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Abstract. In this paper we study various extremal problems related to
some combinatorially defined graph polynomials such as matching poly-
nomial, chromatic polynomial, Laplacian polynomial. It will turn out
that many problems attain its extremal value in the class of threshold
graphs. To attack these kinds of problems we survey several applications
of the so-called Kelmans transformation.

Mea culpa. This paper was rewritten after we learnt that we missed
several important papers on the Kelmans transformation. We hope that
we managed to fix the historical notes. We also grasped the opportunity
to make the manuscript more readable.

1. Introduction

Let N(x) denote the set of neighbors of the vertex x. Then the threshold
graphs are most easily defined as those graphs for which every vertices u
and v, the sets N(u)\{v} and N(v)\{u} are comparable respected to set-
inclusion.

In this paper we show that various extremal problems on combinatorially
defined polynomials of graphs have its maximum or minimum attained at a
threshold graph. Our results will have the following shape: let PG(x) = xn +
an−1x

n−1+· · ·+a0 be some polynomial of the graph G (for example matching
polynomial, chromatic polynomial) then there exist a degree-maximal graph
G∗ with the same number of edges such that for the polynomial PG∗(x) =
xn+bn−1x

n−1+· · ·+b0 we have |ak| ≤ |bk| (or |ak| ≥ |bk|) for all 0 ≤ k ≤ n−1
or the largest (smallest) real root of the polynomial PG is greater (smaller)
than that of PG∗ ; the exact relation depends on the type of polynomial
(e. g., for the matching polynomial we show that |bk| ≤ |ak| while for the
independence polynomial we will show that |bk| ≥ |ak| for all 0 ≤ k ≤ n−1).
We will distinguish this two type of results as coefficient majorization result
and root majorization result.

Our main tool will be the so-called Kelmans-transformation. This transfor-
mation controls efficiently many graph parameters and the threshold graphs
of this transformation are exactly the graphs known as threshold graphs.
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The rest of the paper is organized as follows. In Section 2 we introduce
the concept of the Kelmans transformation. In Section 3 we give a coefficient
majorization result for the matching polynomial as a warm-up. In Section 4
we prove a root majorization result for the matching polynomial. In Section
5 we present a coefficient majorization and a root majorization result for the
independence polynomial, while in Section 6 we give a coefficient majoriza-
tion result for the chromatic polynomial. In Section 7 we prove a lemma on
the effect of the Kelmans transformation on the so-called exponential-type
graph polynomials. Using this lemma we prove a coefficient majorization
result for the Laplacian polynomial in Section 8. In Section 9 we give an
application of the so-called NA-Kelmans transformation on the number of
closed walks. In Section 10 we give the studied graph polynomials of the
threshold graphs. We end the paper with some remarks on the use of the
Kelmans transformation.

We note that some of the above mentioned results are very easy, but others
requires tedious preparations. In fact, the root majorization results and the
coefficient majorization result of the Laplacian polynomial can be considered
as the main results of this paper.

Notation: Throughout the paper we will consider only simple graphs. We
will follow the usual notation: G is a graph, V (G) is the set of its vertices,
E(G) is the set of its edges, e(G) denotes the number of edges, N(x) is the set
of the neighbors of x, |N(vi)| = deg(vi) = di denote the degree of the vertex
vi. We will also use the notation N [v] for the closed neighbor N(v) ∪ {v}.

For S ⊂ V (G) the graph G−S denotes the subgraph of G induced by the
vertices V (G)\S while G|S denotes the subgraph of G induced by the vertex
set S. If e ∈ E(G) then G − e denotes the graph with vertex set V (G) and
edge set E(G)\{e}. We also use the notation G/e for the graph obtained
from G by contracting the edge e; clearly the resulting graph is multigraph.

For polynomials P1 and P2 we will write P1(x) ≫ P2(x) if they have the
same degree and the absolute value of the coefficient of xk in P1(x) is at
least as large as the absolute value of the coefficient of xk in P2(x) for all
0 ≤ k ≤ n.

Additional definitions and notation will be given in the sections.

2. Kelmans transformation

The following transformation will be the main tool in this paper. We will
call it the Kelmans transformation.

Definition 2.1. Let u, v be two vertices of the graph G, we obtain the
Kelmans transformation of G as follows: we erase all edges between v and
N(v)\(N(u)∪{u}) and add all edges between u and N(v)\(N(u)∪{u}). Let
us call u and v the beneficiary and the co-beneficiary of the transformation,
respectively. The obtained graph has the same number of edges as G; in
general we will denote it by G′ without referring to the vertices u and v.
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Figure 1. The Kelmans transformation.

The original application of the Kelmans transformation was the following
theorem on the number of spanning trees. We will also use this theorem and
for the sake of completeness we will give a new proof.

Theorem 8.5. [15] Let G be a graph and G′ be a graph obtained from G by
a Kelmans transformation. Let τ(G) and τ(G′) be the number of spanning
trees of the graph G and G′, respectively. Then τ(G′) ≤ τ(G).

In [14] Kelmans applied his transformation in the theory of network re-
liability as well. Let Rk

q (G) be the probability that if we remove the edges
of the graph G with probability q, independently of each other, then the
obtained random graph has at most k components. Kelmans proved that his
transformation increases this probablity for any q (see Theorem 3.2 of [14]).
We note that we use our notation.

Theorem 2.2. [14] Let G be a graph and G′ be a graph obtained from G by
a Kelmans transformation. Then Rk

q (G) ≥ Rk
q (G

′) for every q ∈ (0, 1).

Satyanarayana, Schoppmann and Suffel [24] rediscovered Theorem 8.5 and
Theorem 2.2 (in a weaker form), they called the inverse of the Kelmans
transformation “swing surgery”. Brown, Colbourn and Devitt [3] studied the
Kelmans transformation further in the context of network reliability.

In [15] the Kelmans transformation was already introduced for weighted
graph, in particular for multigraphs. We will primarily concern with sim-
ple graphs, but we show that the Kelmans transformation can be applied
efficiently in a much wider range of problems. In [5] the author proved the
following result concerning the spectral radius of the adjacency matrix.

Theorem 2.3. [5] Let µ(H) denote the largest eigenvalue of the adjacency
matrix of the graph H. Let G be a graph and let G′ be a graph obtained from
G by some Kelmans transformation. Then

µ(G′) ≥ µ(G).

Remark 2.4. The {u, v}-independence and the Nordhaus-Gaddum property
of the Kelmans transformation. The key observation is that up to isomor-
phism G′ is independent of u or v being the beneficiary or the co-beneficiary
if we apply the transformation to u and v. Indeed, in G′ one of u or v will
be adjacent to NG(u) ∪ NG(v), the other will be adjacent to NG(u) ∩ NG(v)
(and if the two vertices are adjacent in G then they will remain adjacent,
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too). This observation also implies that the Kelmans transformation is also a
Kelmans transformation to the complement of the graph G with the change
of the role of u and v.

