
SUPERPURELY SIMPLE MODULESbyIstv�an �Agoston, Andrew P. Dean and Wiebke S
hewex1. Introdu
tionIn Theorem 2.6 of [DZ℄ it is shown that an in�nite dimensional torsion-free moduleof �nite rank over a tame hereditary algebra � is purely simple if and only if every non-zero homomorphism from M into Q, the unique generi
 module in the sense of [CB℄, has�nite dimensional kernel. In this paper we 
hara
terize those torsion-free �-modules Mfor whi
h every non-zero homomorphism ' : M ! Q is a monomorphism. We 
all thesemodules superpurely simple.From Proposition 6.1.2 in [R℄ it follows that every torsion-free module of rank oneis superpurely simple. On the other hand, Theorem 1.6 in [D℄ implies that the in�nitedimensional modules of rank larger than one are not superpurely simple. Thus, in order todetermine all superpurely simple �-modules, one may 
on
entrate on those whi
h are �nitedimensional, inde
omposable and preproje
tive of rank larger than one. By �rst givinga 
hara
terization of superpurely simple modules, we show that for ea
h tame hereditaryalgebra �, there are only �nitely many non-isomorphi
 superpurely simple modules ofrank larger than one. The pre
ise number of su
h modules depends on the orientationwhi
h is given to the underlying graph of the quiver of �. As a 
onsequen
e of our
hara
terization, we get that for every torsion-free module M of �nite rank there exists a
hain of torsion-
losed submodules 0 = U0 � U1 � : : : � Ut =M with Ui=Ui�1 superpurelysimple for 1 � i � t. From this we derive a 
riterion for an in�nite dimensional torsion-freemodule of �nite rank to be purely simple.We re
all some basi
 de�nitions from [R℄. Let � be a �nite dimensional tame hered-itary algebra over an algebrai
ally 
losed �eld k, that is, a path algebra over a quiverwhose underlying graph is one of the Eu
lidean diagrams ~An (n � 1), ~Dn (n � 4), ~E6,~E7, ~E8. We de�ne a torsion theory on the 
ategory of right �-modules as follows. A mod-ule M is 
alled torsion if it is spanned by its �nite dimensional regular and preinje
tivesubmodules. A module M is torsion-free if every �nite dimensional submodule of M is1



preproje
tive. The unique generi
 module Q 
onstru
ted by Ringel (
f. Theorem 5.3 of[R℄) is 
hara
terized by the properties that EndQ is a division ring and dimEndQQ <1.Every torsion-free module M 
an be embedded into a dire
t sum Y of 
opies of Q in su
ha way that the quotient Y=M is regular (that is, it has no �nite dimensional preproje
tiveor preinje
tive dire
t summands) and torsion. The number of 
opies of Q in a dire
t sumde
omposition of su
h a module Y is an invariant of M and is 
alled the rank of M . Weshall denote this number with rkM . By Theorem 1.3 in [D℄, if rkM is �nite then itequals dimEndQHom(M;Q). The rank is additive on short exa
t sequen
es of torsion-freemodules (Proposition 2.2 of [DZ℄).x2. Basi
 PropertiesA submodule N of a module M is 
alled torsion-
losed in M if the quotient M=N istorsion-free. The interse
tion of all torsion-
losed submodules in M whi
h 
ontain a givensubmodule N � M is torsion-
losed in M and it is 
alled the torsion 
losure of N in M .We shall denote it by NM or simply by N . We shall need the following result.Proposition 2.1. Let M be a torsion-free module and N � M a submodule. ThenrkNM � rkN .Proof. Assume �rst that rkN <1 and 
onsider the following exa
t sequen
e:0 �! N '�! N  �! N=N �! 0.Applying the fun
tor Hom(�; Q) we get:0 �! Hom(N=N;Q)  ��! Hom(N;Q) '��! Hom(N;Q).Sin
e N=N is torsion, Hom(N=N;Q) = 0. Thus '� is a monomorphism and sodimEndQHom(N;Q) � dimEndQHom(N;Q). But dimEndQHom(N;Q) = rkN and the�niteness of this implies that also dimEndQHom(N;Q) = rkN . Thus rkN � rkN , asrequired.Let us 
onsider now the 
ase when rkN = � � �0. Suppose that rkNM = � > �. FromLemma 4.2 and Proposition 4.3 in [R℄ we get that there exists a submodule �i2I Pi � Nsu
h that Pi is �nite dimensional preproje
tive for ea
h i 2 I and N= �i2I Pi is torsionregular. Sin
e for every i 2 I we have that rkPi < �0 and sin
e the 
lass of torsion regular2



