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1. Introduction

It is a well-known problem to give an estimate for the largest clique of the
Paley-graph, i.e. , to give an estimate for |A| if A ⊂ Fp (p ≡ 1 (mod 4)) is
such that A−A = {a−a′ |a, a′ ∈ A} avoids the set of quadratic nonresidues.
In this paper we will study a much simpler problem namely when A− A is
substituted by the set FS(A) = {

∑
εaa | εa = 0 or 1 and

∑
εa > 0}. In other

words we will estimate the maximal cardinality of A ⊂ Fp if FS(A) avoids
the set of quadratic nonresidues. We will show that this problem is strongly
related to the problem of the estimation of the least quadratic nonresidue. If
n(p) denotes the least quadratic nonresidue then the set {1, 2, . . . , [n(p)1/2]}
satis�es the conditions, this already gives a lower bound for the maximal
value of |A|. Later we will prove that the maximal value of |A| is Ω(log log p).
On the other hand we will prove that |A| = O(n(p) log3 p). The proof is based
on the fact that if t is a quadratic nonresidue then FS(A) ∩ t · FS(A) =
∅ or {0} where by de�nition t · B = {tb | b ∈ B}. We will show that if t
is small than |FS(A)| is much greater than |A|. In the next section we will
study the case when t = n(p) = 2. In the third part we will prove the upper
bound |A| = O(n(p) log3 p). In the last part we will show that the maximal
value of |A| is Ω(log log p).

2. The case n(p)=2

In this part we will study the case n(p) = 2. In this case FS(A) ∩ 2 ·
FS(A) = ∅ or {0}. At �rst we consider the case FS(A) ∩ 2 · FS(A) = ∅.

Theorem 2.1. If FS(A) ∩ 2 · FS(A) = ∅ then |FS(A)| = 2|A|.

Proof We have to show that if FS(A)∩ 2 ·FS(A) = ∅ then all the subset
sums are di�erent. Indeed, if there were two di�erent sums with the same
value then omitting the intersection we got that s = ai1 + ai2 + · · · + ail =
aj1+· · ·+ajm (iu 6= jv). In this case s and 2s = ai1+ai2+· · ·+ail+aj1+· · ·+ajm
would be the elements of FS(A), which contradicts the condition.

A trivial consequnce of Theorem 1 is

Corollary 2.2. If n(p) = 2 (i.e. (2
p
) = −1) and every element of FS(A) is

a quadratic residue then |A| ≤ log p
log 2

.
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Theorem 2.3. Assume that 0 /∈ A. If FS(A) ∩ 2 · FS(A) = ∅ or {0} then
|A| ≤ 2

log 2
log p.

Remark 1. Assuming that 0 /∈ A is just a simplifying condition, if we leave
out the 0 from A then FS(A) will not change and the cardinality of A will
only decrease by 1.

Proof. We will say that
∑

i∈I ai = a is an irreducible a-sum if there is no
∅ 6= J ⊂ I for which

∑
i∈J ai = 0. Two irreducible a-sums have to be disjoint

because if
∑

i∈I1 ai =
∑

j∈I2 aj then
∑

i∈I1/I2 ai =
∑

i∈I2/I1 ai = s 6= 0 and

s, 2s ∈ FS(A) contradicts the condition. On the other hand in case a 6= 0
there cannot be two disjoint irreducible a-sums. Thus we only get an a-sum
as the sum of "the" irreducible a-sum and a 0-sum. We only get a 0-sum as
the sum of irreducible 0-sums so the number of the 0-sums is at most 2|A|/2

since every irreducible 0-sum has at least two elements (here we have used
the simplifying condition that 0 is not in A). Hence p · 2|A|/2 ≥ 2|A| whence
|A| ≤ 2

log 2
log p . �

Corollary 2.4. If n(p) = 2 and every element of FS(A) is a square then
|A| ≤ 2

log 2
log p.

Corollary 2.5. If A ⊂ {1, 2, . . . , N} and every element of FS(A) is a perfect
square then |A| = O(log logN).

