
WELL-FILTERED ALGEBRASIstv�an �Agoston1, Vlastimil Dlab2 and Erzs�ebet Luk�a
s3Abstra
t. We de�ne a 
lass of (lean) quasi-hereditary K-algebras A forwhi
h the standard �ltration of the right regular representation may be des
ribedby a suitable dire
ted quotient algebra A+. For this 
lass, proje
tive resolutionsof simple left modules over A+ will 
orrespond to so-
alled BGG resolutions overA, de�ned earlier by Bernstein, Gelfand and Gelfand. In the 
ase when K isalgebrai
ally 
losed and A+ is a subalgebra of A, A+ 
oin
ides with the 
on
ept ofa Borel subalgebra of K�onig. We show that many algebras obtained by previouslyde�ned 
anoni
al 
onstru
tions belong to this 
lass and have additional stru
turalproperties. 1. Introdu
tion. Well-�ltered algebrasOne of the key properties of quasi-hereditary algebras is the existen
e of astandard �ltration for proje
tive modules. This �ltration is equivalent to onein whi
h the indi
es of the o

urring standard modules are ordered. In the
ase when the algebra is lean (
f. [ADL1℄, [ADL2℄), the extensions of standardmodules are determined by extensions of their (simple) top fa
tors. In this waythe �ltrations follow a \dire
ted" path in the graph of the algebra A. Hen
eit is natural to investigate dire
ted quotients of these algebras. Let us remarkthat a large portion of our results does not assume the quasi-heredity of thealgebras.One of the authors reported the results in the Spe
ial Session on Alge-brai
 Groups and Invariant Theory at the Winter Meeting of the Ameri
anMathemati
al So
iety in Orlando, Florida, on January 11, 1996 ([ADL4℄).Let A be a basi
 �nite dimensional algebra over a 
entral �eld K. Weshall �x a 
omplete ordered set of primitive orthogonal idempotents e =(e1; e2; : : : ; en) in A and refer to the algebra with su
h a 
hoi
e as (A; e). Given1991 Mathemati
s Subje
t Classi�
ation. Primary 16E99. Se
ondary 16S99, 17B101 Resear
h partially supported by the Foundation for Hungarian Higher Edu
ation andResear
h and by NSERC of Canada grant no. A-72572 Resear
h partially supported by NSERC of Canada grant no. A-72573 Resear
h partially supported by Hungarian NFSR grant no. T016432 and NSERC ofCanada grant no. A-7257 1



2 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSthis order, we may also de�ne the idempotents "i = ei+ � � �+en for i = 1; : : : ; nand "n+1 = 0. Denote by P (i), S(i) and �(i) the inde
omposable proje
tive,simple and standard right modules, respe
tively. These may be identi�ed asfollows: P (i) = eiA, S(i) = eiA=ei radA and �(i) = eiA=eiA"i+1A. Thus,denoting by V (i) the module eiA"i+1A, we get the following 
anoni
al shortexa
t sequen
es for 1 � i � n:0!V (i)!P (i)!�(i)! 0:The 
orresponding left modules will be denoted by P Æ(i), SÆ(i), �Æ(i) andV Æ(i).Let us also re
all that the algebra (A; e) is 
alled quasi-hereditary if thestandard modules are S
hurian (i. e. their endomorphism rings are divisionrings) and the regular representation AA has a �ltration with fa
tors isomorphi
to standard modules �(i).For further notations and de�nitions, as well as for some basi
 results andba
kground we refer to [CPS℄, [DK℄, [ADL1℄, [DR1℄ and [DR3℄.Definition 1.1. Let (A; e) be a �nite dimensional algebra with a givenorder e = (e1; e2; : : : ; en) of a 
omplete set of primitive orthogonal idempotents.De�ne the ideal I+ = I+(A; e) of A to be the ideal generated by the sets ejAeifor 1 � i < j � n. Thus I+ = Pj>iAejAeiA. Similarly, we may de�ne the idealI� = Pi<jAeiAejA.Definition 1.2. For a given algebra (A; e) let A+ = (A; e)+ be the quo-tient of A modulo the ideal I+ de�ned above. Similarly, A� = A=I�.Thus the algebras A+ and A� are the maximal dire
ted quotients of A withrespe
t to the given order e. Clearly, if (A; e) is a quasi-hereditary algebra, both(A+; e) and (A�; e) are quasi-hereditary and (A+)+ = A+, (A�)� = A�, while(A+)� ' (A�)+ ' AÆ radA.Let us observe that A� ' ((Aop)+)op. Thus, although many of our state-ments in terms of A+ will have their dual 
ounterparts 
on
erning A�, we shallusually refrain from formulating them expli
itly.It is 
lear from the de�nition that I+ is the ideal generated by the sub-modules V Æ(i) of the left regular representation AA, i. e. I+ = Pni=1 V Æ(i)A.If A is quasi-hereditary, then the multipli
ation maps A"i 
"iA"i "iA!A"iAare bije
tive for every 1 � i � n ([DK℄) and thus the standard �ltration ofAA is 
ontrolled by the left standard modules �Æ(i) ' P Æ(i)ÆV Æ(i). Thereforeit is natural to 
onsider the 
ase when the ideal I+ 
oin
ides with the sumof submodules V Æ(i) and, as a 
onsequen
e, A+ de�nes the standard �ltrationof AA.



WELL-FILTERED ALGEBRAS 3Definition 1.3. We 
all an algebra (A; e) right well-�ltered if �ni=1V Æ(i)is an ideal in A. One may similarly de�ne left well-�ltered algebras.The next three propositions list several 
hara
terizations of this property.Proposition 1.4. Let A be an algebra with a given order e of the primitiveidempotents. Then the following 
onditions are equivalent:(i) A is right well-�ltered;(ii) V Æ(i)Aek � V Æ(k) for every index i; k (equivalently, for every index i < k);(ii)0 "i+1AeiAek � A"k+1Aek for every index i; k (equivalently, for every indexi < k);(ii)00 ejAeiAek � ejA"k+1Aek for every index k and every index i < j (equiva-lently, for every index i < j � k);(iii) '�V Æ(i)� � V Æ(k) for every index i; k (equivalently, for every index i < k)and for every homomorphism ' : P Æ(i)!P Æ(k);(iv) I+ = �ni=1V Æ(i).Proof. (ii) and (iv) are simple reformulations of the de�nition of a rightwell-�ltered algebra, i. e. that �iV Æ(i) is an ideal of A. The 
onditions (ii)0 and(ii)00 are reformulations of (ii) in terms of the idempotents. Finally, the equiva-len
e of (ii) and (iii) follows from the fa
t that homomorphisms P Æ(i)!P Æ(k)are pre
isely the right multipli
ations by elements of Aek. utThe next set of 
onditions 
hara
terizes right well-�ltered algebras in termsof properties of the left standard modules �Æ(i).Proposition 1.5. Let A be an algebra with a given order e of the primitiveidempotents. Then the following 
onditions are equivalent:(i) A is right well-�ltered;(ii) "i+1Aei�Æ(k) = 0 for every index i; k (equivalently, for every index i < k);(iii) the natural homomorphisms P Æ(i)!�Æ(i) will indu
e isomorphismsHom ��Æ(i);�Æ(k)� ' Hom �P Æ(i);�Æ(k)� for every index i; k (equiva-lently, for every index i < k);(iii)0 Hom �V Æ(i);�Æ(k)� ' Ext1A ��Æ(i);�Æ(k)� for every index i; k (equiva-lently, for every index i < k);(iv) AA+ ' �ni=1�Æ(i).Proof. The equivalen
e of the 
onditions (i){(iv) 
an be proved using theparallel 
onditions of Proposition 1.4. Condition (ii) is a simple reformulation ofProposition 1.4 (ii)0. The equivalen
e of (iii), and Proposition 1.4 (iii) follows



