P-BASES FOR TORSION-FREE REGULAR MODULES

Istvén Agoston! and Andrew P. Dean!

Abstract. In [R] a general approach is offered to the theory of infinite
dimensional representations over tame hereditary algebras. Among
other things many concepts, like that of torsion and torsion-free mod-
ules, divisibility, etc., known from the theory of abelian groups, are
carried over to the tame hereditary situation. In this approach one of
the most important invariants of torsion-free modules is their rank. In
our short note we will show that the rank of the torsion-free regular
module M, originally defined by Ringel using a certain embedding of
M into a divisible module, can be understood as the cardinality of a
maximal independent set for a suitably defined dependence relation.

1. Preliminaries. First we recall some definitions and basic results from [R].
Let A be a tame hereditary algebra, finite dimensional over a field k. One
can define a torsion theory on the category of (right) A-modules as follows.
A module M is called torsion if it is spanned by its finite dimensional regular
and preinjective submodules, while M is torsion-free if every finite dimensional
submodule of M is preprojective. The torsion submodule of a module M is
the largest submodule which is torsion and it will be denoted by 7 (M). We
call a module M regular if it has no finite dimensional preinjective or pre-
projective direct summands. It can be shown that a module M is regular if
and only if Hom (M, P) = 0 for all finite dimensional preprojective modules P
and Hom (I, M) = 0 for all finite dimensional preinjective modules I (cf. §4.2
of [R]). The class of torsion regular modules over A forms an exact abelian

subcategory, closed under extensions (Theorem 4.4 of [R]).
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A module M is called divisible if Ext (S, M) = 0 for every simple regular
module S. Actually, if M is divisible then Ext(N,M) = 0 for all regular
modules N (Proposition 4.7 of [R]). As Ringel has shown, there exists a unique
indecomposable torsion-free divisible module, denoted by @ (Theorem 5.3 of
[R]). The endomorphism ring of @ is a division ring. Every torsion-free module
M can be embedded into a direct sum Y of copies of @) in such a way that the
quotient Y/M is torsion regular. Moreover, if there is such an embedding into
Y = @ (@Q then the cardinality of the index set I depends only on the module
M (TIheorem 5.5 of [R]). This cardinality is called the rank of M and will
be denoted by rk M. One can show that the rank is additive on short exact
sequences of torsion-free modules (Proposition 2.2 of [DZ]). An important fact
is that for finite dimensional preprojective modules the rank is just the negative
of the defect of the module (Proposition 5.6 of [R]).

A submodule N of the module M is called torsion closed in M if M /N is
torsion-free. The intersection of all torsion-closed submodules of M containing
a particular submodule NN is called the torsion-closure of N in M and will be
denoted by N or simply by N. Clearly N is the full preimage of 7 (M/N)
in M. For any submodule N of M the rank of N must satisfy tk N < rk N
(Proposition 2.1 of [ADS]). The following simple observation will show that

taking the torsion closure of a module is of finitary character.

Lemma 1.1. Let N' = {N; | i € I} be a directed set of torsion-closed
submodules of a module M. Then N = 'gl N; < M is also torsion-closed in M.
13

Proof. Let us take an arbitrary submodule W < M such that N < W
and W/N is finite dimensional. We have to show that W/N is preprojective.
Let W' be a finite dimensional preimage of W/N in M, i.e. W' < M such that
W'+ N = W. Consider W' NN =W'n (zLeJI N;) = igI(Ni NW'). Since W'
is finite dimensional and A is directed, there exists an index ¢ € I such that
W'NN =W'NN;. Then:

W/N =(W'+ N)/N=W'/W' AN =W'/W' NN; = (W' + N;)/N; < M/N;.

Since M /N; is torsion-free by assumption, W/N is preprojective. Hence N is

torsion-closed.

Corollary 1.2. If N = {N; | i € I} is a directed set of submodules of a
module M then ,UI N; = 'UI N;. In particular for any submodule N of M the
i€ 1€
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torsion closure N is the union of the torsion closures of all finite dimensional
submodules of N.

