
SUPERPURELY SIMPLE MODULESbyIstv�an �Agoston, Andrew P. Dean and Wiebke Shewex1. IntrodutionIn Theorem 2.6 of [DZ℄ it is shown that an in�nite dimensional torsion-free moduleof �nite rank over a tame hereditary algebra � is purely simple if and only if every non-zero homomorphism from M into Q, the unique generi module in the sense of [CB℄, has�nite dimensional kernel. In this paper we haraterize those torsion-free �-modules Mfor whih every non-zero homomorphism ' : M ! Q is a monomorphism. We all thesemodules superpurely simple.From Proposition 6.1.2 in [R℄ it follows that every torsion-free module of rank oneis superpurely simple. On the other hand, Theorem 1.6 in [D℄ implies that the in�nitedimensional modules of rank larger than one are not superpurely simple. Thus, in order todetermine all superpurely simple �-modules, one may onentrate on those whih are �nitedimensional, indeomposable and preprojetive of rank larger than one. By �rst givinga haraterization of superpurely simple modules, we show that for eah tame hereditaryalgebra �, there are only �nitely many non-isomorphi superpurely simple modules ofrank larger than one. The preise number of suh modules depends on the orientationwhih is given to the underlying graph of the quiver of �. As a onsequene of ourharaterization, we get that for every torsion-free module M of �nite rank there exists ahain of torsion-losed submodules 0 = U0 � U1 � : : : � Ut =M with Ui=Ui�1 superpurelysimple for 1 � i � t. From this we derive a riterion for an in�nite dimensional torsion-freemodule of �nite rank to be purely simple.We reall some basi de�nitions from [R℄. Let � be a �nite dimensional tame hered-itary algebra over an algebraially losed �eld k, that is, a path algebra over a quiverwhose underlying graph is one of the Eulidean diagrams ~An (n � 1), ~Dn (n � 4), ~E6,~E7, ~E8. We de�ne a torsion theory on the ategory of right �-modules as follows. A mod-ule M is alled torsion if it is spanned by its �nite dimensional regular and preinjetivesubmodules. A module M is torsion-free if every �nite dimensional submodule of M is1



preprojetive. The unique generi module Q onstruted by Ringel (f. Theorem 5.3 of[R℄) is haraterized by the properties that EndQ is a division ring and dimEndQQ <1.Every torsion-free module M an be embedded into a diret sum Y of opies of Q in suha way that the quotient Y=M is regular (that is, it has no �nite dimensional preprojetiveor preinjetive diret summands) and torsion. The number of opies of Q in a diret sumdeomposition of suh a module Y is an invariant of M and is alled the rank of M . Weshall denote this number with rkM . By Theorem 1.3 in [D℄, if rkM is �nite then itequals dimEndQHom(M;Q). The rank is additive on short exat sequenes of torsion-freemodules (Proposition 2.2 of [DZ℄).x2. Basi PropertiesA submodule N of a module M is alled torsion-losed in M if the quotient M=N istorsion-free. The intersetion of all torsion-losed submodules in M whih ontain a givensubmodule N � M is torsion-losed in M and it is alled the torsion losure of N in M .We shall denote it by NM or simply by N . We shall need the following result.Proposition 2.1. Let M be a torsion-free module and N � M a submodule. ThenrkNM � rkN .Proof. Assume �rst that rkN <1 and onsider the following exat sequene:0 �! N '�! N  �! N=N �! 0.Applying the funtor Hom(�; Q) we get:0 �! Hom(N=N;Q)  ��! Hom(N;Q) '��! Hom(N;Q).Sine N=N is torsion, Hom(N=N;Q) = 0. Thus '� is a monomorphism and sodimEndQHom(N;Q) � dimEndQHom(N;Q). But dimEndQHom(N;Q) = rkN and the�niteness of this implies that also dimEndQHom(N;Q) = rkN . Thus rkN � rkN , asrequired.Let us onsider now the ase when rkN = � � �0. Suppose that rkNM = � > �. FromLemma 4.2 and Proposition 4.3 in [R℄ we get that there exists a submodule �i2I Pi � Nsuh that Pi is �nite dimensional preprojetive for eah i 2 I and N= �i2I Pi is torsionregular. Sine for every i 2 I we have that rkPi < �0 and sine the lass of torsion regular2