4 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSfrom the fa
t that any homomorphism P Æ(i) '!�Æ(k) gives rise to a homomor-phism P Æ(i) �'!P Æ(k). The equivalen
e of (iii) and (iii)0 
an be obtained fromthe long exa
t sequen
e0!Hom ��Æ(i);�Æ(k)�!Hom �P Æ(i);�Æ(k)�!Hom �V Æ(i);�Æ(k)�!Ext1A ��Æ(i);�Æ(k)�!Ext1A �P Æ(i);�Æ(k)�!� � � :Finally, the equivalen
e of (iv) and Proposition 1.4 (iv) is straightforward. utLet us now re
all that for a given algebra (A; e) the tra
e �ltration of amodule XA is given by the sequen
e 0 � X"nA � X"n�1A � : : : � X"1A = X :the 
onse
utive terms are the tra
es (i. e. sums of all homomorphi
 images)of the proje
tive modules "iA = P (i) � P (i+ 1) � � � � � P (n) on X . Onemay similarly de�ne the reverse tra
e �ltration of X by taking the sequen
e0 � Xe1A � X(e1 + e2)A � : : : � X(e1 + e2 + � � �+ en)A = X , i. e. the tra
e�ltration of X with respe
t to the opposite order.Finally, let us re
all that a BGG resolution of a module M is an exa
t se-quen
e 0!Xk!Xk�1!� � �!X0!M! 0 su
h that ea
h term Xi is a dire
tsum of standard modules (
f. [BGG℄).Proposition 1.6. Let A be an algebra with a given order e of the primitiveidempotents. Then the following 
onditions are equivalent:(i) A is right well-�ltered;(ii) for ea
h index k, every fa
tor of the reverse tra
e �ltration of �Æ(k) is ahomogeneous module (i. e. its 
omposition fa
tors are all isomorphi
);(iii) for ea
h index k, �Æ(k) has a 
omposition series where the sequen
e of theindi
es of 
omposition fa
tors is monotone;(iv) for ea
h index k, the tra
e of �j�k�Æ(j) in rad�Æ(k) is the entire rad�Æ(k);(v) every simple left module SÆ(i) has a BGG resolution;(vi) every left A+-module as a left A-module has a BGG resolution.Proof. (i)) (ii): Consider the reverse tra
e �ltration0 � Ae1�Æ(k) � A(e1 + e2)�Æ(k) � � � � � A(e1 + � � �+ ek)�Æ(k) = �Æ(k):If Xi is the fa
tor A(e1+� � �+ei)�Æ(k)=A(e1+: : :+ei�1)�Æ(k), then "i+1Xi = 0follows from the 
ondition (ii) of Proposition 1.5, while (e1+ : : :+ ei�1)Xi = 0is obvious, hen
e the 
omposition fa
tors of Xi are all isomorphi
 to SÆ(i).(ii)) (iii): Let us 
onsider a re�nement of the reverse tra
e �ltration intoa 
omposition series. Then the sequen
e of indi
es of the 
omposition fa
torsis 
learly monotone.



WELL-FILTERED ALGEBRAS 5(iii) ) (iv): Note that if a module X has a 
omposition series wherethe sequen
e of indi
es of 
omposition fa
tors is monotone (the smallest index
orresponding to a simple submodule in the so
le of X) then the submodulesof X also have su
h 
omposition series. Furthermore, if the image of a mapP Æ(j) f�!X possesses su
h a 
omposition series then V Æ(j) � Ker f must hold.Hen
e, assuming (iii), the obvious fa
t that rad�Æ(k) is generated by homo-morphi
 images of the proje
tive modules P (j), j � k, implies (iv).(iv) ) (i): We shall prove that under the assumption, if a module Xis a homomorphi
 image of a left standard module �Æ(k) for some k then"i+1AeiX = 0 for every 1 � i � n. In view of the 
ondition (ii) of Proposi-tion 1.5, this will prove our statement. We shall use indu
tion on the Loewylength of X . The statement is 
learly true if X is simple, furthermore it isalso true for arbitrary indi
es i and k, whenever i � k. Thus, assume nowthat there exists an epimorphism �Æ(k)!X and let i < k. Then 
learly"i+1AeiX = "i+1Aei radX . Here radX is a homomorphi
 image of rad�Æ(k)whi
h is, by assumption, generated by homomorphi
 images of �Æ(j), j � k.Hen
e, radX is a sum of submodules Xi whi
h have smaller Loewy length thanX and whi
h are homomorphi
 images of left standard modules. Thus, we mayapply the indu
tion hypotheses to get the statement for X .(i) ) (vi): Condition (iv) of Proposition 1.5 implies that the proje
tiveresolution of any left A+-module gives a BGG resolution over A.Sin
e the impli
ation (vi) ) (v) is obvious, it is enough to show that(v)) (iv), but this is also 
lear from the de�nition of a BGG resolution. utThe 
on
ept of a right well-�ltered algebra yields immediately the 
on
eptof one sided lean algebras. Re
all that an algebra (A; e) is lean with respe
tto the order e (see [ADL1℄) if ej rad2Aek � ej radA"m radAek for every j; k,where m = min f j; k g. We 
all the algebra (A; e) right lean if the above
ondition holds whenever j � k. Note that for algebras with S
hurian standardmodules this is equivalent to the fa
t that V (i) is a top submodule of radP (i)for every index i. Further homologi
al 
hara
terizations 
an also be derivedfrom [ADL2℄.Corollary 1.7. If (A; e) is right well-�ltered then (A; e) is right lean.Proof. Note that eiAej = ei radAej for i 6= j, hen
e using the 
ondi-tion (ii)00 of Proposition 1.4, we have, for j � k, ej rad2 Aek � ej radA(e1 +: : : + ej�1) radAek + ej radA"j radAek � ejA"k+1Aek + ej radA"j radAek �ej radA"j radAek. ut



