WELL-FILTERED ALGEBRAS

ISTVAN AGoSTON!, VLASTIMIL DLAB? AND ERZSEBET LUKACS?

ABSTRACT. We define a class of (lean) quasi-hereditary K-algebras A for
which the standard filtration of the right regular representation may be described
by a suitable directed quotient algebra AT. For this class, projective resolutions
of simple left modules over AT will correspond to so-called BGG resolutions over
A, defined earlier by Bernstein, Gelfand and Gelfand. In the case when K is
algebraically closed and A7 is a subalgebra of A, At coincides with the concept of
a Borel subalgebra of Konig. We show that many algebras obtained by previously
defined canonical constructions belong to this class and have additional structural
properties.

1. Introduction. Well-filtered algebras

One of the key properties of quasi-hereditary algebras is the existence of a
standard filtration for projective modules. This filtration is equivalent to one
in which the indices of the occurring standard modules are ordered. In the
case when the algebra is lean (cf. [ADL1], [ADL2]), the extensions of standard
modules are determined by extensions of their (simple) top factors. In this way
the filtrations follow a “directed” path in the graph of the algebra A. Hence
it is natural to investigate directed quotients of these algebras. Let us remark
that a large portion of our results does not assume the quasi-heredity of the
algebras.

One of the authors reported the results in the Special Session on Alge-
braic Groups and Invariant Theory at the Winter Meeting of the American
Mathematical Society in Orlando, Florida, on January 11, 1996 ([ADL4]).

Let A be a basic finite dimensional algebra over a central field K. We
shall fix a complete ordered set of primitive orthogonal idempotents e =
(e1,€2,...,e,) in A and refer to the algebra with such a choice as (4, e). Given
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this order, we may also define the idempotents ¢; = e; +---+e, fori=1,...,n
and ep41 = 0. Denote by P(i), S(i) and A(7) the indecomposable projective,
simple and standard right modules, respectively. These may be identified as
follows: P(i) = e;A, S(i) = e;A/e;rad A and A(i) = e;A/e;Agip1 A. Thus,
denoting by V(i) the module e;Ae; 11 A, we get the following canonical short
exact sequences for 1 < i < n:

0— V(i) = P(i)— A(i) = 0.

The corresponding left modules will be denoted by P°(i), S°(i), A°(i) and
Ve(i).

Let us also recall that the algebra (A, e) is called quasi-hereditary if the
standard modules are Schurian (i.e. their endomorphism rings are division
rings) and the regular representation A 4 has a filtration with factors isomorphic
to standard modules A(i).

For further notations and definitions, as well as for some basic results and
background we refer to [CPS], [DK], [ADL1], [DR1] and [DR3].

Y Y

DEFINITION 1.1. Let (A, e) be a finite dimensional algebra with a given
order e = (e, ea,...,e,) of a complete set of primitive orthogonal idempotents.
Define the ideal It = I (A, e) of A to be the ideal generated by the sets e;Ae;

for 1 <i<j<n. Thus It =Y Ae;jAe;A. Similarly, we may define the ideal
j>i
I~ = Z AeiAejA.
i<j
DEFINITION 1.2. For a given algebra (4,e) let AT = (A,e)t be the quo-
tient of A modulo the ideal I defined above. Similarly, A= = A/I~.

Thus the algebras AT and A~ are the maximal directed quotients of A with
respect to the given order e. Clearly, if (4, e) is a quasi-hereditary algebra, both
(A*+,e) and (A, e) are quasi-hereditary and (A*)* = A+ (A7) = A, while
(AT)” >~ (A7) ~ A/ rad A,

Let us observe that A= ~ ((4°?)*)*. Thus, although many of our state-
ments in terms of A" will have their dual counterparts concerning A=, we shall
usually refrain from formulating them explicitly.

It is clear from the definition that It is the ideal generated by the sub-
modules V°(i) of the left regular representation 44, i.e. It = Y | V°(i)A.
If A is quasi-hereditary, then the multiplication maps Ae; ®., ., €;4 — Aeg; A
are bijective for every 1 < i < n ([DK]) and thus the standard filtration of
Ay is controlled by the left standard modules A°(i) ~ P°(i)/V°(i). Therefore
it is natural to consider the case when the ideal I coincides with the sum

of submodules V°(i) and, as a consequence, AT defines the standard filtration
of AA.
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DEFINITION 1.3. We call an algebra (A, e) right well-filtered if &,V °(i)

is an ideal in A. One may similarly define left well-filtered algebras.
The next three propositions list several characterizations of this property.

PROPOSITION 1.4. Let A be an algebra with a given order e of the primitive
idempotents. Then the following conditions are equivalent:
(1) A is right well-filtered;
(ii) V°(i)Aer, C VO (k) for every index i,k (equivalently, for every index i < k);
(i1)" e;41Ae;Aey C Aegiq Aey, for every index i, k (equivalently, for every index
i<k);
(i1)" ejAe;Aey, C ejAekt1Aey, for every index k and every index i < j (equiva-
lently, for every index i < j < k);
(iii) @(V°(i)) CV°(k) for every indez i,k (equivalently, for every index i < k)
and for every homomorphism ¢ : P°(i) = P°(k);
(iv) IT =, V().

Proof. (ii) and (iv) are simple reformulations of the definition of a right
well-filtered algebra, i.e. that &;V°(i) is an ideal of A. The conditions (i7)" and
(74)" are reformulations of (ii) in terms of the idempotents. Finally, the equiva-
lence of (i7) and (7i%) follows from the fact that homomorphisms P°(i) — P°(k)
are precisely the right multiplications by elements of Aey. O

The next set of conditions characterizes right well-filtered algebras in terms
of properties of the left standard modules A°(7).