This means that whenever we prove that the Kelmans transformation
increases some parameter p(G), i.e., p(G′) ≥ p(G) then we immediately
obtain that p(G′) ≥ p(G) as well. This observation is particularly fruitful
in those problems where one considers a graph and its complement together
like in Nosal’s problem of bounding the sum of the spectral radii of the graph
G and its complement. The following result of this type was obtained in [5].

Theorem 2.5. [5]

µ(G) + µ(G) ≤ 1 +
√

3

2
n.

⋆ ⋆ ⋆

We end this section by some remarks on the threshold graphs of this
transformation. We show that the threshold graphs of the Kelmans trans-
formation are exactly the graphs known as threshold graphs.

Let us say that u dominates v if N(v)\{u} ⊆ N(u)\{v}. Clearly, if we
apply the Kelmans transformation to a graph G and u and v such that u is
the beneficiary then u will dominate v in G′. If neither u dominates v, nor
v dominates u we say that u and v are incomparable; in this case we call
the Kelmans transformation applied to u and v proper. One can prove the
following simple statement. (The proof of part (a) of this theorem can be
found in [5].)

Theorem 2.6. (a) By the application of a sequence of Kelmans transforma-
tion one can always transform an arbitrary graph G to a graph Gtr in which
the vertices can be ordered so that whenever i < j then vi dominates vj.

(b) Furthermore, one can assume that Gtr has exactly the same number of
components as G. (Note that all but one component of a threshold graph Gtr

are isolated vertices.)

Figure 2. A threshold graph of the Kelmans transformation.

We also mention the following very simple statement. This was again
discovered and rediscovered many times.
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Theorem 2.7. [12, 20] A graph G is the threshold graph of the Kelmans
transformation if and only if it can be obtained from the empty graph by the
following steps: adding some isolated vertices to the graph or complementing
the graph.

Remark 2.8. Note that the graphs described in the previous theorem are
called “threshold graphs” in the literature. Hence the threshold graphs of the
Kelmans transformation are exactly the threshold graphs. (It seems to me
that this statement is nontrivial in the sense that the threshold graphs are
called threshold graphs not because of the Kelmans transformation.) From
now on we simply refer to these graphs as threshold graphs.

Remark 2.9. These graphs, or more precisely their adjacency matrices also
appear in the article of Brualdi and Hoffman [4]. Rowlinson called these
matrices stepwise matrices [23].

3. The number of matchings

In this section we study the matching polynomials of graphs. For funda-
mental results on matching polynomials see [9, 11, 13].

Definition 3.1. Let mr(G) denote the number of r independent edges (,i.e.,
the r-matchings) in the graph G. Define the matching polynomial of G as

µ(G, x) =
∑

r=0

(−1)rmr(G)xn−2r.

Theorem 3.2. Assume that G′ is a graph obtained from G by some Kelmans
transformation, then

µ(G, x) ≫ µ(G′, x).

In other words, mr(G) ≥ mr(G
′) for 1 ≤ r ≤ n/2. In particular, the Kel-

mans transformation decreases the maximum number of independent edges.

Remark 3.3. I invite the Reader to prove this theorem on their own; al-
though I give the proof of the theorem here, it takes much longer to read it
then to prove it on their own.

Proof. We need to prove that for every r the Kelmans transformation de-
creases the number of r-matchings. Assume that we applied the Kelmans
transformation to G such that u was the beneficiary and v was the co-
beneficiary. Furthermore, let Mr(G) and Mr(G

′) denote the set of r-
matchings in G and G′, respectively. We will give an injective map from
Mr(G

′) to Mr(G).
In those cases where all edges of the r-matching of G′ are also edges in G

we simply take the identical map.
Next consider those cases where v is not covered by the matching, but for

some w ∈ NG(v)\NG(u) we have uw in the r-matching. Map this r-matching
to the r-matching obtained by exchanging uw to vw in the r-matching, but
otherwise we do not change the other edges of the matching. Clearly, the
image will be an r-matching of G and since vw /∈ E(G′) this is not in the
image of the previous case.



6 PÉTER CSIKVÁRI

Finally, consider those cases where both u and v are covered in the r-
matching of G′ and the r-matching does not belong to the first case. In this
case there exist a w1 ∈ NG(v)\NG(u) and a w2 ∈ NG(v) ∩ NG(u) such that
uw1 and vw2 are in the r-matching of G′. Let the image of this r-matching
be defined as follows. We exchange uw1 and vw2 to uw2 and vw1 in G, but
otherwise we leave the other r − 2 edges of the r-matching. Clearly we get
an r-matching of G and the image of this r-matching is not in the image of
the previous cases, because both u and v are covered (not as in the second
case) and vw1 ∈ E(G) is in the r-matching (not as in the first case).

Hence we have given an injective map from Mr(G
′) to Mr(G) proving

that mr(G
′) ≤ mr(G). �

We mentioned that the Kelmans transformation is also Kelmans transfor-
mation of the complement of the graph. As an example one can prove the
following (very simple) result on maximal matchings. We left the details to
the Reader.

Corollary 3.4. Let G be a graph on n vertices. Then G or G contains
⌊

n
3

⌋

independent edges.

Remark 3.5. The statement is best possible as it is shown by the clique of
size 2n

3
and additional n

3
isolated vertices.

Corollary 3.4 is well-known, in fact, it is a motivating result of several
colored matching problems, see e.g. [6].

4. The largest root of the matching polynomial

It is a well-known theorem of Heilmann and Lieb [13] that all the roots
of the matching polynomial are reals; so it is meaningful to speak about its
largest root. In this section we will show that the Kelmans transformation
increases the largest root of the matching polynomial (see Theorem 4.4). To
do this we need some preparation.

Definition 4.1. Let t(G) be the largest root of the matching polynomial
µ(G, x). Furthermore let G1 ≻ G2 if for all x ≥ t(G1) we have µ(G2, x) ≥
µ(G1, x).

Proposition 4.2. The relation ≻ is transitive and if G1 ≻ G2 then t(G1) ≥
t(G2).

Proof. Let G1 ≻ G2. Since µ(G1, x) has positive leading coefficient and t(G1)
is the largest root we have µ(G1, x) > 0 for x > t(G1). Since µ(G2, x) ≥
µ(G1, x) > 0 on the interval (t(G1),∞) we have t(G2) ≤ t(G1). If G1 ≻ G2 ≻
G3 then µ(G3, x) ≥ µ(G2, x) ≥ µ(G1, x) on the interval [max(t(G2), t(G1)),∞) =
[t(G1),∞), i.e., G1 ≻ G3. �

We will use the following two facts about the matching polynomial. The
first one is the well-known recursion formula for the matching polynomials.
The second fact is a result of D. Fisher and J. Ryan [8], it was a corollary of
their theorem on the dependence polynomials; in Section 5 we will give an
alternative proof of this result, see Corollary 5.7.
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Fact 1. [9, 11, 13] Let e = uv ∈ E(G). Then we have the following recursion
formula for matching polynomials

µ(G, x) = µ(G − e, x) − µ(G\{u, v}, x).

