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Abstract. In this note we study a certain graph polynomial arising
from a special recursion. This recursion is a member of a family of four
recursions where the other three recursions belong to the chromatic poly-
nomial, the modified matching polynomial, and the adjoint polynomial,
respectively. The four polynomials share many common properties, for
instance all of them are of exponential type, i. e., they satisfy the identity∑

S⊆V (G)

f(G[S], x)f(G[V \ S], y) = f(G, x+ y)

for every graph G.
It turns out that the new graph polynomial is a specialization of the

Tutte polynomial.

1. Introduction

Throughout this paper every graphs are simple. Let us consider the fol-
lowing recursion of a graph polynomial. Let e = (u, v) ∈ E(G) and assume
that P (G, x) satisfies the following recursion formula

P (G, x) = P (G− e, x)− P (G∆e, x),

where G∆e denotes the following graph. We delete the vertices u and v
from G and replace it with a vetrex w which we connect to those vertices
of V (G) − {u, v} which were adjacent to exactly one of u and v in G. In
other words, we connect w with the symmetric difference of N(u) \ {v}
and N(v) \ {u}. The ∆ refers to the symmetric difference in the recursive
formula. Let Kn be the empty graph on n vertices and let P (Kn, x) = xn.
This completely determines the graph polynomial P (G, x) by induction on
the number of edges. On the other hand, it is not clear at all that this
graph polynomial exists since we can determine P (G, x) by choosing edges
in different order and we have to get the same polynomial. It will turn out
that this polynomial indeed exists and it is a specialization of the Tutte
polynomial. Let us call this graph polynomial co-adjoint polynomial until
we don’t find a better name.

What motivates this recursive formula of P (G, x)? Let us consider the
following three graph polynomials.
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1. Let M(G, x) =
∑n

k=0(−1)kmk(G)xn−k be the (modified) matching
polynomial [2, 3, 5] where mk(G) denotes the number of matchings of size
k with the convention m0(G) = 1. Then M(G, x) satisfies the following
recursive formula: let e = (u, v) ∈ E(G) then
M(G, x) = M(G− e, x)−M(G∅e, x) = M(G− e, x)− xM(G− {u, v}, x),
where G∅e denotes the following graph. We delete the vertices u, v from G
and replace it with a vertex w which we do not connect with anything.

2. Let ch(G, x) be the chromatic polynomial [9]. It is known that it
satisfies the following recursive formula. Let e = (u, v) ∈ E(G) then

ch(G, x) = ch(G− e, x)− ch(G ∪ e, x) = ch(G− e, x)− ch(G/e, x),

where G/e = G ∪ e denotes the following graph. We delete the vertices u, v
from G and replace it with a vertex w which we connect with the union of
N(u) \ {v} and N(v) \ {u}.

3. Let h(G, x) be the following graph polynomial. Let ak(G) be the
number of ways one can cover the vertex set of the graph G with exactly k
disjoint cliques of G. Let

h(G, x) =
n∑

k=1

(−1)n−kak(G)xk.

The graph polynomial h(G, x) is called adjoint polynomial [7, 8] (most of-
ten without alternating signs of the coefficients). Then h(G, x) satisfies the
following recursive formula. Let e = (u, v) ∈ E(G) then

h(G, x) = h(G− e, x)− h(G ∩ e, x),

where G ∩ e denotes the following graph. We delete the vertices u, v from
G and replace it with a vertex w which we connect with the intersection of
N(u) \ {v} and N(v) \ {u}.

u v

G G’

w
e

Figure 1. f(G, x) = f(G − e, x) − f(G′, x), where in G′ we
consider the red, blue, all or no edges according to f is the
adjoint, co-adjoint, chromatic or matching polynomial, respec-
tively.

Now it is clear that the co-adjoint polynomial is the natural fourth member
of this family.

This paper is organized as follows. In the next section we prove that
the co-adjoint polynomial is a specialization of the Tutte polynomial. In
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the third section we concern with the corollaries of this result. In the last
section we study the co-adjoint polynomials of complete graphs and balanced
complete bipartite graphs.

2. Specialization of the Tutte polynomial

The Tutte polynomial of a graph G is defined as follows.

T (G, x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) denotes the number of connected components of the graph (V,A).
In statistical physics one often studies the following form of the Tutte

polynomial:
ZG(q, v) =

∑
A⊆E

qk(A)v|A|.

The two forms are essentially equivalent:

T (G, x, y) = (x− 1)−k(E)(y − 1)−|V |ZG((x− 1)(y − 1), y − 1).

Both forms have several advantages. For instance, it is easy to generalize
the latter one to define the multivarite Tutte-polynomial. Let us assign a
variable ve to each edge and set

ZG(q, v) =
∑
A⊆E

qk(A)
∏
e∈E

ve.

Note that the chromatic polynomial of graph G is

ch(G, x) = ZG(x,−1) = (−1)|V |−k(G)xk(G)T (G, 1− x, 0).

The main result of this section is the following.

