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Abstract. Generalizing the concept of standardly stratified algebras, we define strictly
stratified algebras and show that they are stratified in the sense of Cline, Parshall and
Scott. In fact, under certain conditions, the latter two classes of algebras will coincide.

1. Strictly stratified and CPS-stratified algebras

Stratified algebras were recently introduced by Cline, Parshall and Scott in
[CPS2]. Independently, as a natural generalization of quasi-hereditary algebras,
∆−filtered algebras were introduced in [D] and the study of these (standardly)
stratified algebras advanced in [ADL].

In this note, we introduce a wider class of algebras called strictly stratified or
Λ-stratified and show, using an earlier simple characterization of stratified algebras
in the sense of Cline, Parshall and Scott (CPS-stratified, for short; see [CPS2]),
that strictly stratified algebras are CPS-stratified (Theorem 1.5). For the mono-
mial algebras the concepts of strictly stratified and CPS-stratified algebras coincide
(Theorem 2.3). We also show that CPS-stratified algebras of finite global dimension
are necessarily quasi-hereditary (Theorem 1.10).

Throughout the paper we shall assume that A is a basic finite dimensional
algebra over a field K. The category of finite dimensional right A-modules will
be denoted by mod-A. For an idempotent element e ∈ A, P (e) ' eA will be the
projective right A-module corresponding to e and S(e) will stand for its semisimple
top. We shall usually consider an algebra A together with a fixed complete sequence
of primitive orthogonal idempotents e = (e1, e2, . . . , en) and write (A, e). In this
case we shall use the notation P (i) = P (ei) and S(i) = S(ei). Given a sequence
e, we define the idempotents εi = ei + ei+1 + · · · + en for 1 ≤ i ≤ n and, for
convenience, εn+1 = 0. With this notation we define the trace filtration of a module
XA by 0 ⊆ XεnA ⊆ Xεn−1A ⊆ · · · ⊆ Xε1A = X. In particular, the trace filtration
of an algebra (A, e) yields the filtration 0 ⊆ AεnA ⊆ Aεn−1A ⊆ · · · ⊆ Aε1A = A
by idempotent ideals.

Recall that for a given (A, e) the i-th (right) standard module ∆(i) is defined
by ∆(i) = eiA

/
eiAεi+1A. Thus ∆(i) is the largest factor of P (i) which has no
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composition factors isomorphic to S(j) for j > i. Moreover, we define the i-th
(right) proper standard module ∆(i) by ∆(i) = eiA/ei radA εiA; it is the largest
factor of ∆(i) whose radical has no composition factor isomorphic to S(i). Let
∆ = {∆(1),∆(2), . . . ,∆(n) } and ∆ =

{
∆(1),∆(2), . . . ,∆(n)

}
.

Finally, for a set C of modules from mod-A, F(C) will denote the subcategory of
modules which are filtered by elements of C. An algebra (A, e) whose right regular
representation AA belongs to F (∆) is called in [ADL] standardly stratified (cf. also
[CPS2]).

Definition A sequence of (right) A-modules Λ =
(
Λ(1),Λ(2), . . . ,Λ(n)

)
is called

a (right) stratifying sequence for (A, e) if it satisfies the following properties:
(i) Λ(i) is a homomorphic image of the standard module ∆(i) for 1 ≤ i ≤ n;

(ii) P (i) ∈ F
(
Λ(i),Λ(i + 1), . . . ,Λ(n)

)
for 1 ≤ i ≤ n.

The algebra (A, e) is strictly stratified or Λ-stratified if it has a (right) stratifying
sequence Λ =

(
Λ(1),Λ(2), . . . ,Λ(n)

)
.

Recall that the stratified algebras of [ADL] are just those Λ-stratified algebras
for which Λ(i) equals either ∆(i) or ∆(i).

To formulate some basic properties of stratifying sequences and strictly strati-
fied algebras, we need the following concept. Let us denote by P(e) the category of
right A-modules which have projective resolutions in terms of add eA, i. e. a resolu-
tion in which the projective modules are direct sums of direct summands of eA. A
standard homological argument gives that a module X ∈ mod-A is in P(e) if and
only if Extk

A

(
X, S(1− e)

)
= 0 for every k ≥ 0.