Fact 2. [8] If G2 is a subgraph of G1 then t(G1) ≥ t(G2).

Proposition 4.3. If G2 is a spanning subgraph of G1 then G1 ≻ G2.

Proof. By the transitivity of the relation ≻ it is sufficient to prove the state-
ment when G2 = G1 − e for some edge e = uv. By Fact 1. we have

µ(G, x) = µ(G − e, x) − µ(G\{u, v}, x).

Since G\{u, v} is a subgraph of G we have t(G\{u, v}) ≤ t(G) by Fact 2.
Since the main coefficient of µ(G\{u, v}) is 1, this implies that for x ≥ t(G)
we have µ(G\{u, v}, x) ≥ 0. By the above identity we get G ≻ G − e. �

Theorem 4.4. Assume that G′ is a graph obtained from G by some Kelmans
transformation, then G′ ≻ G, in particular t(G′) ≥ t(G).

Proof. Let u, v be the two vertices of the graph G for which we apply the
Kelmans transformation such that u is the beneficiary. We will prove that
G′ ≻ G; according to Proposition 4.2 this implies that t(G′) ≥ t(G). We will
prove this claim by induction on the number of edges of G.

Let us choose a vertex w different from v such that uw ∈ E(G). If such
w does not exist then G′ is isomorphic to G and the claim is trivial. Thus
we can assume that such a w exists, let h = uw. Now we can write up the
identities of Fact 1:

µ(G, x) = µ(G − h, x) − µ(G − {u,w}, x)

and
µ(G′, x) = µ(G′ − h, x) − µ(G′ − {u,w}, x).

Here G′−h can be obtained from G−h by the same Kelmans transformation
and these graphs have less number of edges than G; so by induction we have
G′ − h ≻ G − h, i.e.,

µ(G − h, x) ≥ µ(G′ − h, x)

for all x ≥ t(G′ − h). On the other hand G′ −{u,w} is a spanning subgraph
of G − {u,w}, thus we have G − {u,w} ≻ G′ − {u,w} by Proposition 4.3.
In other words,

µ(G′ − {u,w}, x) ≥ µ(G − {u,w}, x)

for all x ≥ t(G − {u,w}). Altogether we get that

µ(G, x) = µ(G − h, x) − µ(G − {u,w}, x) ≥
≥ µ(G′ − h, x) − µ(G′ − {u,w}, x) = µ(G′, x)

for all x ≥ max(t(G′ − h), t(G − {u,w})). Note that t(G′) ≥ max(t(G′ −
e), t(G−{u,w})) as both graphs are subgraphs of G (so we can use Fact 2);
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in the latter case we embed the graph G − {u,w} into G′ such that v goes
to u in the embedding. Thus

µ(G, x) ≥ µ(G′, x)

for all x ≥ t(G′).
Hence G′ ≻ G and we have proved the theorem.

�

5. The independence polynomial

We define the independence polynomial as follows.

Definition 5.1. Let ik(G) denote the number of independent sets of size k.
Then we define the independence polynomial of the graph G as

I(G, x) =
n∑

k=0

(−1)kik(G)xk.

Note that the empty set is considered to be independent so i0(G) = 1. Let
β(G) denote the smallest real root of I(G, x); it exists and it is positive by
the alternating sign of the coefficients of the polynomial.

Remark 5.2. Some authors call the polynomial I(G,−x) the independence
polynomial; since the transformation between the two forms is trivial it will
not cause any confusion to work with this definition.

The graph parameter β(G) is examined in various papers. D. Fisher and
J. Ryan [8] proved that the (in)dependence polynomial always has a real
root having the smallest absolute value among the roots. They also proved
the following fundamental result on β(G): if G1 is a subgraph of G2 then
β(G1) ≥ β(G2).

In this section we prove that the Kelmans transformation decreases the
smallest real root of the independence polynomial. In fact, we will also prove
that it decreases the values of the polynomial for x in a small interval, see
Definition 5.3.

We will use the following recursion formulas of the independence polyno-
mials subsequently.

Fact 1. ([19]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − v, x) − xI(G − N [v], x),

where v is an arbitrary vertex of the graph G.

Fact 2. ([19]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − e, x) − x2I(G − N [v] − N [u], x),

where e = (u, v) is an arbitrary edge of the graph G.

We are going to prove our result in an analogous way that we have seen
at the matching polynomials.

Definition 5.3. Let G1 ≻ G2 if I(G2, x) ≥ I(G1, x) on the interval [0, β(G1)].
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This definition seems to be unnatural (and maybe confusing), because
of the “reversed” inequality, but one can prove that if G2 is a subgraph of
G1 then G1 ≻ G2 (see Proposition 5.6). Thus in the light of the following
statement this claim implies Fisher and Ryan’s result (see Remark 5.2).

Proposition 5.4. The relation ≻ is transitive on the set of graphs and if
G1 ≻ G2 then β(G1) ≤ β(G2).

Proof. Let G1 ≻ G2. Since I(G1, 0) = 1 we have I(G1, x) > 0 on the interval
[0, β(G1)). Thus I(G2, x) ≥ I(G1, x) > 0 on the interval [0, β(G1)) giving
that β(G2) ≥ β(G1). If G1 ≻ G2 ≻ G3 then β(G1) ≤ β(G2) ≤ β(G3)
and I(G3, x) ≥ I(G2, x) ≥ I(G1, x) on the interval [0, min(β(G1), β(G2))) =
[0, β(G1)) thus G1 ≻ G3. �

Proposition 5.5. If G2 is an induced subgraph of G1 then G1 ≻ G2.

Proof. We prove by induction on the number of vertices of G1. For sake of
simplicity let us use the notation G1 = G. By the transitivity of the relation
≻ it is enough to prove that G ≻ G−v. The statement is true if |V (G)| = 2.

Since G−N [v] is an induced subgraph of G−v, by the induction hypothesis
we have

I(G − v, x) ≻ I(G − N [v], x).

This means that
I(G − N [v], x) ≥ I(G − v, x)

on the interval [0, β(G−v)]. Thus I(G−N [v], x) ≥ 0 on the interval [0, β(G−
v)]. Hence by Fact 1 we have I(G, x) ≤ I(G− v, x) on the interval [0, β(G−
v)]. This implies that β(G) ≤ β(G− v); I(G, 0) = 1 and I(G, β(G− v)) ≤ 0
so I(G, x) has a root in the interval [0, β(G−v)]. Hence I(G, x) ≤ I(G−v, x)
on the interval [0, β(G)], i.e., G ≻ G − v. �

Proposition 5.6. If G2 is a subgraph of G1 then G1 ≻ G2. In particular,
β(G1) ≤ β(G2).

