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§1. Introduction

In Theorem 2.6 of [DZ] it is shown that an infinite dimensional torsion-free module
of finite rank over a tame hereditary algebra A is purely simple if and only if every non-
zero homomorphism from M into @), the unique generic module in the sense of [CB], has
finite dimensional kernel. In this paper we characterize those torsion-free A-modules M
for which every non-zero homomorphism ¢ : M — @ is a monomorphism. We call these
modules superpurely simple.

From Proposition 6.1.2 in [R] it follows that every torsion-free module of rank one
is superpurely simple. On the other hand, Theorem 1.6 in [D] implies that the infinite
dimensional modules of rank larger than one are not superpurely simple. Thus, in order to
determine all superpurely simple A-modules, one may concentrate on those which are finite
dimensional, indecomposable and preprojective of rank larger than one. By first giving
a characterization of superpurely simple modules, we show that for each tame hereditary
algebra A, there are only finitely many non-isomorphic superpurely simple modules of
rank larger than one. The precise number of such modules depends on the orientation
which is given to the underlying graph of the quiver of A. As a consequence of our
characterization, we get that for every torsion-free module M of finite rank there exists a
chain of torsion-closed submodules 0 = Uy C Uy C ... C Uy = M with U; /U;_1 superpurely
simple for 1 < ¢ < t. From this we derive a criterion for an infinite dimensional torsion-free
module of finite rank to be purely simple.

We recall some basic definitions from [R]. Let A be a finite dimensional tame hered-
itary algebra over an algebraically closed field k, that is, a path algebra over a quiver
whose underlying graph is one of the Euclidean diagrams A, (n>1), D, (n > 4), Eg,
E7, Eg. We define a torsion theory on the category of right A-modules as follows. A mod-
ule M is called torsion if it is spanned by its finite dimensional regular and preinjective

submodules. A module M is torsion-free if every finite dimensional submodule of M is
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preprojective. The unique generic module @) constructed by Ringel (cf. Theorem 5.3 of
[R]) is characterized by the properties that End @ is a division ring and dimgng g @ < oc.
Every torsion-free module M can be embedded into a direct sum Y of copies of () in such
a way that the quotient Y/M is regular (that is, it has no finite dimensional preprojective
or preinjective direct summands) and torsion. The number of copies of @ in a direct sum
decomposition of such a module Y is an invariant of M and is called the rank of M. We
shall denote this number with rk M. By Theorem 1.3 in [D], if rk M is finite then it
equals dimgnq g Hom (M, Q). The rank is additive on short exact sequences of torsion-free
modules (Proposition 2.2 of [DZ]).

62. Basic Properties

A submodule N of a module M is called torsion-closed in M if the quotient M/N is
torsion-free. The intersection of all torsion-closed submodules in M which contain a given
submodule N C M is torsion-closed in M and it is called the torsion closure of N in M.

We shall denote it by N" or simply by N. We shall need the following result.

Proposition 2.1. Let M be a torsion-free module and N C M a submodule. Then
kN <rkN.

Proof. Assume first that rk N < oo and consider the following exact sequence:
0—N-5N -5 N/N— 0.
Applying the functor Hom (—, Q) we get:
0 — Hom (N/N, Q) ¥ Hom (N, Q) 2> Hom (N, Q).

Since N/N is torsion, Hom (N/N,Q) = 0. Thus ¢* is a monomorphism and so
dimgng g Hom (N,Q) < dimgng 9 Hom (N, Q). But dimgng g Hom (N, Q) = rk N and the
finiteness of this implies that also dimgpqg Hom (N, Q) = rk N. Thus tk N < rk N, as
required.

Let us consider now the case when rk N = x > X;. Suppose that rk N" =X > k. From
Lemma 4.2 and Proposition 4.3 in [R] we get that there exists a submodule z-GQI P, <N
such that P; is finite dimensional preprojective for each ¢ € I and N/ @ P; is torsion

1€l
regular. Since for every ¢ € I we have that rk P; < Ry and since the class of torsion regular
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modules is closed under extensions (cf. Proposition 4.2 in [R]), we get that rk N = |I| = k.

Consider now the following embeddings:

@ P—sN-—sN «—pQ=Y
iel 7

with [J| = A = rk N and the quotient module Y/N"" torsion regular. Let us remark first
that since the modules N/ EEBI P;,N" /N and Y/N" are all torsion, we get that ZEEBI @ P =Y.
We show that this leads to a contradiction.

Since dimg P; < ¥g for each ¢ € I, we obtain that x < dimy & P; < k- Ny = k.
This also gives that the set J' = {j € J | Wj(ieéaI P;) # 0}, where sz:EIY — @ is the j’th
projection, satisfies |J'| < (dimg @ P;)-Rg = k < A = |J|. Hence J\ J' is not empty,

i€l
that is, there is an index j € J such that Kerm; O @ P;. But then for the torsion closure
1€l

of & P; we get @ @ P, C Ker m; C Y since Ker; is obviously torsion-closed, and this is
el iel

a contradiction. Thus tk N <rkN.

