
QUASI-HEREDITARY EXTENSION ALGEBRASIstv�an �Agoston1;2, Vlastimil Dlab3 and Erzs�ebet Luk�a
s1;4Abstra
t. The paper is a 
ontinuation of the authors' study of quasi-hereditary al-gebras whose Yoneda extension algebras (homologi
al duals) are quasi-hereditary. Theso-
alled standard Koszul quasi-hereditary algebras, presented in this paper, have theproperty that their extension algebras are always quasi-hereditary. In the natural set-ting of graded Koszul algebras, the 
onverse also holds: if the extension algebra of agraded Koszul quasi-hereditary algebra is quasi-hereditary, then the algebra must bestandard Koszul. This implies that the 
lass of graded standard Koszul quasi-hereditaryalgebras is 
losed with respe
t to homologi
al duality. Another immediate 
onsequen
eis the fa
t that all algebras 
orresponding to the blo
ks of the 
ategory O are standardKoszul. 0. Introdu
tionA primary obje
tive of the present paper is to identify a natural 
lass of quasi-hereditary algebras whi
h is 
losed with respe
t to homologi
al duality and whi
his broad enough to a

ommodate appli
ations in the representation theory of semi-simple 
omplex Lie algebras and algebrai
 groups. These are related to the work ofCline, Parshall and S
ott on Kazhdan{Lusztig theory whi
h underlines the impor-tan
e of those quasi-hereditary algebras whose Yoneda extension algebra is quasi-hereditary (see e.g [CPS2℄, [CPS3℄, [CPS4℄ and [P2℄). In order to have perfe
tduality, the spe
ies of su
h an algebra must be dual to the spe
ies of its extensionalgebra hen
e these algebras are 
losely related to (non
ommutative) Koszul alge-bras whi
h have been re
ently extensively studied (see e.g. [BG℄, [BGS℄, [CPS4℄,[PS℄, [P1℄, [GM1℄ and [GM2℄). In this way, the standard Koszul algebras of thispaper, whi
h extend the earlier notion of the solid algebras of [ADL2℄, are relevantfor appli
ations. Let us point out here the interesting fa
t that the existen
e oftop (linear) proje
tive resolutions for both right and left standard modules of aquasi-hereditary algebra A implies that A is a Koszul algebra. Moreover, our re-sults show that there is a 
lose 
onne
tion between quasi-heredity and the standardKoszul property.The main results of the present paper 
an be summarized in the followingtheorems.1991 Mathemati
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2 �AGOSTON, DLAB AND LUK�ACSTheorem 1. Let (A; e) be a quasi-hereditary algebra. If both left and right standardmodules have top proje
tive resolutions, then A is a Koszul algebra (i. e. all simplemodules have top proje
tive resolutions).The algebras satisfying the 
onditions of Theorem 1 will be 
alled standardKoszul.Theorem 2. Let (A; e) be a standard Koszul quasi-hereditary algebra. Then theYoneda extension algebra (A�; f) is also a quasi-hereditary algebra.Theorem 3. Let (A; e) be a graded Koszul quasi-hereditary algebra. Then (A�; f) isa quasi-hereditary algebra if and only if (A; e) is a standard Koszul algebra. Conse-quently, the 
lass of graded standard Koszul quasi-hereditary algebras is 
losed withrespe
t to taking the homologi
al dual.1. Standard Koszul quasi-hereditary algebrasThroughout the paper, all algebras are assumed to be basi
, �nite dimen-sional over a �eld K. The 
ategories of �nite dimensional right and left A-moduleswill be denoted by mod-A and A-mod, respe
tively. Given an algebra A, letf e1; e2; : : : ; en g denote a 
omplete set of its primitive orthogonal idempotents.Moreover P (i) �= eiA and S(i) �= topP (i) will stand for the respe
tive inde
om-posable proje
tive and simple right modules. The 
orresponding left modules willbe denoted by P Æ(i) and SÆ(i). The dire
t some of all simple modules S(i) will bedenoted by Ŝ. Thus Ŝ = n�i=1S(i) �= A= radA.Most of the 
on
epts in this paper will depend on an order of the above setof idempotents. Their (�xed) ordering will be denoted by e = (e1; e2; : : : ; en),and the algebra with a �xed order e by (A; e). For 
onvenien
e, the idempotentsei + ei+1 + : : : + en will be denoted by "i, 1 � i � n and we put "n+1 = 0.The right standard module �(i) (with respe
t to e) is the largest quotient of P (i)with no 
omposition fa
tor isomorphi
 to S(j) for some j > i. In other terms,�(i) �= eiA=eiA"i+1A. The left standard modules will be denoted by �Æ(i). Having�xed an order e, we shall 
onsider also the following two sequen
es of algebras:Bi = AÆA"i+1A and Ci = "iA"i; the indu
ed order of their idempotents in both
ases will be denoted by ei.An idempotent ideal I = AeA / A, generated by an idempotent element e is
alled a heredity ideal of A if IA 2 mod-A is proje
tive and e(radA)e = 0. Givenan algebra (A; e), denote by Ii the idempotent ideal A"iA. The algebra (A; e)is 
alled quasi-hereditary if the ideal Ii=Ii+1 is a heredity ideal of A=Ii+1 for all1 � i � n ([CPS1℄, [PS1℄ or [DR℄). This is equivalent to the requirement that AAhas a �ltration with standard modules and all the standard modules are S
hurian(i.e. their endomorphism algebras are division algebras).A primitive idempotent e 2 A is 
alled neat if for the 
orresponding simplemodule S = top eA, the extension modules ExttA(S; S) = 0 for all t > 0. Thealgebra (A; e) is neat if e1 is neat and the 
entralizer algebra (C2; e2) is neat. Note



