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Abstract. Let hom(H,G) denote the number of homomorphisms from a graph
H to a graph G. Sidorenko’s conjecture asserts that for any bipartite graph H, and
a graph G we have

hom(H,G) ≥ v(G)v(H)

(
hom(K2, G)

v(G)2

)e(H)

,

where v(H), v(G) and e(H), e(G) denote the number of vertices and edges of the
graph H and G, respectively. In this paper we prove Sidorenko’s conjecture for
certain special graphs G: for the complete graph Kq on q vertices, for a K2 with
a loop added at one of the end vertices, and for a path on 3 vertices with a loop
added at each vertex. These cases correspond to counting colorings, independent
sets and Widom-Rowlinson colorings of a graph H. For instance, for a bipartite
graph H the number of q-colorings ch(H, q) satisfies

ch(H, q) ≥ qv(H)

(
q − 1

q

)e(H)

.

In fact, we will prove that in the last two cases (independent sets and Widom-
Rowlinson colorings) the graph H does not need to be bipartite. In all cases, we
first prove a certain correlation inequality which implies Sidorenko’s conjecture in
a stronger form.

1. Introduction

Let v(G) and e(G) denote the number of vertices and edges of a graph G. For a
graph H and G let hom(H,G) denote the number of homomorphisms from H to G,
i.e., the number of maps ϕ : V (H)→ V (G) such that (ϕ(u), ϕ(v)) ∈ E(G) whenever
(u, v) ∈ E(H).

Sidorenko’s conjecture [19, 20] claims that for a bipartite graph H on v(H) = n
vertices and e(H) edges, and an arbitrary graph G (possibly with loops) we have

hom(H,G) ≥ v(G)n
(
hom(K2, G)

v(G)2

)e(H)

.

There has been many work on Sidorenko’s conjecture, see for instance [2, 6, 7, 10,
13–15,17–20,22,23]. It is known that Sidorenko’s conjecture holds true if H belongs
to certain classes of graphs, for instance if H is a tree or a complete bipartite graph.
In this paper we follow another route: we prove Sidorenko’s conjecture when G is
fixed, namely when G is a complete graph (counting colorings) or a complete graph
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on 2 vertices with a loop added at one of the vertices (counting independent sets), or
a path on 3 vertices with a loop added at each vertex (counting Widom-Rowlinson
colorings).

When G = Kq, the complete graph on q vertices, then hom(H,Kq) = ch(H, q)
counts the proper colorings of H with q colors. In this case Sidorenko’s conjecture
states that

ch(H, q) ≥ qn
(
q − 1

q

)e(H)

.

When G is a K2 with a loop added at one vertex then hom(H,G) = i(H) counts
the number of independent sets of the graph H. In this case Sidorenko’s conjecture
states that

i(H) ≥ 2n
(
3

4

)e(H)

.

Note that both colorings and independent sets are related to certain statistical
physical models, the Potts model and the hard-core model. Another notable statis-
tical physical model is the so-called Widom-Rowlinson model [3, 24]. This model
corresponds to the case when G is a path on 3 vertices with a loop added at each
vertex (see Fig. 1). We denote this graph by P ◦3 , then hom(H,P ◦3 ) = wr(H) counts
the number of 3–colorings of H with colors white, red and blue such that a red and
a blue vertex cannot be adjacent, but there is no other restriction. Indeed, for a ho-
momorphism φ : V (H)→ P ◦3 let us consider the pre-image sets A = φ−1({a}) (red),
B = φ−1({b}) (white) and C = φ−1({c}) (blue) then the only restriction is that a red
and a blue vertex cannot be adjacent. This model has also been extensively studied
in extremal graph theory, see the recent work by Cutler and Radcliffe [11] and by
Cohen, Perkins and Tetali [4].

a b c

Figure 1. The graph P ◦3

In the Widom-Rowlinson coloring case, Sidorenko’s conjecture states that

wr(H) ≥ 3n
(
7

9

)e(H)

as v(P ◦3 ) = 3, and hom(K2, P
◦
3 ) = 7.

In this short note we prove all these claims. In fact, in all cases we prove a
correlation inequality from which the claim follows in a stronger form.

Theorem 1.1. Let H = (A,B,E) be a bipartite graph. Let c be a uniform random
proper coloring of H with q colors. Then,

P(c(u) = c(v)) ≤ 1

q

if u and v are in different parts of the bipartite graph, and

P(c(u) = c(v)) ≥ 1

q
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if u and v are in the same part of the bipartite graph. The former part is equivalent
with the statement that for any bipartite graph H with a missing edge e between the
two parts we have

(1.1)
ch(H + e, q)

ch(H, q)
≥ q − 1

q
.