2. A dependence relation for torsion-free regular modules. For the rest
of the paper, unless otherwise stated, let M be a torsion-free regular module.
We shall define a dependence relation on a subset of all submodules of M. Let
P be an indecomposable projective module of rank 1 (that is, of defect —1).
Define the set Wp = Wp(M) as Wp = {W < M | W = P}. For W € Wp
and P C Wp we say that W depends on P if and only if W C 5M, where P
denotes the torsion closure of the submodule generated by the elements of P.
We call a set P C Wp independent if no element W € P depends on P\ {W}.
The set P C Wp is called a generating set for Wp if every element of Wp
depends on P.

We want to show that this relation satisfies all the standard properties of

linear dependence relations. We will need the following observation.

Lemma 2.1. Let W € Wp and P C Wp. Then W depends on P if and
only if W NP # 0.

Proof. The necessity of the condition is obvious from the definition. To
show the other direction, assume that W NP # 0. Observe that tk W = 1
implies tk W = 1. Since W N P is torsion closed in W and is non-zero by

assumption, we must have that W C P. Hence W depends on P.

The next proposition shows that our dependence relation is of finitary

character.

Proposition 2.2. Let W be an element of Wp. If W depends on P C Wp
then it also depends on a finite subset F C P.

Proof. Assume that W C P. Since dim; W < oo, by Corollary 1.2 we get
that there is a finite dimensional submodule N C (P) such that W C N. Since
there is a finite subset F C P such that N C (F), we obtain that W depends
on F.

Finally, we can show that the exchange property is also satisfied.

Proposition 2.3. Let W € Wp and P C Wp. If W depends on P but
does not depend on P' = P\ {X} for some element X € P then X depends on
P =(P\{X}u{w}.
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Proof. By assumption we have P’ C P” C P, hence X does not depend
on P'. Thus Lemma 2.1 implies that X embeds into P/P’ and the torsion
closure of its image is the whole module P/P’. Hence we get that rk P/P’ = 1.
Consequently, we must have P = P. Thus X C P”, that is, X depends on
P

From the exchange property and the finitary character of our dependence
relation we get all the standard theorems on the existence of bases, the invari-
ance of their cardinality etc. A basis for Wp with respect to this relation will
be called a P-basis for M.

3. Independent sets, generating sets and the rank. We turn now to the

question of characterizing the specific properties of our dependence relation.

Theorem 3.1. A set P = {P; | i € I} C Wp is independent if and only if
(i) LN(P;e€P | j#1i)=0foreveryiec I (thatis, & P; C M);
iel
(ii)) M/ @ P; is regular.
i€l

Proof. Assume first that the conditions (i) and (ii) are satisfied, thus we

have M/ @ P; regular. Then consider the following diagram:
icl

0 — &P - M — M/&P — 0
i€l i€l

b/

where 7; is the canonical projection and ¢; is an embedding of P; into ). Since

M/ @ P; isregular, Ext (M/ @ P;,Q) = 0, hence there exists a map ¢ : M —
iel iel

() such that ¢v = ¢;m;. Thus Kerey D m and Keryy N P, = 0. So P is
independent.

Assume now that P C Wp is independent. Thus by Lemma 2.1 we get
that PN (P; € P | j #i) C Pin(P\{P;}) =0. Hence we get (i). To prove
condition (ii), assume P = {P, | p < &k} for some cardinal k. We will prove
by transfinite induction that M, = M/ u6<9>\ P, is regular for each A < k. The

argument we use is essentially from Ringel’s proof of Proposition 4.3 of [R]

Y

but we include it here for the sake of completeness.
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Assume first that A = v + 1 for some ordinal v. By assumption M, =

M/ & P, is regular. Since P is independent, by Lemma 2.1 we get that P,
u<v

embeds into M, as P,; actually it embeds even into the torsion-free module
M, = M,/T(M,) as P,. We will show first that M,,/P,, is regular. Since M
was regular, it is enough to check that M,,/P,, has no preinjective submodules.
Let us assume that W - ]\;I,, is a submodule containing ]5,, and W/P,, is
indecomposable preinjective. But then for the defect of W we get: 5(W) =
5(P,) + 6(W/P,) = -1+ 6(W/P,) > 0, and this contradicts the fact that

M, is torsion-free. Thus MU/ZBU is regular. Consider now the following exact

sequence:
0 — (T(M,) + B[Py — My/P, — (M,/P,)/((T(M,) + B,)/P,) — 0.