Thus, it follows easily that P(e) is closed under taking directs summands,
moreover if two terms of a short exact sequence are in P(e), then so is the third
one. In particular, P(e) is closed under extensions. We have also the following
important lemma.

Lemma 1.1. If X ∈ F(Y ) for some X, Y ∈ mod-A, then X ∈ P(e) if and only if
Y ∈ P(e).

Proof. Since P(e) is closed under extensions, Y ∈ P(e) and X ∈ F(Y ) imply
X ∈ P(e).

Thus, let us assume that X ∈ P(e). The condition X ∈ F(Y ) implies that
there exists a short exact sequence

0→L→X→Y → 0,

so that L ∈ F(Y ). By applying the functor HomA

(
−, S(1− e)

)
, the corresponding

long exact sequence immediately yields HomA

(
Y, S(1 − e)

)
= 0. Furthermore, if

Extk
(
Y, S(1−e)

)
= 0 for some k ≥ 0, then L ∈ F(Y ) yields Extk

(
L, S(1−e)

)
= 0.

Thus, considering the above long exact sequence, we get Extk+1
(
Y, S(1− e)

)
= 0.

Hence, by induction on k, we get that Y ∈ P(e). ut

Lemma 1.2. Let Λ =
(
Λ(1),Λ(2), . . . ,Λ(n)

)
be a stratifying sequence for (A, e).

Then:
(i) Λ(i) ∈ P(ei) as A/Aεi+1A−modules;

(ii) Extk
A/Aεi+1A

(
Λ(i), S(j)

)
= 0 for every k ≥ 0 and i > j;

(iii) Ext1A
(
Λ(i), S(j)

)
= 0 for every i > j;

(iv) Ext1A
(
Λ(i),Λ(j)

)
= 0 for every i > j.
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Proof. It is easy to show that for any fixed index i we have the implications (i) ⇒
(ii) ⇒ (iii) ⇒ (iv). The first implication is clear. Since Aεi+1A is an idempotent
ideal, Ext1

(
Λ(i), S(j)

)
are the same whether we consider the modules Λ(i) and S(j)

as A-modules or as A
/
Aεi+1A-modules (cf. for example [DR]). Hence, (ii) implies

(iii). Moreover, (iv) is a consequence of (iii) since the multiplicity [Λ(j) : S(k)] = 0
for j < k. Thus it is enough to show (i) by induction on n.

Clearly, Λ(n) ∈ P(en) follows from P (n) ∈ F
(
Λ(n)

)
and Lemma 1.1. Hence,

by (iv) for i = n, we get that the assumption P (i) ∈ F
(
Λ(i),Λ(i + 1), . . . ,Λ(n)

)
is equivalent to the assumption that eiAenAA ∈ F

(
Λ(n)

)
and eiA

/
eiAenA ∈

F
(
Λ(i),Λ(i + 1), . . . ,Λ(n− 1)

)
.

Consequently, we may apply induction to the algebra B = A
/
AenA to obtain

the conditions (i)–(iv) for B. Finally, we obtain (iii) and (iv) for A using the
isomorphism of the Ext1A-modules and Ext1B-modules as before.

ut

Note that Lemma 1.2.(iv) yields a recursive definition for Λ-stratified algebras:
(A, e) is Λ =

(
Λ(1),Λ(2), . . . ,Λ(n)

)
-stratified if and only if eiAenA ∈ F

(
Λ(n)

)
for

every i and A
/
AenA is

(
Λ(1),Λ(2), . . . ,Λ(n− 1)

)
-stratified.

An easy consequence of the previous lemma is the following:

Proposition 1.3 If Λ =
(
Λ(1),Λ(2), . . . ,Λ(n)

)
is a stratifying sequence for (A, e),

then AA ∈ F(Λ) and, furthermore, ∆(i) ∈ F
(
Λ(i)

)
.

Proof. The first statement is obvious, while the second one follows from Lemma 1.2
(iv) and an induction argument. Indeed, the condition (iv) of Lemma 1.2 implies
readily that every module X from F(Λ) has a Λ-filtration which is a refinement of
the trace filtration of X. ut

Our next aim is to compare the class of strictly stratified algebras to the class
of stratified algebras as defined by Cline, Parshall and Scott.