Corollary 1.2. For any bipartite graph H on n vertices and e(H) edges we have

ch(H, q) ≥ qn
(
q − 1

q

)e(H)

.

Furthermore, if the graph H contains εn vertex disjoint cycles of length at most `,
then there is some cq(ε, `) > 1 such that

ch(H, q) ≥ cq(ε, `)
nqn
(
q − 1

q

)e(H)

.

We will see that the first inequality in Corollary 1.2 is asymptotically tight for
sparse graphs not containing short cycles if q is (much) larger than the largest degree
of the graph H, see Remark 2.1.

We will prove a very similar result for the number of independent sets. In fact,
in the case of independent sets we can drop the condition of bipartiteness of H. On
the other hand, this result is only asymptotically tight in very trivial cases unlike the
bound on the number of colorings, but at least it shows that Sidorenko’s conjecture
holds true in this case. This result is much simpler than the claim on colorings.

Theorem 1.3. For any graph H and its edge e we have

(1.2)
i(H)

i(H − e)
≥ 3

4
.

Corollary 1.4. For any graph H on n vertices and e(H) edges we have

i(H) ≥ 2n
(
3

4

)e(H)

.

Furthermore, if the graph H is connected then,

i(H) >
3

4

(
1 +
√
5

3

)n

· 2n
(
3

4

)e(H)

.

Finally, we prove an analogous theorem for Widom-Rowlinson colorings.

Theorem 1.5. For any graph H and its edge e we have

(1.3)
wr(H)

wr(H − e)
≥ 7

9
.

Then, as for the independent set case, the above result implies the following ex-
tended version of Sidorenko’s conjecture for the graph P ◦3 .

Corollary 1.6. For any graph H on n vertices and e(H) edges we have

wr(H) ≥ 3n
(
7

9

)e(H)

.



4 P. CSIKVÁRI AND Z. LIN

Furthermore, if the graph H is connected then,

wr(H) >
9

10

(
3(1 +

√
2)

7

)n

· 3n
(
7

9

)e(H)

.

Notation. In this paper all graphs are simple unless otherwise specified. For a
graph H = (V (H), E(H)) and an edge set E ′ ⊆ E(H), the graph H−E ′ is the graph
(V (H), E(H) \ E ′). Similarly, if V ′ ⊆ V then H − V ′ denotes the subgraph of H
induced by the vertex set V (H) \ V ′.

This paper is organized as follows. In the next section we study colorings of
bipartite graphs, we will prove Theorem 1.1 and Corollary 1.2. In Section 3 we
study the number of independent sets, we will prove Theorem 1.3 and Corollary 1.4.
In Section 4 we study the number of Widom-Rowlinson colorings, we will prove
Theorem 1.5 and Corollary 1.6.

2. Colorings

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. Note that by the symmetry of colors we have

P(c(u) = c(v) = 1) =
1

q
P(c(u) = c(v)),

and

P(c(u) = 1, c(v) = 2) =
1

q(q − 1)
P(c(u) 6= c(v)).

Hence the claim

P(c(u) = c(v)) ≤ 1

q

is equivalent with

P(c(u) = c(v) = 1) ≤ P(c(u) = 1, c(v) = 2)

if u and v are in different parts of the bipartite graph. Equivalently,

P(c(u) = c(v) = 1)+P(c(u) = c(v) = 2) ≤ P(c(u) = 1, c(v) = 2)+P(c(u) = 2, c(v) = 1).

Now let us conditioning on every colors different from colors 1 and 2. So assume
that we know the colors of every vertex except the colors of those who gets color 1
or 2. Let us consider the partial colorings c in which the color of a vertex is fixed
if it is not 1 or 2, and the uncolored vertices will be assigned color 1 or 2. Note
that when we color the uncolored vertices by 1 and 2 we only have to make sure
that the components of the induced subgraph of uncolored vertices must be properly
colored. Now if u and v are in different components then by flipping the coloring on
the component of u we see that the color of u and v will be the same or different in
the same number of colorings which extends the partial coloring. On the other hand,
if they are in the same component then u and v must have different color. Hence the
claim follows.

