QUASI-HEREDITARY EXTENSION ALGEBRAS

ISTVAN AcosTon'2, VLASTIMIL DLAB3 AND ERZSEBET LUKACS!

ABSTRACT. The paper is a continuation of the authors’ study of quasi-hereditary al-
gebras whose Yoneda extension algebras (homological duals) are quasi-hereditary. The
so-called standard Koszul quasi-hereditary algebras, presented in this paper, have the
property that their extension algebras are always quasi-hereditary. In the natural set-
ting of graded Koszul algebras, the converse also holds: if the extension algebra of a
graded Koszul quasi-hereditary algebra is quasi-hereditary, then the algebra must be
standard Koszul. This implies that the class of graded standard Koszul quasi-hereditary
algebras is closed with respect to homological duality. Another immediate consequence
is the fact that all algebras corresponding to the blocks of the category O are standard
Koszul.

0. Introduction

A primary objective of the present paper is to identify a natural class of quasi-
hereditary algebras which is closed with respect to homological duality and which
is broad enough to accommodate applications in the representation theory of semi-
simple complex Lie algebras and algebraic groups. These are related to the work of
Cline, Parshall and Scott on Kazhdan—-Lusztig theory which underlines the impor-
tance of those quasi-hereditary algebras whose Yoneda extension algebra is quasi-
hereditary (see e.g [CPS2], [CPS3], [CPS4] and [P2]). In order to have perfect
duality, the species of such an algebra must be dual to the species of its extension
algebra hence these algebras are closely related to (noncommutative) Koszul alge-
bras which have been recently extensively studied (see e.g. [BG], [BGS], [CPS4],
[PS], [P1], [GM1] and [GM2]). In this way, the standard Koszul algebras of this
paper, which extend the earlier notion of the solid algebras of [ADL2], are relevant
for applications. Let us point out here the interesting fact that the existence of
top (linear) projective resolutions for both right and left standard modules of a
quasi-hereditary algebra A implies that A is a Koszul algebra. Moreover, our re-
sults show that there is a close connection between quasi-heredity and the standard
Koszul property.

The main results of the present paper can be summarized in the following
theorems.
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THEOREM 1. Let (A, e) be a quasi-hereditary algebra. If both left and right standard
modules have top projective resolutions, then A is a Koszul algebra (i. e. all simple
modules have top projective resolutions).

The algebras satisfying the conditions of Theorem 1 will be called standard
Koszul.

THEOREM 2. Let (A, e) be a standard Koszul quasi-hereditary algebra. Then the
Yoneda extension algebra (A*,f) is also a quasi-hereditary algebra.

THEOREM 3. Let (A, e) be a graded Koszul quasi-hereditary algebra. Then (A*,f) is
a quasi-hereditary algebra if and only if (A, e) is a standard Koszul algebra. Conse-
quently, the class of graded standard Koszul quasi-hereditary algebras is closed with
respect to taking the homological dual.

1. Standard Koszul quasi-hereditary algebras

Throughout the paper, all algebras are assumed to be basic, finite dimen-
sional over a field K. The categories of finite dimensional right and left A-modules
will be denoted by mod-A and A-mod, respectively. Given an algebra A, let
{e1,ea,...,e,} denote a complete set of its primitive orthogonal idempotents.
Moreover P(i) = e;A and S(7) = top P(z) will stand for the respective indecom-
posable projective and simple right modules. The corresponding left modules will

be denoted by P°(i) and S°(i). The direct some of all simple modules S(z) will be
denoted by S. Thus § = ,6731 S(i) =2 A/rad A.

Most of the conceptsz in this paper will depend on an order of the above set
of idempotents. Their (fixed) ordering will be denoted by e = (e1,es,...,en),
and the algebra with a fixed order e by (4,e). For convenience, the idempotents
e; + ei+1 + ... + e, will be denoted by ¢;, 1 < 7 < n and we put £,4; = 0.
The right standard module A(z) (with respect to e) is the largest quotient of P(7)
with no composition factor isomorphic to S(j) for some j > i. In other terms,
A(i) 2 e;A/e;Ae; 11 A. The left standard modules will be denoted by A°(3). Having
fixed an order e, we shall consider also the following two sequences of algebras:
B; = A/Ael-HA and C; = ¢;Aeg;; the induced order of their idempotents in both
cases will be denoted by e;.

An idempotent ideal I = AeA < A, generated by an idempotent element e is
called a heredity ideal of A if I4 € mod-A is projective and e(rad A)e = 0. Given
an algebra (A,e), denote by I; the idempotent ideal Ae; A. The algebra (4,e)
is called quasi-hereditary if the ideal I;/I;;1 is a heredity ideal of A/I; 1, for all
1 < i < n ([CPS1], [PS1] or [DR]). This is equivalent to the requirement that A4
has a filtration with standard modules and all the standard modules are Schurian
(i.e. their endomorphism algebras are division algebras).

A primitive idempotent e € A is called neat if for the corresponding simple
module S = topeA, the extension modules Ext%(S,S) = 0 for all ¢ > 0. The
algebra (A, e) is neat if e; is neat and the centralizer algebra (Cs, e2) is neat. Note
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that every quasi-hereditary algebra (4, e) is neat; moreover, all neat algebras have
finite global dimension (cf. [ADW]).