6 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSIn what follows we shall be interested mostly in 
ases where the standardmodules are S
hurian. Thus it is worth mentioning that for a right well-�lteredalgebra (A; e), the 
ondition that the standard modules of (A; e) are S
hurian(in other words, ei radAei � eiA"i+1Aei for every 1 � i � n) is equivalent tothe fa
t that the spe
ies of A has no loops, i. e. that ei radAei � ei rad2Aei forevery 1 � i � n. The S
hurian 
ondition obviously implies that the spe
ies hasno loops, and the other dire
tion of the equivalen
e follows from the 
ondition(ii)00 of Proposition 1.4.Example 1.8. The following example shows that the 
on
ept of a rightwell-�ltered algebra is indeed one-sided. The example also shows that the 
on-verse of Corollary 1.7 does not hold. LetAA = 14 � 21 34 � 34 � 4 and AA = 12 � 2 � 32 � 41 32be the right and left regular representations of the path algebra A over a �eldK, respe
tively. The algebra A is 
learly lean but it is not right well-�ltered.Indeed, �i V Æ(i) = V Æ(1) is not an ideal, be
ause there is a map P Æ(1)!P Æ(4),sending V Æ(1) non-trivially into P Æ(4) = �Æ(4). Note that A is left well-�ltered.Some spe
ial 
lasses of quasi-hereditary algebras are well-�ltered. (We referto [ADL1℄ or [DK℄ for the de�nition of shallow and replete quasi-hereditaryalgebras.)Proposition 1.9. Assume (A; e) is a shallow quasi-hereditary algebra.Then (A; e) is both right and left well-�ltered and rad2A+ = 0.Proof. Sin
e the standard and 
ostandard modules of shallow algebras havesemisimple radi
als, the �rst statement follows from the 
ondition (iv) of Propo-sition 1.6, while the se
ond from the 
ondition (iv) of Proposition 1.5. utOn the other hand, Example 1.8 shows that a replete algebra is in generalnot well-�ltered. Note, that in this example the replete algebra A is not well-�ltered be
ause of 
ommutativity relations in the de�nition of A. The 
anoni
alreplete algebras, whi
h are ne
essarily monomial are always well-�ltered, dueto the following proposition.Proposition 1.10. Let A = K�=I be a monomial algebra (i. e. a pathalgebra over the graph � modulo relations whi
h are generated by paths). ThenA is right lean if and only if A is right well-�ltered.Proof. In view of Corollary 1.7 we have to show only that if A is right leanthen A is right well-�ltered. However, this follows from the fa
t that for rightlean monomial algebras ejAeiAek = 0 for i < j � k. Hen
e A is well-�lteredby (ii)00 of Proposition 1.4. ut



WELL-FILTERED ALGEBRAS 7Next, we examine the behaviour of the 
onstru
tion of A+ and thewell-�ltered property in 
onne
tion with some other standard 
onstru
tions.For ea
h algebra (A; e) we may de�ne two sequen
es of algebras: Bt(A) =A=A"t+1A and Ct(A) = "tA"t (
f. [DK℄).Proposition 1.11. Let (A; e) be given.a) If A is right well-�ltered, then so are the algebras Bt(A) for 1 � t � n.b) If A is right well-�ltered, then so are the algebras Ct(A) for 1 � t � n.Proof. Both statements follow immediately from Proposition 1.4 (ii)0. utObserve that although Bt(A)+ ' Bt(A+) holds for any algebra A and forall 1 � t � n, the algebras Ct(A)+ and Ct(A+) are, in general, not isomorphi
.In fa
t, this leads to yet another 
hara
terization of well-�ltered algebras.Proposition 1.12. (A; e) is right well-�ltered if and only if Ct(A)+ 'Ct(A+) for every 1 � t � n.Proof. Let us use the notation I+t =P`�t V Æ(`)A =P`�tA"`+1Ae`A. Weshow �rst that for a given t, Ct(A)+ ' Ct(A+) if and only ifejAeiAek � I+t for every i < t � j � k:Indeed, sin
e Ct(A)+ = "tA"t="tI+t "t and Ct(A+) = "tA"t="tI+"t, the twoalgebras are isomorphi
 if and only if "tI+"t � I+t for every t. Using thede�nition of I+, this 
ondition is equivalent to the in
lusion ejA"i+1AeiAek �I+t for every i < t � j; k. Sin
e ejAeiAek � ejA"jAeiAek � ejA"i+1AeiAek,the left side of the in
lusion 
an be simpli�ed to ejAeiAek, and we 
an makethe restri
tion j � k for the indi
es, sin
e for k < j the in
lusion always holds.This gives us the desired formula.It follows from the above formula that Ct(A)+ ' Ct(A+) for every t if andonly if ejAeiAek � I+j for every i < j � k:Suppose �rst, that A is right well-�ltered. Then the 
ondition (ii)00 ofProposition 1.4 gives that ejAeiAek � V Æ(k) � I+j for every i < j � k.Assume now that ejAeiAek � I+j for every i < j � k. We shall proveby reverse indu
tion on j (with �xed i and k) that ejAeiAek � V Æ(k). Forj = k we have ejAeiAek � I+j ek = I+k ek � V Æ(k). Now suppose that we haveproved the statement for every j0 with j < j0 � k. Then ejAeiAek � I+j ek =P`�j V Æ(`)Aek = P`�j A"`+1Ae`Aek � V Æ(k) by the indu
tion hypothesis.Thus A must be right well-�ltered by Proposition 1.4 (ii)00. ut