Definition 2.2. A torsion-free module M is called superpurely simple if for every

non-zero homomorphism ¢ : M — Q we have Ker ¢ = 0.

Superpurely simple modules obviously must be indecomposable. The following char-

acterization will be used in §3 for determining all superpurely simple modules.

Theorem 2.3. Let M be a torsion-free module. The following statements are equiv-
alent.
(i) M is not superpurely simple.
(ii) There exists a non-zero torsion-closed submodule U C M.
(iii) There exists a non-zero submodule U C M with tkU < rk M.
(iv) There exists a non-zero homomorphism ¢ : V.— M from a torsion-free module
V withtkV < rk M.

Proof. (i) = (i7) Let ¢ : M — @ be a non-zero homomorphism with non-zero kernel.
Let U = Ker ¢. Then U is torsion-closed and U # M.
(13) = (7i7) Assume first that rk M < oo. Consider the sequence

0—U—M-—M/U—0

with 0 # U € M and U torsion-closed in M. Then M/U is non-zero and torsion-free so
we have tk M = rkU + rk M/U. Since tk M/U > 0, we get tkU < rk M, as required.
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To show the statement for the case when rk M = oo, we will show that every torsion-free
module contains a torsion-closed submodule U of finite rank. Let W < M be a finite
dimensional submodule. Clearly tk W < co. By Proposition 2.1, with U = W, we get that
rkU <rkW < oc. Hence U is torsion-closed of finite rank.

(i4i) = (iv) Choose the embedding of U into M.

(iv) = (i1i) Take U = Imp < M. Then Im¢ # 0 and rkImp = rkV — rkKer ¢ <
rkV <rk M.

(iii) = (ii) By Proposition 2.1, if rkU < rk M, then U < M, hence M has a proper
torsion-closed submodule, as required.

(i) = (i) For U C M, where U is torsion-closed in M, the module M /U is torsion-
free, hence we have a non-zero homomorphism ¢ : M/U — Q. By combining it with the
natural epimorphism M — M/U, we get a non-zero homomorphism ¢ : M — @ with

U C Ker ¢. Since by assumption U # 0, we have Ker ¢ # 0, as required.

Corollary 2.4. Every non-zero torsion-free module M contains a non-zero super-

purely simple torsion-closed submodule.

Proof. Choose a non-zero torsion-closed submodule U of minimal rank. The argument
in the proof of Theorem 2.3 (i7) = (i4i) shows that rk U < co. Then any proper torsion-
closed submodule of U would be torsion-closed in M and of smaller rank than U. This

would contradict the minimality of rk U. Hence by (ii) U is superpurely simple.

Corollary 2.5. Let M be a torsion-free module of finite rank. Then there exists a
chain 0 =Uy C Uy C ... C Uy = M of torsion-closed submodules in M such that U; /U;_,

is superpurely simple for 1 =1, .. .t.

Proof. Choose a non-zero superpurely simple torsion-closed submodule U; < M,
given by Corollary 2.4. Then either M = U;, hence M is superpurely simple, or

rk M/U; < rk M, and in this case an induction argument completes the proof.

At the end of §3 we will see an example showing that neither the isomorphism types
of the consecutive quotients, nor the number of the elements in the chain of Corollary 2.5
are uniquely determined by M (see Example 3.4). However, for purely simple modules the

following holds. (Recall that a submodule N C M is called pure in M if N is a direct
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summand in every submodule U C M containing N for which U/N has finite length. A

module M is purely simple if it has no non-zero proper pure submodules.)

Proposition 2.6. Let M be an infinite dimensional torsion-free module of finite rank.
Then M is purely simple if and only if for every chain0 =Uy Cc Uy C...C U1 C Uy =M
of torsion-closed submodules with U;/U;_1 superpurely simple for 1 < i < t, we have

dimy U;_1 < oc.

Proof. Let M be an infinite dimensional torsion-free module. If M is purely simple
of finite rank, then by Theorem 2.4 of [DZ] every proper torsion-closed submodule must
be finite dimensional. Hence dimg U;_; < oo. If M is not purely simple then by Theorem
2.6 of [DZ] there is an infinite dimensional proper torsion-closed submodule U C M. If
we take a chain of torsion-closed submodules of U with superpurely simple quotients and

complete it to a chain of M as follows:
OZU(]CUlC...CUi:UCUi+1C...CUt:M,

then dimy U; and hence dimy, U;_; are infinite.

Thus we get the following corollary (see also Proposition 1.2 in [0O2]). The proof is

obvious.

