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Abstract. In this paper we will prove that

µ(G) + µ(G) ≤ 1 +
√

3

2
n − 1

where µ(G), µ(G) are the greatest eigenvalues of the adjacency matrices
of the graph G and its complement and n denotes the number of vertices
of G.

1. Introduction

In [6] Nosal proved that if G is a simple graph on n vertices then

µ(G) + µ(G) ≤
√

2n.

Later Nikiforov showed [5] that
√

2 is not the best constant in this inequality.
He proved

µ(G) + µ(G) ≤ (
√

2 − ε)n

where ε = 8 · 10−7. In the same paper Nikiforov conjectured that

µ(G) + µ(G) ≤ 4

3
n + O(1).

The constant 4/3 cannot be decreased since the clique of size 2
3
n as graph G

(or its complement) attains this bound.
Nikiforov also proved [4] that it is meaningful to search for the best con-

stant; in general he proved that if µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) are the
eigenvalues of the adjacency matrix of graph G of order n, G is the com-
plement of G and F (G) is a fixed linear combination of µi(G), µn−i+1(G),
µi(G) and µn−i+1(G) (1 ≤ i ≤ k), then the limit

lim
n→∞

1

n
max{F (G) : |V (G)| = n}

always exists.
Although we could not prove Nikiforov’s conjecture we could improve on

the constant
√

2 − ε significantly. We will prove that

Theorem 1.1. Let G be a simple graph on n vertices. Then

µ(G) + µ(G) ≤ 1 +
√

3

2
n ≤ 1.3661n

We will also prove that o(n) error terms can be ignored in our upper
bounds.
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Theorem 1.2. Assume that the bound

µ(G) + µ(G) ≤ cn + o(n)

holds for all graph G with some constant c and |V (G)| = n. Then for all

graphs on n vertices we have

µ(G) + µ(G) ≤ cn − 1.

The two theorems together give the result stated in the abstract.

The structure of this paper is the following. In the next section we will
prove a theorem on Kelmans’s operation; Kelmans’s operation will be the
main tool in the proof of Theorem 1.1. In Section 3 we will prove an up-
per bound on the spectral radius of the threshold graphs of the Kelmans
operation. In this section we also deduce Theorem 1.1 from earlier results
concerning the Kelmans’s operation and its threshold graphs. In Section 4
we will prove Theorem 1.2.

Notation: We will follow the usual notation: G is a graph, V (G) is the
set of its vertices, e(G) denotes the number of edges, N(x) is the set of the
neighbors of x, µ = µ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues of the adjacency
matrix of G, µ is also called spectral radius. |N(vi)| = deg(vi) = di denote
the degree of the vertex vi.

2. Kelmans’s operation and its threshold graphs

In [3] Kelmans introduced and studied the following transformation. Let
u, v be two vertices of the graph G, we obtain the Kelmans transformed of
G as follows: we erase all edges between u and N(u)\(N(v) ∪ {v}) and add
all edges between v and N(u)\(N(v) ∪ {v}). Let us call v the beneficiary of
the transformation. The obtained graph has the same number of edges as G.
Kelmans showed that this transformation decreases the number of spanning
trees of the graph G. More generally Kelmans’s transformation turned out
to be an efficient tool in the theory of reliable networks [1], [8]. Now we
prove that this transformation increases the spectral radius of G and G at
the same time!

Theorem 2.1. Let G be a graph and G′ be a graph obtained from G by some

Kelmans’s transformation. Then

µ(G′) ≥ µ(G) and µ(G′) ≥ µ(G)

Proof. The key observation is that up to isomorphism G′ is independent
of u or v being the beneficiary if we apply the transformation to u and v.
Indeed, in G′ one of u or v will be adjacent to NG(u)∪NG(v), the other will
be adjacent to NG(u)∩NG(v) (and if the two vertices are adjacent in G then
they will remain adjacent also).

Let ~x be the non-negative eigenvector of unit length belonging to µ(G)
and let AG and AG′ be the corresponding adjacency matrices. Assume that
xu ≥ xv and choose u to be the beneficiary of the Kelmans transformation.
By the above observation, this choice does not affect the resulting graph G′.
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Then
µ(AG′) = max

||~y||=1
~yT AG′~y ≥ ~xT AG′~x =

= ~xT AG~x + 2(xu − xv)
∑

w∈N(u)\(N(v)∪{v})

xw ≥ µ(AG)

This way we have proved the first statement. The second statement follows
from the first statement since a Kelmans transformation is also a Kelmans’s
transformation to the complement of the graph; although the role of the
beneficiary and the other vertex change. ¤

Now we determine the threshold graphs of this transformation. Let us say
that u dominates v if N(v)\{u} ⊂ N(u)\{v}. Clearly, if we apply Kelmans’s
transformation to graph G and u and v such that u is the beneficiary then
u will dominate v in G′.