modules is losed under extensions (f. Proposition 4.2 in [R℄), we get that rkN = jIj = �.Consider now the following embeddings:�i2I Pi ,�! N ,�! NM ,�! �J Q = Ywith jJ j = � = rkN and the quotient module Y=NM torsion regular. Let us remark �rstthat sine the modulesN= �i2I Pi, NM=N and Y=NM are all torsion, we get that �i2I PiY = Y .We show that this leads to a ontradition.Sine dimk Pi < �0 for eah i 2 I, we obtain that � � dimk �i2I Pi � � � �0 = �.This also gives that the set J 0 = fj 2 J j �j(�i2I Pi) 6= 0g, where �j : Y ! Q is the j'thprojetion, satis�es jJ 0j � (dimk �i2I Pi) � �0 = � < � = jJ j. Hene J n J 0 is not empty,that is, there is an index j 2 J suh that Ker�j � �i2I Pi. But then for the torsion losureof �i2I Pi we get �i2I PiY � Ker�j � Y sine Ker�j is obviously torsion-losed, and this isa ontradition. Thus rkNM � rkN .De�nition 2.2. A torsion-free module M is alled superpurely simple if for everynon-zero homomorphism ' :M ! Q we have Ker' = 0.Superpurely simple modules obviously must be indeomposable. The following har-aterization will be used in x3 for determining all superpurely simple modules.Theorem 2.3. Let M be a torsion-free module. The following statements are equiv-alent.(i) M is not superpurely simple.(ii) There exists a non-zero torsion-losed submodule U �M .(iii) There exists a non-zero submodule U �M with rkU < rkM .(iv) There exists a non-zero homomorphism ' : V ! M from a torsion-free moduleV with rkV < rkM .Proof. (i)) (ii) Let ' :M ! Q be a non-zero homomorphism with non-zero kernel.Let U = Ker'. Then U is torsion-losed and U 6=M .(ii)) (iii) Assume �rst that rkM <1. Consider the sequene0 �! U �!M �!M=U �! 0with 0 6= U � M and U torsion-losed in M . Then M=U is non-zero and torsion-free sowe have rkM = rkU + rkM=U . Sine rkM=U > 0, we get rkU < rkM , as required.3



To show the statement for the ase when rkM =1, we will show that every torsion-freemodule ontains a torsion-losed submodule U of �nite rank. Let W � M be a �nitedimensional submodule. Clearly rkW <1. By Proposition 2.1, with U = W , we get thatrkU � rkW <1. Hene U is torsion-losed of �nite rank.(iii)) (iv) Choose the embedding of U into M .(iv) ) (iii) Take U = Im' � M . Then Im' 6= 0 and rk Im' = rkV � rkKer' �rkV < rkM .(iii) ) (ii) By Proposition 2.1, if rkU < rkM , then U < M , hene M has a propertorsion-losed submodule, as required.(ii) ) (i) For U � M , where U is torsion-losed in M , the module M=U is torsion-free, hene we have a non-zero homomorphism ' : M=U ! Q. By ombining it with thenatural epimorphism M ! M=U , we get a non-zero homomorphism ~' : M ! Q withU � Ker ~'. Sine by assumption U 6= 0, we have Ker ~' 6= 0, as required.Corollary 2.4. Every non-zero torsion-free module M ontains a non-zero super-purely simple torsion-losed submodule.Proof. Choose a non-zero torsion-losed submodule U of minimal rank. The argumentin the proof of Theorem 2.3 (ii) ) (iii) shows that rkU < 1. Then any proper torsion-losed submodule of U would be torsion-losed in M and of smaller rank than U . Thiswould ontradit the minimality of rkU . Hene by (ii) U is superpurely simple.Corollary 2.5. Let M be a torsion-free module of �nite rank. Then there exists ahain 0 = U0 � U1 � : : : � Ut =M of torsion-losed submodules in M suh that Ui=Ui�1is superpurely simple for i = 1; : : : t.Proof. Choose a non-zero superpurely simple torsion-losed submodule U1 � M ,given by Corollary 2.4. Then either M = U1, hene M is superpurely simple, orrkM=U1 < rkM , and in this ase an indution argument ompletes the proof.At the end of x3 we will see an example showing that neither the isomorphism typesof the onseutive quotients, nor the number of the elements in the hain of Corollary 2.5are uniquely determined by M (see Example 3.4). However, for purely simple modules thefollowing holds. (Reall that a submodule N � M is alled pure in M if N is a diret4