modules is 
losed under extensions (
f. Proposition 4.2 in [R℄), we get that rkN = jIj = �.Consider now the following embeddings:�i2I Pi ,�! N ,�! NM ,�! �J Q = Ywith jJ j = � = rkN and the quotient module Y=NM torsion regular. Let us remark �rstthat sin
e the modulesN= �i2I Pi, NM=N and Y=NM are all torsion, we get that �i2I PiY = Y .We show that this leads to a 
ontradi
tion.Sin
e dimk Pi < �0 for ea
h i 2 I, we obtain that � � dimk �i2I Pi � � � �0 = �.This also gives that the set J 0 = fj 2 J j �j(�i2I Pi) 6= 0g, where �j : Y ! Q is the j'thproje
tion, satis�es jJ 0j � (dimk �i2I Pi) � �0 = � < � = jJ j. Hen
e J n J 0 is not empty,that is, there is an index j 2 J su
h that Ker�j � �i2I Pi. But then for the torsion 
losureof �i2I Pi we get �i2I PiY � Ker�j � Y sin
e Ker�j is obviously torsion-
losed, and this isa 
ontradi
tion. Thus rkNM � rkN .De�nition 2.2. A torsion-free module M is 
alled superpurely simple if for everynon-zero homomorphism ' :M ! Q we have Ker' = 0.Superpurely simple modules obviously must be inde
omposable. The following 
har-a
terization will be used in x3 for determining all superpurely simple modules.Theorem 2.3. Let M be a torsion-free module. The following statements are equiv-alent.(i) M is not superpurely simple.(ii) There exists a non-zero torsion-
losed submodule U �M .(iii) There exists a non-zero submodule U �M with rkU < rkM .(iv) There exists a non-zero homomorphism ' : V ! M from a torsion-free moduleV with rkV < rkM .Proof. (i)) (ii) Let ' :M ! Q be a non-zero homomorphism with non-zero kernel.Let U = Ker'. Then U is torsion-
losed and U 6=M .(ii)) (iii) Assume �rst that rkM <1. Consider the sequen
e0 �! U �!M �!M=U �! 0with 0 6= U � M and U torsion-
losed in M . Then M=U is non-zero and torsion-free sowe have rkM = rkU + rkM=U . Sin
e rkM=U > 0, we get rkU < rkM , as required.3



To show the statement for the 
ase when rkM =1, we will show that every torsion-freemodule 
ontains a torsion-
losed submodule U of �nite rank. Let W � M be a �nitedimensional submodule. Clearly rkW <1. By Proposition 2.1, with U = W , we get thatrkU � rkW <1. Hen
e U is torsion-
losed of �nite rank.(iii)) (iv) Choose the embedding of U into M .(iv) ) (iii) Take U = Im' � M . Then Im' 6= 0 and rk Im' = rkV � rkKer' �rkV < rkM .(iii) ) (ii) By Proposition 2.1, if rkU < rkM , then U < M , hen
e M has a propertorsion-
losed submodule, as required.(ii) ) (i) For U � M , where U is torsion-
losed in M , the module M=U is torsion-free, hen
e we have a non-zero homomorphism ' : M=U ! Q. By 
ombining it with thenatural epimorphism M ! M=U , we get a non-zero homomorphism ~' : M ! Q withU � Ker ~'. Sin
e by assumption U 6= 0, we have Ker ~' 6= 0, as required.Corollary 2.4. Every non-zero torsion-free module M 
ontains a non-zero super-purely simple torsion-
losed submodule.Proof. Choose a non-zero torsion-
losed submodule U of minimal rank. The argumentin the proof of Theorem 2.3 (ii) ) (iii) shows that rkU < 1. Then any proper torsion-
losed submodule of U would be torsion-
losed in M and of smaller rank than U . Thiswould 
ontradi
t the minimality of rkU . Hen
e by (ii) U is superpurely simple.Corollary 2.5. Let M be a torsion-free module of �nite rank. Then there exists a
hain 0 = U0 � U1 � : : : � Ut =M of torsion-
losed submodules in M su
h that Ui=Ui�1is superpurely simple for i = 1; : : : t.Proof. Choose a non-zero superpurely simple torsion-
losed submodule U1 � M ,given by Corollary 2.4. Then either M = U1, hen
e M is superpurely simple, orrkM=U1 < rkM , and in this 
ase an indu
tion argument 
ompletes the proof.At the end of x3 we will see an example showing that neither the isomorphism typesof the 
onse
utive quotients, nor the number of the elements in the 
hain of Corollary 2.5are uniquely determined by M (see Example 3.4). However, for purely simple modules thefollowing holds. (Re
all that a submodule N � M is 
alled pure in M if N is a dire
t4