QUASI-HEREDITARY EXTENSION ALGEBRAS 3that every quasi-hereditary algebra (A; e) is neat; moreover, all neat algebras have�nite global dimension (
f. [ADW℄).For the 
onvenien
e of the reader, let us re
all some additional de�nitionsused freely in the present paper. For the basi
 properties of these 
on
epts werefer to [ADL1℄ and [ADL2℄. A submodule X of a module Y is said to be atop submodule if radX = X \ radY ; in this 
ase, we write X t�Y . A �ltration0 = X0 � X1 � � � � � Xk = X is 
alled a top �ltration of X if Xi t�Xi+1 forall 0 < i < t. An algebra (A; e) is said to be lean if the spe
ies of the 
entral-izer algebras Ci = "iA"i are the respe
tive restri
tions of the spe
ies of A. Thisis equivalent to the requirement that "i(radA)2"i = "i(radA)"i(radA)"i for all1 � i � n. Under the assumption that all standard modules �(i) are S
hurian,(A; e) is lean if and only if all kernels of the 
anoni
al epimorphisms P (i) ! �(i)and P Æ(i) ! �Æ(i) are top submodules of radP (i) and radP Æ(i), respe
tively. Aproje
tive resolution � � � fi+1�!Pi fi�!Pi�1 fi�1�!� � � f1�!P0 �! X �! 0 is a top reso-lution of X if Im fi t� radPi�1 for every i � 1. The sub
ategory of right and leftA-modules with minimal top proje
tive resolutions will be denoted by CA and CÆA,respe
tively. The ve
tor spa
e �i�0 ExtiA(Ŝ; Ŝ) has an algebra stru
ture with mul-tipli
ation given by the Yoneda 
omposition of extensions. This algebra is 
alledthe Yoneda extension algebra or homologi
al dual of A and will be denoted by A�.There is a natural 
ontravariant fun
tor Ext�A : mod-A ! A�-mod de�ned byExt�A(X) = �t�0 ExttA(X; Ŝ) for every X 2 mod-A. Given (A; e), the idempotentelements fi = idS(i) 2 A� de�ne an \opposite" order f = (fn; fn�1; : : : ; f1). Simi-larly to the de�nition of idempotents "i, write 'i = f1 + f2 + � � �+ fi for 1 � i � nand '0 = 0.Definition 1.1. An algebra A is Koszul if all simple modules S(i) belong to thesub
ategory CA.Koszul algebras are 
hara
terized by the fa
t that ExttA(Ŝ; Ŝ) = �Ext1A(Ŝ; Ŝ)�tfor every t � 1; in parti
ular, this is equivalent to the fa
t that the spe
ies of A� isthe dual of the spe
ies of A (
f. Theorem 2.10 of [ADL2℄).Definition 1.2. An algebra (A; e) is re
ursively Koszul (with respe
t to the givenorder) if the 
entralizer algebras Ci = "iA"i are Koszul for every 1 � i � n.Definition 1.3. An algebra (A; e) is standard Koszul if for every 1 � i � n theright and left standard modules �(i) and �Æ(i) belong to CA and CÆA, respe
tively.The following theorem shows that these two notions are 
losely related.Theorem 1.4. For a quasi-hereditary algebra (A; e) the following two statementsare equivalent:(i) (A; e) is re
ursively Koszul and lean;(ii) (A; e) is standard Koszul.



4 �AGOSTON, DLAB AND LUK�ACSRemark 1.5. The following two examples show that without the assumption thatA is quasi-hereditary, Theorem 1.4 does not hold.Consider the algebra A = KQ=I , where the quiver Q is................................................................................................................................................................................ ..................................................................................................... ............� �1 2� �and I = h�2i; thus, the right regular representation of A isAA = 11 22 � 2 :This algebra is re
ursively Koszul and lean, but �(1) 62 CA. Observe, that thealgebra is standardly strati�ed (
f. [ADL3℄), but not quasi-hereditary.On the other hand, the algebra K[x℄=(x3) is a standard Koszul algebra whi
his not Koszul.Moreover, the following example shows that a mere assumption of the algebrato be neat is also not suÆ
ient for the 
on
lusions of Theorem 1.4. Let A = KQ=I ,where Q is the quiver � �� � �
5 2 1� �
 Æ �and I = h��; �� � 
Æi: Thus, the right regular representation of A isAA = 1 � 21 � 32 � 43 52 � 521 :It turns out that (A; e) is a re
ursively Koszul, neat and lean algebra whi
h isneither standard Koszul nor quasi-hereditary.To prove Theorem 1.4, we need a series of preparatory lemmas.Lemma 1.6. Let " 2 A be an idempotent element, and X;Y 2 mod-A with X �radY , X = X"A and Y = Y "A.(i) If X t� radY , then X" t� rad(Y ").(ii) If "(rad2A)" � "(radA)"(radA)" and X" t� rad(Y "), then X t� radY .Proof. Let us denote the radi
al of A by J . To prove (i), observe thatX"\Y "("J")2 � X"\Y J2" = (X \Y J2)" = XJ" = X"("J");sin
e X t� radY and X = X"A.To prove (ii), we have to show that X \Y J2 � XJ .



QUASI-HEREDITARY EXTENSION ALGEBRAS 5First, making use of the assumptions Y = Y "A, "J2" � "J"J" andX" t� rad(Y "), we get the following sequen
e of in
lusions :(X \Y J2)" � X"\Y J2" = X"\Y "J2" � X"\Y "J"J" == X"\Y "("J")2 � X"("J") � XJ:Furthermore, the following in
lusions obviously hold:(X \Y J2)(1� ") � X(1� ") = X"A(1� ") � XJ:Consequently, X \Y J2 � XJ , i. e. X t� radY , as required. utLemma 1.7. Suppose " 2 A is an idempotent element su
h that "(rad2A)" �"(radA)"(radA)". (This is satis�ed, in parti
ular, when (A; e) is lean and " = "ifor some 1 � i � n.) Let X 2 mod-A be su
h that ExttA(X; top((1� ")A)) = 0 fort � 0. Then X 2 CA if and only if X" 2 C"A".Proof. Let us 
onsider the minimal proje
tive resolution of X over A� � � ! Pt ! � � � ! P1 ! P0 ! X ! 0and the 
orresponding exa
t sequen
e over "A", obtained by applying the exa
tfun
tor HomA("A;�)� � � ! Pt"! � � � ! P1"! P0"! X"! 0:The assumptions imply that Pt = Pt"A for every t � 0, so all modules Pt" 2mod-"A" are proje
tive, and the se
ond sequen
e is also a minimal proje
tive reso-lution. Now, applying Lemma 1.6 (i) and (ii), the statement follows. utDefinition 1.8. Let S be a simple module in mod-A. We say that a moduleX 2 mod-A is S-Koszul, if ExttA(X;S) � Ext1A(Ŝ; S) �Extt�1A (X; Ŝ) holds for everyt � 1, where Ŝ = A= radA.Let us point out that A is S-Koszul if and only if, for every t � 1, the t-thsyzygy 0! 
t ! Pt�1 ! � � � ! P1 ! P0 ! X ! 0of a minimal proje
tive resolution of X satis�es the following 
ondition: the indu
edmorphism from the S-homogeneous summand of 
t= rad
t into radPt�1= rad2 Pt�1is a monomorphism. Observe that this implies that whenever X is S-Koszul, thenall syzygies of X are also S-Koszul. Let us also note that any module X 2 CA isS-Koszul for every simple module S.Lemma 1.9. Suppose that ExttA(S(1); S(1)) = 0 for t � 1 (i. e. e1 is a neat idem-potent). If X 2 mod-A is S(1)-Koszul, then X"2A is also S(1)-Koszul.