The claim when u and v are in the same part works exactly the same way, only
this time if u and v are in the same component then their color is the same.
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Now if H is a bipartite graph with a missing edge e = (u, v) ∈ E(H) between the
two parts. Then the probability that in a proper coloring of H, the vertices u and v
will get different colors is

ch(H + e, q)

ch(H, q)
≥ 1− 1

q
≥ q − 1

q
.

So this is just rephrasing the first claim. �

Proof of Corollary 1.2. Let e(H) = m, and let E(H) = {e1, e2, . . . , em} then by the
last claim we have

ch(H, q)

ch(H − {e1, . . . , em}, q)
=

ch(H, q)

ch(H − e1, q)
ch(H − e1, q)

ch(H − {e1, e2}, q)
. . .

ch(H − {e1, . . . , em−1}, q)
ch(H − {e1, e2, . . . , em}, q)

≥

≥
(
q − 1

q

)m
.

Note that H − {e1, e2, . . . , em} is simply the empty graph on |V (H)| = n vertices so
ch(H − {e1, e2, . . . , em}, q) = qn. Hence

ch(H, q) ≥ qn
(
q − 1

q

)m
.

To prove the second statement, let S be the union of εn vertex disjoint cycles
of length at most ` together with the remaining isolated vertices. In other words,
S = C1 ∪C2 ∪ · · · ∪Ck ∪ (n− e(S))K1, where Ci is a cycle of even length ti ≤ `, and
k = εn. Let E(H) \ E(S) = {e1, e2, . . . , er}, so r = e(H)− e(S). Then,

ch(H, q)

ch(S, q)
=

ch(H, q)

ch(H − e1, q)
ch(H − e1, q)

ch(H − {e1, e2}, q)
. . .

ch(H − {e1, . . . , er−1}, q)
ch(H − {e1, e2, . . . , er}, q)

≥

≥
(
q − 1

q

)r
.

Note that e(S) = |C1|+ · · ·+ |Ck|, and

ch(Ci, q) = (q−1)ti+(q−1) = (q−1)ti
(
1 +

1

(q − 1)ti−1

)
≥ (q−1)ti

(
1 +

1

(q − 1)`−1

)
.

Hence

ch(S, q) ≥ qn−e(S)(q − 1)e(S)
(
1 +

1

(q − 1)`−1

)k
.

Then

ch(H, q) ≥ ch(S, q)

(
q − 1

q

)r
≥ qn−e(S)(q − 1)e(S)

(
1 +

1

(q − 1)`−1

)εn(
q − 1

q

)r
.

Hence

ch(H, q) ≥ cq(ε, `)
nqn
(
q − 1

q

)e(H)

,

where

cq(ε, `) =

(
1 +

1

(q − 1)`−1

)ε
.

�
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Remark 2.1. So we see that for a bipartite graph H on v(H) vertices and e(H)
edges we have

ln ch(H, q)

v(H)
≥ ln(q) +

e(H)

v(H)
ln

(
q − 1

q

)
.

It is known that it is asymptotically tight in the following sense: let G be a graph
with girth g (i. e., the length of the shortest cycle is g), and assume that q > 8d,
where d is the largest degree of the graph G. Then Abért and Hubai [1] proved that∣∣∣∣ ln ch(G, q)v(G)

−
(
ln(q) +

e(G)

v(G)
ln

(
q − 1

q

))∣∣∣∣ ≤ 2
(8d/q)g−1

1− 8d/q
.

This is true for any graph G, not just bipartite. The constant 8 comes from a theorem
of Sokal [21] which asserts that the chromatic polynomial of a graph G has no zero of
absolute value bigger than Cd, where C is a constant less than 8. Sokal [21] actually
proved 7.96... and it was improved to 6.91... by Fernandez and Procacci [12]. It is
conjectured that C can be taken to be 2.

Another related result is about colorings of random graphs. Let Gn = G(n, c
n
) be

an Erdős-Rényi random graph. Then it is known [5,8] that for a fixed q and for small
c we have

lim
n→∞

E
ln ch(Gn, q)

v(Gn)
= ln(q) +

c

2
ln

(
q − 1

q

)
.

Interestingly, there is a phase transition at some cq, where the left hand side starts to
be strictly smaller then the right hand side, see for instance [8, 25] for details. Now
we see that for bipartite Erdős-Rényi random graphs this cannot happen. On the
other hand, if H = (A,B,E) is a balanced bipartite graph, i.e., |A| = |B| then even
for a very dense bipartite graph we have

ch(H, q) ≥
{

(q/2)n if q is even,
((q − 1)(q + 1)/4)n/2 if q is odd.