For the convenience of the reader, let us recall some additional definitions
used freely in the present paper. For the basic properties of these concepts we
refer to [ADL1] and [ADL2]. A submodule X of a module Y is said to be a
top submodule if rad X = X NradY; in this case, we write XéY. A filtration
0= Xo < X1 < -~ < Xy = X is called a top filtration of X if X;C X1 for
all 0 < ¢ < t. An algebra (4,e) is said to be lean if the species of the central-
izer algebras C; = ¢;Ae; are the respective restrictions of the species of A. This
is equivalent to the requirement that ;(rad 4)%e; = ¢;(rad A)e;(rad A)e; for all
1 < i < n. Under the assumption that all standard modules A(3) are Schurian,
(A, e) is lean if and only if all kernels of the canonical epimorphisms P(7) — A(z)
and P°(i) — A°(z) are top submodules of rad P(:) and rad P°(i), respectively. A

’c"_*l)...i)Po — X — 0 is a top reso-

projective resolution - - - f—“) P; L) P_,
lution of X if Im f; é rad P;_; for every i > 1. The subcategory of right and left
A-modules with minimal top projective resolutions will be denoted by C4 and C§,
respectively. The vector space @;>0 Extg(g, S’) has an algebra structure with mul-
tiplication given by the Yoneda composition of extensions. This algebra is called
the Yoneda extension algebra or homological dual of A and will be denoted by A*.
There is a natural contravariant functor Exty : mod-A — A*-mod defined by
Ext’ (X) = @450 Exthy (X, S) for every X € mod-A. Given (4,e), the idempotent
elements f; = idg(;) € A* define an “opposite” order f = (f,, fn—1,..., f1). Simi-
larly to the definition of idempotents €;, write p; = fi + fo+---+ fifor 1 <i<mn
and ¢o = 0.

DEFINITION 1.1. An algebra A is Koszul if all simple modules S(z) belong to the
subcategory C4.

Koszul algebras are characterized by the fact that Ext% (S, S) = (Ext) (S, 5’))t
for every t > 1; in particular, this is equivalent to the fact that the species of A* is
the dual of the species of A (cf. Theorem 2.10 of [ADL2]).

DEFINITION 1.2. An algebra (4, e) is recursively Koszul (with respect to the given
order) if the centralizer algebras C; = ¢;Ae; are Koszul for every 1 <i < n.

DEFINITION 1.3. An algebra (4,e) is standard Koszul if for every 1 < i < n the
right and left standard modules A(7) and A°(7) belong to C4 and C§, respectively.

The following theorem shows that these two notions are closely related.

THEOREM 1.4. For a quasi-hereditary algebra (A,e) the following two statements
are equivalent:

(2) (4A,e) is recursively Koszul and lean;
(14) (A,e) is standard Koszul.
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REMARK 1.5. The following two examples show that without the assumption that
A is quasi-hereditary, Theorem 1.4 does not hold.
Consider the algebra A = KQ/I, where the quiver @ is

:;1 B 2

and I = (a?); thus, the right regular representation of A4 is
1
Ag= 120 2.
2

This algebra is recursively Koszul and lean, but A(1) ¢ C4. Observe, that the
algebra is standardly stratified (cf. [ADL3]), but not quasi-hereditary.

On the other hand, the algebra K|[z]/(z®) is a standard Koszul algebra which
is not Koszul.

Moreover, the following example shows that a mere assumption of the algebra
to be neat is also not sufficient for the conclusions of Theorem 1.4. Let A = KQ/I,
where @ is the quiver

and I = (B¢, af — 74). Thus, the right regular representation of A is
4 5
Ap=10703d35d 2.
2 1
It turns out that (4,e) is a recursively Koszul, neat and lean algebra which is
neither standard Koszul nor quasi-hereditary.

To prove Theorem 1.4, we need a series of preparatory lemmas.

LEMMA 1.6. Let € € A be an idempotent element, and X,Y € mod-A with X C
radY, X = Xed and Y = YeA.

t ¢
(1) If X CradY, then Xe Crad(Ye).

t t
(i3) If e(rad® A)e C e(rad A)e(rad A)e and Xe Crad(Ye), then X CradY.

Proof. Let us denote the radical of A by J. To prove (i), observe that

XenYe(eJe)? C XenY J%e = (X NY J?)e = X Je = Xe(eJe),

t
since X CradY and X = XeA.
To prove (i), we have to show that X N Y J2 C X J.
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First, making use of the assumptions ¥ = Yed, eJ?¢ C eJeJe and

t
XeCrad(Ye), we get the following sequence of inclusions :

(XNYJHe C XenNY J?e = XenNYeJ?c C XenYeJeJe =
= XenYe(eJe)® C Xe(eJe) C X J.

Furthermore, the following inclusions obviously hold:

(XNYJ?)(1—-e) CX(1—¢)=XeA(l—¢) C XJ.

t
Consequently, X NY J2 C XJ,i.e. X CradY, as required. O

LEMMA 1.7. Suppose ¢ € A is an idempotent element such that e(rad®> A)e C
e(rad A)e(rad A)e. (This is satisfied, in particular, when (A,e) is lean and € = ¢;
for some 1 <i<mn.) Let X € mod-A be such that Ext’(X,top((1 —€)A)) = 0 for
t>0. Then X € C4 if and only if Xe € C. 4.

Proof. Let us consider the minimal projective resolution of X over A
o> P> 5P P —>X—0

and the corresponding exact sequence over €Ae, obtained by applying the exact
functor Homy4 (¢4, —)

v > Pie - — Pie —» Ppe -+ Xe — 0.

The assumptions imply that P, = PieA for every ¢ > 0, so all modules Pie €
mod-¢ Ae are projective, and the second sequence is also a minimal projective reso-
lution. Now, applying Lemma 1.6 (i) and (i), the statement follows. O

DEFINITION 1.8. Let S be a simple module in mod-A. We say that a module
X € mod-A4 is S-Koszul, if Ext’ (X, S) C Ext)y(S,S) - Ext’;7 (X, S) holds for every
t > 1, where S = A/rad A.

Let us point out that A is S-Koszul if and only if, for every ¢ > 1, the ¢-th
Syzygy
0O-%—>P 1> —>P>Ph—>X->0

of a minimal projective resolution of X satisfies the following condition: the induced
morphism from the S-homogeneous summand of ;/ rad Q; into rad P;_;/ rad2 P,
is a monomorphism. Observe that this implies that whenever X is S-Koszul, then
all syzygies of X are also S-Koszul. Let us also note that any module X € Cy4 is
S-Koszul for every simple module S.

