
A NOTE ON CHARACTER SUMS

PÉTER CSIKVÁRI

Abstract. We will investigate certain character sums. We will prove
some discrepancy-type inequalities for incomplete sums.

1. Introduction.

We will investigate incomplete sums, in particular we will estimate in-
complete character sums. The main result in this direction is Vinogradov’s
theorem. Throughout this paper we will write e(α) = e2πiα.

Theorem (Vinogradov [3]): Let q, x, y be positive integers, 0 < x < y ≤ q.
Let a1, a2, . . . , aq ∈ C and

F (t) =

q
∑

j=1

aje

(

jt

q

)

,

Further let A =
∑q

j=1 aj = F (0). Then
∣

∣

∣

∣

∣

y
∑

n=x

an − y − x + 1

q
A

∣

∣

∣

∣

∣

≤ 1

2q

q−1
∑

l=1

|F (l)|
|| l

q
||

where ||x|| = minn∈Z |x − n|.

A consequence of this theorem is the famous Pólya-Vinogradov inequality,
which states that if χ is a non-principal character mod q then for any positive
integer n

∣

∣

∣

∣

∣

n
∑

k=1

χ(k)

∣

∣

∣

∣

∣

≪ √
q log q.

In this paper we will prove a lower bound for incomplete sums in terms
of the |F (l)|’s and we will apply it for some character sums. In what follows
let χ be a primitive character modulo q. Let Sn = Sn(χ) =

∑n
k=1 χ(k) and

Lm = Lm(χ) =
∑m

n=1 Sn(χ). We will prove the following theorems.

Theorem 1.1. Let a1, a2, . . . , aq be complex numbers, Ak =
∑k

j=1 aj, A =

Aq. Let F (l) =
∑q

j=1 aje
(

jl
q

)

. Then for 1 ≤ l ≤ q − 1 we have

F (l) =

(

1 − e

(

l

q

)) q
∑

j=1

(

Aj −
j

q
A

)

e

(

jl

q

)
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and

1

2π
max

1≤l≤q−1

(

|F (l)|
|| l

q
||

)

≤
q

∑

k=1

∣

∣

∣

∣

Ak −
k

q
A

∣

∣

∣

∣

.

We will also prove a variant of this theorem concerning intervals of given
length.

Theorem 1.2. Let 1 ≤ k ≤ (q − 1)/2 be a fixed positive integer, let

a1, . . . , aq, C be complex numbers and Bi =
∑i+k

j=i+1 aj. Then we have

2

π

∣

∣

∣

∣

∣

q
∑

j=1

aje

(

j

q

)

∣

∣

∣

∣

∣

≤ 1

k

q
∑

i=1

|Bi − C| .

We will prove a variant of the Pólya-Vinogradov inequality concerning
Lm(χ).

Theorem 1.3. For every primitive character χ mod q there exist a constant

c and a complex number Cq = Cq(χ̄) for which

∣

∣

∣
Lm(χ) + Cqm

τ(χ̄)

∣

∣

∣
≤ cq3/2 for all

m where τ(χ) is the Gaussian sum

τ(χ) =

q
∑

n=1

χ(n)e

(

n

q

)

.

As an application of Theorem 1.1 we will show

Theorem 1.4. For every primitive character χ mod q there exist an n and

an m such that 1 ≤ n,m ≤ q and |Sn| ≥ 1
2π

√
q and |Lm + Cqm

τ(χ̄)
| ≥ 1

4π2 q
3/2.

Remark: The first statement of Theorem 1.4 is known [1],[2].

2. Proofs of the theorems

Proof of Theorem 1.1. By partial summation we get:
q

∑

j=1

aje

(

jl

q

)

=

q
∑

j=1

(Aj − Aj−1)e

(

jl

q

)

=

=

q
∑

j=1

Aj

(

e

(

jl

q

)

− e

(

(j + 1)l

q

))

+ Aqe

(

l

q

)

=

=

(

1 − e

(

l

q

)) q
∑

j=1

Aje

(

jl

q

)

+ Aqe

(

l

q

)

=

=

(

1 − e

(

l

q

)) q
∑

j=1

(

Aj −
j

q
A

)

e

(

jl

q

)
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+Aqe

(

l

q

)

+

(

1 − e

(

l

q

)) q
∑

j=1

j

q
Ae

(

jl

q

)

.