PROPOSITION 1.5. Let A be an algebra with a given order e of the primitive
idempotents. Then the following conditions are equivalent:
(1) A is right well-filtered;
(1i) eip14e;A°(k) = 0 for every index i, k (equivalently, for every index i < k);
(i1i) the natural homomorphisms P°(i) — A°(i) will induce isomorphisms
Hom (A°(i), A°(k)) ~ Hom (P°(i), A°(k)) for every index i,k (equiva-
lently, for every index i < k);
(i7i)" Hom (V°(i), A°(k)) ~ Extly (A°(i),A°(k)) for every index i,k (equiva-
lently, for every index i < k);
(iv) AAT =@ A°(i).

Proof. The equivalence of the conditions (i)—(iv) can be proved using the
parallel conditions of Proposition 1.4. Condition (i7) is a simple reformulation of

Proposition 1.4 (i7)'. The equivalence of (iii), and Proposition 1.4 (ii7) follows
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from the fact that any homomorphism P°(i) 2 A°(k) gives rise to a homomor-
phism P°(7) 4 P°(k). The equivalence of (iii) and (i7i)’ can be obtained from
the long exact sequence

0 — Hom (A°(i), A°(k)) — Hom (P°(i), A°(k)) — Hom (V°(i), A°(k))
— Extly (A°(7), A°(k)) = Extly (P°(i), A°() =+ .

Finally, the equivalence of (iv) and Proposition 1.4 (iv) is straightforward. O

Let us now recall that for a given algebra (A, e) the trace filtration of a
module X 4 is given by the sequence 0 C Xe,A C Xeg, 1AC...C Xg;A=X:
the consecutive terms are the traces (i.e. sums of all homomorphic images)
of the projective modules ;4 = P(i) ® P(i+1)® --- ® P(n) on X. One
may similarly define the reverse trace filtration of X by taking the sequence
0CXetAC X(eg+e)AC...C X(eg+ex+---+e,)A =X, ie. the trace
filtration of X with respect to the opposite order.

Finally, let us recall that a BGG resolution of a module M is an exact se-
quence 0 = X}, — Xp_1 — -+ — Xg — M — 0 such that each term Xj is a direct
sum of standard modules (cf. [BGG]).

PROPOSITION 1.6. Let A be an algebra with a given order e of the primitive

idempotents. Then the following conditions are equivalent:

(1) A is right well-filtered;

(ii) for each index k, every factor of the reverse trace filtration of A°(k) is a
homogeneous module (i. e. its composition factors are all isomorphic);

(iit) for each index k, A°(k) has a composition series where the sequence of the
indices of composition factors is monotone;

(iv) for each index k, the trace ijﬂjk A°(7) inrad A°(k) is the entire rad A°(k);

(v) every simple left module S°(i) has a BGG resolution;
(vi) every left AT -module as a left A-module has a BGG resolution.

Proof. (i) = (i1): Consider the reverse trace filtration
0C Aes A°(k) C A(er +ea)A°(k) C--- C A(er + - -+ + ex)A° (k) = A°(k).

If X; is the factor A(e;+---+¢e;)A°(k)/A(e1 +...+e;—1)A°(k), thene; 11 X; =0
follows from the condition (i7) of Proposition 1.5, while (e; +...+¢€,-1)X; =0
is obvious, hence the composition factors of X; are all isomorphic to S°(i).

(#4) = (4i7): Let us consider a refinement of the reverse trace filtration into
a composition series. Then the sequence of indices of the composition factors
is clearly monotone.
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(191) = (iv): Note that if a module X has a composition series where
the sequence of indices of composition factors is monotone (the smallest index
corresponding to a simple submodule in the socle of X) then the submodules
of X also have such composition series. Furthermore, if the image of a map
Pe(j) Jox possesses such a composition series then V°(j) C Ker f must hold.
Hence, assuming (#i7), the obvious fact that rad A°(k) is generated by homo-
morphic images of the projective modules P(j), j < k, implies (iv).

(iv) = (i): We shall prove that under the assumption, if a module X
is a homomorphic image of a left standard module A°(k) for some k then
gir14e; X = 0 for every 1 < i < n. In view of the condition (i) of Proposi-
tion 1.5, this will prove our statement. We shall use induction on the Loewy
length of X. The statement is clearly true if X is simple, furthermore it is
also true for arbitrary indices ¢ and k, whenever i > k. Thus, assume now
that there exists an epimorphism A°(k) — X and let ¢ < k. Then clearly
gir1Ae; X = g;41Ae;rad X. Here rad X is a homomorphic image of rad A°(k)
which is, by assumption, generated by homomorphic images of A°(j), j < k.
Hence, rad X is a sum of submodules X; which have smaller Loewy length than
X and which are homomorphic images of left standard modules. Thus, we may
apply the induction hypotheses to get the statement for X.

(i) = (vi): Condition (iv) of Proposition 1.5 implies that the projective
resolution of any left AT-module gives a BGG resolution over A.

Since the implication (vi) = (v) is obvious, it is enough to show that
(v) = (iv), but this is also clear from the definition of a BGG resolution. O

The concept of a right well-filtered algebra yields immediately the concept
of one sided lean algebras. Recall that an algebra (A, e) is lean with respect
to the order e (see [ADL1]) if e; rad? Aey, C ejrad Ae,, rad Aey, for every j, k,
where m = min{j,k}. We call the algebra (A,e) right lean if the above
condition holds whenever j < k. Note that for algebras with Schurian standard
modules this is equivalent to the fact that V(i) is a top submodule of rad P(7)
for every index i. Further homological characterizations can also be derived
from [ADL2].

COROLLARY 1.7. If (A, e) is right well-filtered then (A, e) is right lean.