8 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSMany homologi
al aspe
ts of the algebraA are en
oded in the so-
alled Ext-algebra A� of A: A� = �k�0ExtkA(A= radA;A= radA) (see for example [ADL3℄).Note that one 
an use the identity maps of the 
orresponding simple modulesto get a 
omplete set of primitive orthogonal idempotents fi, 1 � i � n, in A�.If e = (e1; e2; : : : ; en) de�nes the order of the idempotents in A then the naturalorder of the idempotents fi in A� is the reverse order f = (fn; fn�1; : : : ; f1).Hen
e (A�)+ is de�ned with respe
t to this order f .In the 
ase of monomial algebras A, there is a 
ombinatorial des
ription ofA� (see [GZ℄ or [ADL3℄). Namely, if A = K�=I is monomial, then A� 
an beidenti�ed with a K-algebra, given by a multipli
ative basis ~�, where ~� 
onsistsof all verti
es (identi�ed with the idempotent elements e1; e2; : : : ; en in A) andarrows of the quiver � of A, as well as all paths p in � whi
h 
an be written asthe 
on
atenation of subpaths p = p1p2 : : : pt, where p1 is an arrow of �, noneof the subpaths pi is 0 in A (i. e. pi 62 I), and pipi+1 is a right-minimal 0-path inA. (Note that a path p is 
alled right minimal 0-path if p 2 I and there are nosubpaths p0 and p00 of p of non-zero length so that p = p0 � p00 and p0 2 I .) Theprodu
t p � p0 of two basis elements p and p0 is de�ned to be the 
on
atenationp0p provided p0p 2 ~� and 0 otherwise.We have the following statement for monomial algebras.Proposition 1.13. Let A = K�=I be a lean quasi-hereditary monomialalgebra. Then (A�; f)+ ' �(A; e)+��.Proof. To simplify the notation, we shall refer to the algebras above as(A�)+ and (A+)�.Note that A+ is also monomial and hen
e for the K-basis ~�+ of (A+)� we
an 
hoose all those paths from the basis ~� of A� (in
luding paths of length0 and 1), for whi
h the sequen
e of verti
es along the path is monotone non-de
reasing, a

ording to the order given by e. Thus, we may assume that(A+)� � A� in a 
anoni
al way.Now, observe that I+(A�; f) is generated, as a K-subspa
e of A�, by ele-ments p � fi � q � fj � r = rejqeip 2 ~� (where p; q; r 2 ~� and i < j), so I+(A�; f)is in
luded in the subspa
e generated by ~� n ~�+. Thus to prove the requiredisomorphism (A+)� ' (A�)+, it is suÆ
ient to show that ~� n ~�+ � I+(A�; f).So, let p 2 ~� n ~�+. Without loss of generality we may assume that p
annot be written as a produ
t of two non-idempotent elements of ~� in A�.Sin
e A is lean, and sin
e � does not 
ontain loops (by the quasi-heredity of A),Lemma 5.1.(iv) of [ADL3℄ implies that p does not 
ontain a subpath of length2 whose middle vertex is minimal (with respe
t to the order e). Thus, eitherp is monotone or p is the 
on
atenation p0p00 of paths p0 and p00 su
h that



WELL-FILTERED ALGEBRAS 9p0 is in
reasing and p00 is de
reasing. It is enough to show that the latter isimpossible.Let p = p1p2 : : : pt be the \
anoni
al de
omposition" of p (des
ribed above).Suppose that k is minimal su
h that pk and p00 have at least one arrow in
ommon. Then 
onsider the path pk�1pk = q0q00 where q0 and q00 are subpathsof p0 and p00, respe
tively. Here q00 is a non-zero path be
ause it is a subpath ofpk; q0 is a non-zero path be
ause pk�1pk is a right-minimal 0-path; while q0q00is a 0-path. Taking into a

ount that q0 is in
reasing and q00 is de
reasing, this
ontradi
ts the fa
t that A is quasi-hereditary (
f. Lemma 5.3.(ii) of [ADL3℄).utIt is easy to 
onstru
t examples showing that, in general, the previousstatement is not true without the assumption on A to be lean.Example 1.14 The following path algebra A is monomial but not lean:AA = 134 � 213 � 34 � 4 :Then A� and (A�)+ are given by:A�A� = 13 � 21 4 � 34 � 4 and (A�)+(A�)+ = 13 � 24 � 34 � 4 :On the other hand the regular representations of the algebras A+ and (A+)�are: A+A+ = 134 � 2 � 34 � 4 and (A+)�(A+)� = 13 � 2 � 34 � 4 :Hen
e (A+)� 6'(A�)+.Example 1.15 Consider the lean algebra A of Example 1.8. Here theregular representations of A�, (A�)+, A+ and (A+)� are:A�A�= 14 � 21 34 � 34 � 4 ; (A�)+(A�)+= 14 � 23 � 34 � 4 ;A+A+ = 14 � 23 � 34 � 4 and (A+)�(A+)�= 13 � 234 � 34 � 4 :Hen
e, again, (A+)� 6'(A�)+.Let us remark that, although the general statement about the isomorphismof (A+)� and (A�)+ is not true, the isomorphism holds for some other 
lassesof algebras, as we will show in Se
tion 2.Regarding the well-�ltered property, we have the following statement.



10 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSProposition 1.16. Let A be a monomial algebra, whi
h is quasi-hereditary. If (A; e) is both right and left well-�ltered, then (A�; f) is also bothright and left well-�ltered.Proof. By Proposition 1.10, A is lean, and by Corollary 5.6 of [ADL3℄, A�is a quasi-hereditary lean algebra. Sin
e A� is not ne
essarily monomial, thiswould not automati
ally imply that A� is well-�ltered, however from the proofof Corollary 5.6 in [ADL3℄ one 
an 
on
lude that the following impli
ationshold in A�: if fj radA�fi radA�fk 6= 0, then i < max f j; k g. Hen
e A� is bothright and left well-�ltered with respe
t to the order given by f . utSimple examples of non-monomial algebras show that, in general, Propo-sition 1.16 does not hold.Example 1.17. Consider the following path algebra:AA = 12 43 � 23 � 3 � 43 � 54 63 � 63 :The algebra A is quasi-hereditary and shallow, and therefore both right andleft well-�ltered. On the other hand, the left stru
ture of the Ext-algebra A�
an be des
ribed by the same Loewy diagram and thus A� is neither right norleft well-�ltered (with respe
t to the opposite order).2. Standard �ltrations and the pushdown fun
tor F+Given a �ltration 0 = M0 � M1 � � � � � M`�1 � M` = M , we willo

asionally spe
ify the embeddings �t :Mt!Mt+1 for 0 � t � `� 1.A de�ning feature of quasi-hereditary algebras is that they possess a stan-dard �ltration (�-�ltration), i. e. AA has a �ltration where the fa
tors of the�ltration are isomorphi
 to one of the standard modules �(i). The 
lass of A-modules having a standard �ltration will be denoted by F(�). Our next goalis to examine the e�e
t of the \pushdown" fun
tor F+ : mod-A!mod-A+ onthese �ltrations. Here the fun
tor F+ is de�ned by F+(M) = M 
A A+ 'MÆMI+, hen
e F+ is right exa
t.Thus, from now on we shall assume that A is quasi-hereditary.Let G : mod-A!mod-B be an (additive) right exa
t fun
tor. We will saythat the fun
tor G preserves the �ltration 0 = M0 �0�!M1 �1�!� � � �`�1�!M` = Mof a moduleM if G(�i) is an embedding for 0 � i � `�1, that is, if the sequen
e0 = G(M0)G(�0)�! G(M1)G(�1)�! � � �G(�`�1)�! G(M`) = G(M) gives a �ltration of themodule G(M). Note that the right exa
tness of G implies that the fa
tors of the�ltration of G(M) will be the G-images of the fa
tors of the original �ltrationof M .