Now we will show that for 1 ≤ l ≤ q − 1 we have

Aqe

(

l

q

)

+

(

1 − e

(

l

q

)) q
∑

j=1

j

q
Ae

(

jl

q

)

= 0.

Indeed, let k0 = 0 and kn = e
(

l
q

)

+ · · ·+ e
(

nl
q

)

=
1−e(nl

q )
1−e( l

q )
e
(

l
q

)

; then kq = 0

since 1 ≤ l ≤ q − 1. Then we have
(

1 − e

(

l

q

)) q
∑

j=1

j

q
Ae

(

jl

q

)

=
A

q

(

1 − e

(

l

q

)) q
∑

j=1

je

(

jl

q

)

=
A

q

(

1 − e

(

l

q

)) q
∑

j=1

j(kj − kj−1) = −A

q

(

1 − e

(

l

q

)) q
∑

j=1

kj =

= −A

q
e

(

l

q

) q
∑

j=1

(

1 − e

(

jl

q

))

= −Ae

(

l

q

)

.

Thus

F (l) =

(

1 − e

(

l

q

)) q
∑

j=1

(

Aj −
j

q
A

)

e

(

jl

q

)

.

Since
∣

∣

∣
1 − e

(

l
q

)∣

∣

∣
≤ 2π|| l

q
|| it follows that

1

2π

|F (l)|
|| l

q
|| ≤

q
∑

j=1

∣

∣

∣

∣

Aj −
j

q
A

∣

∣

∣

∣

.

¤

Proof of Theorem 1.2. The proof is very similar to the previous one:
q

∑

i=1

(Bi − C)e

(

i

q

)

=

q
∑

i=1

Bie

(

i

q

)

=

=

q
∑

i=1

ai

(

e

(

i

q

)

+ · · · + e

(

i − k + 1

q

))

=

q
∑

i=1

aie

(

i − k + 1

q

) e
(

k
q

)

− 1

e
(

1
q

)

− 1
=

= e

(−k + 1

q

) 1 − e
(

k
q

)

1 − e
(

1
q

)

q
∑

i=1

aie

(

i

q

)

.
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Since
∣

∣

∣
1 − e

(

1
q

)∣

∣

∣
≤ 2π

q
and

∣

∣

∣
1 − e

(

k
q

)∣

∣

∣
≥ 4k

q
we have

2

π

∣

∣

∣

∣

∣

q
∑

j=1

aje

(

j

q

)

∣

∣

∣

∣

∣

≤ 1

k

q
∑

i=1

|Bi − C| .

¤

Proof of Theorem 1.3. First we start from the identity

χ(k) =
1

τ(χ̄)

q
∑

l=1

χ̄(l)e

(

kl

q

)

.

Then we have
n

∑

k=1

χ(k) =
n

∑

k=1

1

τ(χ̄)

q
∑

l=1

χ̄(l)e

(

kl

q

)

=
1

τ(χ̄)

q
∑

l=1

χ̄(l)
n

∑

k=1

e

(

kl

q

)

=

=
1

τ(χ̄)

q
∑

l=1

χ̄(l)
e
(

nl
q

)

− 1

e
(

l
q

)

− 1
e

(

l

q

)

.

It follows that

m
∑

n=1

n
∑

k=1

χ(k) =
1

τ(χ̄)

q
∑

l=1

χ̄(l)
e
(

l
q

)

e
(

l
q

)

− 1

m
∑

n=1

(

e

(

nl

q

)

− 1

)

=

=
1

τ(χ̄)

q
∑

l=1

χ̄(l)
e
(

l
q

)

e
(

l
q

)

− 1





e
(

ml
q

)

− 1

e
(

l
q

)

− 1
e

(

l

q

)

− m



 =

=
1

τ(χ̄)

q
∑

l=1

χ̄(l)
e
(

2l
q

)

(

e
(

l
q

)

− 1
)2

(

e

(

ml

q

)

− 1

)

− Cqm

τ(χ̄)

where

Cq =

q
∑

l=1

χ̄(l)
e
(

l
q

)

e
(

l
q

)

− 1
.

Hence
∣

∣

∣

∣

∣

m
∑

n=1

n
∑

k=1

χ(k) +
Cqm

τ(χ̄)

∣

∣

∣

∣

∣

≤ 1√
q

q−1
∑

l=1

2

16|| l
q
||2 ≤ 1

2
q3/2.