Proof. Let us apply the notation G1 = G.
Clearly, it is sufficient to prove that G ≻ G − e where e = (u, v) ∈ E(G).

Let us use the recursion formula of Fact 2 to G:

I(G, x) = I(G − e, x) − x2I(G − N [u] − N [v], x).

By Proposition 5.5 we have G ≻ G − N [u] − N [v] and so

I(G − N [u] − N [v], x) ≥ I(G, x) ≥ 0

on the interval [0, β(G)]. Hence I(G − e, x) ≥ I(G, x) on this interval, i.e. ,
G ≻ G − e. �

Corollary 5.7. If G1 is a subgraph of G2 then t(G1) ≤ t(G2) where t(G1)
and t(G2) are the largest roots of the matching polynomial of G1 and G2,
respectively.

Proof. One can transform the matching polynomial into the independence
polynomial of the line graph. �
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The main result of this section is the following

Theorem 5.8. The Kelmans transformation decreases the smallest root of
the independence polynomial. More precisely, assume that G′ is a graph
obtained from G by some Kelmans transformation, then G′ ≻ G and so
β(G′) ≤ β(G).

Proof. We prove the statement by induction on the number of vertices. The
claim is true for small graphs. Let u be the beneficiary at the Kelmans
transformation, v be the co-beneficiary. We can assume that NG(u)\NG(v)
is not empty, otherwise G′ and G are isomorphic, so let w ∈ NG(u)\NG(v).
Now let us use the recursion formula of Fact 1

I(G, x) = I(G − w, x) − xI(G − NG[w], x)

and
I(G′, x) = I(G′ − w, x) − xI(G′ − NG′ [w], x).

Observe that G′ − w can be obtained from G − w by the same Kelmans
transformation and so by the induction we have

I(G − w, x) ≥ I(G′ − w, x)

on the interval [0, β(G′ −w)]. On the other hand, G′ −NG′ [w] is a subgraph
of G − NG[w], thus by Proposition 5.6 we have

I(G′ − NG′ [w], x) ≥ I(G − NG[w], x)

on the interval [0, β(G−NG[w])]. Putting together these two inequalities we
get that

I(G, x) ≥ I(G′, x)

on the interval [0, min(β(G′ − w), β(G − NG[w])]. Note that G′ − w and
G − NG[w] are both subgraphs of G′; in the latter case v goes to u at the
injective homomorphism from V (G−NG[w]) to V (G′). Thus we have β(G′) ≤
min(β(G′ − w), β(G − NG[w])). This proves that G′ ≻ G. �

Remark 5.9. Theorem 5.8 does not imply Theorem 4.4 since the Kelmans
transformation on a graph G does not induce a Kelmans transformation on
the line graph.

5.1. The number of independent sets.

Theorem 5.10. The Kelmans transformation increases the number of in-
dependent sets of size r and the number of cliques of size r, i.e., assume
that G′ is a graph obtained from G by some Kelmans transformation, then
ir(G) ≤ ir(G

′) and ir(G) ≤ ir(G′) for all r ≥ 1.

Disclaimer: it is easier to prove this theorem on their own than to read
the following proof.

Proof. Since the Kelmans transformation of the graph G is also a Kelmans
transformation of its complement, it is sufficient to prove the statement
concerning the number of cliques of size k. Let Clk(G) and Clk(G

′) be the
set of cliques of size k in G and G′, respectively. We will give an injective
map ϕ from Clk(G) to Clk(G

′). This way we prove that |Clk(G)| ≤ |Clk(G
′)|.
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Let S ∈ Clk(G). If S ∈ Clk(G
′) then we simply define ϕ to be the identity

map. If S /∈ Clk(G
′) then v ∈ V (S) and there exists some w ∈ NG(v)\NG(u)

for which w ∈ V (S) as well. This implies that u /∈ V (S). In this case let
ϕ(S) be the clique of G′ induced on the set (S − v) ∪ {u}. This is indeed a
clique of G′ and it cannot be the clique of G so it is not the image of any
other clique of G. Hence ϕ is injective. �

6. The chromatic polynomial

In this section we prove a coefficient majorization result for the chromatic
polynomial, see Theorem 6.3 below.

Recall that we define the chromatic polynomial ch(G, λ) of the graph G
as follows [2, 22]: for a positive integer λ the value ch(G, λ) is the number
of proper colorings of the graph G with λ colors. It is indeed a polynomial
in λ:

ch(G, λ) =
n∑

k=1

(−1)n−kck(G)λk.

The coefficients of the chromatic polynomial have the following nice inter-
pretation [2].

Theorem 6.1. Let G be a graph on n vertices and edge set E(G) = {e1, e2, . . . , em}.
Call a subset of E(G) a broken cycle if it is obtained from the edge set of a
cycle by deleting the edge of highest index. Then the chromatic polynomial
of G is

ch(G, λ) = λn − cn−1λ
n−1 + cn−2λ

n−2 − · · · + (−1)n−1c1λ,

where ci is the number of n− i-subsets of E(G) containing no broken cycles.

Remark 6.2. In fact, we will only need that the coefficients of the chro-
matic polynomial have alternating sign. This can easily be deduced from
the recursion formula of Proposition 6.4 too.

Theorem 6.3. The Kelmans transformation decreases the coefficients of
the chromatic polynomial in absolute value, i.e., assume that G′ is a graph
obtained from G by some Kelmans transformation, then

ch(G, λ) ≫ ch(G′, λ).

In other words, ck(G) ≥ ck(G
′) for k = 1, . . . , n − 1.

To prove this theorem we need some preparation.

Proposition 6.4. [2, 22] Let e ∈ E(G) then

ch(G, λ) = ch(G − e, λ) − ch(G/e, λ).

Lemma 6.5. If G1 is a spanning subgraph of G then

ch(G, λ) ≫ ch(G1, λ).

Proof. It is sufficient to prove the claim for G1 = G − e for which the state-
ment is trivial by Proposition 6.4 and Theorem 6.1. �

Now we are ready to prove Theorem 6.3.
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Proof. Let us introduce the notation

ĉh(G, λ) = (−1)|V (G)|ch(G,−λ).

Then ĉh(G, λ) =
∑n

k=1 ck(G)λk has only non-negative coefficients. Clearly,
one can rewrite Proposition 6.4 as

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ).