Proof. Note that e;Ae; = e;rad Ae; for i # j, hence using the condi-

n

tion (#¢)" of Proposition 1.4, we have, for j <k, e; rad® Ae, C ejrad A(er +
...+ ej_1)rad Aey + e;jrad Aejrad Aey C ejAepi1Aer, + ejrad Aejrad Aey, C

ejrad Aejrad Aey. O
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In what follows we shall be interested mostly in cases where the standard
modules are Schurian. Thus it is worth mentioning that for a right well-filtered
algebra (A, e), the condition that the standard modules of (A4, e) are Schurian
(in other words, e;rad Ae; C e;Ae;11Ae; for every 1 < i < n) is equivalent to
the fact that the species of A has no loops, i.e. that e; rad Ae; C e; rad? Ae; for
every 1 < i < n. The Schurian condition obviously implies that the species has
no loops, and the other direction of the equivalence follows from the condition

(#4)" of Proposition 1.4.

ExaMpPLE 1.8. The following example shows that the concept of a right
well-filtered algebra is indeed one-sided. The example also shows that the con-
verse of Corollary 1.7 does not hold. Let

2 4
Ax=1@13@0]@1 and 4Ad= 0205013

be the right and left regular representations of the path algebra A over a field

K, respectively. The algebra A is clearly lean but it is not right well-filtered.

Indeed, @ V°(i) = V°(1) is not an ideal, because there is a map P°(1) = P°(4),
(2

sending V°(1) non-trivially into P°(4) = A°(4). Note that A is left well-filtered.

Some special classes of quasi-hereditary algebras are well-filtered. (We refer
to [ADL1] or [DK] for the definition of shallow and replete quasi-hereditary
algebras.)

PROPOSITION 1.9. Assume (A,e) is a shallow quasi-hereditary algebra.
Then (A, e) is both right and left well-filtered and rad® A+ = 0.

Proof. Since the standard and costandard modules of shallow algebras have
semisimple radicals, the first statement follows from the condition (iv) of Propo-
sition 1.6, while the second from the condition (iv) of Proposition 1.5. O

On the other hand, Example 1.8 shows that a replete algebra is in general
not well-filtered. Note, that in this example the replete algebra A is not well-
filtered because of commutativity relations in the definition of A. The canonical
replete algebras, which are necessarily monomial are always well-filtered, due
to the following proposition.

PROPOSITION 1.10. Let A = KT'/I be a monomial algebra (i.e. a path
algebra over the graph T' modulo relations which are generated by paths). Then
A is right lean if and only if A is right well-filtered.

Proof. In view of Corollary 1.7 we have to show only that if A is right lean
then A is right well-filtered. However, this follows from the fact that for right
lean monomial algebras e; Ae;Ae, = 0 for i < j < k. Hence A is well-filtered
by (ii)"" of Proposition 1.4. O
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Next, we examine the behaviour of the construction of At and the
well-filtered property in connection with some other standard constructions.

For each algebra (A,e) we may define two sequences of algebras: B;(A) =
A/AEt+1A and Ct(A) = EtAEt (Cf [DK])

PROPOSITION 1.11. Let (A, e) be given.

a) If A is right well-filtered, then so are the algebras B;(A) for 1 <t < n.
b) If A is right well-filtered, then so are the algebras C¢(A) for 1 <t < n.

Proof. Both statements follow immediately from Proposition 1.4 (i7)’. O

Observe that although B;(A)T ~ B;(A™) holds for any algebra A and for
all 1 <t <n, the algebras C;(4)" and C;(A") are, in general, not isomorphic.
In fact, this leads to yet another characterization of well-filtered algebras.

PROPOSITION 1.12. (A, e) is right well-filtered if and only if Ci(A)T ~
Ci(AT) for every 1 <t < n.

Proof. Let us use the notation It =3+, V°(0)A =35, Aesy14desA. We
show first that for a given t, C;(A)™ ~ C;(A™) if and only if

ejAe;Aey C I;F forevery i <t <j<k.

Indeed, since Cy(A)" = e;Ae; /el ey and Cy(AT) = e;Ae;/eiItey, the two
algebras are isomorphic if and only if e;I*e; C I," for every ¢t. Using the
definition of I, this condition is equivalent to the inclusion e;Ae; 1 Ae; Aey C
It+ for every i < t < j, k. Since e;jAe;Aey C ejAcjAe;Aey, C ejAeiy1 Ae;Aey,
the left side of the inclusion can be simplified to e;Ae;Ae;, and we can make
the restriction j < k for the indices, since for k < j the inclusion always holds.
This gives us the desired formula.

It follows from the above formula that C¢(A)* ~ Cy(A™) for every ¢ if and
only if

ejAe;Aey C If for every i < j <k.

Suppose first, that A is right well-filtered. Then the condition (ii)" of
Proposition 1.4 gives that e; Ae; Aey, C V°(k) C If for every i < j < k.

Assume now that ejAe;Ae, C I]T" for every i < j < k. We shall prove
by reverse induction on j (with fixed i and k) that e;Ae;Ae;, C V°(k). For
j = k we have e; Ae; Aey, C I;'ek = I,j'ek C V°(k). Now suppose that we have
proved the statement for every j' with j < j' < k. Then e;Ae; Aey C I;'ek =
s VOO Aer = 35, Aeep1AegAer, C VO(k) by the induction hypothesis.
Thus A must be right well-filtered by Proposition 1.4 (ii)". O
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Many homological aspects of the algebra A are encoded in the so-called Ezt-
algebra A* of A: A* = @ Ext®(A/rad A, A/rad A) (see for example [ADL3]).
k>0

Note that one can use the identity maps of the corresponding simple modules
to get a complete set of primitive orthogonal idempotents f;, 1 <i < n, in A*.
Ife = (e1,e9,...,6,) defines the order of the idempotents in A then the natural
order of the idempotents f; in A* is the reverse order £ = (f,, fn—1,..., f1).
Hence (A*)7 is defined with respect to this order f.