Following [CPS2] an ideal I /A is called a stratifying ideal if the following three
conditions are satisfied:

(a) I is an idempotent ideal, hence of the form I = AeA for some e = e2 ∈ A;
(b) the multiplication map induces a bijection Ae⊗eAe eA→AeA;
(c) ToreAe

i (Ae, eA) = 0 for i > 0.
If there is a chain of ideals A = I1 ⊇ I2 ⊇ · · · ⊇ Im ⊇ Im+1 = 0 such that Ii

/
Ii+1

is a stratifying ideal in A/Ii+1 for 1 ≤ i ≤ m, then A will be called CPS-stratified .
Observe that if A is CPS-stratified, then Aopp is also CPS-stratified.

It is easy to see that the existence of such a chain of idempotent ideals is
equivalent to having a complete ordered set of primitive orthogonal idempotents
e = (e1, e2, . . . , en) so that the ideals AεiA

/
Aεi+1A are stratifying in A

/
Aεi+1A

for 1 ≤ i ≤ n. In this case we will refer to the CPS-stratified algebra (A, e).
It is shown in [CPS1] that I is a stratifying ideal if and only if the following

condition is satisfied:
(∗) Let B = A/I. Then for each pair of modules X, Y ∈ mod-B we have an

isomorphism Extk
A(X, Y ) = Extk

B(X, Y ) for every k ≥ 0.
Following [CPS1] and [DR], ideals satisfying the condition (∗) were also studied

by Auslander, Platzeck and Todorov in [APT]. In particular, we have the following
criterion.
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Proposition 1.4. ([APT]) An idempotent ideal I = AeA is a stratifying ideal if
and only if IA belongs to P(e).

Proof. We include a proof for the sake of completeness.
First, suppose that AeA is a stratifying ideal. We are going to prove that

AeAA ∈ P(e). In view of our earlier remarks, this is equivalent to showing that
Extk

(
AeA, S(1− e)

)
= 0 for every k ≥ 0. Since AeA is the trace of the projective

module eA in A, the statement is valid for k = 0. To prove it for k > 0, let us
denote by B the factor algebra B = A

/
AeA. We have the following exact sequence

of (right) A-modules:
0→AeA→A→B→ 0.

Since B is projective as a B-module, Extk
B

(
B,S(1−e)

)
= 0 for k > 0. Thus by the

condition (∗), also Extk
A

(
B,S(1− e)

)
= 0. Finally, since AA is projective, it turns

out that Extk
A

(
AeA, S(1− e)

)
= 0 for k > 0, as well.

The proof of the converse implication follows — mutatis mutandis — the proof
of a similar statement in [DR] for quasi-hereditary algebras and heredity ideals.
Thus, let us assume that AeAA ∈ P(e). Then, using the above exact sequence, we
get that Extk

A

(
B,S(1 − e)

)
= 0 for k > 0, and thus Extk

A

(
P , S(1 − e)

)
= 0 for

every k > 0 and for any projective B-module P .
Now, let us take an arbitrary right B-module XB and apply the functor

HomA

(
−, S(1− e)

)
to the exact sequence

0→KB →PB →XB → 0,

where PB is the projective cover of XB . Then we have Extk
A

(
X, S(1 − e)

)
'

Extk−1
A

(
K, S(1 − e)

)
, as well as Extk

B

(
X, S(1 − e)

)
' Extk−1

B

(
K, S(1 − e)

)
for

arbitrary k > 0. Since HomA(X, Z) ' HomB(X, Z) for an arbitrary right B-module
Z, we get, by induction on k, Extk

A

(
X, S(1−e)

)
' Extk

B

(
X, S(1−e)

)
for k ≥ 0, i.e.

Extk
A

(
X, Y ) ' Extk

B(X, Y ) for every simple B-module YB . The statement for an
arbitrary right B-module YB then follows immediately by induction on the length
of YB .

ut

Note that all stratified algebras of [ADL], and in particular, standardly strati-
fied algebras of [ADL] are CPS-stratified.

We may now formulate one of the main results of this section.

Theorem 1.5. For a given algebra (A, e), let Λ =
(
Λ(1),Λ(2), . . . ,Λ(n)

)
be a

sequence satisfying ∆(i) ∈ F
(
Λ(i)

)
and AA ∈ F(Λ). Then (A, e) is CPS-stratified.