summand in every submodule U � M ontaining N for whih U=N has �nite length. Amodule M is purely simple if it has no non-zero proper pure submodules.)Proposition 2.6. LetM be an in�nite dimensional torsion-free module of �nite rank.ThenM is purely simple if and only if for every hain 0 = U0 � U1 � : : : � Ut�1 � Ut =Mof torsion-losed submodules with Ui=Ui�1 superpurely simple for 1 � i � t, we havedimk Ut�1 <1.Proof. Let M be an in�nite dimensional torsion-free module. If M is purely simpleof �nite rank, then by Theorem 2.4 of [DZ℄ every proper torsion-losed submodule mustbe �nite dimensional. Hene dimk Ut�1 <1. If M is not purely simple then by Theorem2.6 of [DZ℄ there is an in�nite dimensional proper torsion-losed submodule U � M . Ifwe take a hain of torsion-losed submodules of U with superpurely simple quotients andomplete it to a hain of M as follows:0 = U0 � U1 � : : : � Ui = U � Ui+1 � : : : � Ut = M ,then dimk Ui and hene dimk Ut�1 are in�nite.Thus we get the following orollary (see also Proposition 1.2 in [O2℄). The proof isobvious.Corollary 2.7. Let M be a purely simple in�nite dimensional torsion-free moduleof �nite rank and let N be a torsion-losed submodule of M . Then M=N is also purelysimple.It would be interesting to know if Corollary 2.7 holds ifM is of in�nite rank. Atuallythe existene or non-existene of purely simple modules of in�nite rank is still an openquestion (see [O1℄).For torsion-free regular modules Corollary 2.5 an be slightly strengthened.Proposition 2.8. Let M be a torsion-free regular module of �nite rank t. Then thereexists a hain of torsion-losed submodules 0 = U0 � U1 � : : : � Ut�1 � Ut = M suhthat rkUi=Ui�1 = 1 for 1 � i � t.Proof. Let P be an indeomposable projetive module of rank one. By Proposition4.3 in [R℄ we an �nd a submodule U = �i2I Pi �M suh that Pi �= P for i 2 I and M=U5