WELL-FILTERED ALGEBRAS 11It is easy to see that the fun
tor F+ maps the standard modules �(i) intothe simple modules S(i), 
onsidered as A+-modules. Thus if F+ preserves thestandard �ltration of a module M , then the image of this �ltration will give a
omposition series of F+(M).Lemma 2.1. Let M 2 F(�) be a module with a standard �ltration. ThenF+ preserves this �ltration of M if and only if the 
omposition length `�F+(M)�of the module F+(M) equals the length `�(M) of the standard �ltration of M .Proof. By indu
tion on the length of the �ltration of M . utCorollary 2.2. If F+ preserves one standard �ltration of a module Mthen it preserves every standard �ltration of M .Thus we 
an speak about well-�ltered modules : these are those modulesfrom F(�) for whi
h the fun
tor F+ preserves the standard �ltration. Letus denote the 
lass of well-�ltered modules by WF(�). It is easy to see thatWF(�) is 
losed under taking dire
t sums and dire
t summands.Theorem 2.3. Let (A; e) be a quasi-hereditary algebra. Then the following
onditions are equivalent.(i) A is right well-�ltered.(ii) F+ preserves the standard �ltration of AA, that is, AA 2 WF(�).(iii) F+ preserves the standard �ltration of any module M 2 F(�), that is,F(�) =WF(�).(iv) The restri
tion of the fun
tor F+ to the 
ategory F(�) is exa
t.Proof. First let us introdu
e some notation. Let di denote the K-dimensionof the simple module S(i). Clearly, di = dimK S(i) = dimK SÆ(i). For a moduleM 2 F(�) we shall denote by [M : �(i)℄ the number of fa
tors in a standard�ltration ofM whi
h are isomorphi
 to �(i). It is easy to show that this numberis well-de�ned, i. e. it is independent of the 
hoi
e of the parti
ular �ltrationof M . Clearly, the length of the standard �ltration of M 
an be obtained as`�(M) =Pi[M : �(i)℄. Similarly, for a moduleM we shall denote by [M : S(i)℄the number of 
omposition fa
tors of M , isomorphi
 to S(i). It is easy to seethat [M : S(i)℄ = 1di dimK Mei.(i) ) (ii). If A is well-�ltered, then, by the 
ondition (iv) of Proposi-tion 1.5, AA+ ' n�i=1�Æ(i). Using the Bernstein{Gelfand{Gelfand Re
ipro
ity



12 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSPrin
iple (
f. [CPS℄, [DK℄), we get the following:`�(A) =Xj [AA : �(j)℄ =Xi;j [P (i) : �(j)℄ =Xi;j didj [�Æ(j) : SÆ(i)℄=Xi;j didj � 1di dimK ei�Æ(j) =Xi;j 1dj dimK eiA+ej=Xi;j [eiA+ : S(j)℄ = `(A+):Hen
e, F+ preserves the standard �ltration of AA. Note that this numeri
alargument 
an be reversed to show that if (ii) holds, then AA+ 
annot be aproper quotient of �ni=1�Æ(i). Thus Proposition 1.5 implies that A is well-�ltered, i. e. (ii)) (i) holds.To show (ii)) (iii), let 0!X!Y !Z! 0 be a short exa
t sequen
e ofmodules in F(�). If Y 2 WF(�), then X;Z 2 WF(�). Indeed, F+ maps,on the one hand, the short exa
t sequen
e given above into an exa
t sequen
eF+(X)!F+(Y )!F+(Z)! 0, hen
e `�F+(Y )� � `�F+(X)�+`�F+(Z)�. Onthe other hand, by assumption, `(F+(Y )� = `�(Y ), and 
learly `�(Y ) =`�(X) + `�(Z) � `�F+(X)� + `�F+(Y )�. Hen
e all the inequalities mustbe equalities, and thus F+(X) and F+(Z) belong to WF(�). Note also thatin this 
ase (i. e. when Y 2 WF(�)), the map F+(X)!F+(Y ) must be amonomorphism.Sin
e WF(�) is 
losed under taking dire
t sums, (ii) implies that everyfree module F is well-�ltered, i. e. F 2 WF(�). Now, re
all that F(�) is 
losedunder taking kernels of epimorphisms (
f. [DR3℄ or [DK℄), hen
e for any moduleM 2 F(�) there is a short exa
t sequen
e 0!X!F !M! 0 for some freemodule F and X;F 2 F(�). Thus, by the previous 
onsiderations we get thatM 2 WF(�), proving the impli
ation (ii)) (iii).Note that we have proved that F+ is exa
t on those short exa
t sequen
esin F(�) in whi
h the middle term is well-�ltered. Hen
e (iii)) (iv).Finally, the impli
ation (iv)) (iii) follows from the de�nition ofWF(�),while the impli
ation (iii)) (ii) is trivial. utCorollary 2.4. Let A be a quasi-hereditary algebra whi
h is right well-�ltered. Then proj:dimA+ S(i) � proj:dimA�(i) for every index i. In parti
u-lar, gl:dimA+ � gl:dimA.Proof. Take a proje
tive resolution of the standard A-module �(i). Sin
eF(�) is 
losed under taking kernels of epimorphisms, this long exa
t sequen
eis a produ
t of short exa
t sequen
es in F(�). By the exa
tness of F+ on thesub
ategory F(�), we get a proje
tive resolution of F+��(i)� = SA+(i). Hen
ethe statements of Corollary 2.4 follow. ut