In the case of monomial algebras A, there is a combinatorial description of
A* (see [GZ] or [ADL3]). Namely, if A = KT'/T is monomial, then A* can be
identified with a K-algebra, given by a multiplicative basis T', where I consists
of all vertices (identified with the idempotent elements e, es, ..., e, in A) and
arrows of the quiver I of A, as well as all paths p in T' which can be written as
the concatenation of subpaths p = p1ps ... ps, where p; is an arrow of I', none
of the subpaths p; is 0in A (i.e. p; € I), and p;p;+1 is a right-minimal 0-path in
A. (Note that a path p is called right minimal 0-path if p € T and there are no
subpaths p' and p" of p of non-zero length so that p = p’ - p" and p’ € I.) The
product p - p' of two basis elements p and p’ is defined to be the concatenation
p'p provided p'p € T and 0 otherwise.

We have the following statement for monomial algebras.

PropPOSITION 1.13. Let A = KT /I be a lean quasi-hereditary monomial
algebra. Then (A*,£)* ~ ((4,e)T)".

Proof. To simplify the notation, we shall refer to the algebras above as
(A)T and (AT)".

Note that A% is also monomial and hence for the K-basis T't of (41)" we
can choose all those paths from the basis I' of A* (including paths of length
0 and 1), for which the sequence of vertices along the path is monotone non-
decreasing, according to the order given by e. Thus, we may assume that
(A+)" < A* in a canonical way.

Now, observe that IT(A*, f) is generated, as a K-subspace of A*, by ele-
ments p- fi-q- fj-r =rejqe;p € [ (where p,q,r € T and i < j), so IT(A*,f)
is included in the subspace generated by r \ [+. Thus to prove the required
isomorphism (A1) ~ (4*)7, it is sufficient to show that T\ T't C I't(4*f).

So, let p € T \ I'+t. Without loss of generality we may assume that p
cannot be written as a product of two non-idempotent elements of [' in A*.
Since A is lean, and since I" does not contain loops (by the quasi-heredity of A),
Lemma 5.1.(iv) of [ADL3] implies that p does not contain a subpath of length
2 whose middle vertex is minimal (with respect to the order e). Thus, either
p is monotone or p is the concatenation p'p” of paths p’ and p” such that



WELL-FILTERED ALGEBRAS 9

p' is increasing and p" is decreasing. It is enough to show that the latter is
impossible.

Let p = p1ps . .. p be the “canonical decomposition” of p (described above).
Suppose that k is minimal such that p, and p" have at least one arrow in
common. Then consider the path pp_i1pr = ¢'¢"" where ¢’ and ¢" are subpaths
of p’ and p", respectively. Here ¢” is a non-zero path because it is a subpath of
pr; ¢ is a non-zero path because py_1py is a right-minimal 0-path; while ¢'q"”
is a 0-path. Taking into account that ¢’ is increasing and ¢ is decreasing, this
contradicts the fact that A is quasi-hereditary (cf. Lemma 5.3.(ii) of [ADL3]).

O

It is easy to construct examples showing that, in general, the previous
statement is not true without the assumption on A to be lean.

EXAMPLE 1.14 The following path algebra A is monomial but not lean:

Ayx =

PN

®1dIDa.

W = N

Then A* and (A*)" are given by:
A*A*:é@124@2@4 and (A*)+(A*)+:é@i@z@4

On the other hand the regular representations of the algebras A* and (A*)”
are:

1
A+A+:Z@2@2@4 and (A+)*(A+)*:é@2@i@4-

Hence (A1) #(A4%)T.

ExAMPLE 1.15 Consider the lean algebra A of Example 1.8. Here the
regular representations of A*, (A*)", AT and (A1)" are:

2 +
adr=lorsela ar A =leleles,

AW W

Atp=le2elaq and 4+ AN) ' =1ld36 ] 6.

Hence, again, (A1) #(4*)7".

Let us remark that, although the general statement about the isomorphism
of (AT)" and (4*)7 is not true, the isomorphism holds for some other classes
of algebras, as we will show in Section 2.

Regarding the well-filtered property, we have the following statement.
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PRrROPOSITION 1.16. Let A be a monomial algebra, which is quasi-
hereditary. If (A, e) is both right and left well-filtered, then (A*,f) is also both
right and left well-filtered.

Proof. By Proposition 1.10, A is lean, and by Corollary 5.6 of [ADL3], A*
is a quasi-hereditary lean algebra. Since A* is not necessarily monomial, this
would not automatically imply that A* is well-filtered, however from the proof
of Corollary 5.6 in [ADL3] one can conclude that the following implications
hold in A*: if f;rad A* firad A* fr # 0, then ¢ < max {j, k }. Hence A* is both
right and left well-filtered with respect to the order given by f. O

Simple examples of non-monomial algebras show that, in general, Propo-
sition 1.16 does not hold.

ExAMPLE 1.17. Consider the following path algebra:
1 2 4 5 6
AA:24@3@3@3@436@3.
3

The algebra A is quasi-hereditary and shallow, and therefore both right and
left well-filtered. On the other hand, the left structure of the Ext-algebra A*
can be described by the same Loewy diagram and thus A* is neither right nor
left well-filtered (with respect to the opposite order).

2. Standard filtrations and the pushdown functor F*

Given a filtration 0 = My € M; C -+ C My_y C My = M, we will
occasionally specify the embeddings ¢y : My — My for 0 <t </ —1.

A defining feature of quasi-hereditary algebras is that they possess a stan-
dard filtration (A-filtration), i.e. A4 has a filtration where the factors of the
filtration are isomorphic to one of the standard modules A(i). The class of A-
modules having a standard filtration will be denoted by F(A). Our next goal
is to examine the effect of the “pushdown” functor F'* : mod-4 = mod-A* on
these filtrations. Here the functor F* is defined by F*(M) = M ®4 AT ~
M /MI", hence F™ is right exact.