Theorem 2.2. By some application of Kelmans’s transformation one can

always transform an arbitrary graph G to a graph Gtr which satisfies the fol-

lowing condition. The vertices of Gtr can be ordered such way that whenever

i < j then vi dominates vj.

Proof Let d1(G) ≥ d2(G) ≥ · · · ≥ dn(G) be the degree sequence of graph
G. One can define a lexicographic ordering: let us say that G1 ≻ G2 if for
some k dk(G1) > dk(G2) and di(G1) = di(G2) for 1 ≤ i ≤ k − 1. Those
graphs which have the same degree sequence cannot be distinguished by this
ordering, but this will not be a problem for us.

Now let us choose the graph G∗ which can be attained by some application
of Kelmans’s transformation from G and in the lexicographic ordering is one
of the best among these graphs. We show that this graph has the desired
property. Indeed if degG∗(vi) ≥ degG∗(vj), but vi does not dominate vj then
one can apply a Kelmans’s transformation to G∗ and vi and vj where vi is
the beneficiary; then in the obtained graph the degree of vi is strictly greater
than deg(vi) thus the obtained graph is better in the lexicographic ordering
than G∗ contradicting the choice of G∗. ¤

Remark 2.3. From now on we refer to the threshold graphs of the Kelmans
transformation as threshold graphs.

Remark 2.4. These graphs, or more precisely their adjacency matrices ap-
pear in the article of Brualdi and Hoffman [2]. Rowlinson called these ma-
trices stepwise matrices [7].

3. Upper bound to the spectral radius of threshold graphs

We prove a simple upper bound on the spectral radius of graphs belonging
to a certain class of graphs. We will see later that this class contains the
threshold graphs of the Kelmans transformation.

Theorem 3.1. Let us assume that in the graph G the set X = {v1, v2, . . . , vk}
forms a clique while V \X = {vk+1, . . . , vn} forms an independent set. Fur-

thermore let e(X,V \X) denote the number of edges going between X and
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V \X. Then

µ(G) ≤ k − 1 +
√

(k − 1)2 + 4e(X,V \X)

2

Proof. We can assume that G is not the empty graph, for which the state-
ment is trivial. Let ~x be the eigenvector belonging to µ = µ(G). For
1 ≤ j ≤ k we have

µxj = x1 + · · · + xj−1 + xj+1 + · · · + xk +
∑

vm∈N(vj)∩V \X

xm

By adding together these equations we get

µ

(

k
∑

j=1

xj

)

= (k − 1)

(

k
∑

j=1

xj

)

+ dk+1xk+1 + · · · + dnxn

For k + 1 ≤ j ≤ n we have

µxj =
∑

vm∈N(vj)

xm

Since V \X forms an independent set we have µxj ≤
∑k

i=1 xi for k+1 ≤ j ≤ n
and so

µ

(

k
∑

j=1

xj

)

= (k − 1)

(

k
∑

j=1

xj

)

+ dk+1xk+1 + · · · + dnxn ≤

≤ (k − 1)

(

k
∑

j=1

xj

)

+
dk+1

µ

(

k
∑

j=1

xj

)

+ · · · + dn

µ

(

k
∑

j=1

xj

)

Since
∑n

j=k+1 dj = e(X,V \X) we have

µ ≤ k − 1 +
e(X,V \X)

µ

Hence

µ(G) ≤ k − 1 +
√

(k − 1)2 + 4e(X,V \X)

2
¤

Remark 3.2. Let G be a threshold graph for which vi dominates vj whenever
i < j. Let k be the least integer for which vk and vk+1 are not adjacent.
In this case X = {v1, . . . , vk} forms a clique while V \X = {vk+1, . . . , vn}
forms an independent set. One can prove a bit stronger inequalities for the
threshold graphs:

1

µ

(

n
∑

j=k+1

d2
j

)

≤ kµ − k(k − 1)

and

µ2 + µ ≤ k(k − 1) +
1

µ

(

n
∑

j=k+1

d2
j

)

+ e(X,V \X)

By combining these inequalities we immediately get the statement of the
theorem.
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Remark 3.3. For our purposes the inequality

µ(G) ≤ k +
√

k2 + 4e(X,V \X)

2
will suffice.