So if we introduce the function

f(q) =

{
ln
(
q
2

)
if q is even,

1
2
ln
(

(q−1)(q+1)
2

)
if q is odd.

then it is a natural conjecture that for balanced bipartite Erdős-Rényi random graphs
we have

lim
n→∞
2 | n

E
ln ch(Gn, q)

v(Gn)
= max

(
ln(q) +

c

2
ln

(
q − 1

q

)
, f(q)

)
.

3. Number of independent sets

In this section we prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Let i(H | condition) be the number of independent sets I
satisfying the given condition. For e = (u, v) ∈ E(H) we have

i(H) = i(H | u, v /∈ I) + i(H | u ∈ I, v /∈ I) + i(H | u /∈ I, v ∈ H) + i(H | u, v ∈ I).

Note that

i(H | u, v /∈ I) = i(H − {u, v}), i(H | u ∈ I, v /∈ I) = i(H − {u, v} −N(u)),

i(H | u /∈ I, v ∈ H) = i(H − {u, v} −N(v)), i(H | u, v ∈ I) = 0.
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Similarly,

i(H−e) = i(H−e | u, v /∈ I)+i(H−e | u ∈ I, v /∈ I)+i(H−e | u /∈ I, v ∈ H)+i(H−e | u, v ∈ I).

Note that

i(H − e | u, v /∈ I) = i(H − {u, v}), i(H − e | u ∈ I, v /∈ I) = i(H − {u, v} −N(u)),

i(H−e | u /∈ I, v ∈ I) = i(H−{u, v}−N(v)), i(H−e | u, v ∈ I) = i(H−{u, v}−N(u)−N(v)).

Clearly,

i(H−{u, v}−N(u)−N(v)) ≤ min(i(H−{u, v}), i(H−{u, v}−N(u)), i(H−{u, v}−N(v)),

whence inequality (1.2) hold true. �

Proof of Corollary 1.4. The proof of this statement follows the same way from The-
orem 1.3 as Corollary 1.2 followed from Theorem 1.1. Indeed,

i(H) ≥ 2n
(
3

4

)e(H)

immediately follows from the fact that the empty graph on n vertices has 2n inde-
pendent sets and inequality (1.2).

If H is connected then let Tn be a spanning tree of H. Then

i(H) ≥ i(Tn)

(
3

4

)e(H)−(n−1)

.

Note that among trees on n vertices the path Pn has the smallest number of inde-
pendent sets, for a proof see for instance [9]. Hence

i(H) ≥ i(Pn)

(
3

4

)e(H)−(n−1)

.

It is easy to see that i(Pn) = i(Pn−1) + i(Pn−2) and i(P1) = 2, i(P2) = 3, whence
i(Pn) = Fn+2, where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 if n ≥ 2, the sequence of
Fibonacci-numbers. It is easy to see by induction (or by the explicit formula for Fn)
that

i(Pn) >

(
1 +
√
5

2

)n

.

Hence

i(H) >

(
1 +
√
5

2

)n(
3

4

)e(H)−(n−1)

=
3

4

(
1 +
√
5

3

)n

· 2n
(
3

4

)e(H)

.

�

4. Widom-Rowlinson model

The purpose of this section is to prove Theorem 1.5, we will use a similar approach
as in the proof of Theorem 1.3 with an extra crucial lemma.



8 P. CSIKVÁRI AND Z. LIN

Proof of Theorem 1.5. For each φ ∈ Hom(H,P ◦3 ) and a vertex u of H let us write
u ∈ A,B or C if and only if φ(u) = a, b or c, respectively. Then, for each e = (u, v) ∈
E(H) we have

wr(H) = wr(H | u, v ∈ A) + wr(H | u ∈ A, v ∈ B) + wr(H | u ∈ A, v ∈ C)
+ wr(H | u ∈ B, v ∈ A) + wr(H | u, v ∈ B) + wr(H | u ∈ B, v ∈ C)
+ wr(H | u ∈ C, v ∈ A) + wr(H | u ∈ C, v ∈ B) + wr(H | u, v ∈ C).