Thus, from now on we shall assume that A is quasi-hereditary.

Let G : mod-A — mod-B be an (additive) right exact functor. We will say
that the functor G preserves the filtration 0 = My —= M; — - - “ M, =M
of a module M if G(i;) is an embedding for 0 < ¢ < £—1, that is, if the sequence
0 = G(My) (M)G(Ml) EIGU -G(Lif)G(Mg) = G(M) gives a filtration of the
module G(M). Note that the right exactness of G implies that the factors of the
filtration of G(M) will be the G-images of the factors of the original filtration
of M.
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It is easy to see that the functor F* maps the standard modules A(7) into
the simple modules S(i), considered as A*-modules. Thus if F'™ preserves the
standard filtration of a module M, then the image of this filtration will give a

composition series of F*(M).

LEMMA 2.1. Let M € F(A) be a module with a standard filtration. Then
F* preserves this filtration of M if and only if the composition length Z(F"'(M))
of the module F* (M) equals the length {a(M) of the standard filtration of M.

Proof. By induction on the length of the filtration of M. O

COROLLARY 2.2. If FT preserves one standard filtration of a module M

then it preserves every standard filtration of M.

Thus we can speak about well-filtered modules: these are those modules
from F(A) for which the functor F* preserves the standard filtration. Let
us denote the class of well-filtered modules by WF(A). It is easy to see that

WUIF(A) is closed under taking direct sums and direct summands.

THEOREM 2.3. Let (A, e) be a quasi-hereditary algebra. Then the following

conditions are equivalent.

(1) A is right well-filtered.
(i1) F* preserves the standard filtration of Aa, that is, Ay € WF(A).
(i1i) Ft preserves the standard filtration of any module M € F(A), that is,
F(A) =WF(A).
(iv) The restriction of the functor FT to the category F(A) is exact.

Proof. First let us introduce some notation. Let d; denote the K-dimension
of the simple module S(i). Clearly, d; = dimg S(i) = dimg S°(7). For a module
M € F(A) we shall denote by [M : A(i)] the number of factors in a standard
filtration of M which are isomorphic to A(7). It is easy to show that this number
is well-defined, i.e. it is independent of the choice of the particular filtration
of M. Clearly, the length of the standard filtration of M can be obtained as
(A(M) =%, [M : A(i)]. Similarly, for a module M we shall denote by [M : S(i)]
the number of composition factors of M, isomorphic to S(i). It is easy to see
that [M : S(i)] = d%_ dimg Me;.

(1) = (). If A is well-filtered, then, by the condition (iv) of Proposi-
tion 1.5, A" ~ 'Gnﬁl A°(i). Using the Bernstein—-Gelfand—Gelfand Reciprocity

i
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Principle (cf. [CPS], [DK]), we get the following:
d;

() = Ylia: A6 = SIPO): AG) = X 1A% 5 5°0)
- Z % . %dimK e;A°(j) = Z di dimp e;ATe;

= Z[eifﬁ :S(j)] = £(A™).

Hence, F'T™ preserves the standard filtration of 44. Note that this numerical
argument can be reversed to show that if (ii) holds, then 4 AT cannot be a
proper quotient of @7, A°(i). Thus Proposition 1.5 implies that A is well-
filtered, i.e. (ii) = (i) holds.

To show (i7) = (iii), let 0= X =Y — Z — 0 be a short exact sequence of
modules in F(A). If Y € WF(A), then X,Z € WF(A). Indeed, F™ maps,
on the one hand, the short exact sequence given above into an exact sequence
FH(X)—= F*(Y)—=F*(Z) =0, hence {(F*(Y)) < {(F*(X))+{(F(Z)). On
the other hand, by assumption, {(FT(Y)) = (a(Y), and clearly (a(Y) =
(A(X) + €a(Z) > L(FT(X)) + ¢(FT(Y)). Hence all the inequalities must
be equalities, and thus F(X) and F*(Z) belong to WF(A). Note also that
in this case (i.e. when Y € WF(A)), the map F*(X)— F*(Y) must be a
monomorphism.

Since WF(A) is closed under taking direct sums, (i) implies that every
free module F' is well-filtered, i.e. F' € WF(A). Now, recall that F(A) is closed
under taking kernels of epimorphisms (cf. [DR3] or [DK]), hence for any module
M € F(A) there is a short exact sequence 0 = X — F — M — 0 for some free
module F' and X, F' € F(A). Thus, by the previous considerations we get that
M € WF(A), proving the implication (ii) = (iii).

Note that we have proved that F* is exact on those short exact sequences
in F(A) in which the middle term is well-filtered. Hence (iii) = (iv).

Finally, the implication (iv) = (iii) follows from the definition of WF(A)
while the implication (iii) = (i) is trivial. O

Y

COROLLARY 2.4. Let A be a quasi-hereditary algebra which is right well-
filtered. Then proj.dim 4+ S(i) < proj.dim 4 A(i) for every indez i. In particu-
lar, gl.dim At < gl.dim A.

Proof. Take a projective resolution of the standard A-module A(3). Since
F(A) is closed under taking kernels of epimorphisms, this long exact sequence
is a product of short exact sequences in F(A). By the exactness of F™ on the
subcategory F(A), we get a projective resolution of F*(A(i)) = S+ (i). Hence
the statements of Corollary 2.4 follow. O
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The following example shows that if the algebra A is not well-filtered, the

above statements do not hold in general.

ExaMpLE 2.5 Consider the following path algebra:
1 2 3 4
AA:§@143694635695.

Here we have:

1
Ay =1858 8585,
The algebra A is not right well-filtered, gl.dim A = 2 and gl.dim AT = 3.
Corollary 2.4 immediately implies the first part of the following statement.