summand in every submodule U � M 
ontaining N for whi
h U=N has �nite length. Amodule M is purely simple if it has no non-zero proper pure submodules.)Proposition 2.6. LetM be an in�nite dimensional torsion-free module of �nite rank.ThenM is purely simple if and only if for every 
hain 0 = U0 � U1 � : : : � Ut�1 � Ut =Mof torsion-
losed submodules with Ui=Ui�1 superpurely simple for 1 � i � t, we havedimk Ut�1 <1.Proof. Let M be an in�nite dimensional torsion-free module. If M is purely simpleof �nite rank, then by Theorem 2.4 of [DZ℄ every proper torsion-
losed submodule mustbe �nite dimensional. Hen
e dimk Ut�1 <1. If M is not purely simple then by Theorem2.6 of [DZ℄ there is an in�nite dimensional proper torsion-
losed submodule U � M . Ifwe take a 
hain of torsion-
losed submodules of U with superpurely simple quotients and
omplete it to a 
hain of M as follows:0 = U0 � U1 � : : : � Ui = U � Ui+1 � : : : � Ut = M ,then dimk Ui and hen
e dimk Ut�1 are in�nite.Thus we get the following 
orollary (see also Proposition 1.2 in [O2℄). The proof isobvious.Corollary 2.7. Let M be a purely simple in�nite dimensional torsion-free moduleof �nite rank and let N be a torsion-
losed submodule of M . Then M=N is also purelysimple.It would be interesting to know if Corollary 2.7 holds ifM is of in�nite rank. A
tuallythe existen
e or non-existen
e of purely simple modules of in�nite rank is still an openquestion (see [O1℄).For torsion-free regular modules Corollary 2.5 
an be slightly strengthened.Proposition 2.8. Let M be a torsion-free regular module of �nite rank t. Then thereexists a 
hain of torsion-
losed submodules 0 = U0 � U1 � : : : � Ut�1 � Ut = M su
hthat rkUi=Ui�1 = 1 for 1 � i � t.Proof. Let P be an inde
omposable proje
tive module of rank one. By Proposition4.3 in [R℄ we 
an �nd a submodule U = �i2I Pi �M su
h that Pi �= P for i 2 I and M=U5



is torsion regular. Sin
e the 
lass of torsion regular modules is 
losed under extensions (
f.Proposition 4.2 in [R℄) we get that rkU = rkM = t, thus we may assume I = f1; : : : ; tg.Take Uj = j�i=1Pi. The proof of Proposition 4.3 in [R℄ a
tually shows that Uj \ Pj+1 = 0for 1 � j � t� 1. Then Proposition 2.1 implies that rkUj=Uj�1 = 1, as required.x3. Superpurely simple modules in the Auslander{Reiten quiverIn this se
tion we use Theorem 2.3 to examine in more detail the distribution of super-purely simple modules in the Auslander{Reiten quiver of �. In what follows, �P = DTrPdenotes the Auslander{Reiten translate of the �nite dimensional inde
omposable moduleP . Let us also re
all that for a �nite dimensional preproje
tive module P the rank of Pequals the negative of the defe
t of P (Proposition 5.6 in [R℄). Sin
e the defe
t is invariantunder � , we have rkP = rk �P .Proposition 3.1. Let P be a (�nite dimensional) inde
omposable preproje
tive mod-ule whi
h is not proje
tive. If P is superpurely simple, then so is �P .Proof. Assume that �P is not superpurely simple. Then by (iv) of Theorem 2.3 we
an �nd a non-zero homomorphism ' : P 0 ! �P from an inde
omposable preproje
tivemodule P 0 for whi
h rkP 0 < rk �P . But then ��1' : ��1P 0 ! P is also non-zero. Sin
erk ��1P 0 = rkP 0 < rk �P = rkP , 
ondition (iv) of Proposition 2.3 implies that P is notsuperpurely simple.Let � be a Eu
lidean diagram with verti
es f1; : : : ; n+ 1g and with an orientation ~�.Let P (i) denote, for 1 � i � n+ 1, the inde
omposable proje
tive module 
orrespondingto the vertex i over the path algebra k~�. Then the rank of P (i) is a
tually independentof the parti
ular orientation ~� (see for example se
tion 1.D of [R℄). Thus the number ofinde
omposable proje
tive modules of rank one over k~� (whi
h is also independent of theorinetation) will be denoted by s(�).Proposition 3.2. Let � be a Eu
lidean diagram on n + 1 verti
es. Then for everynatural number t su
h that s(�) � t � n+1 there exists an orientation ~� of � su
h that thenumber of non-isomorphi
 inde
omposable proje
tive k~�-modules whi
h are superpurelysimple equals t. 6