LEMMA 1.9. Suppose that Ext'(S(1),S(1)) = 0 for t > 1 (i.e. e1 is a neat idem-
potent). If X € mod-A is S(1)-Koszul, then XeaxA is also S(1)-Koszul.
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Proof. The short exact sequence
0> XesA—5X -5 3S(1) =0

induces the long exact sequence

.- = Extly (@S(1), S(1)) = Ext%y (X, S(1)) — Ext’, (Xe24,5(1)) =
— Extt™ (@5(1),5(1)) = -+,

where the first and the last terms are zero for every ¢ > 1. Thus the morphism
Ext’ (X, S(1)) — Ext’(Xes4, S(1)) is an isomorphism and we have

Ext’; (Xe24,5(1)) = Extly (X, S(1)) -« C Exty (S, S(1)) - Extt, 1(X,8) -« C
C Ext)(8,S(1)) - Ext'{ ' (Xe24, §).
Hence XejA is S(1)-Koszul. O

Now, given an algebra (4, e), let us define the following subclass K of mod-A:
¢
K= {X € mod-A| X is S(1)-Koszul, Xe; € Cc, and Xes ACX } .

Furthermore, let us introduce the following correspondence u : mod-A — mod-A.
For X € mod-A, define

_ X€2A if X 75 X€2A,
w(X) = { 0 (X) if X = Xeod,

where Q;(X) is the first syzygy of X.

LEMMA 1.10. Let (A, e) be a lean and neat algebra with S(1) € C4. Let K and p
be defined as above. Then:

(z) u(K) € K;

(i) for every X € mod-A, there exists a positive integer k such that u*(X) = 0;
(137) KK C Cg4.

Proof. To prove (i) suppose that X € K. If X # XeoA then pu(X) = Xea4 is
S(1)-Koszul by Lemma 1.9 and the other two conditions in the definition of K
obviously hold for p(X). So u(X) € K. Let us now suppose that X = Xes A. Then
w(X) = Q1(X) is S(1)-Koszul according to the remark following the definition of
S-Koszul modules. Furthermore, the exact sequence

0-Q—-P—X—0, (1)
with @ = Q;(X) and P — X the projective cover of X, yields the exact sequence

0— Qey — Peyg — Xeg— 0
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in mod-C5. The assumption X = XeyA implies that Pes — Xes is a projective
t
cover of Xey € Co,. Thus Qey € Ce, and Qes Crad(Pes). Now, Lemma 1.6 (77)

¢ ¢
yields that Qe2 A Crad P, and consequently, Qe; A C Q. Hence u(X) =Q € K.

To prove (ii), let us attach to every module X € mod-A the following two
nonnegative integers:

ex = dimg tE>BO Ext% (X,S(1)) and px = pd X.

Note that both of these numbers must be finite since neat algebras have finite
global dimension. Observe also that (ex,px) = (0,0) if and only if X = Xe A4
and X is projective. In this case u(X) = 0. Thus to prove (iz), it will be enough
to show that (e,(x),Pu(x)) < (ex,px) in the lexicographical ordering, whenever
(ex,px) # (0,0).

In the case when X = Xe;A4 and X is not projective, we have u(X) = Q1 (X),
and then clearly e, (x) = ex and p,(x) < px. On the other hand, when X # Xe, 4,
then u(X) = XesA. In this case the long exact sequence in the proof of Lemma 1.9
yields an isomorphism Ext’(Xes4,S(1)) = Ext% (X, S(1)) for every t > 1. Since
Hom(Xez4,5(1)) = 0, while Hom(X, S(1)) # 0, it turns out that e, (x) < ex. This
completes the proof of (i7).

Finally, in order to prove (ii7), i.e. that every module X € K belongs to C4,
we proceed by induction on the smallest number k for which p*(X) = 0. Note that
such a number k exists for all X € K by (:4). The statement is clearly true for
k=0,i.e. for X =0.

Consider first the case when X # Xes A. Then we have an exact sequence

0— Xesd— X —@S(1)—0

with XEgAéX. Here, S(1) € C4 by assumption and Xep A = p(X) € Kisin Cy
by the induction hypothesis. Thus, X € C4, as well (cf. Lemma 2.4 of [ADL2]).

In the case when X = XeyA and X # 0, consider once more the exact sequence
(1). Here Q = u(X) € K, so by the induction hypothesis, 2 € C4. As in the proof

t
of (i), Qes A Crad P. Furthermore, since X is S(1)-Koszul, and since the neatness
t
of A implies that /Qe2A4 is semisimple, we get Q/QeyA Crad P/Qes A, and thus
t
QCrad P (cf. Lemma 1.1.(c) of [ADL1]). This implies that X € Cg4, finishing the
proof of Lemma 1.10. O

Since by an earlier remark, all modules in C are S(1)-Koszul, the previous result
shows that for neat and lean algebras with S(1) € C4, the class K can be defined as

t
K= {XEmod-A|X€CA,X€2 € Cc, and XEQAQX}.

We are now ready to prove Theorem 1.4.
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Proof of Theorem 1.4. (i) = (i1): Assume that (A4,e) is lean and that all the cen-
tralizer algebras C; = €;4¢e; (1 < i < n) are Koszul. Observe that A(i)e; = S(i) €
mod-C; follows from the Schurian property of the standard modules. Furthermore,
the quasi-heredity of A yields that Ext(A(i), S(j)) = 0 for every j < i and every
t > 0. Since C; is Koszul, S(i) € C¢,; thus, Lemma 1.7 implies that A(i) € C4.
Since the properties of being quasi-hereditary, lean and Koszul are all two-sided
concepts, we get A°(i) € C%, as well.

(i7) = (¢): Suppose that A is standard Koszul, i.e. A(i) € C4 and A°(i) € C§
for 1 < ¢ < n; then Theorem 2.1 of [ADL1] yields that A is lean.