Here the first term is isomorphic to 7 (M,,), and since it is the torsion submodule
of the regular module M, it is regular. On the other hand the last term is
isomorphic to ]\Z,,/f’,,, which was just shown to be regular, too. Thus Ml,/l51, =
M/ EE/\ P, = M, as an extension of two regular modules, is also regular.
#Assume now that A is a limit ordinal and for every u < A the module M,

is regular. Suppose that My = M/ & P, has an indecomposable preinjective
<A

submodule W/ & P, where & P, CW C M. Let W' be a finite dimensional
<A pn<A

submodule of M satisfying W =W'+ & P,. Then W'Nn & P, =W'n & P,
n<A u<A u<v
for some v < A. Thus:

W/ & Pp=W'+ @ P,)] © P,=2W'/(W'nN & P,) =
/u<>\ ( < #)/u<>\ H /( <A M)
:VVI/(VV/ﬂ D Pu) = (WI+ b Pu)/ © Py C My,
u<v p<v u<v
and this would contradict the regularity of M,. Thus M) is also regular. This
finishes the proof.

Theorem 3.2. A subset P C Wp is a generating set if and only if M /(P)

is torsion, i.e. if and only if P = M.

Proof. We will again use the argument of Ringel from the proof of Propo-
sition 4.3 of [R]. The sufficiency is obvious from the definitions. For the other
direction let us assume that P is a generating set. Assume that P # M. Then
the module M = M /7P is a non-zero torsion-free regular module. But then there
must exist a non-zero homomorphism ¢ : P — M, otherwise M would become

a module over an algebra of finite representation type, and as such it would be
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a direct sum of finite dimensional indecomposable submodules, contradicting
the fact that M is torsion-free and regular. Since rk P = 1, we get that ¢ must
be an embedding. But P is projective, so this also gives an embedding of P
into M and the image P, is disjoint from P. Thus Py does not depend on P,

contradicting the assumption that P was a generating set for M.
Finally we want to show that the cardinality of a P-basis for M is rk M.

Theorem 3.3. Let P = {P; | i € I} C Wp be an independent set. Then
tkP = |P|. In particular if P is a P-basis for M then |P| = rk M.

Proof. Let us take N = P. Then the module N/ @ P; is the torsion

icl
submodule of the module M/ @ P;, and the latter is regular by Theorem 3.1.
icl
Thus N/ @ P; must also be regular. If we now embed the module N into a

direct surlnelY of copies of the module @ in such a way that Y/N is torsion
regular, then Y/ i?] P; is also torsion regular. Hence rk N = rk i?] P;. But
clearly rk iEgBI P; = |I| = |P|, thus we are done.

The previous result shows that the cardinality of a P-basis for M would
be the same if we have started with another indecomposable projective module
P’ which is of rank 1. As a matter of fact we did not use that our set Wp
was “homogeneous”: it would have been possible to define our dependence
relation for the set W =W(M) = {N C M | N is indecomposable projective,
rk N =1}

4. Further results. Let us take an independent set P = {P; | i € I} C Wp.
Then by Theorem 3.1 we get that iGEBI P, C M and M/ ing P; is regular. If we
take a projection map m; : & P; — P; and compose it with an embedding
t; : P; = @ then we can exterzlfilthis map to a homomorphism ¢; : M — @Q. Let
us choose such a homomorphism ; for each i € I. Then we have the following

proposition.