is torsion regular. Sine the lass of torsion regular modules is losed under extensions (f.Proposition 4.2 in [R℄) we get that rkU = rkM = t, thus we may assume I = f1; : : : ; tg.Take Uj = j�i=1Pi. The proof of Proposition 4.3 in [R℄ atually shows that Uj \ Pj+1 = 0for 1 � j � t� 1. Then Proposition 2.1 implies that rkUj=Uj�1 = 1, as required.x3. Superpurely simple modules in the Auslander{Reiten quiverIn this setion we use Theorem 2.3 to examine in more detail the distribution of super-purely simple modules in the Auslander{Reiten quiver of �. In what follows, �P = DTrPdenotes the Auslander{Reiten translate of the �nite dimensional indeomposable moduleP . Let us also reall that for a �nite dimensional preprojetive module P the rank of Pequals the negative of the defet of P (Proposition 5.6 in [R℄). Sine the defet is invariantunder � , we have rkP = rk �P .Proposition 3.1. Let P be a (�nite dimensional) indeomposable preprojetive mod-ule whih is not projetive. If P is superpurely simple, then so is �P .Proof. Assume that �P is not superpurely simple. Then by (iv) of Theorem 2.3 wean �nd a non-zero homomorphism ' : P 0 ! �P from an indeomposable preprojetivemodule P 0 for whih rkP 0 < rk �P . But then ��1' : ��1P 0 ! P is also non-zero. Sinerk ��1P 0 = rkP 0 < rk �P = rkP , ondition (iv) of Proposition 2.3 implies that P is notsuperpurely simple.Let � be a Eulidean diagram with verties f1; : : : ; n+ 1g and with an orientation ~�.Let P (i) denote, for 1 � i � n+ 1, the indeomposable projetive module orrespondingto the vertex i over the path algebra k~�. Then the rank of P (i) is atually independentof the partiular orientation ~� (see for example setion 1.D of [R℄). Thus the number ofindeomposable projetive modules of rank one over k~� (whih is also independent of theorinetation) will be denoted by s(�).Proposition 3.2. Let � be a Eulidean diagram on n + 1 verties. Then for everynatural number t suh that s(�) � t � n+1 there exists an orientation ~� of � suh that thenumber of non-isomorphi indeomposable projetive k~�-modules whih are superpurelysimple equals t. 6



Proof. Sine the algebra k~� is hereditary, ondition (iv) of Theorem 2.3 implies thatthe projetive modules P (j) is not superpurely simple if and only if there exists a non-zerohomomorphism ' : P (i) ! P (j) for some i where rkP (i) < rkP (j). It is also lear thatthere is a non-zero homomorphism ' : P (i)! P (j) if and only if there is an oriented pathin ~� from j to i. Thus P (j) is superpurely simple if and only if there is no oriented pathin ~� from j to any i with rkP (i) < rkP (j). As rkP (i) is independent of the orientation of�, the statement follows by an easy ase-by-ase analysis, or from Proposition 3.5 below.Theorem 3.3. Let � be a Eulidean diagram. Then the number of non-isomorphisuperpurely simple k~�-modules of rank larger than one is �nite for any orientation ~� of �.Proof. As pointed out earlier, any superpurely simple module of rank larger thanone must be �nite dimensional, indeomposable and preprojetive. (Note that for � = ~Anall �nite dimensional indeomposable preprojetive modules are of rank one.) So let usassume that i is a vertex with rkP (i) > 1 and let t be the distane of the vertex i in thegraph � from a vertex j with rkP (j) < rkP (i). Then regardless of the orientation of �,ondition (iv) of Theorem 2.3 implies that ��tP (i) is not superpurely simple. Hene, byProposition 3.1, eah � -orbit ontaining an indeomposable projetive of rank larger thanone has only �nitely many superpurely simple modules.The following is the list of the maximal number of superpurely simple modules ofrank larger than one orresponding to some orientation of the Eulidean diagrams. Thenumbers, denoted by m(�) an be heked by a simple ase-by-ase analysis.� m(�)~An 0~Dn �n�22 � � �n�12 �~E6 4~E7 8~E8 13The following orientations give a maximal number of superpurely simple modules ofrank larger than one. 7
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7 Æ??y6 Æ??yÆ3 ��Æ4 ��Æ5~E7: Æ1��!Æ2��!Æ3��!8 Æ??yÆ4 ��Æ5 ��Æ6 ��Æ7~E8: Æ1��!Æ2��!Æ3��!Æ4��!Æ5��!9 Æ??yÆ6 ��Æ7 ��Æ8As an illustration, we give the position of the superpurely simple modules in theAuslander{Reiten quiver of k~� for � = ~E7 with the orientation given above. The irledverties orrespond to the superpurely simple modules.rkP (i)1    2  �� �� �� �� �� �� �� ����3  �� �� �� �� �� �� �� �� ��~E7: 4  �� �� �� �� �� �� �� �� �� ����2 XX �� XX �� XX �� XX �� XX �� X3 �� �� �� �� �� �� �� �� �� ��2 �� �� �� �� �� �� �� �� ����1 �� �� �� �� �� �� �� ��Example 3.4. The following example shows that for hains of torsion losed sub-modules with superpurely simple quotients, neither the isomorphism types of the quotients,nor the number of the elements in these hains is uniquely determined by the module.Consider the graph � = ~E8 with the following orientation:Æ1��!Æ2��!Æ3��!Æ4 ��Æ5 ��9 Æx??Æ6��!Æ7 ��Æ88