The fact that A is recursively Koszul will be proved by induction on the number
of simple modules over A. Observe that (Cs,es) is quasi-hereditary and that the
right and left standard modules of (Cs,es) are of the form A(i)e; and e2A°(i),
respectively. Hence, by Lemma 1.7, they belong to Cc, and Cg,, respectively. Thus,
by the induction hypothesis, the algebras C; (2 < 7 < n) are Koszul. So we need
only to show that A is Koszul.

In view of Lemma 1.10 (i47), it suffices to show that S4 € K. Note that
S(1) = A(1) € C4 holds by assumption. Furthermore, Se; € Cc, because the

algebra Cy is Koszul. It is also clear that S'szAéS'. Finally, we are going to
show that S is S(1)-Koszul. Since S°(1) = A°(1) € €9, Corollary 2.7 of [ADL2]
assures that each element of the dual Ext?,(S°(1),5°) of Ext4 (S, S(1)) belongs to
Ext} ($°,8°)t~! . Ext!, (S°(1), $°), and thus

Ext4 (S, 5(1)) C ExtYy (8, S(1)) - Ext (S, 8)! C ExtY (S, S(1)) - Extiy (S, S).

Now, an application of Lemma 1.10 (iii) yields S € C, i.e. A is Koszul, as required.
O

The following statement shows that the standard Koszul property of a quasi-
hereditary algebra (A4, e) is carried over to the centralizer algebras (C;, e;).

PRrOPOSITION 1.11. If (A, e) is a standard Koszul quasi-hereditary algebra, then so
is (C;, ;) for every 1 <i < n.

Proof. Both properties of being quasi-hereditary and lean are clearly inherited by
(Ci,e;) and thus (C;, e;) is a standard Koszul algebra by Theorem 1.4. O

ExAMPLE 1.12. In contrast to Proposition 1.11, the standard Koszul property of
(4, e) is not necessarily inherited by the factor algebras (B;, e;) for 1 <i <n—1. To
see this, consider the following quasi-hereditary algebra (Example 6.7 from [ADL2]).
Let A = KQ/I, where @ is the quiver
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and I = (aBy — k). Thus, the right regular representation of A is
Ap=2s50303014@ 5.

Here, A(i) € C4,A(3)° € C4 for 1 < i < n, but By is not Koszul since S(1) does
not have a top projective resolution over By. In Section 2, we shall give a necessary
and sufficient condition for the factor algebras (B;,e;) to be standard Koszul (cf.
Proposition 2.8).

EXAMPLE 1.13. The following simple example of a lean quasi-hereditary algebra
(4, e) illustrates the fact that even if all B;, 1 <t < n, are Koszul algebras, (4, e)
does not have to be recursively Koszul (and thus standard Koszul). Let A = KQ/I,
where @ is the quiver

and I = (B¢, a8 — v§). Thus, the right regular representation of A is

2 3
AA=}1®143®§®§®5.

Observe that A(2) € C.

Finally, we show that standard Koszul quasi-hereditary algebras generalize the
concept of solid algebras, defined in [ADL2]. Let us first recall the (structural)
definition of a solid algebra (A, e). Denoting by U(i) and V(i) the kernels of the
canonical epimorphisms A(:) — S(i) and P(i) — A(:), respectively, we call an
algebra (4, e) solid if, for all 1 < i < n, the multiplicity [A(7) : S(i)] =1 (i.e. A(3)
is Schurian), V' (¢) is a top submodule of rad P(¢), U (z) has a top filtration by S(j)'s
and A(j)'s (for j < i) and V'(3) has a top filtration by A(j)'s and P(j)'s (for j > 7).
Since the centralizer algebras (C;, e;) of a solid algebra (A4, e) are solid, and since,
moreover, solid algebras are lean Koszul quasi-hereditary algebras, Theorem 1.4
implies the following statement.

COROLLARY 1.14. If (A,e) is a solid algebra, then (A,e) is a standard Koszul
quasi-hereditary algebra.

Note that easy examples show that not every standard Koszul algebra is solid.
In particular, as the next example shows, the concept of a solid algebra is one-sided.
On the other hand, it is clear that (A4, e) is standard Koszul if and only if (4°P?, e)
is standard Koszul.
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ExAMPLE 1.15. Let us consider the algebra A = K@Q/I, where the quiver @ is

and I = (Ba).

Thus, the right regular representation
203 o
Ap=10 @5 D 2.
1

shows immediately that this algebra is solid. On the other hand, the left regular
representation

AA =

BN =

D%, D3 D4,

of A shows that A°PP is not solid.

2. Homological dual of standard Koszul quasi-hereditary algebras

In this section we investigate the Yoneda extension algebra A* of a standard
Koszul algebra A. In particular, we establish a sufficient condition for an algebra
A to have a quasi-hereditary extension algebra (with respect to the opposite order
f). As a consequence, we get that the extension algebra of a standard Koszul quasi-
hereditary algebra A is quasi-hereditary. In the final Section 3, the above condition
is shown to be both necessary and sufficient in the case of graded Koszul algebras.

THEOREM 2.1. If (A,e) is a recursively Koszul, lean and neat algebra, then the
extension algebra (A*,f) of A is a quasi-hereditary algebra.

To prove the quasi-heredity of the extension algebra, we shall use the following
lemma. Recall that we consider the (opposite) order £ = (fn, fn—1,..., f1) of the
orthogonal primitive idempotents f; = idg(; in the extension algebra A*.

LEMMA 2.2. Let (A, e) be a lean and neat algebra with S(1) € C4 and let X belong
t
to K = {X € mod-A| X € Cq,Xes € Co, and XegACX } Then

(1) A*f1 Exty(X), the trace of the first projective left module in Ext*(X) €
A*-mod is projective.
(i1) dimg Ext’y (X) — dimg A* fi Ext} (X) = dimg Extg, (Xe2).