6 �AGOSTON, DLAB AND LUK�ACSProof. The short exa
t sequen
e0! X"2A ��!X ! �S(1)! 0indu
es the long exa
t sequen
e� � � ! ExttA(�S(1); S(1))! ExttA(X;S(1))! ExttA(X"2A;S(1))!! Extt+1A (�S(1); S(1))! � � � ;where the �rst and the last terms are zero for every t � 1. Thus the morphismExttA(X;S(1))! ExttA(X"2A;S(1)) is an isomorphism and we haveExttA(X"2A;S(1)) = ExttA(X;S(1)) � � � Ext1A(Ŝ; S(1)) � Extt�1A (X; Ŝ) � � �� Ext1A(Ŝ; S(1)) � Extt�1A (X"2A; Ŝ):Hen
e X"2A is S(1)-Koszul. utNow, given an algebra (A; e), let us de�ne the following sub
lass K of mod-A:K = �X 2 mod-A jX is S(1)-Koszul, X"2 2 CC2 and X"2A t�X � :Furthermore, let us introdu
e the following 
orresponden
e � : mod-A ! mod-A.For X 2 mod-A, de�ne �(X) = �X"2A if X 6= X"2A,
1(X) if X = X"2A,where 
1(X) is the �rst syzygy of X .Lemma 1.10. Let (A; e) be a lean and neat algebra with S(1) 2 CA. Let K and �be de�ned as above. Then:(i) �(K) � K;(ii) for every X 2 mod-A, there exists a positive integer k su
h that �k(X) = 0;(iii) K � CA.Proof. To prove (i) suppose that X 2 K. If X 6= X"2A then �(X) = X"2A isS(1)-Koszul by Lemma 1.9 and the other two 
onditions in the de�nition of Kobviously hold for �(X). So �(X) 2 K. Let us now suppose that X = X"2A. Then�(X) = 
1(X) is S(1)-Koszul a

ording to the remark following the de�nition ofS-Koszul modules. Furthermore, the exa
t sequen
e0! 
! P ! X ! 0; (1)with 
 = 
1(X) and P ! X the proje
tive 
over of X , yields the exa
t sequen
e0! 
"2 ! P"2 ! X"2 ! 0



QUASI-HEREDITARY EXTENSION ALGEBRAS 7in mod-C2. The assumption X = X"2A implies that P"2 ! X"2 is a proje
tive
over of X"2 2 CC2 . Thus 
"2 2 CC2 and 
"2 t� rad(P"2). Now, Lemma 1.6 (ii)yields that 
"2A t� radP , and 
onsequently, 
"2A t�
. Hen
e �(X) = 
 2 K.To prove (ii), let us atta
h to every module X 2 mod-A the following twononnegative integers:eX = dimK �t�0ExttA(X;S(1)) and pX = pdX:Note that both of these numbers must be �nite sin
e neat algebras have �niteglobal dimension. Observe also that (eX ; pX) = (0; 0) if and only if X = X"2Aand X is proje
tive. In this 
ase �(X) = 0. Thus to prove (ii), it will be enoughto show that (e�(X); p�(X)) < (eX ; pX) in the lexi
ographi
al ordering, whenever(eX ; pX) 6= (0; 0).In the 
ase when X = X"2A and X is not proje
tive, we have �(X) = 
1(X),and then 
learly e�(X) = eX and p�(X) < pX . On the other hand, when X 6= X"2A,then �(X) = X"2A. In this 
ase the long exa
t sequen
e in the proof of Lemma 1.9yields an isomorphism ExttA(X"2A;S(1)) �= ExttA(X;S(1)) for every t � 1. Sin
eHom(X"2A;S(1)) = 0, while Hom(X;S(1)) 6= 0, it turns out that e�(X) < eX . This
ompletes the proof of (ii).Finally, in order to prove (iii), i. e. that every module X 2 K belongs to CA,we pro
eed by indu
tion on the smallest number k for whi
h �k(X) = 0. Note thatsu
h a number k exists for all X 2 K by (ii). The statement is 
learly true fork = 0, i. e. for X = 0.Consider �rst the 
ase when X 6= X"2A. Then we have an exa
t sequen
e0 �! X"2A �! X �! �S(1) �! 0with X"2A t�X . Here, S(1) 2 CA by assumption and X"2A = �(X) 2 K is in CAby the indu
tion hypothesis. Thus, X 2 CA, as well (
f. Lemma 2.4 of [ADL2℄).In the 
ase when X = X"2A and X 6= 0, 
onsider on
e more the exa
t sequen
e(1). Here 
 = �(X) 2 K, so by the indu
tion hypothesis, 
 2 CA. As in the proofof (i), 
"2A t� radP . Furthermore, sin
e X is S(1)-Koszul, and sin
e the neatnessof A implies that 
=
"2A is semisimple, we get 
=
"2A t� radP=
"2A, and thus
 t� radP (
f. Lemma 1.1.(
) of [ADL1℄). This implies that X 2 CA, �nishing theproof of Lemma 1.10. utSin
e by an earlier remark, all modules in C are S(1)-Koszul, the previous resultshows that for neat and lean algebras with S(1) 2 CA, the 
lass K 
an be de�ned asK = �X 2 mod-A jX 2 CA; X"2 2 CC2 and X"2A t�X � :We are now ready to prove Theorem 1.4.