Proof. Sin
e the algebra k~� is hereditary, 
ondition (iv) of Theorem 2.3 implies thatthe proje
tive modules P (j) is not superpurely simple if and only if there exists a non-zerohomomorphism ' : P (i) ! P (j) for some i where rkP (i) < rkP (j). It is also 
lear thatthere is a non-zero homomorphism ' : P (i)! P (j) if and only if there is an oriented pathin ~� from j to i. Thus P (j) is superpurely simple if and only if there is no oriented pathin ~� from j to any i with rkP (i) < rkP (j). As rkP (i) is independent of the orientation of�, the statement follows by an easy 
ase-by-
ase analysis, or from Proposition 3.5 below.Theorem 3.3. Let � be a Eu
lidean diagram. Then the number of non-isomorphi
superpurely simple k~�-modules of rank larger than one is �nite for any orientation ~� of �.Proof. As pointed out earlier, any superpurely simple module of rank larger thanone must be �nite dimensional, inde
omposable and preproje
tive. (Note that for � = ~Anall �nite dimensional inde
omposable preproje
tive modules are of rank one.) So let usassume that i is a vertex with rkP (i) > 1 and let t be the distan
e of the vertex i in thegraph � from a vertex j with rkP (j) < rkP (i). Then regardless of the orientation of �,
ondition (iv) of Theorem 2.3 implies that ��tP (i) is not superpurely simple. Hen
e, byProposition 3.1, ea
h � -orbit 
ontaining an inde
omposable proje
tive of rank larger thanone has only �nitely many superpurely simple modules.The following is the list of the maximal number of superpurely simple modules ofrank larger than one 
orresponding to some orientation of the Eu
lidean diagrams. Thenumbers, denoted by m(�) 
an be 
he
ked by a simple 
ase-by-
ase analysis.� m(�)~An 0~Dn �n�22 � � �n�12 �~E6 4~E7 8~E8 13The following orientations give a maximal number of superpurely simple modules ofrank larger than one. 7



~Dn: 1 Æ�&2 Æ�%Æ3��!Æ4��� � �!Æ3+[n�42 ℄ � � ���Æn�2 ��Æn�1.�Æ n-�Æ n+1
~E6: Æ1��!Æ2��!

7 Æ??y6 Æ??yÆ3 ��Æ4 ��Æ5~E7: Æ1��!Æ2��!Æ3��!8 Æ??yÆ4 ��Æ5 ��Æ6 ��Æ7~E8: Æ1��!Æ2��!Æ3��!Æ4��!Æ5��!9 Æ??yÆ6 ��Æ7 ��Æ8As an illustration, we give the position of the superpurely simple modules in theAuslander{Reiten quiver of k~� for � = ~E7 with the orientation given above. The 
ir
ledverti
es 
orrespond to the superpurely simple modules.rkP (i)1 
 
 
 
2 
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 ��Example 3.4. The following example shows that for 
hains of torsion 
losed sub-modules with superpurely simple quotients, neither the isomorphism types of the quotients,nor the number of the elements in these 
hains is uniquely determined by the module.Consider the graph � = ~E8 with the following orientation:Æ1��!Æ2��!Æ3��!Æ4 ��Æ5 ��9 Æx??Æ6��!Æ7 ��Æ88



