for some k& > 1, we
want to show that for every exact sequence

(%) 0=S(H) = X1 —=... = X = X1 2 A@G)—0

there is a commutative diagram of exact sequences with the natural projection

A(i) = S(i):

0 —- S@j) —- Y1 = ... = YV, — Pl — A@E — 0
I b
0 = S@G) = 21 = ... = Zp = Zpg — St — 0,

in which the first row is equivalent to (x).
Let us write (x) as the Yoneda composite of the following exact sequences:

0=2S(EH) »X1—...2 Xy > N—>0 and 0= N—= X1 > A7) > 0.

In view of the commutative diagrams

0 = V@G — P@HE — A@F — 0

| | [

0 - N —= Xgp — A@W@) — 0

] Lo

o —- S@y) —- X4 —- ... - Xx - N = 0
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the sequence (%) is equivalent to
0=SU) Y1 —=...=2 Y= P@lE)—=>A@l)—0.

Now, by the induction hypothesis and by repeated use of Lemma 6, we get
a commutative diagram of exact sequences

0o —- S@) - Y1 —- ... = YV, = V@E — 0
[ | |
0 = S(j) = Z1 — ... = Zp — topV({i) — 0.

Furthermore, in view of Proposition 2, there is a commutative diagram of short
exact sequences

0 = V(@) - P@) — A@G) —= 0

J Lo

0 — topV(i) — - A@) — 0
[ |
0 — topV(i) — Zrgy1 — S@E) — 0.
Hence the theorem follows. a

COROLLARY 7. Let A be a shallow, medial or replete quasi-hereditary alge-
bra with respect to (e1,es, ..., e,). Then the natural maps Extk (S(i),S(j)) —
Ext® (A(i),5(j)) and Ext® (5°(i), S°(4)) — Ext? (A°(i),5°(j)) are surjective
forall1<i,j<nandk>1.

The definition of shallow, right medial, left medial and replete algebras can
be found in [ADL]. For the convenience of the reader, we wish to recall that
these algebras are defined by the fact that V(i) érad P(i), V°(i) érad Pe (i)
and, respectively, V(i) and V°(i) have top filtrations by A(j)’s and A°(j)’s, by
A(j)’s and P°(j)’s, by P(j)’s and A°(j)’s and, finally, by P(j)’s and P°(j)’s.

REMARK 8. Let us point out that, in general, lean quasi-hereditary algebras
do not satisfy the above surjectivity conditions for higher Ext-groups. Here is
a simple example.

Let A be the path algebra of the graph

1

V)
[
ot
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modulo the relations aqsass = 0 and a1 14 = azzazs (where a;; denotes the
arrow from i to j). Thus the right regular representation of A can be described
by the following charts of composition factors:
1 2 3
AA:4@143@§@5@5.
One can check easily that A is lean. On the other hand Ext* (S(2), S(5)) =0,
while Ext® (A(2), S(5)) # 0.
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