On Figure 1 we show a portion of the preprojetive omponent of the Auslander{Reiten quiver of the orresponding path algebra k~�.The projetive module P (6) has three di�erent �ltrations by torsion-losed sub-modules:(i) 0 � P (4) � P (5) � P (6); here P (5)=P (4) = ��1P (1) and P (6)=P (5) =��2P (1), thus rkP (4) = 4, rkP (5)=P (4) = rk ��1P (1) = 1 and rkP (6)=P (5) =rk ��2P (1) = 1.(ii) 0 � P (7) � P (6); here rkP (7) = 4, rkP (6)=P (7) = rk ��1P (8) = 2.(iii) 0 � P (9) � P (6); here rkP (9) = 3, rkP (6)=P (9) = rk ��1P (9) = 3.The quotients onsidered above are all superpurely simple as an be easily heked on theAuslander{Reiten quiver of Figure 1. (The modules at the beginning of the quiver arerepresented by their Loewy series.)rkP (i)1 1234 - - - - - - - 5 - - - - - - - 679 - - -%� �& %� �& %�2 234 - - - - - - - 12354 - - - - - - - 6579 - - -%� �& %� �& %�3 34 - - - - - - - 2354 - - - - - - - 12 63 5794 - - -%� �& %� �& %� �&4 4 - - - - - - - 354 - - - - - - - 2 63 5794 - - - - - - - ��3P (4) - - -�& %� �& %� �& %� �&5 54 - - - - - - - 63 5794 - - - - - - - ��2P (5) - - - - - - - ��3P (5) - - -�& %� �& %� �& %� �&6 65794 - - - - - - - ��1P (6) - - - - - - - ��2P (6) - - - - - - - ��3P (6) - - -%� �& %� �& %� �& %�3 9 - - - - - - - 6574 - - - - - - - ��2P (9) - - - - - - - ��3P (9) - - -���� AAAA ���� AAAA ���� AAAA ���� AAAA4 7 - - - - - - - 6 85974 - - - - - - - ��2P (7) - - - - - - - ��3P (7) - - - - - - - ��4P (7) - - -�& %� �& %� �& %� �& %� �&2 87 - - - - - - - 6594 - - - - - - - ��2P (8) - - - - - - - ��3P (8) - - - - - - - ��4P (8) - - - superpurely simple modulesFigure 19



