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ÁDÁM BESENYEI

Abstract. In 1876 P. du Bois-Reymond gave an example of an in-
finitely differentiable function whose Taylor series diverges everywhere
except one point. By generalizing this example, in 1884 G. Peano proved

a theorem, often credited to É. Borel, which states that every power se-
ries is a Taylor series of some infinitely differentiable function. The aim
of the paper is to recall Peano’s unnoticed contributions to this result.

1. Introduction.

One of the fundamental notions of real analysis is the Taylor expansion
of infinitely differentiable functions. Everyone is familiar with the Taylor
series of some common functions, yet the general concept behind them is
often misinterpreted. If f is an infinitely differentiable function at x = α,
then one is tempted to think, as Joseph-Louis Lagrange was, that f can be
represented around α by its (formal) Taylor series

∞∑
k=0

f (k)(α)

k!
(x− α)k.

However, in general such a series need not converge in any neighborhood of
α, or if it does converge, its sum need not necessarily be f . The first such
example (which became the standard textbook example) is due to Augustin-
Louis Cauchy, who noted in 1823 [4, p. 230] that for the function defined

as F (x) = exp(−1/x2) (x 6= 0) and F (0) = 0 one has F (k)(0) = 0 for
every k = 0, 1, . . . yielding a constant zero Taylor series which obviously
does not equal to F . More than 50 years later, in 1876 [5, 6] the German
mathematician Paul du Bois-Reymond gave the first example of an infinitely
differentiable function whose Taylor series is divergent everywhere except
at 0. Since then, numerous other examples were constructed illustrating
the possible ill-behavior of Taylor series. In fact, Taylor series form a very
diverse set inasmuch as it coincides with that of power series as the following
remarkable theorem states.

Theorem. For any sequence of real numbers (cn) there is an infinitely dif-

ferentiable function f : R→ R such that f (n)(0) = cn for all n = 0, 1, 2, . . . .

This result was stated and proved in the doctoral thesis of the French
mathematician Émile Borel (containing also the proof of the Heine-Borel
theorem) published in 1895 [3, p. 35–44]. Therefore, it became known as
Borel’s theorem and in the past decade several proofs were given (see [11,
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p. 244], [12], [10], [9, p. 55], [13, Ch. 19, Ex. 12] and also [1, p. 122], [2, p.
190,193] for some other references). However, Borel’s dissertation was not
the first appearance of the theorem, the annotations written to the famous
analysis book of Angelo Genocchi and Giuseppe Peano published in 1884 [7]
also included this result. After the publication of the book, it turned out
that these annotations (in fact the whole book) were Peano’s own contribu-
tions, see [8, p. 15–21] for details. In Annotation No. 67, Peano generalized
the example of du Bois-Reymond by explicitly stating Borel’s theorem and
providing a concise constructive proof of it. In this short note, we recall
Peano’s unnoticed proof in a somewhat modernized form by filling in some
details using some nice arguments due to du Bois-Reymond. Peano’s proof,
similarly to the aforementioned ones, is based only on termwise differentia-
bility of uniformly convergent series of functions and it is among the simplest
ones; thus it can also be directly included in a classroom setting.

2. Peano’s function and proof.

By following Peano, we consider the function

(2.1) f(x) =

∞∑
k=0

akx
k

1 + bkx2
.

Let us suppose that (an) is an arbitrary and (bn) is a positive sequence such
that f is an infinitely many times termwise differentiable function. We then
claim that

(2.2)

f(0) = a0, f ′(0) = a1, and

f (n)(0)

n!
= an +

[n/2]∑
j=1

(−1)jan−2jb
2j
n−2j (n ≥ 2).

Indeed, the geometric series yields

akx
k

1 + bkx2
= akx

k
∞∑
j=0

(−1)jbjkx
2j =

∞∑
j=0

(−1)jakb
j
kx

2j+k (|bkx2| < 1),

therefore,(
akx

k

1 + bkx2

)(n)

(0) =

{
n!(−1)jan−2jb

j
n−2j , if k = n− 2j for some j,

0, otherwise.

Now, from (2.2) it is clear that for any given (bn) and (cn), we can uniquely

determine (an) such that f (n)(0) = cn holds for n = 0, 1, . . . . Further, as
Peano also noted, by choosing cn = (n!)2 we obtain a function whose Taylor
series around 0 is

∑∞
n=0 n!xn which has radius of convergence 0 and thus

diverges everywhere except at x = 0.
It remains to prove that the series (2.1) is infinitely many times termwise

differentiable. This will be the case if an/bn tends to 0 in a sufficiently high
order such that f and the series obtained by arbitrary many formal termwise
differentiations are uniformly convergent on bounded real intervals. More
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specifically, invoking du Bois-Reymond [5, 6], we show that

(2.3)

∣∣∣∣∣
(

akx
k

1 + bkx2

)(n)
∣∣∣∣∣ ≤ (n+ 1)!

akk!

bk
|x|k−n−2 (k ≥ n+ 2).

Then choosing, e.g., bk = (k!)2ak, we obtain

(2.4)
∑

k≥n+2

∣∣∣∣∣
(

akx
k

1 + bkx2

)(n)
∣∣∣∣∣ ≤ (n+ 1)!

∑
k≥n+2

|x|k−n−2

k!

where the right-hand side is uniformly convergent on every finite interval.
Hence, the Weierstrass M-test finally yields the infinite termwise differen-
tiability of f . To verify (2.3), let b > 0 be arbitrary and consider

xk

b2 + x2
=
xk−1

2

(
1

x+ bi
+

1

x− bi

)
.

The generalized Leibniz rule implies(
xk

b2 + x2

)(n)

=
1

2

n∑
j=0

(
n

j

)
(k − 1) · . . . · (k − 1− n+ j)xk−1−n+j

×
(

(−1)jj!

(x+ bi)j+1
+

(−1)jj!

(x− bi)j+1

)
=

1

2
n!xk−n−2

n∑
j=0

(−1)j
(k − 1) · . . . · (k − 1− n+ j)

(n− j)!

×
(

xj+1

(x+ bi)j+1
+

xj+1

(x− bi)j+1

)
where clearly ∣∣∣∣ xj+1

(x+ bi)j+1
+

xj+1

(x− bi)j+1

∣∣∣∣ ≤ 2

so that (2.3) follows.
So by choosing bk = (k!)2ak (or any (bk) such that the right-hand side of

(2.4) is uniformly convergent on bounded intervals), for any given sequence
(cn) we can uniquely determine through (2.2) a sequence (an) such that the

function (2.1) is infinitely differentiable and f (n)(0) = cn for n = 0, 1, . . . .
This is Peano’s theorem.

3. Remarks.

Peano also indicated the estimating (2.3) without explicitly mentioning
the factors (n+ 1)! and k!, but referring to du Bois-Reymond. By using this
estimate, du Bois-Reymond proved in [6] that the function

∞∑
k=1

(−1)k+1

(2k)!

x2k

x2 + a2
k

is infinitely differentiable if ak → 0. Moreover, he showed that this func-
tion can not be represented as a power series. However, his proof was not
perfectly rigorous since he manipulated divergent series. Later more gen-
eral results were obtained, see [1] for a comprehensive history of infinitely
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differentiable functions which are not representable by power series (i.e.,
non-analytic functions).
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[11] G. Pólya, Ein einfache, mit funktionentheoretischen Aufgaben verknüpfte, hinre-
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