Proof. We will use Gallagher's larger sieve. Let y = 20 logN log logN and let
S = {p ≤ y| p prime p ≡ 3 or 5 (mod 8)}. By Corollary 2, ν(p) ≤ 2

log 2
log p

for these primes p. By the larger sieve

|A| ≤
∑

p∈S Λ(p)− logN∑
p∈S

Λ(p)
ν(p)
− logN

if the denominator is positive. We have

log y ≤ 2 log logN

if N is large enough. Furthermore∑
p∈S

Λ(p) =
1

2
y + o(y)

and ∑
p∈S

Λ(p)

ν(p)
≥ y

4 log y
+ o(

y

log y
) ≥ y

5 log y

if y, thus also N is large enough. Hence for large N ,∑
p∈S

Λ(p)

ν(p)
≥ 20 logN log logN

10 log logN
= 2 logN.

Thus |A| ≤ 20 log logN . �



SUBSET SUMS AVOIDING QUADRATIC NONRESIDUES 3

3. Upper bound

At �rst we will prove a theorem on Abelian groups from which the upper
bound follows.

Theorem 3.1. Let A ⊂ G where G is a �nite Abelian group. Assume that
|A| ≥ 2000t log3 |G|. Then there exists a d 6= 0 for which {d, 2d, . . . , td} ⊂
FS(A).

Proof. We prove by contradiction. Assume that there exists a set A for
which |A| = n > 2000t log3 |G| such that FS(A) does not contain a set
{d, 2d, . . . td} where d 6= 0. We can also assume that 0 /∈ A. Let r be a �xed
positive integer which we will choose later. We will use the Erd®s-Rado
theorem on ∆-systems.

Lemma 3.2. (Erd®s-Rado) Assume that the r-uniform hypergraph has more
than r!(t−1)r edges, then it contains a ∆-system with more than t elements,
i.e. , a set system A1, A2, . . . , At such that Ak ∩Al = ∩tj=1Aj for all 1 ≤ k <
l ≤ t .

Again at �rst we will give an upper bound for the number of irreducible
sums. (We recall that a

∑
a∈I a sum is irreducible if there is no J ⊂ I

notempty set such that
∑

a∈J a = 0, and we call a sum irreducible a-sum
if it is irreducible and its value is a). We estimate the number of r-term
irreducible a-sums. If a 6= 0 then there exist at most r!(t − 1)r r-term
irreducible a-sums, indeed, otherwise these sums as sets contain a ∆-system
with t elements by the lemma. If we leave out the intersection of these sets we
get t disjoint sums having the same nonzero value since these were irreducible
sums. Let d be the value of these sums then adding together some of these
disjoint sums we get that for this d 6= 0 we have {d, 2d, . . . , td} ⊂ FS(A)
contradicting the indirect assumption. This argument cannot be applied for
a = 0 immediatly since it may occur that t disjoint irreducible r-term sums
form the ∆-system. Although we can easily solve this problem, now we can
say that there are at most n(r − 1)!(t − 1)r−1 irreducible 0-sums since if
there are more irreducible 0-sums then there is an element a ∈ A which is
contained in more than (r − 1)!(t − 1)r−1 irreducible sums as a summand.
Omitting a from these sums we get the previous case with (r−1)-term sums
instead of r, since these new sums have −a value which is not 0 by 0 /∈ A
and irreducible since a subsum of an irreducible sum is still irreducible.
Now we give an upper bound for the number of r-term a-sums. Every

a-sum is a sum of an irreducible a-sum and some irreducible 0-sums ( this
is, of course, not unique, but it is not a problem since we only give an
upper bound). Let us consider those representations where the irreducible
r-term a-sum has k1 terms and the irreducible 0-sums have k2, . . . , km terms,
respectively. According to the previous argument the number of these sums
is at most

k1!(t− 1)k1n(k2 − 1)!(t− 1)k2−1 . . . n(km − 1)!(t− 1)km−1 ≤

≤
m∏
i=1

(n(ki − 1)!(t− 1)ki−1) = nm(
m∏
i=1

(ki − 1)!)(t− 1)r−m
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since
∑m

i=1 ki = r and we will choose r later so that k1(t− 1) ≤ r(t− 1) ≤ n.
We will show that

nm(
m∏
i=1

(ki − 1)!)(t− 1)r−m ≤ rr/2nr/2+1(t− 1)r/2.