We �nish our paper with a purely ombinatorial proposition. It may be used as analternate proof to the ase-by-ase heking in Proposition 3.2. Let � = (V;E) denote anunoriented graph with V being the set of verties and E the set of edges. Let v : V !f1; 2; : : : ; `g be an arbitrary funtion. A vertex v 2 V is said to be superpurely simplefor a given orientation ~� of � if there is no path in ~� from g to some vertex h 2 V withv(h) < v(g).Proposition 3.5. [L℄ Let � = (V;E) be a �nite onneted unoriented graphwith a funtion v : V ! f1; 2; : : : ; `g. Then for any natural number m satisfyingjfg 2 V j 8h 2 V v(g) � v(h)gj � m � jV j there is an orientation ~� of � suh that thenumber of superpurely simple verties with respet to this orientation is exatly m.Proof. We will need the following lemma.Lemma 3.6. Let � = (V;E) and v be as above. Let A = fg 2 V j v(g) < tg andB = fh 2 V j v(h) � tg for some (�xed) value t. Assume that for every h 2 B there is apath leading from h to some vertex g 2 A. Then there is an orientation ~� of � suh thatthe verties whih are superpurely simple with respet to this orientation are exatly theelements of A.Proof. Choose an orientation aording to the following rules:(a) g; h 2 A, g ! h implies v(g) � v(h);(b) g 2 A, h 2 B implies that if there is an edge between g and h, then h! g;() g; h 2 B, g ! h implies that dA(g) � dA(h), where dA(g) and dA(h) denote thedistanes of g and h from A.This orientation learly satis�es the requirements.Let us turn now to the proof of the proposition. Fix the value m satisfying thegiven onditions. Then we an hoose t to be suh that jfg 2 V j v(g) < tgj < m �jfg 2 V j v(g) � tgj. Finally, let us de�ne the following subsets of V :A = fg 2 V j v(g) < tg;B = fg 2 V j v(g) = tg;B0i = fg 2 B j every path onneting g with an element of A ontains at least i elementsof B, ounting g toog; 10



Bi = B0i nB0i+1.Thus B is the disjoint union of the sets B1; B2; : : : ; Bs, and from an element of Bi thereis always a path to an element of A not ontaining any of the elements of Bi+1; : : : ; Bs.Choose now a subset C � B suh that:(i) jA [ Cj = m;(ii) if C \ Bi 6= ;, then C � s[j=i+1Bj .Split the set of verties V into the following two disjoint sets:V1 = fg 2 V n C j there is a path from g to A in � n Cg;V2 = V n V1.Let us �rst note that learly A [ (B n C) � V1, and C � V2. Let G1 and G2 denote thesubgraphs of G on the verties V1 and V2, respetively. Apply now Lemma 3.6 for G1 andG2 with deompositions V1 = A [ (V1 n A) and V2 = C [ (V2 n C). Both deompositionssatisfy the requirements. Complete the so found orientations ofG1 and G2 to an orientationof G by taking g ! h if g 2 V1, h 2 V2 and there is an edge between g and h. Then theset of superpurely simple verties is A [ C, sine orienting the edges from V1 to V2 willpreserve this property both for verties in A and in C.AknowledgementThis paper was written while the �rst author was visiting Bishop's University. He wishes to expresshis gratitude to Prof. Andrew Dean for his warm hospitality. The �nanial support of the Natural Sienesand Engineering Researh Counil of Canada, of the Alexander von Humboldt Foundation, of CarletonUniversity and of Universit�e de Sherbrooke is gratefully aknowledged.Referenes[CB℄ W. Crawley-Boevey, Tame algebras and generi modules (preprint)[D℄ A.P. Dean, Linear Funtionals and in�nite dimensional modules over tame hered-itary algebras (preprint)[DZ℄ A.P. Dean and F. Zorzitto, In�nite dimensional representations of ~D4, GlasgowMath. J. 32 (1990), 25-33.[L℄ E. Luk�as, personal ommuniation[O1℄ F. Okoh, No system of unountable rank is purely simple, Pro. Amer. Math.So. 79 (1980), 182-184.[O2℄ F. Okoh, Some properties of purely simple Kroneker modules, I, J. Pure Appl.Algebra 27 (1983), 39-48 11



[R℄ C.M. Ringel, In�nite-dimensional representations of �nite dimensional hereditaryalgebras, Symp. Math 23 (1979), 321-412.Istv�an �Agoston Andrew P. Dean Wiebke SheweDept. of Math. and Stat. Dept. of Mathematis D�ept. de math. et d'inf.Carleton University Bishop's University Universit�e de SherbrookeOttawa, Ontario Lennoxville, Qu�ebe Sherbrooke, Qu�ebeCanada, K1S 5B6 Canada, J1M 1Z7 Canada, J1K 2R1

12