In the proof of this lemma, we shall repeatedly use the following statements
(Lemma 3.2 and Lemma 3.3 of [ADL2]) which we quote here without proof.

LEMMA 2.3. Let0 - U -V — W — 0 be an ezxact sequence of modules in mod-A.

t
(2) IfUCYV and U € Ca, then the induced sequence

0 = Ext’ (W) — Ext} (V) —» Ext’, (U) — 0,
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t
is also exact in A*-mod. If, in addition W € Cy4, then Ext’y (W) C Ext} (V).
t
(¢¢) If U CradV and V € C, then the induced sequence

0 — Ext% (U) — Exty (W) — Ext%(V) — 0

is also exzact in A*-mod. If, in addition U and W also belong to C4, then
¢
Ext (U) C rad Exty (W).

Proof of Lemma 2.2. We shall prove the two statements of Lemma 2.2 simultane-
ously, using induction on the smallest number k such that p*(X) = 0. Recall that
such k exists in view of Lemma 1.10 (7).

The statements clearly hold when k = 0, i.e. when X = 0.

Consider first the case when X # XeyA. Then u(X) = Xes A, and the state-
ments hold for Xes A by the induction hypothesis.

Since Xe A é X and XesA € K C Cy4, the exact sequence in mod-A
0> XesA—> X - dS(1)—>0
induces, by Lemma 2.3 (i) an exact sequence
0 — Ext% (#S(1)) — Ext(X) — Ext%(Xe A4) — 0.

in A*-mod. Here, Ext}(®S(1)) = &Pj.(1) =2 @®A*f; is embedded into
A* f1 Ext’ (X). Thus we also get the following exact sequence:

0— Eth(@S(l)) — A*fl EXtZ(X) — A*fl EXtZ(XSQA) — 0.

The first term Ext% (#S(1)) of this sequence is clearly projective. Since the last
term A* f; Ext’ (XesA) is, by the induction hypothesis, also projective, the middle
term is projective, as well, and (i) is proved. Furthermore, the two sequences
over A* yield that dimg Ext’ (X) — dimg A* f; Ext%(X) = dimg Ext’ (Xe24) —
dimg A* f; Ext’ (Xe2A) and by the induction hypothesis, we get that this is equal
to dimg Extg, (Xeg), proving (id).

Now, we turn to the case when 0 # X = XeyA; then pu(X) = Q, where
0— 92— P— X — 0 with a projective cover P — X. Since X € L C Cy4, clearly

¢
Q) Crad P. By Lemma 2.3.(¢i), we get the following exact sequence in A*-mod:

0 — Ext’ (Q) — Ext’y(X) — Ext’y(P) — 0. (1)

Here again Ext} (Q) érad Ext’% (X). Note that Ext’(P) is semisimple and since
X = XeyA, it turns out that A*f; Ext} (P) = 0. Consequently, A* f; Ext}(Q) =
A* f1 Ext’ (X) and thus, using the induction hypothesis for u(X) = Q, we get that
A* f1 Ext’ (X) is projective, and (i) follows.

In order to prove (i¢) for this case, consider the following exact sequence:

0— Qey — Peyg — Xeg — 0.
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Since X = Xes A, the module Pe; is the projective cover of Xes € mod-Cs; more-

t
over, the condition Xey € Cc, implies that Qey Crad(Pes) in mod-C>. Hence,
referring again to Lemma 2.3 (i¢), we get the following exact sequence in Cj-mod:

0 — Extg, (Qe2) — Extg, (Xez) — Extg, (Pez) — 0. (2)

Now, using the exact sequences (1) and (2), the induction hypothesis applied to
u(X) = Q, the equality A* f; Ext’ () = A*f; Ext%(X), and the fact that P =
Pey A, we get the following sequence of equalities:

dimg Ext (X)—dimg A™ f1 Ext (X) =

= dimK EXtZ(Q) + dimK EXt*A(P) - dimK A*fl EXt*A(Q) =
= dimg EXt*C2 (Q{:‘z) + dimg EXtZ(P) =

= dimK EXt*C2 (XEQ) — dimK EXt*C2 (PE2) + dimK Extz (P) =
= dimg Extg, (Xes).
This gives (i), completing the proof of Lemma 2.2. O

Proof of Theorem 2.1. We shall proceed by induction on the number n of simple
modules. For n = 1, both A and A* are division algebras and the statement is
trivial. Thus, let n > 1.

First, in view of the fact that both algebras A and C; are Koszul, we can apply
Proposition 2.2 (i) to X = § = S(1) @ --- ® S(n). Observe that 4-A* = Ext’ (X)
and conclude that the left A*-module A* f; A* is projective. Furthermore, since A
is neat, Ext%(S(1),S(1)) = 0 for all ¢ > 0, and thus the endomorphism algebra
fiA*fi = Homa(S(1),S(1)) is a division algebra. Hence, A* fi A* is a heredity
ideal in A*.

In order to complete the proof by induction, it is sufficient to show that
A*[A* f1A* =2 Cy*. Evidently, for any algebra (4,e) there is an algebra homo-
morphism ¥ : A* — C»" induced by the exact functor Hom 4(e24, —). This homo-
morphism maps each n-fold exact sequence, representing an element of Ea:tf4(5’ , 5’),
to the corresponding image representing an element of Ext}, (Sea, Sez). In our sit-
uation, the homomorphism ¥ is surjective. Indeed, since the algebra (4, e) is lean,
Ext! (Sey 4, Sep A) = Extlc2 (Sea, Ses). Moreover, since (A, e) is recursively Koszul,
Extl, (Ses, Ses) = (Extg, (Sea, Sez))t. Thus, ¥ is a surjection.