Proof of Theorem 1.1. By Theorem 2.1 and 2.2 we only need to check
the statement for threshold graphs. Let G be a threshold graph for which
vi dominates vj whenever i < j. Let k be the least integer for which vk and
vk+1 are not adjacent. In this case X = {v1, . . . , vk} forms a clique while
V \X = {vk+1, . . . , vn} forms an independent set. Let us apply Theorem 3.1
with G and X and with G and V \X. Then we have

µ(G) ≤ k +
√

k2 + 4eG(X,V \X)

2
and

µ(G) ≤ n − k +
√

(n − k)2 + 4eG(V \X,X)

2
Thus we have

2(µ(G) + µ(G)) − n ≤
√

k2 + 4eG(X,V \X) +
√

(n − k)2 + 4eG(V \X,X)

By the arithmetic-square mean inequality we have
√

k2 + 4eG(X,V \X) +
√

(n − k)2 + 4eG(V \X,X) ≤
≤

√

2(k2 + 4eG(X,V \X) + (n − k)2 + 4eG(V \X,X)) =

=
√

2(k2 + (n − k)2 + 4k(n − k)) ≤
√

3n

Altogether we get

2(µ(G) + µ(G)) − n ≤
√

3n

Hence

µ(G) + µ(G) ≤ 1 +
√

3

2
n

¤

4. Error term

In this section we prove Theorem 1.2. The argument we apply here is
essentially due to V. Nikiforov.

For any graph G = (V,E) and integer t ≥ 1, write G(t) for the graph
obtained by replacing each vertex u ∈ V by a set Vu of t independent vertices

and joining x ∈ Vu to y ∈ Vv if and only if uv ∈ E. Further let G[t] = G
(t)

,
i.e., G[t] is obtained from G(t) by joining all vertices within Vu for every
u ∈ V . It is easy to prove the following two facts:

(i) The eigenvalues of G(t) are tµ1(G), . . . , tµn(G) together with n(t − 1)
additional 0’s.

(ii) The eigenvalues of G[t] are tµ1(G) + t− 1, . . . , tµn(G) + t− 1 together
with n(t − 1) additional (−1)’s.

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Assume that we know that for all graph G we
have

µ(G) + µ(G) ≤ cn + o(n)

where c is an absolute constant and n denotes the order of G.
Now let us apply it to G(t) then we have

µ(G(t)) + µ(G(t)) ≤ ctn + o(tn)

Now we have µ(G(t)) = tµ(G) and µ(G(t)) = µ(G
[t]

) = tµ(G) + t − 1. Thus

tµ(G) + tµ(G) + t − 1 ≤ ctn + o(tn)

After dividing by t we have

µ(G) + µ(G) + 1 − 1

t
≤ cn +

o(tn)

t
Let us consider n to be fix and t going to infinity then we get

µ(G) + µ(G) + 1 ≤ cn

¤

Remark 4.1. This argument together with Kelmans’s operation shows that
the

sup
G

µ(G) + µ(G) + 1

n

cannot be attained. Indeed if G attained the supremum then so would G(t),
but G(t) cannot be the threshold graph of the Kelmans operation if it is not
the empty graph, so one can apply Kelmans’s transformation to it gaining a
strictly better graph. (Of course the empty graph cannot attain the supre-
mum, because the supremum is at least 4

3
while the corresponding value to

the empty graph is exactly 1.)

Acknowledgment. The author is very grateful to Vladimir Nikiforov for
introducing the problem. The author also thanks the anonymous referee for
his numerous advice and comments improving the presentation of the paper.

References

[1] J. Brown, C. Colbourn and J. Devitt: Network transformations and bounding network

reliability, Networks 23 (1993), pp. 1-17
[2] R.A. Brualdi and A.J. Hoffman: On the spectral radius of (0, 1) matrices, Linear

Algebra Applications 65 (1985), pp. 133-146
[3] A. K. Kelmans: On graphs with randomly deleted edges, Acta. Math. Acad. Sci. Hung.

37 (1981), pp. 77-88
[4] V. Nikiforov: Linear combination of graph eigenvalues, Electonic Journal of Linear

Algebra 15 (2006), pp. 329-336
[5] V. Nikiforov: Eigenvalue problems of Nordhaus-Gaddum type, to appear in Discrete

Mathematics
[6] E. Nosal, Eigenvalues of graphs, Master’s thesis, University of Calgary, 1970
[7] Peter Rowlinson: On the maximal index of graphs with a prescribed number of edges,

Linear Algebra and its Applications 110 (1988), pp. 43-53
[8] A. Satyanarayana, L. Schoppman and C. L. Suffel: A reliability-improving graph

transformation with applications to network reliability, Networks 22 (1992), 209-216



ON A CONJECTURE OF V. NIKIFOROV 7

Department of Algebra and Number Theory, Eötvös Loránd University,

Budapest H-1117, Hungary

E-mail address: csiki@cs.elte.hu