Proposition 4.1. Let P = {P; | i € I} C Wp be an independent set for
the torsion-free module M and ¥ = {¢; | i € I} C Hom (M, Q) be a set of

homomorphisms as defined above. Then ¥ is independent over End (Q).

Proof. Assume that a;, ¢, + -+ + «a;,¢;, = 0 for some elements

Qi ., € End(Q) and some indices ij,...,i, € I. We may assume
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that the indices are all distinct. Since P;; C Ker;, for j # f, we get that
P;; C Keray;v;; for 1 < j < n. But since Ker¢;; N P;; = 0, we must have
that Kera;; # 0 so a;; = 0 for every 1 < j < n. Thus ¥ is independent over
End (Q).

As an application of our concepts we will conclude with a statement which

generalizes Proposition 6.1.2 of [R].

Proposition 4.2. Let M be a torsion-free (not necessarily regular) module
of finite rank, and let N C M be a submodule such that M /N is torsion. Then
M/N is regular if and only if tk N = rk M.

Proof. Assume first that M /N is regular. Then an embedding of M into a
direct sum @ @ with a torsion regular cokernel yields an embedding of IV into
the same dinGeIct sum with a cokernel term which is also torsion regular. Hence
tk N =1k M.

Assume now that rk N = rk M = n. Then we have the following diagram:

0 — N N 5Q=Y'" — YN — 0
1

bbb

0 — M 2 Q=YY" — Y'/M — 0.
1

Here ¢' is the embedding of N into M, the modules Y'/N and Y" /M are
torsion regular, and the existence of ¢ follows from Ext (Y'/N,Y") = 0. Since
the modules M/N and Y" /M are torsion, we get that Y /N is also torsion,
hence myu = Y. This immediately gives that ¢ is a monomorphism, as

otherwise the exact sequence
0—Kerp —Y' —Imp —0

would give that rkIm ¢ < rk Y’ = n, and then we would have that rkTm " <
rkIm < n =rkY", which contradicts the fact that WY” =Y.

To prove that ¢ is an epimorphism we will show first that Cok ¢ is torsion
regular. Take a P-basis P = {P, P,...,P,} for Y'. Then it embeds into
Y as o(P) = {@(P), ¢(Py), ... p(Pa)} € Wp(Y"). Since Imp" = Y, we

must have <p(77)y = Y", so Theorem 3.2 implies that ¢(P) is a generating
set for Wp(Y"). Since tkY"” = n = |p(P)|, we get that ¢(P) is a P-basis
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for Y. So Y"/{¢(P)) is torsion regular by Theorem 3.1. Hence Coky =
(Y"/((P)))/Im ¢/ {p(P)) is also torsion regular.

From the fact that Cok ¢ is torsion regular we get that Ext (Cok ¢, Im ¢) =
0 hence the embedding ¢ : Y’ — Y splits. As Y" is torsion-free, this implies
that Cokp = 0, i.e. ¢ is an epimorphism.

Finally, since Coky = 0, the Snake Lemma gives us that Kerp” =
Cok¢' = M/N. Since ¢" is a homomorphism between torsion regular modules,

Ker ¢" is torsion regular. Hence M /N is torsion regular, as required.

It is easy to construct examples to show that the assumption on the finite-
ness of rk N = rk M is necessary. Take for instance a module (); isomorphic
to () with two disjoint non-zero finite dimensional submodules: Py, P, C Q.
(Since Soc @)1 is not simple, one can obviously find such submodules.) Let us
also choose arbitrary non-zero finite dimensional submodules P; C @Q; = @ for
i=2,3,.... Take M = .?é’l Qi N = ?é’opi. Then obviously rk N = rk M = X,
with N = M. But M/]\Zf_cannot be ;ggular as otherwise one could extend the
homomorphism %3 P, = Py Q to a homomorphism ‘?.Sl Qi N Q. Then

i=

i=

Kerty D 69 P;, hence Kervy D @ P = M, contradicting the fact that ) # 0,
since for example Kery NPy = 0
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