Corollary 2.7. Let M be a purely simple infinite dimensional torsion-free module
of finite rank and let N be a torsion-closed submodule of M. Then M/N is also purely

simple.

It would be interesting to know if Corollary 2.7 holds if M is of infinite rank. Actually
the existence or non-existence of purely simple modules of infinite rank is still an open
question (see [O1]).

For torsion-free regular modules Corollary 2.5 can be slightly strengthened.

Proposition 2.8. Let M be a torsion-free regular module of finite rank t. Then there
exists a chain of torsion-closed submodules 0 = Uy C U; C ... C U;_1 C Uy = M such
that I‘kUi/Ui_l =1 forl S 1 S t.

Proof. Let P be an indecomposable projective module of rank one. By Proposition

4.3 in [R] we can find a submodule U = @& P; C M such that P, =2 P for i € [ and M/U
iel



is torsion regular. Since the class of torsion regular modules is closed under extensions (cf.
Proposition 4.2 i 4 2 in [R]) we get that rtkU = rk M = ¢, thus we may assume [ = {1,...,t}.

Take U; = EB P;. The proof of Proposition 4.3 in [R] actually shows that U; N Pj11 = 0
for1 <j< t — 1. Then Proposition 2.1 implies that rk U;/U;_1 = 1, as required.

§3. Superpurely simple modules in the Auslander—Reiten quiver

In this section we use Theorem 2.3 to examine in more detail the distribution of super-
purely simple modules in the Auslander—Reiten quiver of A. In what follows, 7P = DTr P
denotes the Auslander—Reiten translate of the finite dimensional indecomposable module
P. Let us also recall that for a finite dimensional preprojective module P the rank of P
equals the negative of the defect of P (Proposition 5.6 in [R]). Since the defect is invariant

under 7, we have rk P = rk 7P.

Proposition 3.1. Let P be a (finite dimensional) indecomposable preprojective mod-

ule which is not projective. If P is superpurely simple, then so is TP.

Proof. Assume that 7P is not superpurely simple. Then by (iv) of Theorem 2.3 we
can find a non-zero homomorphism ¢ : P’ — 7P from an indecomposable preprojective
module P’ for which rk P’ < tk7P. But then 77'¢ : 77'P’ — P is also non-zero. Since
tk 7= !P" = rk P’ < rk7P = rk P, condition (iv) of Proposition 2.3 implies that P is not

superpurely simple.

Let T be a Euclidean diagram with vertices {1,...,n -+ 1} and with an orientation .
Let P(i) denote, for 1 < i < n + 1, the indecomposable projective module corresponding
to the vertex i over the path algebra kL. Then the rank of P(i) is actually independent
of the particular orientation T' (see for example section 1.D of [R]). Thus the number of
indecomposable projective modules of rank one over kT (which is also independent of the

orinetation) will be denoted by s(T').

Proposition 3.2. Let I' be a Fuclidean diagram on n + 1 vertices. Then for every
natural number t such that s(T') < t < n+1 there exists an orientation I of T such that the
number of non-isomorphic indecomposable projective kT-modules which are superpurely

simple equals t.



Proof. Since the algebra kT is hereditary, condition (iv) of Theorem 2.3 implies that
the projective modules P(j) is not superpurely simple if and only if there exists a non-zero
homomorphism ¢ : P(i) — P(j) for some ¢ where rk P(i) < rk P(j). It is also clear that
there is a non-zero homomorphism ¢ : P(i) — P(j) if and only if there is an oriented path
in T’ from j to 7. Thus P(j) is superpurely simple if and only if there is no oriented path
in T from j to any i with rk P(i) < rk P(j). As rk P(i) is independent of the orientation of

I, the statement follows by an easy case-by-case analysis, or from Proposition 3.5 below.

Theorem 3.3. Let I' be a Fuclidean diagram. Then the number of non-isomorphic

superpurely simple kT-modules of rank larger than one is finite for any orientation T ofT.

Proof. As pointed out earlier, any superpurely simple module of rank larger than
one must be finite dimensional, indecomposable and preprojective. (Note that for T' = A,
all finite dimensional indecomposable preprojective modules are of rank one.) So let us
assume that i is a vertex with rk P(i) > 1 and let ¢ be the distance of the vertex i in the
graph I' from a vertex j with rk P(j) < rk P(i). Then regardless of the orientation of T',
condition (iv) of Theorem 2.3 implies that 77tP(i) is not superpurely simple. Hence, by
Proposition 3.1, each 7-orbit containing an indecomposable projective of rank larger than

one has only finitely many superpurely simple modules.