¤

Proposition:

q
∑

k=1

kχ(k) =
q

τ(χ̄)

q
∑

l=1

χ̄(l)
e
(

l
q

)

e
(

l
q

)

− 1
.
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In other words

Cq =
τ(χ̄)

q

q
∑

k=1

kχ(k).

Proof. Let us use the previous theorem with m = tq where t is a large positive
integer. Since

∑q
k=1 χ(k) = 0 we have

∣

∣

∣

∣

∣

tq
∑

n=1

n
∑

k=1

χ(k) +
Cqtq

τ(χ̄)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t

q
∑

n=1

n
∑

k=1

χ(k) +
Cqtq

τ(χ̄)

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

t

(

q
∑

k=1

(q − k + 1)χ(k) +
Cqq

τ(χ̄)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−t

(

q
∑

k=1

kχ(k) − Cqq

τ(χ̄)

)∣

∣

∣

∣

∣

≤ cq3/2.

Since t can be arbitrarily large we get
q

∑

k=1

kχ(k) =
Cqq

τ(χ̄)
.

¤

Remark: We also could have proved this result directly.
If χ(−1) = 1 then one can easily see that Cq = 0.

Proof of Theorem 1.4. We start out from the Gaussian sum τ(χ).
Let us apply Theorem 1.1. Note that Sq = 0, thus

τ(χ) =

(

1 − e

(

1

q

)) q
∑

n=1

Sne

(

n

q

)

Now we have

√
q = |τ(χ)| ≤

∣

∣

∣

∣

1 − e

(

1

q

)∣

∣

∣

∣

q
∑

n=1

|Sn| ≤
2π

q

q
∑

n=1

|Sn|.

Thus there exists an n for which |Sn| ≥ 1
2π

√
q, which proves the first state-

ment. To prove the second statement we apply Theorem 1.1 to the sequence
an = Sn; in this case Am = Lm and

n

q
A =

q

n

q
∑

k=1

(q − k + 1)χ(k) = − q

n

q
∑

k=1

kχ(k) = − q

n

Cqq

τ(χ̄)
=

Cqn

τ(χ̄)

by the Proposititon. Thus we can apply Theorem 1.1 to obtain

τ(χ) =

(

1 − e

(

1

q

)) q
∑

n=1

Sne

(

n

q

)

=

=

(

1 − e

(

1

q

))2 q
∑

n=1

(

Ln +
Cqn

τ(χ̄)

)

e

(

n

q

)

.
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Hence
√

q = |τ(χ)| ≤
∣

∣

∣

∣

1 − e

(

1

q

)∣

∣

∣

∣

2 q
∑

n=1

∣

∣

∣

∣

Ln +
Cqn

τ(χ̄)

∣

∣

∣

∣

≤

≤
(

2π

q

)2 q
∑

n=1

∣

∣

∣

∣

Ln +
Cqn

τ(χ̄)

∣

∣

∣

∣

.

Thus there exists an n for which |Ln + Cqn

τ(χ̄)
| ≥ 1

4π2 q
3/2.

¤

As a consequence of it we show that for some 1 ≤ m ≤ q we have
|Lm| > cq3/2 with some positive absolute constant c, which with the Pólya-
Vinogradov theorem shows that at least c q

log q
n’s of the interval [1, q] we

have |Sn| ≫ q1/2.

Proposition: For some 1 ≤ m ≤ q we have |Lm| > cq3/2 with some positive
absolute constant c.

Proof. We will prove the proposition with c = 1
8π2 .

If χ(−1) = 1 then this is a trivial consequence of Theorem 1.4 since in
this case Cq = 0. It is also trivial if |∑q

n=1 Sn(χ)| ≥ 1
8π2 q

3/2 since we choose

m = q. Finally if |∑q
n=1 Sn(χ)| ≤ 1

8π2 q
3/2 then by Theorem 1.4 for some

1 ≤ m ≤ q we have
∣

∣

∣

∣

∣

m
∑

n=1

Sn(χ)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

m
∑

n=1

Sn(χ) − m

q

q
∑

n=1

Sn(χ)

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

m

q

q
∑

n=1

Sn(χ)

∣

∣

∣

∣

∣

≥ 1

4π2
q3/2 − 1

8π2
q3/2 =

1

8π2
q3/2.

¤
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