In particular, all strictly stratified algebras are CPS-stratified.

Proof. As in the proof of Lemma 1.2, we get easily the following statements: As an
A

/
Aεi+1A-module, Λ(i) ∈ P(ei), and this implies that there is a Λ-filtration of AA

which is a refinement of the trace filtration of AA.
Hence AenAA ∈ F

(
Λ(n)

)
, and since Λ(n) ∈ P(en), we get that AenA ∈ P(en).

Thus AenA is a stratifying ideal. Now, the rest follows by induction on n, since the
sequence

(
Λ(1),Λ(2), . . . ,Λ(n − 1)

)
satisfies the conditions of the theorem for the

algebra B = A
/
AenA.

The second statement follows from the first one and Proposition 1.3. ut
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It is worth observing the following simple corollary of the previous theorem
and Lemma 1.2.(ii).

Corollary 1.6. Let (A, e) be a strictly stratified algebra with a stratifying sequence
Λ =

(
Λ(1),Λ(2), . . . ,Λ(n)

)
. Then

Extk
A

(
Λ(i),Λ(j)

)
= 0 for every k ≥ 0 and i > j.

The following example shows that a refinement of the trace filtration of AA to
a filtration by general local modules

(
Λ(1),Λ(2), . . . ,Λ(n)

)
(i. e. without assuming

that ∆(i) ∈ F
(
Λ(i)

)
) does not imply that the algebra is CPS-stratified.

Example 1.7. Let A be the factor algebra KQ/I of the path algebra KQ, where

Q : r1 α-�
β

r2
O

nγ and I = 〈αβ, αγβ, βα, γ2〉.

The algebra has the following right regular representation

AA =
1
2
2
⊕

2
1 2

1
.

Here, AA ∈ F
(
S(1), P (2)

/
P (2)(rad2 A)

)
, but Ae2A is not a stratifying ideal

and thus A is not CPS-stratified.

Finally, we shall prove that CPS-stratified algebras of finite global dimension
are necessarily quasi-hereditary (thus generalizing the previous simple characteri-
zation of quasi-hereditary algebras by [D] and [W]).

Let us recall that an algebra (A, e) is quasi-hereditary if and only if AA ∈ F(∆)
and ∆(i) = ∆(i) for every 1 ≤ i ≤ n.

Lemma 1.8. Let e ∈ A be a primitive idempotent and X ∈ P(e). Then proj.dim X

is either 0 or ∞. In particular, a stratifying ideal generated by a primitive idempo-
tent is either projective or its projective dimension is ∞.

Proof. Suppose that X ∈ P(e) is not projective and it has a minimal projective
resolution of length d > 0:

0→Pd→Pd−1→· · ·→P0→X→ 0.

Then both Pd and Pd−1 are direct sums of copies of P (e), so they have the same
Loewy-length. This contradicts the fact that Pd is embedded into the radical of
Pd−1.

ut

Theorem 1.9. The algebra (A, e) is quasi-hereditary if and only if (A, e) is CPS-
stratified and gl.dimA < ∞.



6 ISTVÁN ÁGOSTON, VLASTIMIL DLAB AND ERZSÉBET LUKÁCS

Proof. Since quasi-hereditary algebras are CPS-stratified and have finite global di-
mension, we need only to prove that a CPS-stratified algebra of finite global dimen-
sion is necessarily quasi-hereditary.

Let (A, e) be a CPS-stratified algebra of finite global dimension; here, as before,
e = (e1, e2, . . . , en). We shall proceed by induction on n. Let B = A/AenA.
Then, using the characterization (∗) of stratifying ideals, we deduce that B is of
finite global dimension. Since (B, (e1, e2, . . . , en−1)) is clearly CPS-stratified, it
is, by induction hypothesis, quasi-hereditary. Since gl.dimA < ∞, both AenAA

and AAenA are projective by Lemma 1.8. However, since AAenA is projective,
AenAA ∈ F

(
∆(n)

)
by a theorem of [D]. Since ∆(n) ∈ P(en) by Lemma 1.1, ∆(n)

is projective by Lemma 1.8 and therefore ∆(n) = ∆(n). Hence, (A, e) is quasi-
hereditary.