8 �AGOSTON, DLAB AND LUK�ACSProof of Theorem 1:4. (i) ) (ii): Assume that (A; e) is lean and that all the 
en-tralizer algebras Ci = "iA"i (1 � i � n) are Koszul. Observe that �(i)"i = S(i) 2mod-Ci follows from the S
hurian property of the standard modules. Furthermore,the quasi-heredity of A yields that ExttA(�(i); S(j)) = 0 for every j < i and everyt � 0. Sin
e Ci is Koszul, S(i) 2 CCi ; thus, Lemma 1.7 implies that �(i) 2 CA.Sin
e the properties of being quasi-hereditary, lean and Koszul are all two-sided
on
epts, we get �Æ(i) 2 CÆA, as well.(ii)) (i): Suppose that A is standard Koszul, i. e. �(i) 2 CA and �Æ(i) 2 CÆAfor 1 � i � n; then Theorem 2.1 of [ADL1℄ yields that A is lean.The fa
t that A is re
ursively Koszul will be proved by indu
tion on the numberof simple modules over A. Observe that (C2; e2) is quasi-hereditary and that theright and left standard modules of (C2; e2) are of the form �(i)"2 and "2�Æ(i),respe
tively. Hen
e, by Lemma 1.7, they belong to CC2 and CÆC2 , respe
tively. Thus,by the indu
tion hypothesis, the algebras Ci (2 � i � n) are Koszul. So we needonly to show that A is Koszul.In view of Lemma 1.10 (iii), it suÆ
es to show that ŜA 2 K. Note thatS(1) = �(1) 2 CA holds by assumption. Furthermore, Ŝ"2 2 CC2 be
ause thealgebra C2 is Koszul. It is also 
lear that Ŝ"2A t� Ŝ. Finally, we are going toshow that Ŝ is S(1)-Koszul. Sin
e SÆ(1) = �Æ(1) 2 CÆA, Corollary 2.7 of [ADL2℄assures that ea
h element of the dual ExttA(SÆ(1); ŜÆ) of ExttA(Ŝ; S(1)) belongs toExt1A(ŜÆ; ŜÆ)t�1 � Ext1A(SÆ(1); ŜÆ), and thusExttA(Ŝ; S(1)) � Ext1A(Ŝ; S(1)) � Ext1A(Ŝ; Ŝ)t�1 � Ext1A(Ŝ; S(1)) � Extt�1A (Ŝ; Ŝ):Now, an appli
ation of Lemma 1.10 (iii) yields Ŝ 2 C, i. e. A is Koszul, as required.utThe following statement shows that the standard Koszul property of a quasi-hereditary algebra (A; e) is 
arried over to the 
entralizer algebras (Ci; ei).Proposition 1.11. If (A; e) is a standard Koszul quasi-hereditary algebra, then sois (Ci; ei) for every 1 � i � n.Proof. Both properties of being quasi-hereditary and lean are 
learly inherited by(Ci; ei) and thus (Ci; ei) is a standard Koszul algebra by Theorem 1.4. utExample 1.12. In 
ontrast to Proposition 1.11, the standard Koszul property of(A; e) is not ne
essarily inherited by the fa
tor algebras (Bi; ei) for 1 � i � n�1. Tosee this, 
onsider the following quasi-hereditary algebra (Example 6.7 from [ADL2℄).Let A = KQ=I , where Q is the quiver
� � � ��� � 
� �



QUASI-HEREDITARY EXTENSION ALGEBRAS 9and I = h��
 � ��i: Thus, the right regular representation of A isAA = 12 534 � 234 � 34 � 4 � 54 :Here, �(i) 2 CA;�(i)Æ 2 CÆA for 1 � i � n, but B4 is not Koszul sin
e S(1) doesnot have a top proje
tive resolution over B4. In Se
tion 2, we shall give a ne
essaryand suÆ
ient 
ondition for the fa
tor algebras (Bi; ei) to be standard Koszul (
f.Proposition 2.8).Example 1.13. The following simple example of a lean quasi-hereditary algebra(A; e) illustrates the fa
t that even if all Bi, 1 � t � n, are Koszul algebras, (A; e)does not have to be re
ursively Koszul (and thus standard Koszul). Let A = KQ=I ,where Q is the quiver � �� � �
3 4 5� �
 Æ �and I = h��; �� � 
Æi: Thus, the right regular representation of A isAA = 14 � 21 34 � 345 � 45 � 5 :Observe that �(2) 62 C.Finally, we show that standard Koszul quasi-hereditary algebras generalize the
on
ept of solid algebras, de�ned in [ADL2℄. Let us �rst re
all the (stru
tural)de�nition of a solid algebra (A; e). Denoting by U(i) and V (i) the kernels of the
anoni
al epimorphisms �(i) ! S(i) and P (i) ! �(i), respe
tively, we 
all analgebra (A; e) solid if, for all 1 � i � n, the multipli
ity [�(i) : S(i)℄ = 1 (i.e. �(i)is S
hurian), V (i) is a top submodule of radP (i), U(i) has a top �ltration by S(j)0sand �(j)0s (for j < i) and V (i) has a top �ltration by �(j)0s and P (j)0s (for j > i).Sin
e the 
entralizer algebras (Ci; ei) of a solid algebra (A; e) are solid, and sin
e,moreover, solid algebras are lean Koszul quasi-hereditary algebras, Theorem 1.4implies the following statement.Corollary 1.14. If (A; e) is a solid algebra, then (A; e) is a standard Koszulquasi-hereditary algebra.Note that easy examples show that not every standard Koszul algebra is solid.In parti
ular, as the next example shows, the 
on
ept of a solid algebra is one-sided.On the other hand, it is 
lear that (A; e) is standard Koszul if and only if (Aopp; e)is standard Koszul.



10 �AGOSTON, DLAB AND LUK�ACSExample 1.15. Let us 
onsider the algebra A = KQ=I , where the quiver Q is� � ��............................................................................................................ ................................................................................................. .................................................................................................1 2 34� �
 and I = h��i:Thus, the right regular representationAA = 1 � 21 � 32 � 421 :shows immediately that this algebra is solid. On the other hand, the left regularrepresentation AA = 124 � 23 4 � 3 � 4 :of A shows that Aopp is not solid.2. Homologi
al dual of standard Koszul quasi-hereditary algebrasIn this se
tion we investigate the Yoneda extension algebra A� of a standardKoszul algebra A. In parti
ular, we establish a suÆ
ient 
ondition for an algebraA to have a quasi-hereditary extension algebra (with respe
t to the opposite orderf). As a 
onsequen
e, we get that the extension algebra of a standard Koszul quasi-hereditary algebra A is quasi-hereditary. In the �nal Se
tion 3, the above 
onditionis shown to be both ne
essary and suÆ
ient in the 
ase of graded Koszul algebras.Theorem 2.1. If (A; e) is a re
ursively Koszul, lean and neat algebra, then theextension algebra (A�; f) of A is a quasi-hereditary algebra.To prove the quasi-heredity of the extension algebra, we shall use the followinglemma. Re
all that we 
onsider the (opposite) order f = (fn; fn�1; : : : ; f1) of theorthogonal primitive idempotents fi = idS(i) in the extension algebra A�.Lemma 2.2. Let (A; e) be a lean and neat algebra with S(1) 2 CA and let X belongto K = �X 2 mod-A jX 2 CA; X"2 2 CC2 and X"2A t�X �. Then(i) A�f1 Ext�A(X), the tra
e of the �rst proje
tive left module in Ext�(X) 2A�-mod is proje
tive.(ii) dimK Ext�A(X)� dimK A�f1 Ext�A(X) = dimK Ext�C2(X"2).In the proof of this lemma, we shall repeatedly use the following statements(Lemma 3.2 and Lemma 3.3 of [ADL2℄) whi
h we quote here without proof.Lemma 2.3. Let 0! U ! V !W ! 0 be an exa
t sequen
e of modules in mod-A.(i) If U t�V and U 2 CA, then the indu
ed sequen
e0! Ext�A(W )! Ext�A(V )! Ext�A(U)! 0;