We need to prove that ĉh(G, λ) ≫ ĉh(G′, λ).
We prove this statement by induction on the sum of the number of edges

and vertices of G. Assume that G′ is obtained from G by some Kelmans
transformation applied to the vertices u and v, where u is the beneficiary
and v is the co-beneficiary. Let w ∈ N(v)\N(u), we can assume the existence
of such a vertex, otherwise G′ = G. Let us denote the edge (v, w) ∈ E(G)
by e = (v, w) and the edge (u,w) ∈ E(G′) by f = (u,w). Then we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ)

and
ĉh(G′, λ) = ĉh(G′ − f, λ) + ĉh(G′/f, λ).

Note that G′ − f can be obtained from G − e by the same Kelmans trans-
formation, thus by induction we have

ĉh(G − e, λ) ≫ ĉh(G′ − f, λ).

Observe that G/e and G′/f are multigraphs, indeed if for some t ∈ NG(v)
the vertex t were adjacent to w than tw became multiple edges in G/e. Now
we erase all except one copy of all multiple edges to make G/e and G′/f
simple graphs. (See the remark at the end of the proof.) Let (G/e)∗ and
(G′/f)∗ be the obtained simple graphs. This way we did not change the
chromatic polynomial since the value of ch(., λ) became unchanged for all
positive integers, thus the polynomial itself must be unchanged. Another
observation is that whenever we erased a multiple edge in G/e we erased a
multiple edge in G′/f too. On the other hand, for if some t ∈ NG(u)\NG(v)
the vertex t were adjacent to w then it became a multiple edge in G′/f while
it is a simple edge in G/e. Let us erase all edges of the form {(t, w) | t ∈
NG(u)\NG(w)} from the graph (G/e)∗; let (G/e)∗∗ be the obtained graph.
According to Lemma 6.5 we have

ĉh((G/e)∗, λ) ≫ ĉh((G/e)∗∗, λ).

Now our last observation is that (G′/f)∗ can be obtained from (G/e)∗∗ by
some Kelmans transformation where w is the beneficiary and u is the co-
beneficiary (in (G′/f)∗ the vertex u ∈ V ((G/e)∗∗) became v ∈ V ((G/f)∗)).
Hence by the induction hypothesis we have

ĉh((G/e)∗∗, λ) ≫ ĉh((G′/f)∗, λ).

Altogether we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ) = ĉh(G − e, λ) + ĉh((G/e)∗, λ) ≫
≫ ĉh(G − e, λ) + ĉh((G/e)∗∗, λ) ≫ ĉh(G′ − f, λ) + ĉh((G′/f)∗, λ) =

= ĉh(G′ − f, λ) + ĉh(G′/f, λ) = ĉh(G′, λ).
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By comparing the two ends of the chain of inequalities we obtained the
desired result. �

Remark 6.6. We avoided the use of multigraphs because we have not de-
fined the Kelmans transformation for multigraphs, although this can be done,
see e.g. [3]. In some cases it would have been more convenient to use multi-
graphs, but in some other cases it would have led to more discussion. Since
we were primarily interested in simple graphs we chose the way described in
the proof.

7. Exponential-type graph polynomials

We call a graph polynomial f(G, x) exponential-type if it satisfies the fol-
lowing identity:

∑

S1∪S2=V (G),
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y),

where f(S, x) = f(G|S, x).

Gus Wiseman [25] call these graph polynomials binomial-type.
This is a very special class of graph polynomials, still it has some notable

elements: chromatic polynomial, Laplacian polynomial and the following
modified matching polynomial: M(G, x) =

∑n

k=0 mk(G)xn−k.
The main structure result for exponential-type graph polynomials is the

following. For any exponential-type graph polynomial there exists a function
b from the isomorphism classes of graphs to the complex numbers such that
if

f(G, x) =
n∑

k=1

ak(G)xk

then

ak(G) =
∑

{S1,S2,...,Sk}∈Pk

b(G|S1)b(G|S2) . . . b(G|Sk
),

where the summation goes over the set Pk of the partitions of the vertex set
into exactly k sets. We denote this connection by f(G, x) = fb(G, x). It is
easy to prove this structure result, but we will not do it. Instead, we use
this result as a definition. We can do it since we will not use the original
definition.

We can obtain an easy consequence of this structure theorem.

Lemma 7.1. Assume that b(G) ≥ 0 for all graphs G and

fb(G, x) =
n∑

k=1

ak(G)xk.

Let H1 and H2 be two graphs on the same vertex set V and let u, v ∈ V .
Assume that the following two conditions hold:

• if u, v ∈ S or u, v /∈ S at the same time we have b(H1|S) ≥ b(H2|S),
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• (cut condition) for all S for which u, v ∈ S we have
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2).

Then we have ak(H1) ≥ ak(H2) for all 1 ≤ k ≤ n.

Proof. Clearly, the first condition implies that
∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) ≥

∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).

Similarly, the first and the second condition together imply
∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) =

=
∑

{S3,...Sk}

b(H1|S3) . . . b(H1|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2) ≥

≥
∑

{S3,...Sk}

b(H2|S3) . . . b(H2|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2) =

∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).

By adding up the two equations we obtain

ak(H1) =
∑

{S1,S2,...,Sk}∈P

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) ≥

∑

{S1,S2,...,Sk}∈P

b(H2|S1)b(H2|S2) . . . b(H2|Sk
) = ak(H2).

�

Remark 7.2. Naturally, we will use Lemma 7.1 for a graph G and G′ ob-
tained by Kelmans transformation and u, v beneficiary and co-beneficiary
vertices. The first condition is equivalent with the fact that the Kelmans
transformation increase (or decrease) the parameter b(.); indeed, if u, v ∈ S
then G′|S can be obtained from G|S by the Kelmans transformation applied
to u and v. If u, v /∈ S then simply G′|S = G|S.

One expects that it is easy (or at least not hard) to check the first condition
and considerably much harder to check the cut condition. Surprisingly, there
are some cases when it is easier to check the cut condition. For instance, let
b(G) = τ(G) be the number of spanning trees. Then

r(G, u, v) =
∑

S1∩S2=∅, S1∪S2=V (G)
u∈S1,v∈S2

b(G|S1)b(G|S2)

can be interpreted as follows. Let us put an edge e between u and v then
r(G, u, v) is exactly the number of spanning trees containing the edge e. But
this is τ(G/e). Since G/e and G′/e are isomorphic multigraphs we have
r(G, u, v) = r(G′, u, v).
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We also could have proved the corresponding statement for the coefficients
of the (modified) matching polynomial. Since b(G) = 0 there, except for
G = K1, K2 we have b(K1) = b(K2) = 1; thus we have to check the first and
second conditions for graphs on at most 2 and 4(!) vertices, respectively.