The following is the list of the maximal number of superpurely simple modules of
rank larger than one corresponding to some orientation of the Euclidean diagrams. The

numbers, denoted by m(I') can be checked by a simple case-by-case analysis.

r m(T)
A, 0
Do | [%2]-[2%5%]
Fq 4
E, 8
Fy 13

The following orientations give a maximal number of superpurely simple modules of

rank larger than one.
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As an illustration, we give the position of the superpurely simple modules in the
Auslander—Reiten quiver of kT for I' = E; with the orientation given above. The circled

vertices correspond to the superpurely simple modules.

R
f%’%

&

rk P(i)
1

2

Example 3.4. The following example shows that for chains of torsion closed sub-
modules with superpurely simple quotients, neither the isomorphism types of the quotients,
nor the number of the elements in these chains is uniquely determined by the module.

Consider the graph I' = Eg with the following orientation:

90




On Figure 1 we show a portion of the preprojective component of the Auslander—
Reiten quiver of the corresponding path algebra kT

The projective module P(6) has three different filtrations by torsion-closed sub-
modules:

(i) 0 ¢ P(4) c P(5) c P(6); here P(5)/P(4) = 77'P(1) and P(6)/P(5) =
772P(1), thus tk P(4) = 4, vk P(5)/P(4) = tk7='P(1) = 1 and tk P(6)/P(5) =
rk72P(1) = 1.

(ii) 0 C P(7) C P(6); here tk P(7) = 4, tk P(6)/P(7) = tk 7~ 1P(8) = 2.

(iii) 0 C P(9) C P(6); here rk P(9) = 3, rk P(6)/P(9) = rk =1 P(9) = 3.
The quotients considered above are all superpurely simple as can be easily checked on the
Auslander—Reiten quiver of Figure 1. (The modules at the beginning of the quiver are

represented by their Loewy series.)

rk P (i) 1
NN
N
NN
NN
N
O T AT
NN
LA
o AR

(O superpurely simple modules

Figure 1
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We finish our paper with a purely combinatorial proposition. It may be used as an
alternate proof to the case-by-case checking in Proposition 3.2. Let I' = (V, E') denote an
unoriented graph with V' being the set of vertices and F the set of edges. Let v : V —
, £} be an arbitrary function. A vertex v € V is said to be superpurely simple

for a given orientation T of T if there is no path in T from g to some vertex h € V with
v(h) < v(g).

Proposition 3.5. [L] Let I' = (V,E) be a finite connected unoriented graph
with a function v : V. — {1,2,...,¢4}. Then for any natural number m satisfying
{geV | VheV v(g) <wv(h)}| < m < |V| there is an orientation T' of T' such that the

number of superpurely simple vertices with respect to this orientation is exactly m.
Proof. We will need the following lemma.

Lemma 3.6. Let I' = (V, FE) and v be as above. Let A = {g € V | v(g) < t} and
B={heV | v(h) >t} for some (fixed) value t. Assume that for every h € B there is a
path leading from h to some vertex g € A. Then there is an orientation T of T such that
the vertices which are superpurely simple with respect to this orientation are exactly the

elements of A.

Proof. Choose an orientation according to the following rules:

(a) g,h € A, g — h implies v(g) < v(h);

(b) g € A, h € B implies that if there is an edge between g and h, then h — g;

(¢) g,h € B, g — h implies that da(g) > da(h), where da(g) and da(h) denote the
distances of g and h from A.

This orientation clearly satisfies the requirements.

Let us turn now to the proof of the proposition. Fix the value m satisfying the
given conditions. Then we can choose ¢ to be such that |{g eV | v(g) <t} < m <
{g € V | v(g) <t}|. Finally, let us define the following subsets of V:

A ={geV |u(g) <t}
B = {geV |ulg) =t}
B; = {g € B | every path connecting g with an element of A contains at least 7 elements

of B, counting g too};
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B; = Bj\ Bj41.
Thus B is the disjoint union of the sets By, Bs,..., B, and from an element of B; there
is always a path to an element of A not containing any of the elements of B;,1,..., Bs.
Choose now a subset C C B such that:
() AUC|=m;
(i) if C' N B; # 0, then C D j:LzJ+1 B;.
Split the set of vertices V into the following two disjoint sets:
Vi={g€V\C | there is a path from g to Ain '\ C};
Vo=V \V1.
Let us first note that clearly AU (B \ C) C Vi, and C C V5. Let G; and G4 denote the
subgraphs of G on the vertices V; and V5, respectively. Apply now Lemma 3.6 for G and
G2 with decompositions Vi = AU (V1 \ A) and V, = C U (V2 \ C). Both decompositions
satisfy the requirements. Complete the so found orientations of G; and G to an orientation
of G by taking g — h if g € V1, h € V5 and there is an edge between g and h. Then the
set, of superpurely simple vertices is A U C, since orienting the edges from Vi to V5 will

preserve this property both for vertices in A and in C.
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