Now, the kernel Ker ¥ clearly contains A* f; A*. On the other hand, applying
Lemma 2.2 (ii) to the module X = S, and observing that Cy* = Extg, (Xea), we
get that dimK(A*/A*flA*) = dimg A* — dimg A* f1A* = dimg C5. This shows
that Ker ¥ = A* f; A*, as required.

Finally, by induction, (C2*,fs) is quasi-hereditary because C> is a recursively
Koszul, lean and neat algebra. Thus (A4*, f) is quasi-hereditary, as required. O

Let us point out that the above proof yields the following proposition.
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PROPOSITION 2.4. Let (A,e) be a recursively Koszul and lean quasi-hereditary al-
gebra. Then, for every 1 < i < n, the extension algebra of the centralizer algebra C;
is isomorphic to the factor algebra A*/A*gol-,lA*, i. €. to the corresponding factor
algebra of the quasi-hereditary algebra (A*,f). O

Note that the dual statement holds for every quasi-hereditary algebra.

PROPOSITION 2.5. Let (A, e) be a quasi-hereditary algebra. Then the ertension
algebra of the factor algebra B; is isomorphic to the centralizer algebra @;A*p; of
the extension algebra A* for every 1 <i < n.

Proof. If (A, e) is quasi-hereditary then Ext’y(X,Y) ~ Exth (X,Y) for all X,Y €
mod-B; (cf. [CPS1] or [DR]), giving the required isomorphism. O

The following statement is an immediate consequence of Theorem 2.1.

THEOREM 2.6. The extension algebra of a standard Koszul quasi-hereditary algebra
is always quasi-hereditary (with respect to the opposite order).

For standard Koszul quasi-hereditary algebras the functor Ext* : mod-A —
A*-mod establishes a close connection between the standard modules of A and
those of A*°PP,

PROPOSITION 2.7. Let (A,e) be a standard Koszul quasi-hereditary algebra. Then
Ext% (A4(i)) & AS. (i), i. e. the right standard modules of (A, e) are mapped to the
left standard modules of (A*,f). Furthermore, the same correspondence maps the
first syzygy and the radical of the standard module A 4(i) to the radical and the first
syzygy of the left standard module AS. (%), respectively.

Proof. Let us consider the exact sequences 0 — V(i) — P(i) — A(i) — 0 and
0 — U(i) > A(i) - S(i) = 0 of A-modules. We can apply Lemma 2.3 (i) to both
of these sequences to obtain the following exact sequences:

0 — Ext’y (V (i) — Ext’y(A(i)) — Ext’(P(i)) = 0 and

)
0 — Ext’y (U(3)) — Ext’y(S(i)) — Ext’ (A(i)) — 0. ®)
)

Since the modules V(z), P(i) and A(:) all belong to C4, and Ext} (P(i)) = S%.(¢)
obviously holds, Ext’ (A(7)) is a local module with top factor isomorphic to S9. ().
Furthermore, since Ext’ (A (i), S(j)) = 0 for all j < i, the module Ext* (A(3)) is an
epimorphic image of A%. (¢). In fact, for i = 1 we have Ext} (A(1)) = Ext}(S(1)) =
P3.(1) = A%.(1). Now, to prove the isomorphism for ¢ > 1, it is enough to show
that the K-dimensions of Ext’% (A(z)) and AS. (i) are equal. We shall proceed by
induction on the number of simple modules. Since A4(:) € K, Lemma 2.2 (%)
yields dimg Ext’y (A(:)) — dimg A* f; Ext} (A(i)) = dimg Extg, (A(é)ez). Further-
more, by induction, Extg, (A(i)e2) = Extg, (A, (i) = A"C() = AZ*/A fa- (1)
Note that A*fiExt}(A(i)) = 0 for ¢ > 1, and thus dimg Ext}(A(z)) =
dimg A% 4 - (¢) = dimg A%. (¢), as required.

Finally, the exact sequences (3) show that Ext’ (V' (¢)) is the radical of A%. (i),
while Ext’ (U(3)) is the first syzygy of A¢. (i). O
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While the extension algebra (A*,f) of a standard Koszul quasi-hereditary al-
gebra (A4, e) is always quasi-hereditary (see Theorem 2.6), (A*,f) is not necessarily
standard Koszul. In fact, it may even fail to be lean as the following proposition
shows. Recall that we have already shown that the factor algebras (B;,e;) of a
standard Koszul algebra are not necessarily standard Koszul (cf. Example 1.12).

PROPOSITION 2.8. Let (A, e) be a Koszul quasi-hereditary algebra. Then (A*,f) is
lean if and only if all factor algebras B; are Koszul.

Proof. Observe first that (A*,f) is lean if and only if the species of the centralizer
w;A*p; is the restriction of the species of A* for all i. On the other hand the
species of the factor algebra B; is clearly the restriction of the species of A. Since
A is Koszul, the species of A* is the dual of the species of A. Thus (A*,f) is lean
if and only if the species of the centralizer p; A*p; is the dual of the species of B;
for every i. In view of Proposition 2.5 this is equivalent to the condition that B; is
Koszul for every i. O

ExAMPLE 2.9. To illustrate the previous statement , let us consider once more
the standard Koszul quasi-hereditary algebra A from Example 1.12. It was shown
that the quotient algebra B, is not Koszul. The left regular representation of the
extension algebra of A is given by

1
A*A*=2i®§eaiea4eai,
which is not lean (with respect to the opposite order).

Let us conclude this section with yet another example showing that the corre-
spondence between right standard modules of (4, e) and left standard modules of
(A*,f), given in Proposition 2.7 does not hold without the assumption that (4, e)
is quasi-hereditary.