Indeed, since every irreducible 0-sum has at least two elements (again we use
the fact that 0 /∈ A ) m− 1 ≤ r/2 and nr/2+1−m ≥ (r(t− 1))r/2+1−m. Hence

rr/2nr/2+1(t−1)r/2 ≥ rr/2nm(r(t−1))r/2+1−m(t−1)r/2 ≥ nmrr−m(t−1)r−m ≥

≥ nm(
m∏
i=1

(ki − 1)!)(t− 1)r−m

since
∏m

i=1(ki − 1)! ≤ (r −m)! ≤ rr−m. We can decompose r into positive
integers in p(r) ways where p(r) denotes the number of partitions of r. Thus
every a ∈ G can be represented as a sum of r elements of A in at most
p(r)rr/2nr/2+1(t− 1)r/2 ways. Since there are

(
n
r

)
r-term sums we have(

n

r

)
≤ |G| · p(r)rr/2nr/2+1(t− 1)r/2.

We will choose r so that (
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

is nearly maximal. For two consecutive r's consider the fraction(
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

:

(
n
r+1

)
p(r + 1)(r + 1)(r+1)/2n(r+1)/2+1(t− 1)(r+1)/2

=

=
r + 1

n− r
p(r + 1)

p(r)

(
1 +

1

r

)r/2
(n(r + 1)(t− 1))1/2.

For the best choice of r this must be approximately 1. Let us choose r =
[n1/3 : e(t − 1)1/3], up to a constant factor this is the best choice. Now we
can use the elementary estimates m(m

e
)m > m! > (m

e
)m which is valid for

m ≥ 6 :

|G| ≥
(
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

≥
(n
e
)n

r(n− r)( r
e
)r(n−r

e
)n−rp(r)rr/2nr/2+1(t− 1)r/2

=

=
1

nr(n− r)p(r)

(
n

n− r

)n−r (
n1/2

r3/2(t− 1)1/2

)r
≥ 1

|G|3p(r)
(e3/2)r.

Here we used the classical fact p(r) < exp( 2π√
6

√
r) < exp(1

2
r). It follows

that |G|4 > er so 4 log |G| ≥ r. Thus 43 log3 |G| ≥ r3 > n
30(t−1)

whence

2000(t− 1) log3 |G| > n, which contradicts the indirect assumption. �

Remark 2. The basic idea of this proof can be found in an article of Erd®s
and Sárközy [3]. In this article the authors study what can be said about
the length of an arithmetic progression contained in the set of the subset
sums of a subset of {1, 2, . . . , N}.
The statement of the theorem is nearly sharp since the set

A = {t, t + 1, . . . , [
√

2t]} ⊂ Zn with t3 < n shows that there are no two
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elements of FS(A) whose quotient is t, and |A| = Ω(t). On the other hand a
basis of Zn

3 shows that the set of subset sums does not contain two elements
having the quotient 2, and we have |A| = Ω(log |Z3|n). Other much trickier
examples can be found in the above mentioned article.

Corollary 3.3. Let A ⊂ Fp . Assume that FS(A) avoids the quadratic non-
residues. Then |A| = O(n(p) log3 p), where n(p) denotes the least quadratic
nonresidue.

Proof. One can apply Theorem 3. with t = n(p) and get that there exists
a d 6= 0 for which d and n(p)d are both quadratic residues, which is a
contradiction. �

Remark 3. If we also assume the condition 0 /∈ FS(A), i. e. ,every element
of FS(A) is a quadratic residue then |A| = O(n(p) log2(p)), sothat we can
win a factor log p since we need not to estimate the number of irreducible
sums, we can apply the Erd®s-Rado theorem immediately. On theother hand
obviously one can substitute the set of quadratic nonresidues by the set of
quadratic residues since one can multiply each element of A with the same
quadratic nonresidue and by the construction no element of the subset sums
of the new set is a quadratic residue.

Remark 4. Since n(p) = Oε(p
1

4
√

e
+ε

) [1] thus we get this upper bound also
for the maximal value of |A|. According to a result of Burgess and Elliot [2],
if g(p) denotes the least primitive root modulo p then

1

π(x)

∑
p≤x

g(p) ≤ C log2 x log log4 x

Since n(p) ≤ g(p) this shows that in average the maximal value of |A| cannot
be greater than log6 p.

4. Lower bound

In this section we will show that the maximal value of |A| is at least
Ω(log log p). The proof is based on Weil's estimation of character sums.

Theorem 4.1. There exists an A ⊂ Fp such that |A| = Ω(log log p) and
FS(A) avoids the set of quadratic nonresidues.

First we prove a lemma.

Lemma 4.2. Let Q be the set of quadratic residues. Assume that for some
set B we have Q+B = Fp. Then |B| ≥ 1

4
log p.