Theorem 2.1. Let G be a simple graph and let P (G, x) be the co-adjoint
polynomial, T (G, x, y) be the Tutte polynomial of the graph G then

P (G, x) =
1

2|V |Z(2x,−2) = (−1)|V |−k(G)xk(G)T (G, 1− x,−1).

Remark 2.2. It is known that the Tutte polynomial satisfies the following
recursive formulas:

T (G, x, y) = T (G− e, x, y) + T (G/e, x, y)

if e is neither a loop nor a bridge and

T (G, x, y) = xT (G− e, x, y)

if e is a bridge and
T (G, x, y) = yT (G/e, x, y)

if e is a loop.
This formulas provide a straightforward way to prove Theorem 2.1 by

induction. We will not follow this route since whenever we use these recursive
formulas we have to distinguish some cases according to the edge being a
bridge or not. After some steps the proof would split into too many cases.
Instead we use the simple form provided by the polynomial ZG(q, v).
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Proof. Let |V (G)| = n and let us write

P (G, x) =
n∑

k=0

rk(G)xk

and

1

2n
Z(2x,−2) =

1

2n

∑
A⊆E

(2x)k(A)(−2)|A| =
n∑

k=1

 1

2n−k

∑
A⊆E

k(A)=k

(−2)|A|

 xk.

Set

tk(G) =
1

2n−k

∑
A⊆E

k(A)=k

(−2)|A|.

We have to prove that tk(G) = rk(G) for all graph G. We prove it by
induction on the number of edges of G. If G is the empty graph on n
vertices then both polynomials are xn and we are done. By the recursive
formula P (G, x) = P (G− e, x)− P (G∆e, x) we have

rk(G) = rk(G− e)− rk(G∆e)

for an arbitrary edge e. Now let us consider tk(G). Let e be an arbitrary edge.
Clearly, in the sum corresponding to tk(G) the sets A’s not containing the
edge e contribute tk(G− e) to the sum. By induction tk(G− e) = rk(G− e).

Now let us consider a set A containing the edge e. Then one can consider
A − e as a set of edges in G/e for which k(A − e) = k whence we get that
these sets contribute a sum (−1)tk(G/e); note that |A − e| = |A| − 1, but
G/e has only n − 1 vertices so the divison and multiplication by 2 cancels
each other and only the term −1 remains from the term −2. Hence

tk(G) = tk(G− e)− tk(G/e).

Thus we only need to prove that

rk(G∆e) = tk(G/e).

So far we did not use anything about G∆e. Observe that G∆e is nothing
else but the graph obtained from G/e by deleting the multiple edges. Let
us consider the multiple edges e1 and e2. Assume that for some edge set A
of G/e not containing e1, e2 we have k(A ∪ {e1}) = k. Then k(A ∪ {e2}) =
k(A ∪ {e1, e2}) = k as well and they contribute to the sum

(−2)|A∪{e1}|+(−2)|A∪{e2}|+(−2)|A∪{e1,e2}| = (−2)|A|((−2)+(−2)+(−2)2) = 0.

Hence we can delete the multiple edges from G/e without changing the value
of tk(.):

tk(G/e) = tk(G∆e).

By induction we have tk(G∆e) = rk(G∆e). Hence

rk(G) = rk(G−e)−rk(G∆e) = tk(G−e)−tk(G∆e) = tk(G−e)−tk(G/e) = tk(G).

�
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Remark 2.3. By the recursive formula
P (G, x) = P (G− e, x)− P (G∆e, x)

it is easy to prove that the coefficients rk(G) have alternating signs. On the
other hand, it is not clear from the expressions tk(G).

Remark 2.4. A surprising corollary of Theorem 2.1 is that |P (G, 1)| = 0 or
1 and it is 1 if and only if the graph is Eulerian, i.e., all degrees are even. It
follows from the fact that |T (G, 0,−1)| counts the nowhere-0 Z2-flows (note
that the flow polynomial is also a specialization of the Tutte polynomial).
Since nowhere-0 Z2-flow is simply a flow taking the value 1 on all edges, this
immediately implies the claim.

3. Exponential type graph polynomials

In the introduction we considered four graph polynomials: the matching
polynomial, the chromatic polynomial, the adjoint polynomial and our new
graph polynomial, the co-adjoint polynomial. Surprisingly, they all belong
to a very special class of graph polynomials, the so-called exponential type
graph polynomials.

Definition 3.1. We say that the graph polynomial f is of exponential type if
for every graph G = (V (G), E(G)) we have f(∅, x) = 1 and f(G, x) satisfies
that ∑

S⊆V (G)

f(G[S], x)f(G[V \ S], y) = f(G, x+ y).

Note that Gus Wiseman [12] calls these graph polynomials binomial-type.
One can deduce from the definition that the chromatic polynomial is of

exponential type. For the matching polynomial and the adjoint polynomial
this follows from Theorem 3.3 below. This is a structure theorem for the
exponential type graph polynomials proven in [1]. For the co-adjoint poly-
nomial this is simply the special case of the following much more general
statement.