PROPOSITION 2.6 Let A be a replete quasi-hereditary algebra which is right
well-filtered. Then A" is hereditary, furthermore (AT)* ~ (A*)"

Proof. Since A is right well-filtered, Corollary 2.4 yields proj.dim 4+ S(i) <
proj.dim 4 A(i). Since A is replete, proj.dim 4 A(i) < 1 for 1 < i < n. Thus
AT is hereditary.

1
In particular, this implies that (A1) = @ @ Ext%; (S(i),S(j)) as a vec-
k=01,j

tor space. One can see easily that Homy (S(i), S(j)) ~ Homu+ (S(i),S(4)),
and

1 . . . .
e (90,500) = ({4 G050 R

On the other hand, A* = @ @ Ext} (S(4),S(j)), and since (A,e) is re-
kij

plete, Corollary 4.6 of [ADL3] implies that (A*,f) is shallow. (Recall that
the quasi-heredity of A* and the definition of (4*)" relate to the (reverse) or-
der f.) Tt also follows from [ADL3] that rad® A* = @ @ ExtA( (7).
k>24,)

Proposition 1.9 implies that rad? (4*)" = 0, hence (A*)" ~ (A*/rad® A*)

ke_s 9 Bxt}y (S(0),5()).

Slnce the multiplication structure is clearly the same in both cases, we get

the required isomorphism. O

Theorem 2.3 shows that for a well-filtered quasi-hereditary algebra A, every
standard filtration of A4 yields a composition series of AT with factors given by
the tops of the corresponding standard modules in the given standard filtration
of A4. The following example shows that in general, not every composition

series will arise in this way.
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ExXAMPLE 2.7 Consider the path algebra given by:
1 2 4
AA:24EBBEB3EB3.
3
Then the regular representation of A% is as follows:
+ _ 1 2
As =54 0303 D4

It is easy to check that A is both left and right well-filtered, hence the standard
filtrations of the indecomposable projective A-modules will be reflected by the
composition series of the corresponding projective modules over A*. On the
other hand we have the composition series 0 —.5(2) = S(2) @ S(4) = P4+ (1)
over AT, and this cannot correspond to any standard filtration of P4 (1), because
P4 (1) does not have any submodules isomorphic to A 4(2). Note also that here
the module P4+(1)/S(2) is not the image of any module M € F(A) under the
action of F'T.

The preceding results can be strengthened if there exists an (algebra) sec-
tion map s : AT = A, i.e. a map s such that its composition with the natural
epimorphism p : A — A" gives the identity map of AT. In this situation A*
can be canonically identified with a subalgebra of A.

The previous example (Example 2.7) shows that a right well-filtered quasi-
hereditary algebra need not have a section map corresponding to A™. On the
other hand, let us just list some cases when A is quasi-hereditary well-filtered
and it has a section map:

— If Aislean quasi-hereditary and monomial, then it is well-filtered by Propo-
sition 1.10, and it is clear that the monomiality of the algebra gives a section
map from A1 to A.

— If A is the Ext-algebra of a lean quasi-hereditary monomial algebra then
from Proposition 1.16 we get that A is well-filtered (and quasi-hereditary).
Furthermore, the proof of Proposition 1.13 implies that A has a section
map.

— If A is a shallow quasi-hereditary algebra, isomorphic to KT'/I for some
graph T and set of relations I, then A will be well-filtered according to

Proposition 1.9, and it will clearly have a section map.

Another sufficient condition for the existence of a section map is given for
path algebras modulo relations by the following proposition.

PROPOSITION 2.8. Let A = KT'/I, and assume that A" is hereditary.
Then there exists a section map s : AT — A.
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Proof. Let T denote the graph which can be obtained from T' by deleting
the arrows j —i for j > i. Let the elements p; be paths in [ and o; € K.
Consider the element 7 = ). a;p; € KT'. Denote by r' the following element
in KT'": r' = >, a;p;, where p; = p; if p; is a path in I and 0 otherwise. Let
I'={r" € KI'"|r € I}. Then, clearly, AT ~ KT'/I' with ' being the graph of
AT, From the fact that A is hereditary, we get that I' = 0. This means that
every path summand of each element of I contains an arrow j —i with j > i.
But then the map KT — KT'/I maps KT' isomorphically onto a subalgebra of
A = KT'/I, which maps isomorphically onto AT via the natural epimorphism.
Hence we get a section map s : AT ~ K[ 5 A = KT/I, as required. O

The existence of a section map s : AT — A relates closely to the concept
of a Borel subalgebra of a quasi-hereditary algebra, as defined by Konig ([K]).
Let us first recall this concept.

Let K be an algebraically closed field. A subalgebra B of a basic quasi-
hereditary algebra (A, e) over the field K is called a strong ezact Borel subal-
gebra, if B contains a maximal semisimple subalgebra which is also a maximal
semisimple subalgebra of A (hence we can identify the simple A- and simple
B-modules), and furthermore:

(i) B is directed (with respect to the order inherited from (A, e)) with simple
standard B-modules;
(i1) A is projective as a left B-module (and hence the functor — ®p A :
mod-B — mod-A4 is exact);
(i4i) for every index i there is an isomorphism Sgp(i) 5 A ~ A4(i).

Thus, strong exact Borel subalgebras describe the standard filtration of
the projective A modules in a similar fashion as AT does when A is right
well-filtered. Notice, however that in case of Borel-subalgebras, the connection
between the composition structure of B and the standard filtration of A is
given by the induction functor G = — ® g A : mod-B — mod-A instead of the
pushdown functor F* : mod-A — mod-AT.

We have the following statement about the relationship of AT and Borel
subalgebras.

THEOREM 2.9. Let K be algebraically closed and let (A,e) be a quasi-
hereditary K -algebra which is right well-filtered. Assume that there is a section
map s : AT = A. Then s(A") = B is a strong exact Borel subalgebra of A.