QUASI-HEREDITARY EXTENSION ALGEBRAS 11is also exa
t in A�-mod. If, in addition W 2 CA, then Ext�A(W ) t�Ext�A(V ).(ii) If U t� radV and V 2 C, then the indu
ed sequen
e0! Ext�A(U)! Ext�A(W )! Ext�A(V )! 0is also exa
t in A�-mod. If, in addition U and W also belong to CA, thenExt�A(U) t� radExt�A(W ):Proof of Lemma 2:2. We shall prove the two statements of Lemma 2.2 simultane-ously, using indu
tion on the smallest number k su
h that �k(X) = 0. Re
all thatsu
h k exists in view of Lemma 1.10 (ii).The statements 
learly hold when k = 0, i. e. when X = 0.Consider �rst the 
ase when X 6= X"2A. Then �(X) = X"2A, and the state-ments hold for X"2A by the indu
tion hypothesis.Sin
e X"2A t�X and X"2A 2 K � CA, the exa
t sequen
e in mod-A0! X"2A! X ! �S(1)! 0indu
es, by Lemma 2.3 (i) an exa
t sequen
e0! Ext�A(�S(1))! Ext�A(X)! Ext�A(X"2A)! 0:in A�-mod. Here, Ext�A(�S(1)) �= �P ÆA�(1) �= �A�f1 is embedded intoA�f1 Ext�A(X). Thus we also get the following exa
t sequen
e:0! Ext�A(�S(1))! A�f1 Ext�A(X)! A�f1Ext�A(X"2A)! 0:The �rst term Ext�A(�S(1)) of this sequen
e is 
learly proje
tive. Sin
e the lastterm A�f1Ext�A(X"2A) is, by the indu
tion hypothesis, also proje
tive, the middleterm is proje
tive, as well, and (i) is proved. Furthermore, the two sequen
esover A� yield that dimK Ext�A(X) � dimK A�f1 Ext�A(X) = dimK Ext�A(X"2A) �dimK A�f1Ext�A(X"2A) and by the indu
tion hypothesis, we get that this is equalto dimK Ext�C2(X"2), proving (ii).Now, we turn to the 
ase when 0 6= X = X"2A; then �(X) = 
, where0! 
! P ! X ! 0 with a proje
tive 
over P ! X . Sin
e X 2 K � CA, 
learly
 t� radP . By Lemma 2.3.(ii), we get the following exa
t sequen
e in A�-mod:0! Ext�A(
)! Ext�A(X)! Ext�A(P )! 0: (1)Here again Ext�A(
) t� radExt�A(X). Note that Ext�A(P ) is semisimple and sin
eX = X"2A, it turns out that A�f1 Ext�A(P ) = 0. Consequently, A�f1 Ext�A(
) =A�f1 Ext�A(X) and thus, using the indu
tion hypothesis for �(X) = 
, we get thatA�f1 Ext�A(X) is proje
tive, and (i) follows.In order to prove (ii) for this 
ase, 
onsider the following exa
t sequen
e:0! 
"2 ! P"2 ! X"2 ! 0:



12 �AGOSTON, DLAB AND LUK�ACSSin
e X = X"2A, the module P"2 is the proje
tive 
over of X"2 2 mod-C2; more-over, the 
ondition X"2 2 CC2 implies that 
"2 t� rad(P"2) in mod-C2. Hen
e,referring again to Lemma 2.3 (ii), we get the following exa
t sequen
e in C�2 -mod:0! Ext�C2(
"2)! Ext�C2(X"2)! Ext�C2(P"2)! 0: (2)Now, using the exa
t sequen
es (1) and (2), the indu
tion hypothesis applied to�(X) = 
, the equality A�f1Ext�A(
) = A�f1Ext�A(X), and the fa
t that P =P"2A, we get the following sequen
e of equalities:dimK Ext�A(X)�dimK A�f1 Ext�A(X) == dimK Ext�A(
) + dimK Ext�A(P )� dimK A�f1 Ext�A(
) == dimK Ext�C2(
"2) + dimK Ext�A(P ) == dimK Ext�C2(X"2)� dimK Ext�C2(P"2) + dimK Ext�A(P ) == dimK Ext�C2(X"2):This gives (ii), 
ompleting the proof of Lemma 2.2. utProof of Theorem 2:1. We shall pro
eed by indu
tion on the number n of simplemodules. For n = 1, both A and A� are division algebras and the statement istrivial. Thus, let n > 1.First, in view of the fa
t that both algebras A and C2 are Koszul, we 
an applyProposition 2.2 (i) to X = Ŝ = S(1)� � � � � S(n). Observe that A�A� = Ext�A(X)and 
on
lude that the left A�-module A�f1A� is proje
tive. Furthermore, sin
e Ais neat, ExttA(S(1); S(1)) = 0 for all t > 0, and thus the endomorphism algebraf1A�f1 = HomA(S(1); S(1)) is a division algebra. Hen
e, A�f1A� is a heredityideal in A�.In order to 
omplete the proof by indu
tion, it is suÆ
ient to show thatA�=A�f1A� �= C2�. Evidently, for any algebra (A; e) there is an algebra homo-morphism 	 : A� ! C2� indu
ed by the exa
t fun
tor HomA("2A;�). This homo-morphism maps ea
h n-fold exa
t sequen
e, representing an element of ExttA(Ŝ; Ŝ),to the 
orresponding image representing an element of ExttC2(Ŝ"2; Ŝ"2). In our sit-uation, the homomorphism 	 is surje
tive. Indeed, sin
e the algebra (A; e) is lean,Ext1A(Ŝ"2A; Ŝ"2A) �= Ext1C2(Ŝ"2; Ŝ"2). Moreover, sin
e (A; e) is re
ursively Koszul,ExttC2(Ŝ"2; Ŝ"2) = (Ext1C2(Ŝ"2; Ŝ"2))t: Thus, 	 is a surje
tion.Now, the kernel Ker	 
learly 
ontains A�f1A�. On the other hand, applyingLemma 2.2 (ii) to the module X = Ŝ, and observing that C2� = Ext�C2(X"2), weget that dimK(A�ÆA�f1A�) = dimK A� � dimK A�f1A� = dimK C�2 . This showsthat Ker	 = A�f1A�, as required.Finally, by indu
tion, (C2�; f2) is quasi-hereditary be
ause C2 is a re
ursivelyKoszul, lean and neat algebra. Thus (A�; f) is quasi-hereditary, as required. utLet us point out that the above proof yields the following proposition.