WELL-FILTERED ALGEBRAS 13The following example shows that if the algebra A is not well-�ltered, theabove statements do not hold in general.Example 2.5 Consider the following path algebra:AA = 145 � 21 34 � 34 � 45 � 5 :Here we have: A+A+ = 145 � 23 � 34 � 45 � 5 :The algebra A is not right well-�ltered, gl:dimA = 2 and gl:dimA+ = 3.Corollary 2.4 immediately implies the �rst part of the following statement.Proposition 2.6 Let A be a replete quasi-hereditary algebra whi
h is rightwell-�ltered. Then A+ is hereditary, furthermore (A+)� ' (A�)+.Proof. Sin
e A is right well-�ltered, Corollary 2.4 yields proj:dimA+ S(i) �proj:dimA�(i). Sin
e A is replete, proj:dimA�(i) � 1 for 1 � i � n. ThusA+ is hereditary.In parti
ular, this implies that (A+)� = 1�k=0 �i;j ExtkA+ �S(i); S(j)� as a ve
-tor spa
e. One 
an see easily that HomA �S(i); S(j)� ' HomA+ �S(i); S(j)�,and Ext1A+ �S(i); S(j)� ' �Ext1A �S(i); S(j)� for i < j;0 otherwise.On the other hand, A� = �k �i;j ExtkA �S(i); S(j)�, and sin
e (A; e) is re-plete, Corollary 4.6 of [ADL3℄ implies that (A�; f) is shallow. (Re
all thatthe quasi-heredity of A� and the de�nition of (A�)+ relate to the (reverse) or-der f .) It also follows from [ADL3℄ that rad2A� = �k�2�i;j ExtkA �S(i); S(j)�.Proposition 1.9 implies that rad2 (A�)+ = 0, hen
e (A�)+ ' �A�Æ rad2A��+ =1�k=0 �i>j ExtkA �S(i); S(j)�.Sin
e the multipli
ation stru
ture is 
learly the same in both 
ases, we getthe required isomorphism. utTheorem 2.3 shows that for a well-�ltered quasi-hereditary algebraA, everystandard �ltration of AA yields a 
omposition series of A+ with fa
tors given bythe tops of the 
orresponding standard modules in the given standard �ltrationof AA. The following example shows that in general, not every 
ompositionseries will arise in this way.



14 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSExample 2.7 Consider the path algebra given by:AA = 12 43 � 23 � 3 � 43 :Then the regular representation of A+ is as follows:A+A+ = 12 4 � 23 � 3 � 4 :It is easy to 
he
k that A is both left and right well-�ltered, hen
e the standard�ltrations of the inde
omposable proje
tive A-modules will be re
e
ted by the
omposition series of the 
orresponding proje
tive modules over A+. On theother hand we have the 
omposition series 0!S(2)!S(2) � S(4)!PA+(1)overA+, and this 
annot 
orrespond to any standard �ltration of PA(1), be
ausePA(1) does not have any submodules isomorphi
 to �A(2). Note also that herethe module PA+(1)ÆS(2) is not the image of any module M 2 F(�) under thea
tion of F+.The pre
eding results 
an be strengthened if there exists an (algebra) se
-tion map s : A+!A, i. e. a map s su
h that its 
omposition with the naturalepimorphism p : A!A+ gives the identity map of A+. In this situation A+
an be 
anoni
ally identi�ed with a subalgebra of A.The previous example (Example 2.7) shows that a right well-�ltered quasi-hereditary algebra need not have a se
tion map 
orresponding to A+. On theother hand, let us just list some 
ases when A is quasi-hereditary well-�lteredand it has a se
tion map:{ If A is lean quasi-hereditary and monomial, then it is well-�ltered by Propo-sition 1.10, and it is 
lear that the monomiality of the algebra gives a se
tionmap from A+ to A.{ If A is the Ext-algebra of a lean quasi-hereditary monomial algebra thenfrom Proposition 1.16 we get that A is well-�ltered (and quasi-hereditary).Furthermore, the proof of Proposition 1.13 implies that A has a se
tionmap.{ If A is a shallow quasi-hereditary algebra, isomorphi
 to K�=I for somegraph � and set of relations I , then A will be well-�ltered a

ording toProposition 1.9, and it will 
learly have a se
tion map.Another suÆ
ient 
ondition for the existen
e of a se
tion map is given forpath algebras modulo relations by the following proposition.Proposition 2.8. Let A = K�=I, and assume that A+ is hereditary.Then there exists a se
tion map s : A+!A.



WELL-FILTERED ALGEBRAS 15Proof. Let �0 denote the graph whi
h 
an be obtained from � by deletingthe arrows j! i for j > i. Let the elements pi be paths in � and �i 2 K.Consider the element r = Pi �ipi 2 K�. Denote by r0 the following elementin K�0: r0 =Pi �ip0i, where p0i = pi if pi is a path in �0 and 0 otherwise. LetI 0 = f r0 2 K�0 j r 2 I g. Then, 
learly, A+ ' K�0=I 0 with �0 being the graph ofA+. From the fa
t that A+ is hereditary, we get that I 0 = 0. This means thatevery path summand of ea
h element of I 
ontains an arrow j! i with j > i.But then the map K�!K�=I maps K�0 isomorphi
ally onto a subalgebra ofA = K�=I , whi
h maps isomorphi
ally onto A+ via the natural epimorphism.Hen
e we get a se
tion map s : A+ ' K~�!A = K�=I , as required. utThe existen
e of a se
tion map s : A+!A relates 
losely to the 
on
eptof a Borel subalgebra of a quasi-hereditary algebra, as de�ned by K�onig ([K℄).Let us �rst re
all this 
on
ept.Let K be an algebrai
ally 
losed �eld. A subalgebra B of a basi
 quasi-hereditary algebra (A; e) over the �eld K is 
alled a strong exa
t Borel subal-gebra, if B 
ontains a maximal semisimple subalgebra whi
h is also a maximalsemisimple subalgebra of A (hen
e we 
an identify the simple A- and simpleB-modules), and furthermore:(i) B is dire
ted (with respe
t to the order inherited from (A; e)) with simplestandard B-modules;(ii) A is proje
tive as a left B-module (and hen
e the fun
tor � 
B A :mod-B!mod-A is exa
t);(iii) for every index i there is an isomorphism SB(i)
B A ' �A(i).Thus, strong exa
t Borel subalgebras des
ribe the standard �ltration ofthe proje
tive A modules in a similar fashion as A+ does when A is rightwell-�ltered. Noti
e, however that in 
ase of Borel-subalgebras, the 
onne
tionbetween the 
omposition stru
ture of B and the standard �ltration of A isgiven by the indu
tion fun
tor G = � 
B A : mod-B!mod-A instead of thepushdown fun
tor F+ : mod-A!mod-A+.We have the following statement about the relationship of A+ and Borelsubalgebras.Theorem 2.9. Let K be algebrai
ally 
losed and let (A; e) be a quasi-hereditary K-algebra whi
h is right well-�ltered. Assume that there is a se
tionmap s : A+!A. Then s(A+) = B is a strong exa
t Borel subalgebra of A.Proof. Sin
e the ideal I+ is entirely in the radi
al of A, the subalgebraB will
learly 
ontain a maximal semisimple subalgebra whi
h is a maximal semisimplesubalgebra ofA as well. Furthermore, it is equally 
lear that B ' A+ is dire
ted,with simple standard A+-modules.