EXAMPLE 2.10. Consider the algebra A = KQ/I, where @ is the quiver

and I = (Aa, Ay, kA, a8 — v0); thus, the right and left regular representations are

4 2
AAzéeajea';'eal;eag and AA:jeafseaiseag@g.
2 4
The algebra (4, e) is a standard and recursively Koszul, lean and neat algebra, but
it is not quasi-hereditary. The left regular representation of the extension algebra
A* is
2
ad =10 L e
3

3

2 4 5
4 ®15D 3.
15 3

3
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Hence, (A*, f) is a recursively Koszul quasi-hereditary algebra. It is neither standard
Koszul, nor lean. In fact, the standard module A%.(2) is a proper (3-dimensional)
homomorphic image of the 5-dimensional module Ext (A 4(2)) = Ext’ (S(2)).

3. Quasi-hereditary extension algebras of graded algebras

In this final section we investigate the homological duality of finite dimensional
algebras in the natural setting of (tightly) graded algebras, in which case the results
of the previous section can be considerably strengthened. In particular, the exten-
sion algebra of a graded standard Koszul quasi-hereditary algebra is again standard
Koszul and quasi-hereditary. Furthermore, if the extension algebra of a graded
Koszul algebra is quasi-hereditary, then the original algebra is standard Koszul.

Here, by a graded K -algebra A, we shall understand a basic finite dimensional
positively tightly graded algebra, i.e. A = @;>04; as a vector space, where Ay is a
semisimple K-algebra and 4; - A; = A;y; for all 4,5 > 0 (in particular, 4; = (4;)°
for all ¢ > 1). Obviously, rad A = @®;>14;. Let us fix a primitive orthogonal
decomposition of the identity element 1 = e; + e3 + ... + e, so that e; € Ag and
define, for convenience, 4; = 0 for j < 0.

A finite dimensional graded (right) A-module X is a finite dimensional vector
space X = @;eczX; so that X; - A; C X;;;. A graded A-module X is said to be
generated in degree k, if X = X, A (i.e. Xy A; = Xiy; for every integer j). Note
that in this case X; =0 for all i < k. If X = @;>,X; is generated in degree k, then
the graded submodule rad’ X = ®i>;+xX; is generated in degree j+ k for all j > 0.

In particular, the regular representation A 4 and its indecomposable direct sum-
mands P(i) are graded modules generated in degree 0 and the submodules rad’ Ay
and rad’ P(i) in degree j for j > 1. Similarly, the simple top S(i) of the indecompos-
able projective module P(z) is generated in degree 0 as is the standard module A(z).
Note that in the category of graded modules one also needs the shifted projective
modules P(i)[k] generated in degree k.

By a (graded) morphism f : X — Y between graded A-modules we shall
understand a module homomorphism of degree 0, given by a family of linear maps
fi : X; = Y; with the obvious commuting properties. It is easy to see that for a
graded morphism f : X — Y, the morphisms Ker f -+ X and Y — Coker f are also
graded, and if Y is generated in degree k then so is Coker f. Every graded module
X generated in degree k has a graded projective cover P — X, where P is also
generated in degree k.

Let X be a graded submodule of a graded module Y, and assume that Y is

generated in degree k. Then X é Y if and only if X is also generated in degree k.
An immediate consequence is that for a graded a module X, generated in degree
k, the module X is in C4 if and only if the j-th syzygy Q;(X) of X is generated
in degree k + j for every j > 0. This is clearly equivalent to the condition that in
a minimal projective resolution -+ -+ P; = -+ = P; = Py - X — 0 of X the
projective module P; is generated in degree k+ j for every j > 0, i.e. X has a linear
(graded) projective resolution.

We start with the fact that, for a graded Koszul algebra A, the functor Ext’
maps a graded A-module generated in degree k& which is in C4 to a graded A*-
module generated in degree k which is in C§. (cf. Proposition 5.1 of [GM2]). For a
proof of this statement, we shall use the following lemma.
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LEMMA 3.1. Let A be a graded algebra and 0 - X — Y — Z — 0 a short exact
sequence of graded modules and graded morphisms such that X and Y (hence also
Z ) are generated in degree k. If X and Y belong to Ca, then so does Z.

¢
Proof. Since both X and Y are generated in the same degree, hence X CY, we
have the commutative diagram

0 0 0
1 1 |

0 - AX) - Q) - QZ2) - 0
1 1 }

0 - PX) - PY) —- PZ) = 0
\ 1 {

0 — X — Y — Z - 0
i i NS
0 0 0

Here P(X), P(Y) and P(Z) denote the projective covers of X, Y and Z, respectively.
Since, by assumption, X,Y € C4, the modules Q(X) and Q(Y) are generated in
degree k + 1. Hence, Q(Z) is either 0 or generated in degree k + 1. By induction on
J, it follows that the j-th syzygy Q;(Z) of Z is generated in degree k + j for every
j>0. Thus Z € Cy4. O

COROLLARY 3.2. Let A be a graded Koszul algebra and X € C4 a graded module
generated in degree k. Then Ext’y (X) € C3..

Proof. For a given X € C4 generated in degree k, let us consider the following
commutative diagram:

0 - Q9 —- radP — radX — 0

I } )
o - 9 -» P = X = 0

Here, P is the projective cover of X and thus, since A is a Koszul algebra,
rad P € C4. Furthermore, both 2 and rad P are generated in degree k + 1. Hence,
Lemma 3.1 implies that rad X € C4. By induction, rad’ X € C4 for every j > 1.
Thus, by Proposition 3.5 of [ADL2], Ext*(X) € C4., as required. O

THEOREM 3.3. Let (A,e) be a graded standard Koszul quasi-hereditary algebra.
Then the extension algebra (A*,f) of A is also a standard Koszul quasi-hereditary
algebra.

Proof. In view of Theorem 2.6, we need to show only that the left and right standard
modules of (A*,f) are in C%. and Ca~, respectively. Since, by Proposition 2.7,
Ext} (Aa(i)) = A%.(¢) (and similarly for the left standard modules), the statement
follows from Corollary 3.2. O
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Note that another consequence of Corollary 3.2 is the well-known fact that the
extension algebra of a graded Koszul algebra is a Koszul algebra (cf. e.g. [BGS]).