8. Laplacian polynomial of a graph

Recall that the Laplacian matrix L(G) of the graph G is D−A, where D is
the diagonal matrix consisting of the vertex degrees and A is the adjacency
matrix. We call the polynomial L(G, x) = det(xI − L(G)) the Laplacian
polynomial of the graph G, i.e., it is the characteristic polynomial of the
Laplacian matrix of G. We will write L(G, x) in the form

L(G, x) =
n∑

k=1

(−1)n−kak(G)xk,

where ak(G) ≥ 0.
The main result of this section is the following.

Theorem 8.1. The Kelmans transformation decreases the coefficients of
the Laplacian polynomial in absolute value, i.e., assume that G′ is a graph
obtained from G by some Kelmans transformation, then

L(G, x) ≫ L(G′, x).

In other words, ak(G) ≥ ak(G
′) for k = 1, . . . , n − 1.

To prove this theorem we will prove that the Laplacian polynomial is
exponential-type.

Theorem 8.2. The Laplacian polynomial L(., x) is exponential-type with

b(G) = (−1)|V (G)|−1τ(G) = (−1)|V (G)|−1|V (G)|τ(G).

We will deduce Theorem 8.2 from the following lemma, which is only a
reformulation of Theorem 8.2, but it has the advantage that it appears in
the literature explicitly.

Lemma 8.3. [1, 18] Let Fk(G) denote the set of spanning forests of the
graph G which have exactly k components. For F = T1 ∪ · · · ∪ Tk ∈ Fk let
γ(F ) =

∏k

i=1 |Ti|, where Ti’s are the connected components of the forest F .
Then

ak =
∑

F∈Fk

γ(F ).

Proof of Theorem 8.2. We can decompose the sum in Lemma 8.3 such that
we consider those forests of Fk whose components span the sets S1, . . . , Sk.
For such a forest γ(F ) = |S1||S2| . . . |Sk|. The number of such forests is
clearly τ(S1)τ(S2) . . . τ(Sk). Altogether we have

ak =
∑

F∈Fk

γ(F ) =
∑

{S1,S2,...,Sk}

τ(S1)τ(S2) . . . τ(Sk).

�
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Remark 8.4. Hence (−1)nL(G,−x) = fτ (G, x), where τ(G) = |V (G)|τ(G).
So we can use Lemma 7.1 to fτ (G, x). We have to check the two conditions,
the first one is the original application of the Kelmans transformation quoted
in the introduction. For the sake of completeness we give a proof to this
result.

Theorem 8.5. [15] The Kelmans transformation decreases the number of
spanning trees, i.e., assume that G′ is a graph obtained from G by some
Kelmans transformation, then

τ(G) ≥ τ(G′).

Proof. Let u and v be the beneficiary and the co-beneficiary of the Kelmans
transformation, respectively.

Let R be a subset of the edge set {(u,w) ∈ E(G) | w ∈ NG(u) ∩ NG(v)}.
Let

TR(G) = {T | T is a spanning tree, R ⊂ E(T )}.
Let τR(G) = |TR(G)|. We will show that for any R ⊆ {(u,w) ∈ E(G) | w ∈
N(u) ∩ N(v)}, we have τR(G) ≥ τR(G′). For R = ∅ we immediately obtain
the statement of the theorem.

We prove this statement by induction on the lexicographic order of

(e(G), |NG(u) ∩ NG(v)| − |R|).
For the empty graph on n vertices the statement is trivial. Thus we assume
that we already know that the Kelmans transformation decreases τR(G1) if
e(G1) < e(G) or e(G1) = e(G), but |NG(u1) ∩ NG(v1)| − |R1| < |NG(u) ∩
NG(v)| − |R|.

Now assume that |NG(u)∩NG(v)|−|R| = 0, in other words R = {(u,w) ∈
E(G) | w ∈ N(u) ∩ N(v)}. Observe that NG′(v) = NG(u) ∩ NG(v), but
since R ⊂ E(T ′) the vertex v must be a leaf in T ′ for any spanning tree
T ′ ∈ TR(G′).

Now let us consider the following map. Take a spanning tree T ′ which
contains the elements of the set R. Let us erase the edges between u and
(NG(v)\NG(u))∩NT ′(u) (maybe there is no such edge in the tree) and add the
edges between v and (NG(v)\NG(u)) ∩NT ′(u). The tree, obtained this way,
is an element of TR(G). This map is obviously injective; if we get an image
T ∈ TR(G) we simply erase the edges between v and (NG(v)\NG(u))∩NT (v)
and add the edges between u and (NG(v)\NG(u)) ∩ NT (v). Hence τR(G′) ≤
τR(G).

Now assume that |R| < |NG(u)∩NG(v)|. Let h = (u,w) be an edge not in
R for which w ∈ NG(u) ∩ NG(v). Then we can decompose τR(G) according
to h ∈ E(T ) or not. Hence

τR(G) = τR∪{h}(G) + τR(G − h).

Similarly,
τR(G′) = τR∪{h}(G

′) + τR(G′ − h).

Note that G′ − h can be obtained from G − h by a Kelmans transformation
applied to the vertices u and v. Since it has fewer edges than G we have

τR(G − h) ≥ τR(G′ − h).
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Similarly, |NG(u) ∩NG(v)| − |R ∪ {h}| < |NG(u) ∩NG(v)| − |R|, so we have
by induction that

τR∪{h}(G) ≥ τR∪{h}(G
′).

Hence
τR(G) ≥ τR(G′).

In particular,
τ(G) = τ∅(G) ≥ τ∅(G

′) = τ(G′).

�

Now we prove that the function τ satisfies the second condition of Lemma 7.1.
The proof of it will be very similar to the previous one.

Theorem 8.6. Let τ(G) = |V (G)|τ(G), where τ(G) denotes the number of
spanning trees of the graph G. Let G be a graph and let G′ be the graph
obtained from G by a Kelmans transformation applied to the vertices u and
v. Then for all S for which u, v ∈ S we have

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G′|S1)τ(G′|S2).

Proof. We can assume that S = V (G). Let R be a subset of the edge set
{(u,w) ∈ E(G) | w ∈ N(u) ∩ N(v)}. Let

S(G)R = {(T1, T2) | T1, T2 trees, u ∈ V (T1), v ∈ V (T2),

V (T1) ∩ V (T2) = ∅, V (T1) ∪ V (T2) = V (G), R ⊆ E(T1)}.
Note that

s(G, u, v) :=
∑

S1∩S2=∅,S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) =
∑

(T1,T2)∈S(G)∅

|V (T1)||V (T2)|.

In general, we introduce the expression

s(G,R, u, v) =
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)|.

We will show that for any R ⊆ {(u,w) ∈ E(G) | w ∈ N(u) ∩ N(v)} we
have

s(G,R, u, v) ≥ s(G′, R, u, v).

We prove this statement by induction on the lexicographic order of

(|E(G)|, |N(u) ∩ N(v)| − |R|).
For the empty graph on n vertices the statement is trivial. Thus we assume
that we already know that the Kelmans transformation decreases s(G1, R1, u1, v1)
if e(G1) < e(G) or e(G1) = e(G), but |N(u1)∩N(v1)|−|R1| < |N(u)∩N(v)|−
|R|.