2. Existence of local filtrations

In this section we will show that under certain conditions CPS-stratified alge-
bras do have a stratifying sequence.

The first result gives a condition for an algebra to be strictly stratified by the
sequence of proper standard modules (hence standardly stratified, i.e. stratified of
type (+1,+1, . . . ,+1) in the sense of [ADL]).

Theorem 2.1. If (A, e) is CPS-stratified and ∆(i) ∈ P(ei) as an A/Aεi+1A-
module for every i, then (A, e) is strictly stratified with a stratifying sequence
∆ =

(
∆(1),∆(2), . . . ,∆(n)

)
.

The theorem will follow by applying repeatedly the following proposition.

Proposition 2.2. For given (A, e) the following are equivalent:
(i) enA = ∆(n) ∈ F

(
∆(n)

)
;

(ii) ∆(n) ∈ P(en);
(iii) P(en) = F

(
∆(n)

)
.

Furthermore, if the above conditions are satisfied and AenA is a stratifying ideal
then AenA is ∆(n)-filtered.

Proof. The implication (i) ⇒ (ii) follows from Lemma 1.1 and (iii) ⇒ (i) is obvious.
Hence we have to prove only (ii) ⇒ (iii). Clearly, F

(
∆(n)

)
⊆ P(en); hence, we

need to show the opposite inclusion.
We will first prove that for any X ∈ P(en), ∆(n) is a homomorphic image

of X. Let us consider the following exact sequence where ⊕P (n) is the projective
cover of X:

0→K→⊕P (n)→X→ 0.

Since P(en) is closed under taking kernels of epimorphisms, K ∈ P(en) and hence
K ⊆ ⊕ radP (n)enA. This means that the canonical surjections ⊕P (n)→∆(n) can
be factored through X. Hence there is an epimorphism X→∆(n) and its kernel
X ′ belongs to P(en).

Now, by induction on the length of X, we get that X ′ ∈ F
(
∆(n)

)
. Hence

P(en) ⊆ F
(
∆(n)

)
.

ut



STRICTLY STRATIFIED ALGEBRAS 7

Proof of Theorem 2.1. Since AenA ∈ P(en), and P(en) is closed under taking direct
summands, we get that eiAenA ∈ P(en) = F

(
∆(n)

)
by Proposition 2.2 (iii). Since

the conditions of the theorem are clearly inherited for the factor algebra A
/
AenA,

the result follows by induction on n. ut

The next theorem shows that for monomial algebras the converse of Theo-
rem 1.5 holds: here the concepts of strictly stratified and CPS-stratified algebras
coincide.

Theorem 2.3. A monomial algebra (A, e) is CPS-stratified if and only if it is
strictly stratified. In particular, a monomial algebra A is strictly stratified if and
only if Aopp is strictly stratified.

In order to prove Theorem 2.3, we need a sequence of statements. First, let us
fix some notation.

Throughout the proof, A will denote a finite dimensional monomial K-algebra
of the form A ' KΓ/I with a graph Γ and an ideal I of admissible relations,
generated by paths. We shall assume that the vertex set of Γ is { 1, 2, . . . , n } and
that the set of paths of Γ is written as the disjoint union P

.
∪P ′ of the subset P ′

of all paths belonging to I and its complement P in Γ. We will identify P with a
K-basis of A and the primitive orthogonal idempotents e1, e2, . . . , en with the paths
of length 0 at the vertices 1, 2, . . . , n, respectively. We will multiply paths from left
to right: the product of a path p from i to j and a path q from j to k is pq.

For a subset Π ⊆ P we define the closure Π of Π as ΠP ∩ P. Note that Π
is a K-basis of the right ideal ΠA. Π is closed if Π = Π. A path p ∈ Π is called
left-minimal in Π if no proper initial segment of p belongs to Π. For two closed
subsets Π′ ⊆ Π ⊆ P we denote by M(Π

/
Π′) the factor module ΠA

/
Π′A (or simply

M(Π) when Π′ = ∅). We call a module M a path-module if M ' ⊕t M(Πt

/
Π′

t)
for some closed subsets Π′

t ⊆ Πt ⊆ P. Observe that for p ∈ P and a closed subset
Π ⊆ p the module M(p

/
Π) is always a local module.