Let us observe that a crucial step in the proof of Corollary 3.2 is the fact that,
for graded Koszul algebras, X € C4 implies rad X € C4. Example 1.12 illustrates
the fact that this implication does not hold in general for non-graded algebras.
Clearly, X = P(l)/P(1)55A has a top projective resolution, while rad X does not
have one.

Theorems 2.1 and 2.6 are further strengthened in the following statement.

THEOREM 3.4. Let (A,e) be a graded Koszul algebra.

(1) (A,e) is a recursively Koszul, neat and lean algebra if and only if (A*,f) is a
quasi-hereditary algebra.

(2) (4,e) is a quasi-hereditary algebra if and only if (A*,f) is a recursively Koszul,
neat and lean algebra.

Proof. Theorem 2.1 immediately implies one direction of (1). Furthermore, since
for a Koszul algebra A** = A (cf. [BGS]), Theorem 2.1 also yields the opposite
direction of (2). Hence, by the isomorphism above, it is enough to show that if
(4, e) is quasi-hereditary then (A*,f) is recursively Koszul, neat and lean.

To prove this, we shall need a few preparatory lemmas.

LEMMA 3.5. Let (A,e) be a quasi-hereditary graded algebra and X a graded A-
module generated in degree k. Suppose that Xe, A is a projective module. Then
X € C4 implies that X/XenA €CAa/he, A-

Proof. We may asume that k£ = 0. Consider the linear projective resolution of X:
=3P =P+ X =0

Let us denote by Q; the i-th syzygy of X; let Qy = X.

First we are going to show by induction on i that the trace Q;e, A of the
projective module e, A in the i-th syzygy is projective for every i > 0. The statement
holds for i = 0 by assumption. The exact sequence 0 — Q;11 — P; — Q; — 0 yields
the sequence

0— Qi+1 N PienA e PienA — QzenA — 0.

Here Q;e, A is projective by the induction hypothesis, and P;e,A is projective by
the quasi-heredity of A. So Q;y; N Pie,A is a direct summand of P;e, A. Thus
Qir1 N PenA = (Qiy1 N Pe,A)en, A = Q11,4 is a projective module.

Now we can consider the following diagrams with exact rows and columns:

0 0 0
l l l

0 - Q1,4 — Pey,A — Qe A = 0
d

0 — Qi1 —

l

0 — Qi1 —

1
0

N~
1

o« vl
.
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where all modules and morphisms are graded. Since P; is generated in degree i,
the module P; is also generated in degree i. Clearly the grading of X and P; as
A-modules gives a grading over the graded algebra B,, 1 = A/AenA, so we obtain
a linear projetive resolution of X € mod-B,_;. Thus X € Cg,_,, as required. O

This yields immediately the following corollary.

COROLLARY 3.6. If (A,e) is a graded quasi-hereditary Koszul algebra, then the
factor algebras B; = A/A6i+1A are also Koszul algebras.

Now, we return to the proof of Theorem 3.4. The quasi-heredity of (4,e)
implies that the centralizer algebras of (A*,f) are isomorphic to the homological
dual of the factor algebras B; which are Koszul by Corollary 3.6. As we observed
earlier, the homological dual of a Koszul algebra is also Koszul. Thus the central-
izer algebras of (A*,f) are Koszul, i.e. (A*,f) is recursively Koszul. Furthermore,
Proposition 2.8 gives that (4*,f) is lean.

Since (A, e) is quasi-hereditary, e, A is Schurian in A = A**. This means that
ExtY. (S*°(n), S*°(n)) = 0, for i > 0, showing that f, € A* is a neat idempotent.
The rest now follows by induction on the number of simple modules. ad

Let us formulate explicitly a few easy consequences of Theorem 3.4.

COROLLARY 3.7. Let A be a graded Koszul algebra. Then (A,e) is a standard
Koszul quasi-hereditary algebra if and only if (A*,f) is a standard Koszul quasi-
hereditary algebra.

Note that Corollary 3.7 provides also an alternative proof of Theorem 3.3.

COROLLARY 3.8. Let (A,e) be a graded Koszul quasi-hereditary algebra. Then
(A,e) is a standard Koszul algebra if and only if (A*,f) is a quasi-hereditary alge-
bra. Consequently, all algebras whose module categories are equivalent to the blocks
of the Bernstein—Gelfand—Gelfand category O are standard Koszul.

The second statement of Corollary 3.8 follows immediately from the result of
Soergel [S] on self-duality of the algebras corresponding to regular blocks and from
the result of Beilinson, Ginsburg and Soergel [BGS] that the module categories over
the extension algebras of the algebras corresponding to singular blocks are categories
studied by Rocha-Caridi in [R]. There it is shown that the respective algebras are
quasi-hereditary. The authors are indebted to V. Mazorchuk for pointing out the
latter reference to them.

A similar statement is valid for graded quasi-hereditary algebras with a
Kazhdan-Lusztig theory in the sense of [CPS2].

Finally, let us formulate the counterpart of Proposition 1.11 for the factor
algebras B;. In view of Propositions 2.4 and 2.5, we have the following statement.

PROPOSITION 3.9. Let (A,e) be a a graded standard Koszul quasi-hereditary alge-
bra. Then, for all 1 < i < n, the factor and centralizer algebras (B;, e;) and (C;, ;)
are also standard Koszul quasi-hereditary algebras; moreover,

B;* = p; A% and  C;" = A*[A*p;_1 A"
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Proof. Most of the statements are contained in Propositions 1.11, 2.4, 2.5 and the
proof of Theorem 3.4. The only part left to prove is that the algebras (B;,e;) are
standard Koszul. By Corollary 3.6 the algebras B; are Koszul, and since forming
the centralizer algebras and factor algebras commutes, the same corollary yields
that the algebras (B;, e;) are recursively Koszul. Finally, Theorem 1.4 implies that

(B;, e;) are standard Koszul for all 1 < i < n. O
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