QUASI-HEREDITARY EXTENSION ALGEBRAS 13Proposition 2.4. Let (A; e) be a re
ursively Koszul and lean quasi-hereditary al-gebra. Then, for every 1 � i � n, the extension algebra of the 
entralizer algebra Ciis isomorphi
 to the fa
tor algebra A�ÆA�'i�1A�, i. e. to the 
orresponding fa
toralgebra of the quasi-hereditary algebra (A�; f). utNote that the dual statement holds for every quasi-hereditary algebra.Proposition 2.5. Let (A; e) be a quasi-hereditary algebra. Then the extensionalgebra of the fa
tor algebra Bi is isomorphi
 to the 
entralizer algebra 'iA�'i ofthe extension algebra A� for every 1 � i � n.Proof. If (A; e) is quasi-hereditary then ExttA(X;Y ) ' ExttBi(X;Y ) for all X;Y 2mod-Bi (
f. [CPS1℄ or [DR℄), giving the required isomorphism. utThe following statement is an immediate 
onsequen
e of Theorem 2.1.Theorem 2.6. The extension algebra of a standard Koszul quasi-hereditary algebrais always quasi-hereditary (with respe
t to the opposite order).For standard Koszul quasi-hereditary algebras the fun
tor Ext� : mod-A !A�-mod establishes a 
lose 
onne
tion between the standard modules of A andthose of A�opp.Proposition 2.7. Let (A; e) be a standard Koszul quasi-hereditary algebra. ThenExt�A(�A(i)) �= �ÆA�(i), i. e. the right standard modules of (A; e) are mapped to theleft standard modules of (A�; f). Furthermore, the same 
orresponden
e maps the�rst syzygy and the radi
al of the standard module �A(i) to the radi
al and the �rstsyzygy of the left standard module �ÆA�(i), respe
tively.Proof. Let us 
onsider the exa
t sequen
es 0 ! V (i) ! P (i) ! �(i) ! 0 and0! U(i)! �(i)! S(i)! 0 of A-modules. We 
an apply Lemma 2.3 (ii) to bothof these sequen
es to obtain the following exa
t sequen
es:0! Ext�A(V (i))!Ext�A(�(i))! Ext�A(P (i))! 0 and0! Ext�A(U(i))!Ext�A(S(i))! Ext�A(�(i))! 0: (3)Sin
e the modules V (i), P (i) and �(i) all belong to CA, and Ext�A(P (i)) = SÆA�(i)obviously holds, Ext�A(�(i)) is a lo
al module with top fa
tor isomorphi
 to SÆA�(i).Furthermore, sin
e ExttA(�(i); S(j)) = 0 for all j < i, the module Ext�A(�(i)) is anepimorphi
 image of �ÆA�(i). In fa
t, for i = 1 we have Ext�A(�(1)) = Ext�A(S(1)) =P ÆA�(1) = �ÆA�(1). Now, to prove the isomorphism for i > 1, it is enough to showthat the K-dimensions of Ext�A(�(i)) and �ÆA�(i) are equal. We shall pro
eed byindu
tion on the number of simple modules. Sin
e �A(i) 2 K, Lemma 2.2 (ii)yields dimK Ext�A(�(i)) � dimK A�f1 Ext�A(�(i)) = dimK Ext�C2(�(i)"2). Further-more, by indu
tion, Ext�C2(�(i)"2) = Ext�C2(�C2(i)) �= �ÆC�2 (i) �= �ÆA�=A�f1A�(i).Note that A�f1 Ext�A(�(i)) = 0 for i > 1, and thus dimK Ext�A(�(i)) =dimK �ÆA�=A�f1A�(i) = dimK �ÆA�(i), as required.Finally, the exa
t sequen
es (3) show that Ext�A(V (i)) is the radi
al of �ÆA�(i),while Ext�A(U(i)) is the �rst syzygy of �ÆA�(i). ut