Proof. Let B = {b1, . . . , bk} and Qi = Q+ bi. Then

|Fp − ∪ki=1Qi| = |Fp| −
∑
|Qi|+

∑
|Qi ∩Qj| − . . .

by the inclusion-exclusion formula.

|Qi1∩· · ·∩Qil | =
∑
a

1

2l

(
1 +

(
a− bi1
p

))
. . .

(
1 +

(
a− bil
p

))
+m(i1, . . . , il)
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where |m(i1, . . . , il)| ≤ l
2
since it may occur that a − bij = 0. By Weil's

theorem [4] ∣∣∣∣∣
p∑

n=1

(
f(n)

p

)∣∣∣∣∣ ≤ (t− 1)
√
p

where f(x) =
∏t

i=1(x − ai) and a1, . . . , at are distinct elements of Fp. Mul-
tiplying out the product we see that(

1 +

(
a− bi1
p

))
. . .

(
1 +

(
a− bil
p

))
= 1 +

∑(
f(a)

p

)
where f runs through 2l−1 polynomials of the type considered above. Hence

|Qi1 ∩ · · · ∩Qil | =
p

2l
+m′(i1, . . . , il)

where |m′(i1, . . . , il)| ≤ 1
2l (2

l − 1)(l − 1)
√
p + l

2
. Since l ≤ k ≤ √p (we can

assume this inequality, if k ≥ √p then we are done), thus |m′(i1, . . . , il)| ≤
k
√
p. It follows that

0 = |Fp−∪ki=1Qi| = p−
k∑
i=1

(p
2

+m′(i)
)

+
∑(p

4
+m′(i, j)

)
−· · · = p(1−1

2
)k+M

where |M | ≤ 2kk
√
p. Hence p

2k = |M | ≤ 2kk
√
p, thus

√
p < k4k < e2k so

that k ≥ 1
4

log p. �

Remark 5. Clearly the same statement holds for the set of quadratic non-
residues R.

Theorem 4.1 There exists a set A ⊂ Fp for which |A| = Ω(log log p) and
FS(A) avoids the set of quadratic nonresidues.

Proof. Let us take a maximal set A for which FS(A) avoids the quadratic
nonresidues. We will show that |A| ≥ 1

log 2
log log p− 2. Let us assume that

|A| ≤ 1
log 2

log log p−2. Then |FS(A)| ≤ 2|A| ≤ 1
4

log p , thus R−FS(A) 6= Fp
so there exists an s ∈ Fp for which s /∈ R−(ai1 +· · ·+ail) for any ai1 , . . . , ail ∈
A. In this case one can add the element s to A, which contradicts the
maximality of A. Hence |A| ≥ 1

log 2
log log p− 2. �

Remark 6. There exists a set B for which |B| = [10 log p] and Q+B = Fp.
Let us choose the elements of B in random way with probability
P (b ∈ B) = c log p

p
independently. Then

P (x /∈ Q+B) =

(p−1)/2∏
i=1

P (x− i2 /∈ B) =

(
1− c log p

p

) p−1
2

since we have chosen the elements independently. Hence

P (Q+B 6= Fp) ≤
p−1∑
x=0

P (x /∈ Q+B) = p

(
1− c log p

p

) p−1
2

≤ pe−
1
3
c log p
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On the other hand, by the Cherno�-inequality [5] we have

P (||B| − c log p| ≥ λσ) ≤ 2 max(e−λ
2/4, e−λσ/2)

where 1
2
c log p ≤ σ2 = p c log p

p
(1 − c log p

p
) ≤ c log p. Choosing c = 4 and

λ =
√

8 log p we get that

P (||B| − 4 log p| ≥ 4
√

2 log p) ≤ 2e−2 log p =
2

p2
.

We have pe−
4
3

log p = p−3/4. Since 2
p2

+ 1
p3/4 < 1 for p ≥ 3 thus with positive

probability |B| ≤ 10 log p and Q+B = Fp .
We have shown that in case (2

p
) = −1 we have |FS(A)| = 2|A|. Thus

in general probably one cannot say better than Ω(log log p), since after the
selection of |A|−1 elements the set of subset sums has 2|A|−1 elements and it
must not be the additive complement of −R, while the sets with more than
10 log p elements are additive complements with high probability.
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and K. Gyarmati.
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