16 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSThe fa
t that the module BA is proje
tive, follows from Proposition 1.5.(iv) and the quasi-heredity of A. Namely, the module AA has a �ltration withfa
tors isomorphi
 (as A-modules, hen
e also as B-modules) to some �Æ(i).However, �Æ(i) is a proje
tive left A+-module, hen
e BA must be proje
tive.Finally, we show that the simple A+-modules indu
e the standard A-modules. It is easy to see that F+G(M) ' M for any M 2 mod-A+. Indeed,F+G(M) =M
BA
AA+, and A
AA+ is isomorphi
 to A+ as an A+-module,so F+G is equivalent to the identity fun
tor 1mod-A+ . Thus F+G�S(i)� ' S(i).Hen
e G�S(i)� has a simple top and must be a homomorphi
 image of PA(i).Note also that the right leanness of A (
f. Corollary 1.7) implies that VA(i)must be in the kernel of the epimorphism P (i)!G�S(i)�, hen
e G�S(i)� isan epimorphi
 image of �A(i). Now, due to the exa
tness of G, a 
ompositionseries of A+ is mapped by G into a �ltration of G(A+) ' AA, with fa
tors equalto the indu
ed modules G�S(i)�. Hen
e the 
omposition length of AA satis�es:`(AA) �Xi;j [A+A+ : SA+(i)℄ � [�A(i) : SA(j)℄;with equality holding if and only if ea
h indu
ed module G�S(i)� ' �A(i). Butthe exa
tness of F+ on F(�) (
f. Theorem 2.3) implies that [A+A+ : SA+(i)℄ =[A : �(i)℄. Hen
e the right hand side is indeed `(AA). utLet us mention here that the (right and left well-�ltered) algebra given inExample 2.7 has no Borel subalgebras (
f. [K℄). We should, however, mention,that there exist algebras whi
h are not well-�ltered but have Borel subalgebras.In fa
t, the algebra given in Example 1.8 illustrates this feature: it is not rightwell-�ltered, but it is easy to 
he
k that it does have a strong exa
t Borelsubalgebra.Finally let us mention that in proving Theorem 2.9 we have also obtainedthe following result.Proposition 2.10. Let A be a quasi-hereditary algebra whi
h is right well-�ltered and whi
h has a se
tion map A+!A. Then the fun
tor G = �
A+ A :mod-A+!mod-A is an exa
t embedding of mod-A+ into F(�), the 
ategory ofright A-modules having a standard �ltration, while the restri
tion of the fun
torF+ : mod-A!mod-A+ to the sub
ategory F(�) is dense and full.Proof. The statement follows from the observation that F+G(M) 'M forevery M 2 mod-A+. ut



WELL-FILTERED ALGEBRAS 173. Spe
ial 
onstru
tionsIn this se
tion we show that quasi-hereditary algebras arising in two known
onstru
tions satisfy the well-�ltered property.Let us �rst re
all a 
onstru
tion of Auslander in [A℄. Let R be an arbitrary�nite dimensional K-algebra and let t be the nilpoten
y index of radR, i. e.assume that radt�1R 6= 0 and radtR = 0. Let us de�ne the left R-moduleRX = n�i=1Xi;where the modules Xi are all mutually non-isomorphi
 inde
omposable (lo
al)dire
t summands of t�s=1RÆ radsR, ordered in su
h a way that i < j impliesLl(Xi) � Ll(Xj). (Here Ll(M) denotes the Loewy length of the module M .)Finally, let us de�ne A = EndRX . It was shown in [DR2℄ that A is quasi-hereditary with respe
t to the order inherited from the summands Xi. Our nextresult shows that A is right well-�ltered (but not ne
essarily left well-�ltered).Theorem 3.1. Let A = EndR(�Xi) be the �nite dimensional K-algebraas de�ned above. Then, with respe
t to the indu
ed order of the simple A-modules, A is right well-�ltered, and A+ is a serial hereditary algebra. If K isalgebrai
ally 
losed, then there exists a se
tion map s : A+!A, and s(A+) isa strong exa
t Borel subalgebra of A.Proof. Let us denote by ei the idempotent element of A, 
orrespond-ing to the summand Xi. Thus the subspa
es eiAej 
an be identi�ed withHomR(Xi; Xj), for 1 � i; j � n.First we show that I+ = f f 2 A j Im f � radX g whi
h will be identi�edwith HomR(X; radX). In other words, the elements of I+ are pre
isely thoseendomorphisms f whose 
omponents eifej 2 HomR(Xi; Xj) are not epimor-phisms, i. e. eifej 2 HomR(Xi; radXj) for 1 � i; j � n. Let g 2 ejAei for somej > i. Then Ll(Xj) � Ll(Xi), where in 
ase of equality the top 
ompositionfa
tors are di�erent. Hen
e g is not an epimorphism, so g 2 HomR(Xj ; radXi).Thus Im g � radX . Sin
e I+ as an ideal is generated by the sets ejAei for j > iand sin
e HomR(X; radX)/EndR(X) = A, we get that I+ � HomR(X; radX).To show the opposite in
lusion, assume that none of the 
omponents of f 2A is an epimorphism. Sin
e f =Pi;j eifej , it is enough to show that ea
h of the
omponents belongs to I+. Thus we may assume that f 2 eiAej , and 
learly wemay restri
t to the 
ase when i � j. But then ` = Ll(Im f) < Ll(Xj) � Ll(Xi),hen
e f 
an be fa
tored throughXt = XiÆ rad`Xi. The 
ondition on the Loewylength of Xt 
learly implies that j < t, hen
e f 2 eiAetAej � I+.We shall now prove that the 
ondition (ii)00 from Proposition 1.4 holdsfor A. Consider an element f 2 ejAeiAek for some i < j � k. Clearly, f 2 I+.