14 �AGOSTON, DLAB AND LUK�ACSWhile the extension algebra (A�; f) of a standard Koszul quasi-hereditary al-gebra (A; e) is always quasi-hereditary (see Theorem 2.6), (A�; f) is not ne
essarilystandard Koszul. In fa
t, it may even fail to be lean as the following propositionshows. Re
all that we have already shown that the fa
tor algebras (Bi; ei) of astandard Koszul algebra are not ne
essarily standard Koszul (
f. Example 1.12).Proposition 2.8. Let (A; e) be a Koszul quasi-hereditary algebra. Then (A�; f) islean if and only if all fa
tor algebras Bi are Koszul.Proof. Observe �rst that (A�; f) is lean if and only if the spe
ies of the 
entralizer'iA�'i is the restri
tion of the spe
ies of A� for all i. On the other hand thespe
ies of the fa
tor algebra Bi is 
learly the restri
tion of the spe
ies of A. Sin
eA is Koszul, the spe
ies of A� is the dual of the spe
ies of A. Thus (A�; f) is leanif and only if the spe
ies of the 
entralizer 'iA�'i is the dual of the spe
ies of Bifor every i. In view of Proposition 2.5 this is equivalent to the 
ondition that Bi isKoszul for every i. utExample 2.9. To illustrate the previous statement , let us 
onsider on
e morethe standard Koszul quasi-hereditary algebra A from Example 1.12. It was shownthat the quotient algebra B4 is not Koszul. The left regular representation of theextension algebra of A is given byA�A� = 12 54 � 23 � 34 � 4 � 54 ;whi
h is not lean (with respe
t to the opposite order).Let us 
on
lude this se
tion with yet another example showing that the 
orre-sponden
e between right standard modules of (A; e) and left standard modules of(A�; f), given in Proposition 2.7 does not hold without the assumption that (A; e)is quasi-hereditary.Example 2.10. Consider the algebra A = KQ=I , where Q is the quiver� ��� �� �
 Æ� �
and I = h��; �
; ��; �� � 
Æi; thus, the right and left regular representations areAA = 132 � 24 � 32 � 41 532 � 532 and AA = 14 � 231 54 � 31 54 � 42 � 54 :The algebra (A; e) is a standard and re
ursively Koszul, lean and neat algebra, butit is not quasi-hereditary. The left regular representation of the extension algebraA� is A�A� = 13 � 241 53 � 3241 53 � 41 53 � 53 :
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e, (A�; f) is a re
ursivelyKoszul quasi-hereditary algebra. It is neither standardKoszul, nor lean. In fa
t, the standard module �ÆA�(2) is a proper (3-dimensional)homomorphi
 image of the 5-dimensional module Ext�A(�A(2)) = Ext�A(S(2)).3. Quasi-hereditary extension algebras of graded algebrasIn this �nal se
tion we investigate the homologi
al duality of �nite dimensionalalgebras in the natural setting of (tightly) graded algebras, in whi
h 
ase the resultsof the previous se
tion 
an be 
onsiderably strengthened. In parti
ular, the exten-sion algebra of a graded standard Koszul quasi-hereditary algebra is again standardKoszul and quasi-hereditary. Furthermore, if the extension algebra of a gradedKoszul algebra is quasi-hereditary, then the original algebra is standard Koszul.Here, by a graded K-algebra A, we shall understand a basi
 �nite dimensionalpositively tightly graded algebra, i.e. A = �i�0Ai as a ve
tor spa
e, where A0 is asemisimple K-algebra and Ai � Aj = Ai+j for all i; j � 0 (in parti
ular, Ai = (A1)ifor all i � 1). Obviously, radA = �i�1Ai. Let us �x a primitive orthogonalde
omposition of the identity element 1 = e1 + e2 + : : : + en so that ei 2 A0 andde�ne, for 
onvenien
e, Aj = 0 for j < 0.A �nite dimensional graded (right) A-module X is a �nite dimensional ve
torspa
e X = �i2ZZXi so that Xi � Aj � Xi+j . A graded A-module X is said to begenerated in degree k, if X = XkA (i. e. XkAj = Xk+j for every integer j). Notethat in this 
ase Xi = 0 for all i < k. If X = �i�kXi is generated in degree k, thenthe graded submodule radj X = �i�j+kXi is generated in degree j+k for all j > 0.In parti
ular, the regular representationAA and its inde
omposable dire
t sum-mands P (i) are graded modules generated in degree 0 and the submodules radj AAand radj P (i) in degree j for j � 1. Similarly, the simple top S(i) of the inde
ompos-able proje
tive module P (i) is generated in degree 0 as is the standard module �(i).Note that in the 
ategory of graded modules one also needs the shifted proje
tivemodules P (i)[k℄ generated in degree k.By a (graded) morphism f : X ! Y between graded A-modules we shallunderstand a module homomorphism of degree 0, given by a family of linear mapsfi : Xi ! Yi with the obvious 
ommuting properties. It is easy to see that for agraded morphism f : X ! Y , the morphisms Ker f ! X and Y ! Coker f are alsograded, and if Y is generated in degree k then so is Cokerf . Every graded moduleX generated in degree k has a graded proje
tive 
over P ! X , where P is alsogenerated in degree k.Let X be a graded submodule of a graded module Y , and assume that Y isgenerated in degree k. Then X t�Y if and only if X is also generated in degree k.An immediate 
onsequen
e is that for a graded a module X , generated in degreek, the module X is in CA if and only if the j-th syzygy 
j(X) of X is generatedin degree k + j for every j � 0. This is 
learly equivalent to the 
ondition that ina minimal proje
tive resolution � � � ! Pj ! � � � ! P1 ! P0 ! X ! 0 of X theproje
tive module Pj is generated in degree k+j for every j � 0, i. e. X has a linear(graded) proje
tive resolution.We start with the fa
t that, for a graded Koszul algebra A, the fun
tor Ext�Amaps a graded A-module generated in degree k whi
h is in CA to a graded A�-module generated in degree k whi
h is in CÆA� (
f. Proposition 5.1 of [GM2℄). For aproof of this statement, we shall use the following lemma.



16 �AGOSTON, DLAB AND LUK�ACSLemma 3.1. Let A be a graded algebra and 0 ! X ! Y ! Z ! 0 a short exa
tsequen
e of graded modules and graded morphisms su
h that X and Y (hen
e alsoZ) are generated in degree k. If X and Y belong to CA, then so does Z.Proof. Sin
e both X and Y are generated in the same degree, hen
e X t�Y , wehave the 
ommutative diagram0 0 0# # #0 ! 
(X) ! 
(Y ) ! 
(Z) ! 0# # #0 ! P (X) ! P (Y ) ! P (Z) ! 0# # #0 ! X ! Y ! Z ! 0.# # #0 0 0Here P (X); P (Y ) and P (Z) denote the proje
tive 
overs ofX;Y and Z, respe
tively.Sin
e, by assumption, X;Y 2 CA, the modules 
(X) and 
(Y ) are generated indegree k+1. Hen
e, 
(Z) is either 0 or generated in degree k+1. By indu
tion onj, it follows that the j-th syzygy 
j(Z) of Z is generated in degree k + j for everyj � 0. Thus Z 2 CA. utCorollary 3.2. Let A be a graded Koszul algebra and X 2 CA a graded modulegenerated in degree k. Then Ext�A(X) 2 CÆA� .Proof. For a given X 2 CA generated in degree k, let us 
onsider the following
ommutative diagram:0 ! 
 ! radP ! radX ! 0# #0 ! 
 ! P ! X ! 0.Here, P is the proje
tive 
over of X and thus, sin
e A is a Koszul algebra,radP 2 CA. Furthermore, both 
 and radP are generated in degree k +1. Hen
e,Lemma 3.1 implies that radX 2 CA. By indu
tion, radj X 2 CA for every j � 1.Thus, by Proposition 3.5 of [ADL2℄, Ext�(X) 2 CÆA� , as required. utTheorem 3.3. Let (A; e) be a graded standard Koszul quasi-hereditary algebra.Then the extension algebra (A�; f) of A is also a standard Koszul quasi-hereditaryalgebra.Proof. In view of Theorem 2.6, we need to show only that the left and right standardmodules of (A�; f) are in CÆA� and CA� , respe
tively. Sin
e, by Proposition 2.7,Ext�A(�A(i)) �= �ÆA�(i) (and similarly for the left standard modules), the statementfollows from Corollary 3.2. ut