Proof. Since the ideal I is entirely in the radical of A, the subalgebra B will
clearly contain a maximal semisimple subalgebra which is a maximal semisimple
subalgebra of A as well. Furthermore, it is equally clear that B ~ AT is directed,
with simple standard A*-modules.
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The fact that the module g A is projective, follows from Proposition 1.5.
(iv) and the quasi-heredity of A. Namely, the module 4 A has a filtration with
factors isomorphic (as A-modules, hence also as B-modules) to some A°(7).
However, A°(i) is a projective left A*-module, hence g A must be projective.

Finally, we show that the simple A*-modules induce the standard A-
modules. It is easy to see that FTG(M) ~ M for any M € mod-AT. Indeed,
FtG(M)=M@pA® AT, and A® 4 AT is isomorphic to AT as an A*-module,
so F*@ is equivalent to the identity functor 1,,04-4+. Thus F¥G(S(i)) ~ S(i).
Hence G(S(i)) has a simple top and must be a homomorphic image of P (i).
Note also that the right leanness of A (cf. Corollary 1.7) implies that V(%)
must be in the kernel of the epimorphism P(i) = G(S(i)), hence G(S(i)) is
an epimorphic image of A 4(7). Now, due to the exactness of G, a composition
series of AT is mapped by G into a filtration of G(AT) ~ A4, with factors equal
to the induced modules G(S(i)). Hence the composition length of A4 satisfies:

(Ax) < STIAY, £ Sar ()] - 18a6) £ Sa(h))

i,j

with equality holding if and only if each induced module G(S(i)) ~ A4(i). But
the exactness of F* on F(A) (cf. Theorem 2.3) implies that [A, : S+ (i)] =
[A: A(i)]. Hence the right hand side is indeed ¢(A4). O

Let us mention here that the (right and left well-filtered) algebra given in
Example 2.7 has no Borel subalgebras (cf. [K]). We should, however, mention,
that there exist algebras which are not well-filtered but have Borel subalgebras.
In fact, the algebra given in Example 1.8 illustrates this feature: it is not right
well-filtered, but it is easy to check that it does have a strong exact Borel
subalgebra.

Finally let us mention that in proving Theorem 2.9 we have also obtained
the following result.

PROPOSITION 2.10. Let A be a quasi-hereditary algebra which is right well-
filtered and which has a section map AT — A. Then the functor G = — @4+ A :
mod-At = mod-A is an exact embedding of mod-At into F(A), the category of
right A-modules having a standard filtration, while the restriction of the functor
F* :mod-A — mod-AT to the subcategory F(A) is dense and full.

Proof. The statement follows from the observation that F*G(M) ~ M for
every M € mod-AT. 0
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3. Special constructions

In this section we show that quasi-hereditary algebras arising in two known
constructions satisfy the well-filtered property.

Let us first recall a construction of Auslander in [A]. Let R be an arbitrary
finite dimensional K-algebra and let ¢ be the nilpotency index of rad R, i.e.
assume that rad’ ™! R # 0 and rad’ R = 0. Let us define the left R-module

n
RX =& Xi)
i=1

where the modules X; are all mutually non-isomorphic indecomposable (local)
t

direct summands of & R/ rad® R, ordered in such a way that ¢ < j implies
=1

LI(X;) > LI(X;). (Hsere LI(M) denotes the Loewy length of the module M.)
Finally, let us define A = Endg X. It was shown in [DR2] that A is quasi-
hereditary with respect to the order inherited from the summands X;. Our next
result shows that A is right well-filtered (but not necessarily left well-filtered).

THEOREM 3.1. Let A = Endg(®X;) be the finite dimensional K -algebra
as defined above. Then, with respect to the induced order of the simple A-
modules, A is right well-filtered, and AT is a serial hereditary algebra. If K is
algebraically closed, then there exists a section map s : AT — A, and s(A™) is
a strong exact Borel subalgebra of A.

Proof. Let us denote by e; the idempotent element of A, correspond-
ing to the summand X;. Thus the subspaces e;Ae; can be identified with
Hompg(X;, X;), for 1 <i,j <n.

First we show that IT = {f € A|Im f C rad X } which will be identified
with Hompg(X,rad X). In other words, the elements of I are precisely those
endomorphisms f whose components e; fe; € Hompg(X;, X;) are not epimor-
phisms, i.e. e;fe; € Homp(X;,rad X;) for 1 <i,j < n. Let g € e; Ae; for some
j > 4. Then LI(X;) < LI(X;), where in case of equality the top composition
factors are different. Hence g is not an epimorphism, so g € Hompg(X;,rad X;).
Thus Im g C rad X. Since I'" as an ideal is generated by the sets e; Ae; for j > i
and since Hompg(X,rad X)<Endg(X) = A, we get that I C Hompg(X, rad X).

To show the opposite inclusion, assume that none of the components of f €
A is an epimorphism. Since f = Z” e; fej, it is enough to show that each of the
components belongs to I'*. Thus we may assume that f € e; Ae;, and clearly we
may restrict to the case when ¢ < j. But then ¢ = Li(Im f) < LI(X;) < LI(X;),
hence f can be factored through X; = XZ-/ rad’ X;. The condition on the Loewy
length of X; clearly implies that j < ¢, hence f € e;Ae;Ae; C IT.

We shall now prove that the condition (i¢)" from Proposition 1.4 holds
for A. Consider an element f € e;Ae; Aey for some i < j < k. Clearly, f € I't.
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Thus the considerations above show that f € Hompg(X;, X;) can be factored
through X;, where X; = Xj/radl X;, with £ = Li(Im f) < LI(X) < LI(X;).
Hence t > k, thus f € ejAe; Aey, C ejAcy41Aey, as required.

Next, we show that AT is right serial and hereditary. To this end it is
enough to show that rade; AT is local and projective over AT for 1 < i < n
(here e; € A is identified with its natural image in A™).