Now assume that |N(u) ∩N(v)| − |R| = 0, in other words, R = {(u,w) ∈
E(G) | w ∈ N(u) ∩ N(v)}. We prove that s(G,R, u, v) ≥ s(G′, R, u, v).
Observe that NG′(v) = N(u) ∩ N(v), but since R ⊆ T1 the set NG′(v) ⊆
V (T1). Hence V (T2) = {v}. So

s(G′, R, u, v) = (n − 1)τR(G′ − v),
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where τR(G′ − v) denotes the number of spanning trees of G′ − v which
contains the elements of the set R. Now let us consider the following map.
Take a spanning tree T ′ of G′ − v which contains the elements of the set
R, let us erase the edges between u and (NG(v) \ NG(u)) ∩ NT ′(u) (maybe
there is no such edge in the tree) and add the edges between v and (NG(v) \
NG(u)) ∩ NT ′(u). The pair of trees, obtained this way, is an element of
S(G)R. This map is obviously injective; if we get an image (T1, T2) ∈ S(G)R

we simply erase the edges between v and NT2(v) and add the edges between
u and NT2(v). Since n − 1 ≤ k(n − k) for any 1 ≤ k ≤ n − 1 we have

s(G′, R, u, v) =
∑

(T1,T2)∈S(G′)R

1·(n−1) ≤
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)| = s(G,R, u, v).

Now assume that |R| < |NG(u) ∩ NG(v)|. Let h = (u,w) be an edge not
in R for which w ∈ NG(u) ∩ NG(v). Then we can decompose s(G,R, u, v)
according to h ∈ T1 where (T1, T2) ∈ S(G)R or not. Hence

s(G,R, u, v) = s(G,R ∪ {h}, u, v) + s(G − h,R, u, v).

Similarly,

s(G′, R, u, v) = s(G′, R ∪ {h}, u, v) + s(G′ − h,R, u, v).

Note that G′ − h can be obtained from G − h by a Kelmans transformation
applied to the vertices u and v. Since it has fewer edges than G we have

s(G − h,R, u, v) ≥ s(G′ − h,R, u, v).

Similarly, |NG(u) ∩NG(v)| − |R ∪ {h}| < |NG(u) ∩NG(v)| − |R|, so we have
by induction that

s(G,R ∪ {h}, u, v) ≥ s(G′, R ∪ {h}, u, v).

Hence

s(G,R, u, v) ≥ s(G′, R, u, v).

In particular,
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) = s(G, ∅, u, v) ≥

≥ s(G′, ∅, u, v) =
∑

S1∩S2=∅, S1∪S2=S

u∈S1, v∈S2

τ(G′|S1)τ(G′|S2).

�

Proof of Theorem 8.1. Since the Laplace graph is of exponential-type it is
sufficient to check the conditions of Lemma 7.1 for the polynomial (−1)nL(G,−x).
This satisfies that bL(G) = τ(G) = |V (G)|τ(G) ≥ 0.

If u, v ∈ S, then according Theorem 8.5, τ(G′|S) ≤ τ(G|S) and so τ(G′|S) ≤
τ(G|S). If u, v /∈ S then G′|S = G|S and simply τ(G′|S) = τ(G|S).

On the other hand, by Theorem 8.6 we have
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G′|S1)τ(G′|S2).
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Hence every condition of Lemma 7.1 are satisfied. Thus ak(G
′) ≤ ak(G) for

any 1 ≤ k ≤ n. �

9. Number of closed walks

Let Wk(G) denotes the number of closed walks of length k, i.e. those
sequnces v0v1 . . . vk, where (vi, vi+1) ∈ E(G) and v0 = vk. Clearly, the rele-
vance of the number of closed walks lies in the fact that

Wk(G) = TrA(G)k =
n∑

i=1

µk
i ,

where A(G) denotes the adjacency matrix and µ1, . . . , µn its eigenvalues.

Definition 9.1. The NA-Kelmans transformation is the Kelmans transfor-
mation applied to non-adjacent vertices.

Theorem 9.2. The NA-Kelmans transformation increases the number of
closed walks of length k for every k ≥ 1. In other words, Wk(G

′) ≥ Wk(G)
for k ≥ 1.

Proof. Let G be an arbitrary graph. Let G′ be the graph obtained from G
by a Kelmans transformation applied to u and v, where u is the beneficiary.
Let D(x, y, k) denote the number of walks from x to y of length k in G.
Similarly R(x, y, k) denotes the number of walks from x to y of length k in
G′. Let Wk(G) and Wk(G

′) denotes the set of walks of length k of the graph
G and G′, respectively.

First of all, let us observe that if x, y 6= v then for all k we have R(x, y, k) ≥
D(x, y, k). Indeed, we can consider the following injective map f from Wk(G)
to Wk(G

′). Let v0v1 . . . vk be an element of Wk(G) and let

f(v0v1 . . . vk) = u0u1 . . . uk,

where

ui =

{
u if vi = v and vi−1 or vi+1 ∈ NG(v)\NG(u)
vi otherwise.

Then u0u1 . . . uk is an element of Wk(G
′) and f is clearly an injective map-

ping. (It is not surjective since . . . v1uv2 . . . never appears in these “image”
walks if v1 ∈ NG(v)\NG(u) and v2 ∈ NG(u)\NG(v).)

It is also trivial that if v0, vk are different from v then u0 = v0 and uk = vk.
In particular, if x 6= u, v then R(x, x, k) ≥ D(x, x, k).

On the other hand, we can decompose the set of walks according to their
first and last step. Hence

D(u, u, k) + D(v, v, k) =
∑

x,y∈NG(u)

D(x, y, k − 2) +
∑

x′,y′∈NG(v)

D(x′, y′, k − 2) ≤

≤
∑

x,y∈NG(u)

R(x, y, k − 2) +
∑

x′,y′∈NG(v)

R(x′, y′, k − 2) ≤

≤
∑

x,y∈NG′ (u)

R(x, y, k−2)+
∑

x′,y′∈NG′ (v)

R(x′, y′, k−2) = R(u, u, k)+R(v, v, k).
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Hence

Wk(G) =
∑

x∈V (G)

D(x, x, k) ≤
∑

x∈V (G)

R(x, x, k) = Wk(G
′).

�

Remark 9.3. The statement is not true for any Kelmans transformation.
Let G be the 4-cycle, and let u, v be two adjacent vertices of G. Let us
apply the Kelmans transformation to u and v. Then G has 32 closed walks
of length 4 while G′ has only 28 closed walks of length 4.