QUASI-HEREDITARY EXTENSION ALGEBRAS 17Note that another 
onsequen
e of Corollary 3.2 is the well-known fa
t that theextension algebra of a graded Koszul algebra is a Koszul algebra (
f. e.g. [BGS℄).Let us observe that a 
ru
ial step in the proof of Corollary 3.2 is the fa
t that,for graded Koszul algebras, X 2 CA implies radX 2 CA. Example 1.12 illustratesthe fa
t that this impli
ation does not hold in general for non-graded algebras.Clearly, X = P (1)ÆP (1)"5A has a top proje
tive resolution, while radX does nothave one.Theorems 2.1 and 2.6 are further strengthened in the following statement.Theorem 3.4. Let (A; e) be a graded Koszul algebra.(1) (A; e) is a re
ursively Koszul, neat and lean algebra if and only if (A�; f) is aquasi-hereditary algebra.(2) (A; e) is a quasi-hereditary algebra if and only if (A�; f) is a re
ursively Koszul,neat and lean algebra.Proof. Theorem 2.1 immediately implies one dire
tion of (1). Furthermore, sin
efor a Koszul algebra A�� �= A (
f. [BGS℄), Theorem 2.1 also yields the oppositedire
tion of (2). Hen
e, by the isomorphism above, it is enough to show that if(A; e) is quasi-hereditary then (A�; f) is re
ursively Koszul, neat and lean.To prove this, we shall need a few preparatory lemmas.Lemma 3.5. Let (A; e) be a quasi-hereditary graded algebra and X a graded A-module generated in degree k. Suppose that XenA is a proje
tive module. ThenX 2 CA implies that XÆXenA 2 CA=AenA.Proof. We may asume that k = 0. Consider the linear proje
tive resolution of X :� � � ! P1 ! P0 ! X ! 0:Let us denote by 
i the i-th syzygy of X ; let 
0 = X .First we are going to show by indu
tion on i that the tra
e 
ienA of theproje
tive module enA in the i-th syzygy is proje
tive for every i � 0. The statementholds for i = 0 by assumption. The exa
t sequen
e 0! 
i+1 ! Pi ! 
i ! 0 yieldsthe sequen
e 0! 
i+1 \ PienA! PienA! 
ienA! 0:Here 
ienA is proje
tive by the indu
tion hypothesis, and PienA is proje
tive bythe quasi-heredity of A. So 
i+1 \ PienA is a dire
t summand of PienA. Thus
i+1 \ PienA = (
i+1 \ PienA)enA = 
i+1enA is a proje
tive module.Now we 
an 
onsider the following diagrams with exa
t rows and 
olumns:0 0 0# # #0 ! 
i+1enA ! PienA ! 
ienA ! 0# # #0 ! 
i+1 ! Pi ! 
i ! 0# # #0 ! 
i+1 ! P i ! 
i ! 0,# # #0 0 0



18 �AGOSTON, DLAB AND LUK�ACSwhere all modules and morphisms are graded. Sin
e Pi is generated in degree i,the module P i is also generated in degree i. Clearly the grading of X and P i asA-modules gives a grading over the graded algebra Bn�1 = AÆAenA, so we obtaina linear projetive resolution of X 2 mod-Bn�1. Thus X 2 CBn�1 , as required. utThis yields immediately the following 
orollary.Corollary 3.6. If (A; e) is a graded quasi-hereditary Koszul algebra, then thefa
tor algebras Bi = AÆA"i+1A are also Koszul algebras.Now, we return to the proof of Theorem 3.4. The quasi-heredity of (A; e)implies that the 
entralizer algebras of (A�; f) are isomorphi
 to the homologi
aldual of the fa
tor algebras Bi whi
h are Koszul by Corollary 3.6. As we observedearlier, the homologi
al dual of a Koszul algebra is also Koszul. Thus the 
entral-izer algebras of (A�; f) are Koszul, i. e. (A�; f) is re
ursively Koszul. Furthermore,Proposition 2.8 gives that (A�; f) is lean.Sin
e (A; e) is quasi-hereditary, enA is S
hurian in A �= A��. This means thatExtiA�(S�Æ(n); S�Æ(n)) = 0, for i > 0, showing that fn 2 A� is a neat idempotent.The rest now follows by indu
tion on the number of simple modules. utLet us formulate expli
itly a few easy 
onsequen
es of Theorem 3.4.Corollary 3.7. Let A be a graded Koszul algebra. Then (A; e) is a standardKoszul quasi-hereditary algebra if and only if (A�; f) is a standard Koszul quasi-hereditary algebra.Note that Corollary 3.7 provides also an alternative proof of Theorem 3.3.Corollary 3.8. Let (A; e) be a graded Koszul quasi-hereditary algebra. Then(A; e) is a standard Koszul algebra if and only if (A�; f) is a quasi-hereditary alge-bra. Consequently, all algebras whose module 
ategories are equivalent to the blo
ksof the Bernstein{Gelfand{Gelfand 
ategory O are standard Koszul.The se
ond statement of Corollary 3.8 follows immediately from the result ofSoergel [S℄ on self-duality of the algebras 
orresponding to regular blo
ks and fromthe result of Beilinson, Ginsburg and Soergel [BGS℄ that the module 
ategories overthe extension algebras of the algebras 
orresponding to singular blo
ks are 
ategoriesstudied by Ro
ha-Caridi in [R℄. There it is shown that the respe
tive algebras arequasi-hereditary. The authors are indebted to V. Mazor
huk for pointing out thelatter referen
e to them.A similar statement is valid for graded quasi-hereditary algebras with aKazhdan{Lusztig theory in the sense of [CPS2℄.Finally, let us formulate the 
ounterpart of Proposition 1.11 for the fa
toralgebras Bi. In view of Propositions 2.4 and 2.5, we have the following statement.Proposition 3.9. Let (A; e) be a a graded standard Koszul quasi-hereditary alge-bra. Then, for all 1 � i � n, the fa
tor and 
entralizer algebras (Bi; ei) and (Ci; ei)are also standard Koszul quasi-hereditary algebras; moreover,Bi� �= 'iA�' and Ci� �= A�ÆA�'i�1A�:



QUASI-HEREDITARY EXTENSION ALGEBRAS 19Proof. Most of the statements are 
ontained in Propositions 1.11, 2.4, 2.5 and theproof of Theorem 3.4. The only part left to prove is that the algebras (Bi; ei) arestandard Koszul. By Corollary 3.6 the algebras Bi are Koszul, and sin
e formingthe 
entralizer algebras and fa
tor algebras 
ommutes, the same 
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