In view of the symmetry of P ◦3 , the above expression reduces to
wr(H) = 2wr(H | u, v ∈ A) + 2wr(H | u ∈ A, v ∈ B) + 2wr(H | u ∈ A, v ∈ C)

+ 2wr(H | u ∈ B, v ∈ A) + wr(H | u, v ∈ B)

= 2

(
wr(H | u, v ∈ A) + wr(H | u ∈ A, v ∈ B) + wr(H | u ∈ B, v ∈ A)

)
+ wr(H | u, v ∈ B),

since (u, v) is an edge of H and so wr(H | u ∈ A, v ∈ C) must vanish. On the other
hand, we have
wr(H − e) = 2wr(H − e | u, v ∈ A) + 2wr(H − e | u ∈ A, v ∈ B) + 2wr(H − e | u ∈ A, v ∈ C)

+ 2wr(H − e | u ∈ B, v ∈ A) + wr(H − e | u, v ∈ B).

It is easy to see that
wr(H | u, v ∈ A) = wr(H − e | u, v ∈ A),

wr(H | u ∈ A, v ∈ B) = wr(H − e | u ∈ A, v ∈ B),

wr(H | u ∈ B, v ∈ A) = wr(H − e | u ∈ B, v ∈ A),
wr(H | u, v ∈ B) = wr(H − e | u, v ∈ B)

and
wr(H | u, v ∈ A) ≤ min{wr(H | u ∈ A, v ∈ B),wr(H | u ∈ B, v ∈ A),wr(H | u, v ∈ B)}.
These inequalities imply the desired inequality (1.3) if we take the following lemma
into account.

Lemma 4.1. For each e = (u, v) ∈ E(H) we have

wr(H − e | u, v ∈ A) ≥ wr(H − e | u ∈ A, v ∈ C).

Proof. An equivalent way of phrasing the above lemma is that for a uniformly chosen
random Widom-Rowlinson coloring of H − e we have

P(v ∈ A|u ∈ A) ≥ P(v ∈ C|u ∈ A).
Now let us condition not only on u ∈ A, but also on the knowledge of the set B. Once
we know the set B, all connected components of V (H−e)\B must be monochromatic.
If u and v are in different connected components of V (H − e) \ B then with equal
probability, the color of v is red or blue. If u and v are in the same component of
V (H − e) \ B then with probability 1 they have the same color so that in all cases
we have

P(v ∈ A|u ∈ A;B) ≥ P(v ∈ C|u ∈ A;B).

Hence
P(v ∈ A|u ∈ A) ≥ P(v ∈ C|u ∈ A),

which finishes the proof of the lemma. �

The proof of Theorem 1.5 is thus completed. �
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Proof of Corollary 1.6. The first statement follows as before. So we only prove the
second statement. If H is connected then let Tn be a spanning tree of H. Then,

wr(H) ≥ wr(Tn)

(
7

9

)e(H)−(n−1)

.

Now we use Theorem 4.3 of [10] for G = P ◦3 , that is the following lower bound on the
number of homomorphisms of a tree Tn on n vertices into a given graph G:

hom(Tn, G) ≥ exp(Hλ(G))λ
n−1,

where λ is the largest eigenvalue of G, in our case it is 1+
√
2, and Hλ(G) is defined as

follows: if y is the positive eigenvector of unit length corresponding to the eigenvalue
λ, then qi = y2i is a probability distribution Q on the vertices, its entropy is

Hλ(G) =
n∑
i=1

qi log
1

qi
.

In our case y =
(

1
2
, 1√

2
, 1
2

)
so Q =

(
1
4
, 1
2
, 1
4

)
, its entropy is 3

2
log 2. Hence

wr(Tn) = hom(Tn, P
◦
3 ) ≥ 2

√
2(1 +

√
2)n−1.

Therefore,

wr(H) ≥ 2
√
2(1 +

√
2)n−1

(
7

9

)e(H)−(n−1)

.

We have

2
√
2(1 +

√
2)n−1

(
7

9

)e(H)−(n−1)

= 2
√
2 · 7

9

1

1 +
√
2

(
3(1 +

√
2)

7

)n

· 3n
(
7

9

)e(H)

>

>
9

10

(
3(1 +

√
2)

7

)n

· 3n
(
7

9

)e(H)

.

�

5. Concluding remarks

It is a very natural question that for which graphs G the inequality
hom(H,G)

hom(H − e,G)
≥ hom(K2, G)

v(G)2

holds true for every (bipartite) graph H. It is known that one cannot handle
Sidorenko’s conjecture only using this tool: London [16] showed a counterexample
even when H = P4, a path on 4 vertices, however G was a weighted graph in this
case as London was interested in an inequality for matrices, not graphs.
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