Let Epig(X;, X;) be the vector space Hompg(X;, X;)/ Homg(X;, rad X;).
From the description of IT it is easy to see that e;AT can be identified
with @ Epig(X;, X;) (with the natural A" structure). It is also clear that

J

Epip(X;, X;) # 0 if and only if X; = X;/rad" X; for some 1 <t < LI(X;) = L.

1
This gives easily that rad(e;A*) = @ Epig (X;, X;/rad’ X;), and in general,
-1

. ' k. ' .
for 1 < k < ¢, we have rad”(e;AT) = t@l Epip (X;, X;/rad’ X;). Now, in gen-
eral, if LI(X;) < LI(X;) = £, then Hompg(X;, X;) ~ Hompg (X;/rad" "' X;, X;)
(as right A-modules). Hence, if X;/rad”"'X; = Xj, then we get that
rade; AT ~ e;AT, hence rade; A" is local and projective for 1 < i < n, as
required.

As a consequence of our previous considerations, one can see that, given
two epimorphisms f; : X; = Xy and f; : X; = Xy, with ¢« < j < k, f; always
factors through f;. This just means that the algebra AT is left serial as well. (In
other words, AT is a product of K-algebras whose quivers are directed paths.)

Finally, the statement about the existence of a section map s : AT — A
follows from the heredity of AT and Proposition 2.8, while Theorem 2.9 implies
that s(A™) is a strong exact Borels subalgebra of A. O

The following example illustrates that A is indeed not necessarily left well-
filtered.

EXAMPLE 3.2. Let ,
rRR=181a 21
1

be the (left) regular representation of the (hereditary) path algebra R over a
field K. Take ;
rRX=21010,°, @132 3
1

and consider A = Endg(X). Then the (right well-filtered) algebra A has the
following regular representation:

1 2 4
Ay=3d1503® 21 &2 ds.
6 3 671 373

Furthermore,

1
Apr =388 818580
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On the other hand, A is not lean, hence it is not left well-filtered.
Let us remark that (A*)T£(AT)*. Indeed, dimg (4*)t = 10, while
dimg (A1)" = 9. Explicitly,

@) =jolefeies o

and
@' =leleleosesas.

Finally, we recall a construction due to Dlab, Heath and Marko (cf.
[DHM]).

Let R be a commutative self-injective local algebra, finite dimensional over
a splitting field K. Let {X;|1 < i < n} be a set of distinct local ideals
of R, indexed in such a way that X; D X; implies ¢ < j. Note that here the
containment X; C Xj is equivalent to the existence of an epimorphism X; = X;.
Assume that X; = R, furthermore that n = dimg R and for each index 7 we
have rad X; = Zj X, where the summation is taken for those ideals X; which
are properly contained in X;. Finally, let A = Endg(X), where X = '%1 X;.
The main result of [DHM] is that A is quasi-hereditary with respect Zt_o the
inherited order of the summands of X and A admits a duality which keeps the
simple modules S(i) fixed.

Then we can prove the following,.

THEOREM 3.3. Let A be the algebra of the DHM-construction, defined
above. Then A is both left and right well-filtered. Moreover, there exists a
section map s : AT — A, and s(A™T) is a strong ezact Borel subalgebra of A.

Proof. The existence of a duality implies that it is enough to show that A
is right well-filtered. We are going to show that the condition (i7)"” of Propo-
sition 1.4 holds for A. As in the proof of Theorem 3.1, denote by e; the idem-
potent endomorphism corresponding to the summand X; and let f € e;Ae; Aey,
for some i < j < k. Then f = f'f" with f' € e;Ae; ~ Homg(X;, X;) and f" €
Hompg(X;, Xi). Using an earlier remark, f' cannot be an epimorphism, other-
wise we would get that X; C X, implying ¢ > j. Hence, f' € Homg(X;,rad X;)
and thus, f € Hompg(X;,rad X;). Since rad X; = ), X; for some indices
¢ > k, Lemma 2 of [DHM] implies that f can be factored through the canonical
map ®,X¢— ), Xy Thus f € ejAeyy1Aey, as required. Note that — simi-
larly to the situation of Theorem 3.1 — the previous argument also yields that
IT={feA|lmf CradX }.

To complete the proof, we have to show the existence of a section map
s: AT = A. Let us note first, that each (local) ideal X; is isomorphic to the
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factor module R/ Ann X;. Fixing such an isomorphism for every index i, let z; €
X; be the coset of 1 € R under this isomorphism. It is easy to see that if X; O Xj;
(hence i < j), then there is a unique epimorphism f;; : X; = X;, mapping z; to
x;. Denote by B the K-subspace of A generated by the morphisms f;; for every
pair X; D Xj. Since f;; fjx = fir whenever X; D X; D Xy, B is a subalgebra.
The explicit description of I*, given above, implies that B is disjoint from I+.
Since K is a splitting field for R, the canonical epimorphism A4 — A" maps
B surjectively onto A*. Hence, B ~ AT, giving the required section map.
Theorem 2.9 implies that s(A¥) is a strong exact Borel subalgebra of A. O

Observe that in the previous construction, At can be described completely
as follows. Let T be the graph with the set of vertices {1,2,...,n}, and put
an arrow ¢ — j if X; O X; and no k # i, j exists with X; O X} O X;. Then
At ~ KT'/I where the ideal I is generated by all relations a;; — 3;;, with a;;
and 3;; being two arbitrary paths between ¢ and j.

ADDENDUM. After completing their paper the authors have learnt that
S. Konig in his paper “Cartan decompositions and BGG-resolutions”, Man.
Math. 86 (1995), 103-111, considered algebras having a Cartan decomposition
for which every simple module has a BGG resolution. In particular he obtained
the equivalence of Proposition 1.6 (i) and (v) for this special situation.
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