18 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSThus the 
onsiderations above show that f 2 HomR(Xj ; Xk) 
an be fa
toredthrough Xt, where Xt = XjÆ rad`Xj , with ` = Ll(Im f) < Ll(Xk) � Ll(Xj).Hen
e t > k, thus f 2 ejAetAek � ejA"k+1Aek, as required.Next, we show that A+ is right serial and hereditary. To this end it isenough to show that rad eiA+ is lo
al and proje
tive over A+ for 1 � i � n(here ei 2 A is identi�ed with its natural image in A+).Let EpiR(Xi; Xj) be the ve
tor spa
e HomR(Xi; Xj)ÆHomR(Xi; radXj).From the des
ription of I+ it is easy to see that eiA+ 
an be identi�edwith �j EpiR(Xi; Xj) (with the natural A+ stru
ture). It is also 
lear thatEpiR(Xi; Xj) 6= 0 if and only if Xj = XiÆ radtXi for some 1 � t � Ll(Xi) = `.This gives easily that rad(eiA+) = `�1�t=1EpiR �Xi; XiÆ radtXi�, and in general,for 1 � k � `, we have radk(eiA+) = `�k�t=1EpiR �Xi; XiÆ radtXi�. Now, in gen-eral, if Ll(Xj) < Ll(Xi) = `, then HomR(Xi; Xj) ' HomR �XiÆ rad`�1Xi; Xj�(as right A-modules). Hen
e, if XiÆ rad`�1Xi = Xj , then we get thatrad eiA+ ' ejA+, hen
e rad eiA+ is lo
al and proje
tive for 1 � i � n, asrequired.As a 
onsequen
e of our previous 
onsiderations, one 
an see that, giventwo epimorphisms fi : Xi!Xk and fj : Xj!Xk, with i < j < k, fi alwaysfa
tors through fj . This just means that the algebra A+ is left serial as well. (Inother words, A+ is a produ
t of K-algebras whose quivers are dire
ted paths.)Finally, the statement about the existen
e of a se
tion map s : A+!Afollows from the heredity of A+ and Proposition 2.8, while Theorem 2.9 impliesthat s(A+) is a strong exa
t Borels subalgebra of A. utThe following example illustrates that A is indeed not ne
essarily left well-�ltered.Example 3.2. Let RR = 1 � 21 � 32 11be the (left) regular representation of the (hereditary) path algebra R over a�eld K. Take RX = 32 11 � 21 � 32 1 � 1 � 2 � 3and 
onsider A = EndR(X). Then the (right well-�ltered) algebra A has thefollowing regular representation:AA = 136 � 21 53 � 36 � 42 11 3 � 53 � 6 :Furthermore, A+A+ = 136 � 25 � 36 � 4 � 5 � 6 :



WELL-FILTERED ALGEBRAS 19On the other hand, A is not lean, hen
e it is not left well-�ltered.Let us remark that (A�)+ 6'(A+)�. Indeed, dimK (A�)+ = 10, whiledimK (A+)� = 9. Expli
itly,(A�)+(A�)+ = 13 � 25 � 36 � 46 � 5 � 6and (A+)�(A+)� = 13 � 25 � 36 � 4 � 5 � 6 :Finally, we re
all a 
onstru
tion due to Dlab, Heath and Marko (
f.[DHM℄).Let R be a 
ommutative self-inje
tive lo
al algebra, �nite dimensional overa splitting �eld K. Let fXi j 1 � i � n g be a set of distin
t lo
al idealsof R, indexed in su
h a way that Xi � Xj implies i < j. Note that here the
ontainmentXj � Xi is equivalent to the existen
e of an epimorphismXi!Xj .Assume that X1 = R, furthermore that n = dimK R and for ea
h index i wehave radXi =Pj Xj , where the summation is taken for those ideals Xj whi
hare properly 
ontained in Xi. Finally, let A = EndR(X), where X = n�i=1Xi.The main result of [DHM℄ is that A is quasi-hereditary with respe
t to theinherited order of the summands of X and A admits a duality whi
h keeps thesimple modules S(i) �xed.Then we 
an prove the following.Theorem 3.3. Let A be the algebra of the DHM-
onstru
tion, de�nedabove. Then A is both left and right well-�ltered. Moreover, there exists ase
tion map s : A+!A, and s(A+) is a strong exa
t Borel subalgebra of A.Proof. The existen
e of a duality implies that it is enough to show that Ais right well-�ltered. We are going to show that the 
ondition (ii)00 of Propo-sition 1.4 holds for A. As in the proof of Theorem 3.1, denote by ei the idem-potent endomorphism 
orresponding to the summand Xi and let f 2 ejAeiAekfor some i < j � k. Then f = f 0f 00 with f 0 2 ejAei ' HomR(Xj ; Xi) and f 00 2HomR(Xi; Xk). Using an earlier remark, f 0 
annot be an epimorphism, other-wise we would get thatXi � Xj , implying i > j. Hen
e, f 0 2 HomR(Xj ; radXi)and thus, f 2 HomR(Xj ; radXk). Sin
e radXk = P`X` for some indi
es` > k, Lemma 2 of [DHM℄ implies that f 
an be fa
tored through the 
anoni
almap �`X`!P`X`. Thus f 2 ejA"k+1Aek, as required. Note that | simi-larly to the situation of Theorem 3.1 | the previous argument also yields thatI+ = f f 2 A j Im f � radX g.To 
omplete the proof, we have to show the existen
e of a se
tion maps : A+!A. Let us note �rst, that ea
h (lo
al) ideal Xi is isomorphi
 to the
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tor module R=AnnXi. Fixing su
h an isomorphism for every index i, let xi 2Xi be the 
oset of 1 2 R under this isomorphism. It is easy to see that ifXi � Xj(hen
e i < j), then there is a unique epimorphism fij : Xi!Xj , mapping xi toxj . Denote by B the K-subspa
e of A generated by the morphisms fij for everypair Xi � Xj . Sin
e fijfjk = fik whenever Xi � Xj � Xk, B is a subalgebra.The expli
it des
ription of I+, given above, implies that B is disjoint from I+.Sin
e K is a splitting �eld for R, the 
anoni
al epimorphism A!A+ mapsB surje
tively onto A+. Hen
e, B ' A+, giving the required se
tion map.Theorem 2.9 implies that s(A+) is a strong exa
t Borel subalgebra of A. utObserve that in the previous 
onstru
tion, A+ 
an be des
ribed 
ompletelyas follows. Let � be the graph with the set of verti
es f 1; 2; : : : ; n g, and putan arrow i! j if Xi � Xj and no k 6= i; j exists with Xi � Xk � Xj . ThenA+ ' K�=I where the ideal I is generated by all relations �ij � �ij , with �ijand �ij being two arbitrary paths between i and j.Addendum. After 
ompleting their paper the authors have learnt thatS. K�onig in his paper \Cartan de
ompositions and BGG-resolutions", Man.Math. 86 (1995), 103-111, 
onsidered algebras having a Cartan de
ompositionfor whi
h every simple module has a BGG resolution. In parti
ular he obtainedthe equivalen
e of Proposition 1.6 (i) and (v) for this spe
ial situation.Referen
es[A℄ Auslander, M., Representation dimension of Artin algebras, QueenMary College Notes, London, 1971.[ADL1℄ �Agoston, I., Dlab, V., Luk�a
s, E., Lean quasi-hereditary algebras,in: Representations of Algebras. Sixth International Conferen
e, 1992,Ottawa. CMS Conferen
e Pro
eedings 14, 1{14.[ADL2℄ �Agoston, I., Dlab, V., Luk�a
s, E., Homologi
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ripta Mathemati
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e and a study of g-modules, in: Liegroups and their representations. Summer s
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iety, Budapest, 1971., ed. I.M. Gelfand, Akad�emiaiKiad�o, Budapest, 1975., 21{64.
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