On Figure 1 we show a portion of the preproje
tive 
omponent of the Auslander{Reiten quiver of the 
orresponding path algebra k~�.The proje
tive module P (6) has three di�erent �ltrations by torsion-
losed sub-modules:(i) 0 � P (4) � P (5) � P (6); here P (5)=P (4) = ��1P (1) and P (6)=P (5) =��2P (1), thus rkP (4) = 4, rkP (5)=P (4) = rk ��1P (1) = 1 and rkP (6)=P (5) =rk ��2P (1) = 1.(ii) 0 � P (7) � P (6); here rkP (7) = 4, rkP (6)=P (7) = rk ��1P (8) = 2.(iii) 0 � P (9) � P (6); here rkP (9) = 3, rkP (6)=P (9) = rk ��1P (9) = 3.The quotients 
onsidered above are all superpurely simple as 
an be easily 
he
ked on theAuslander{Reiten quiver of Figure 1. (The modules at the beginning of the quiver arerepresented by their Loewy series.)rkP (i)1 1234 - - - - - - - 5 - - - - - - - 679 - - -%� �& %� �& %�2 234 - - - - - - - 12354 - - - - - - - 6579 - - -%� �& %� �& %�3 34 - - - - - - - 2354 - - - - - - - 12 63 5794 - - -%� �& %� �& %� �&4 4 - - - - - - - 354 - - - - - - - 2 63 5794 - - - - - - - ��3P (4) - - -�& %� �& %� �& %� �&5 54 - - - - - - - 63 5794 - - - - - - - ��2P (5) - - - - - - - ��3P (5) - - -�& %� �& %� �& %� �&6 65794 - - - - - - - ��1P (6) - - - - - - - ��2P (6) - - - - - - - ��3P (6) - - -%� �& %� �& %� �& %�3 9 - - - - - - - 6574 - - - - - - - ��2P (9) - - - - - - - ��3P (9) - - -���� AAAA ���� AAAA ���� AAAA ���� AAAA4 7 - - - - - - - 6 85974 - - - - - - - ��2P (7) - - - - - - - ��3P (7) - - - - - - - ��4P (7) - - -�& %� �& %� �& %� �& %� �&2 87 - - - - - - - 6594 - - - - - - - ��2P (8) - - - - - - - ��3P (8) - - - - - - - ��4P (8) - - -
 superpurely simple modulesFigure 19



We �nish our paper with a purely 
ombinatorial proposition. It may be used as analternate proof to the 
ase-by-
ase 
he
king in Proposition 3.2. Let � = (V;E) denote anunoriented graph with V being the set of verti
es and E the set of edges. Let v : V !f1; 2; : : : ; `g be an arbitrary fun
tion. A vertex v 2 V is said to be superpurely simplefor a given orientation ~� of � if there is no path in ~� from g to some vertex h 2 V withv(h) < v(g).Proposition 3.5. [L℄ Let � = (V;E) be a �nite 
onne
ted unoriented graphwith a fun
tion v : V ! f1; 2; : : : ; `g. Then for any natural number m satisfyingjfg 2 V j 8h 2 V v(g) � v(h)gj � m � jV j there is an orientation ~� of � su
h that thenumber of superpurely simple verti
es with respe
t to this orientation is exa
tly m.Proof. We will need the following lemma.Lemma 3.6. Let � = (V;E) and v be as above. Let A = fg 2 V j v(g) < tg andB = fh 2 V j v(h) � tg for some (�xed) value t. Assume that for every h 2 B there is apath leading from h to some vertex g 2 A. Then there is an orientation ~� of � su
h thatthe verti
es whi
h are superpurely simple with respe
t to this orientation are exa
tly theelements of A.Proof. Choose an orientation a

ording to the following rules:(a) g; h 2 A, g ! h implies v(g) � v(h);(b) g 2 A, h 2 B implies that if there is an edge between g and h, then h! g;(
) g; h 2 B, g ! h implies that dA(g) � dA(h), where dA(g) and dA(h) denote thedistan
es of g and h from A.This orientation 
learly satis�es the requirements.Let us turn now to the proof of the proposition. Fix the value m satisfying thegiven 
onditions. Then we 
an 
hoose t to be su
h that jfg 2 V j v(g) < tgj < m �jfg 2 V j v(g) � tgj. Finally, let us de�ne the following subsets of V :A = fg 2 V j v(g) < tg;B = fg 2 V j v(g) = tg;B0i = fg 2 B j every path 
onne
ting g with an element of A 
ontains at least i elementsof B, 
ounting g toog; 10



Bi = B0i nB0i+1.Thus B is the disjoint union of the sets B1; B2; : : : ; Bs, and from an element of Bi thereis always a path to an element of A not 
ontaining any of the elements of Bi+1; : : : ; Bs.Choose now a subset C � B su
h that:(i) jA [ Cj = m;(ii) if C \ Bi 6= ;, then C � s[j=i+1Bj .Split the set of verti
es V into the following two disjoint sets:V1 = fg 2 V n C j there is a path from g to A in � n Cg;V2 = V n V1.Let us �rst note that 
learly A [ (B n C) � V1, and C � V2. Let G1 and G2 denote thesubgraphs of G on the verti
es V1 and V2, respe
tively. Apply now Lemma 3.6 for G1 andG2 with de
ompositions V1 = A [ (V1 n A) and V2 = C [ (V2 n C). Both de
ompositionssatisfy the requirements. Complete the so found orientations ofG1 and G2 to an orientationof G by taking g ! h if g 2 V1, h 2 V2 and there is an edge between g and h. Then theset of superpurely simple verti
es is A [ C, sin
e orienting the edges from V1 to V2 willpreserve this property both for verti
es in A and in C.A
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