Theorem 3.2. [10] For the multivariate Tutte-polynomial ZG(q, v) we have∑
S⊆V (G)

ZG[S](q1, v)ZG[V \S](q2, v) = ZG(q1 + q2, v).

The following theorem characterizes exponential type graph polynomials,
see Theorem 5.1 of [1].

Theorem 3.3. [1] Let b be a function from the class of graphs to the complex
numbers. Let us define the graph polynomial fb as follows. Set

ak(G) =
∑

{S1,S2,...,Sk}∈Pk

b(S1)b(S2) . . . b(Sk),

where the summation goes over the set Pk of all partitions of V (G) into
exactly k non-empty sets. Then let

fb(G, x) =
n∑

k=1

ak(G)xk,
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where n = |V (G)|. Then

(a) For any function b, the graph polynomial fb(G, x) is of exponential
type.

(b) For any exponential type graph polynomial f , there exist a graph func-
tion b such that f(G, x) = fb(G, x). More precisely, if b(G) is the coefficient
of x1 in f(G, x) then f = fb.

Remark 3.4. For the matching polynomial take bm(K1) = 1 bm(K2) = −1
and bm(H) = 0 otherwise. For the adjoint polynomial consider bh(Kn) =
(−1)n−1 for complete graphs Kn and bh(H) = 0 otherwise. This proves that
the matching and the adjoint polynomials are indeed of exponential type.

Remark 3.5. By the method of Alan Sokal [11] one can prove that the root
of P (G, x) of largest modulus has absolute value at most KD where D is
the largest degree and

K = inf
a

a+ ea

log(1 + ae−a)
≈ 7.96.

Alan Sokal proved this statement for the chromatic polynomial. On the
other hand, one can simply copy his argument to prove this statement for
the co-adjoint polynomial. Alternatively, Theorem 1.6 of [1] or the paper [6]
provide a weaker, but still linear bound.

4. Complete graphs and balanced complete bipartite graphs

In this section we give the co-adjoint polynomial of some small graphs.

P (K1, x) = x

P (K2, x) = x2 − x

P (K3, x) = x3 − 3x2 + x

P (K4, x) = x4 − 6x3 + 7x2 − 2x

P (K5, x) = x5 − 10x4 + 25x3 − 20x2 + 5x

P (K6, x) = x6 − 15x5 + 65x4 − 105x3 + 70x2 − 16x

P (K7, x) = x7 − 21x6 + 140x5 − 385x4 + 490x3 − 287x2 + 61x

P (K8, x) = x8 − 28x7 + 266x6 − 1120x5 + 2345x4 − 2548x3 + 1356x2 − 272x

Clearly, the coefficient of the the term x1 in P (G, x) is (−1)|V |−1T (Kn, 1,−1)
by Theorem 2.1. It is known that an = T (Kn, 1,−1) counts the number of
alternating permutations on n + 1 elements. Let (−1)nP (Kn,−x) = pn(x).
The graph polynomial P (G, x) is of exponential type, applying this observa-
tion to the complete graphs we obtain that

n∑
k=0

(
n

k

)
pk(x)pn−k(y) = pn(x+ y).
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Hence the polynomials (pk(x)) are binomial-type and we know that
∞∑
n=0

pn(x)
zn

n!
= exp(xF (z)),

where

F (z) =
∞∑
n=1

an
zn

n!
.

The exponential generating functions of the alternating polynomials is known,
we only need to integrate it since the coefficients are translated:

F (z) =

∫
1 + sin z

cos z
= ln

1 + sin z

cos2 z
.

For balanced complete bipartite graphs we have

P (K1,1, x) = x2 − x

P (K2,2, x) = x4 − 4x3 + 6x2 − 2x

P (K3,3, x) = x6 − 9x5 + 36x4 − 66x3 + 51x2 − 13x

P (K4,4, x) = x8 − 16x7 + 120x6 − 488x5 + 1112x4 − 1360x3 + 808x2 − 176x

P (K5,5, x) = x10 − 25x9 + 300x8 − 2100x7 + 9150x6 − 25030x5+

+42020x4 − 41020x3 + 20785x2 − 4081x

The sequence of the coefficients of x1 seems to be very interesting. Note
that not only these numbers are 1, 2, 13, 176, 4081, . . . , but the values of
P (Kn,n,−1) are also these numbers. The same phenomenon occurs at (−1)nP (Kn,−1)
and the coefficients of P (Kn+2, x). In fact, these are known results. The lat-
ter one is quite well-known, but both results are very special cases of the
main result of [4] which asserts that under some condition

T (G, 1,−1) = T (G− {u, v}, 2,−1).

Although we do not give the condition of their theorem here, but we note that
the complete graphs and complete bipartite graphs satisfy the conditions if
(u, v) is an edge.
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useful comments. We are also very grateful for the authors of [4] for including
a table about T (Km,n, 2,−1) into their paper, it was crucial for us to make
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