The following lemmas summarize some simple facts about path-modules.

Lemma 2.4. Every path module is a direct sum of local path modules: M(Π/Π′) '
⊕s

t=1M(pt/Π′
t), where pt are the left minimal paths in Π.

Proof. The statement follows easily from the observation that Π = p1

.
∪ p2

.
∪ . . .

.
∪ ps,

with p1, p2, . . . , ps being the left minimal paths in Π. Then pt and Π′
t = Π′∩pt give

the required sets of paths for the local direct summands. ut

Lemma 2.5. If Π ⊆ p is a closed subset for some p ∈ P with pei = p, then
M = M(p/Π) ' M(ei/Q) for some Q ⊆ ei.

Proof. Let f : eiA→M(p) ⊆ A be the surjection defined by f(q) = pq and let g
be the natural epimorphism from M(p) to M(p/Π). Then

∑
λiqi ∈ Ker gf (with

λi ∈ K) if and only if
∑

λipqi ∈ M(Π). Since qi 6= qj implies pqi 6= pqj or
pqi = pqj = 0,

∑
λipqi ∈ M(Π) holds if and only if pqi ∈ Π ∪ { 0 } for every i with

λi 6= 0. Thus Ker gf = M(Q) with Q = { q ∈ ei | pq ∈ Π ∪ { 0 } }; note that this is
clearly a closed subset of ei. This yields M(p/Π) ' M(ei/Q). ut

In the next proposition, Ω(M) denotes the first syzygy of the module M .
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Proposition 2.6. Let M and N be local path modules with MeiA = M and
NeiA = N . Then they have a common path-module factor L such that the

kernels of the surjective maps M
f→L and N

g→L are path-modules and Ω(L) ∈
add {Ω(M),Ω(N) }.

Proof. By Lemma 2.5, M ' M(ei/Q1) and N ' M(ei/Q2) for some closed subsets
Q1 and Q2 of ei. Let Q = Q1∪Q2. Then L = M(ei/Q) is a path-module and it is a
homomorphic image of M and N . The kernels of the epimorphisms are isomorphic
to M(Q/Q1) and M(Q/Q2), respectively. On the other hand Ω(L) ' QA ' ⊕tqtA,
where qtA ∈ add {Ω(M),Ω(N) } by Lemma 2.4. ut

Theorem 2.7. Let e be a primitive idempotent of the monomial algebra A. Then
there is a local module Λ(e) such that every path-module of P(e) is filtered by Λ(e).
In particular, if AeA is a stratifying ideal, then AeA and its trace on the projective
summands of AA belong to F(Λ(e)).

Proof. Let M = Λ(e) be a local path-module of minimal dimension in P(e). Since
P(e) is closed under taking direct summands, it is enough to prove, in view of
Lemma 2.4, that every local path-module N of P(e) is filtered by M . By Propo-
sition 2.6, M and N have a common factor L, which is a path-module, and its
projective cover is P (e). Furthermore, Ω(L) ∈ add

(
Ω(M),Ω(N)

)
implies that

Ω(L) ∈ P(e), and thus L ∈ P(e). Now, the minimality of M yields that M ' L.
Since the kernel of the obtained homomorphisms of N onto L is also a path-module
in P(e), we can prove that N ∈ F(M) by induction on the length of the module.
Finally, if AeA is a stratifying ideal, then AeA and its trace on the projective sum-
mands of AA are in F(M), since these modules are path-modules. ut

Proof of Theorem 2.3. By Theorem 1.5, a strictly stratified algebra is always CPS-
stratified. The converse implication follows by induction from Theorem 2.7, using
the recursive definition of strictly stratified algebras. The second statement of the
theorem follows from the fact that the concept of a CPS-stratified algebra is two-
sided. ut

Of course, in general not every CPS-stratified algebra is strictly stratified. The
following example illustrates such a situation.

Example 2.8. Let A be given by the following right regular representation:

AA =
1
3
1
3

⊕
2
3

1 3
⊕

3
1
3

3

1
3

Clearly, (A, e) is not strictly stratified, but it is CPS-stratified by Proposition 1.4.
Observe that Aopp is strictly stratified.
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