10. Polynomials of the threshold graphs

In this section we give some special graph polynomials of the threshold
graphs. We start with the Laplacian polynomial (which can be found im-
plicitly in the paper [20] and explicitly in [12] as well, although for the sake
of completeness we give a proof here).

Theorem 10.1. Let G be a threshold graph of Kelmans transformation with
degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which
dt = t − 1, i.e., for which v1, . . . , vt induces a clique, but vt and vt+1 are not
connected. Then the spectra of the Laplacian matrix of G is the multiset

{d1 + 1, d2 + 1, . . . , dt−1 + 1, dt+1, . . . , dn, 0}.
In other words, the Laplacian polynomial is

L(G, x) = x
t−1∏

i=1

(x − di − 1)
n∏

i=t+1

(x − di).

Proof. We will use the following well-known facts.

Fact 1. If we add k isolated vertices to the graph G then the Laplacian
spectra of the obtained graph consists of the Laplacian spectra of the graph
G and k zeros.

Fact 2. ([10, 16]) If the Laplacian spectra of the graph G is λ1 ≥ λ2 ≥ · · · ≥
λn = 0 then the Laplacian spectra of G is n − λ1, n − λ2, . . . , n − λn−1, 0.

We prove the theorem by induction on the number of vertices of the graph.
The claim is trivial for threshold graphs having 1 or 2 vertices. If v1 is not
adjacent to vn then vn is an isolated vertex and the claim follows from the
induction hypothesis and Fact 1. If v1 and vn are adjacent then we observe
that G has the same structure and v1 is isolated vertex in G. Note that in
G the vertices vn, vn−1, . . . , vt+1, vt induce a clique, but vt and vt−1 are not
adjacent. So we can apply the induction hypothesis to G\{v1} obtaining
that its Laplacian spectra is {n − 1 − dn + 1, n − 1 − dn−1 + 1, . . . , n − 1 −
dt+1 +1, n−1−dt−1, . . . , n−1−d2, 0}. Thus using Fact 2 and d1 = n−1 we
get that the Laplacian spectra of the graph G is {d1 + 1, d2 + 1, . . . , dt−1 +
1, dt+1, . . . , dn, 0}. �
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The threshold graphs are also chordal graphs so the roots of their chro-
matic polynomials are integers. The more precise (and trivial) result is the
following.

Theorem 10.2. Let G be a threshold graph of Kelmans transformation with
degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which
dt = t − 1, i.e., for which v1, . . . , vt induce a clique, but vt and vt+1 are not
connected. Then the chromatic polynomial of the graph G is the following

ch(G, λ) =
t∏

i=1

(λ − i + 1)
n∏

i=t+1

(λ − di).

Proof. We can color the clique of size t in
∏t

i=1(λ− i+1) ways. For i ≥ t+1,
the vertex vi has di neighbors in the clique induced by v1, . . . , vt, so we can
color it in λ − di ways. �

It is also easy to determine the independence polynomial of a threshold
graph.

Theorem 10.3. Let G be a threshold graph of Kelmans transformation with
degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which
dt = t− 1, i.e. , for which v1, . . . , vt induces a clique, but vt and vt+1 are not
connected. Then the independence polynomial of G is

I(G, x) = (1 − x)n−t − x
t∑

i=1

(1 − x)n−1−di .

Proof. Since every independent set can contain at most one vertex from
the clique induced by the vertices of v1, . . . , vt we can decompose the terms
of the independence polynomials as follows. Those independent sets which
does not contain any of the vertex v1, . . . , vt contribute (1−x)n−t to the sum.
Those independent sets which contain the vertex vi (1 ≤ i ≤ t) contribute
−x(1 − x)n−1−di to the sum. �

Remark 10.4. One can consider the previous theorem as an inclusion-
exclusion formula. A more general formula can be found in [7].

It remains to consider the matching polynomials of the threshold graphs.
In this case the answer is a bit more complicated. Some notation is in order.
First of all, let M(Kn, x) = Hn(x) for brevity. Furthermore, let G be a
threshold graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the
unique integer for which dt = t − 1, i.e., for which v1, . . . , vt induce a clique,
but vt and vt+1 are not adjacent and set

M(G, x) = P (n, t, dt+1, . . . , dn; x).

Then we have

Theorem 10.5.

P (n, t, dt+1, . . . , dn; x) = xP (n − 1, t, dt+1, . . . , dn−1; x)

−dnP (n − 1, t − 1, dt+1 − 1, . . . , dn−1 − 1; x)
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Furthermore,

P (n, t, dt+1, . . . , dn; x) =
n−t∑

k=0

σ̃k(dt+1, . . . , dn)(−1)kxn−t−kHt−k(x),

where

σ̃k(r1, . . . , rm) =
∑

1≤i1<i2<···<ik≤m

(ri1 − k + 1)(ri2 − k + 2) . . . (rik−1
− 1)rik .

Proof. The recursion follows from the recursion formula for the matching
polynomial applied to the edges incident to vn: if e = (vi, vn) ∈ E(G) then
G−{vi, vn} is a threshold graph with the matching polynomial P (n− 1, t−
1, dt+1 − 1, . . . , dn−1 − 1; x). If dn = 0 then the second term vanishes and so
it does not cause any problem that P (n − 1, t − 1, dt+1 − 1, . . . , dn−1 − 1; x)
is not the matching polynomial of G − vn and maybe meaningless. The
other formula for the matching polynomial easily follows from the recursion
formula. �

11. Concluding remarks

In this last section we wish to make some remarks on the use of the Kel-
mans transformation. As one can see the threshold graphs of these trans-
formations are very special, so the use of this transformation is restricted to
those problems where the extremal graph is conjectured to belong to this
class of graphs. But if it is the case then the Kelmans transformation is
probably the right tool to attack the problem. One of its main strengths is
that it is very simple to work with. The other strength of this transforma-
tion is that it is very compatible with the deletion-contraction algorithms;
in most of the proofs we used only some special recursion formula for the
corresponding polynomial.

Although the Kelmans transformation could handle various problems, the
reason why it worked maybe totally different. We try to explain it through
two examples. If we are looking for the graph maximizing the spectral radius
among graphs with prescribed number of edges then we know from Rowlin-
son’s result [23] that the extremal graph is as “clique-like” as it is possible.
The Kelmans transformation works properly because it makes the graphs
more “clique-like”. Now if we consider the problem of finding the graph
maximizing the largest root of the matching polynomial among graphs with
prescribed number of edges, the situation is completely different. We believe
that the Kelmans transformation works because it generates some large-
degree vertices. We conjecture that in this case the extremal graph will be
as “star-like” as it is possible: it has as many vertices of degree n− 1 as it is
possible and one more vertex of the clique part of the threshold graph has
some additional edges.

We mention that the paper [17] contains many nice applications of the
Kelmans transformation. In this paper ♦x,y denotes the Kelmans transfor-
mation.
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