
ON A POSET OF TREES

PÉTER CSIKVÁRI

Abstract. We will prove that the path minimizes the number of closed
walks of length ℓ among the connected graphs for all ℓ. Indeed, we will
prove that the number of closed walks of length ℓ and many other prop-
erties such as the spectral radius, Estada index increase or decrease along
a certain poset of trees. This poset is a leveled poset with path as the
smallest element and star as the greatest element.

1. Introduction

J. A. de la Peña, I. Gutnam and J. Rada [3] proved several inequality for
the Estrada index [5],[6] of graphs, i.e.,

∑n
i=1 eµi where µi’s are the eigenval-

ues of the adjacency matrix of the graph. In their paper they gave estimate to
the minimal and maximal values of the Estrada index among the graphs on n

vertices and m edges. They also conjecture that the minimum of the Estrada
index is attained at the path among the connected graphs and the star has
the maximum value of the Estrada index among the trees on n vertices. V.
Nikiforov noticed that both conjecture would be true if the corresponding
statement holds for closed walks (private communication). Indeed, we will
prove this stronger result in our paper:

Theorem 4.6: The path has the minimum number of the closed walks of
length ℓ among the connected graphs on n vertices for all ℓ and n. The star
has the maximum number of closed walks of length ℓ among the trees on n

vertices.

Our method will be as follows: we will generalize Kelmans’s operation for
trees. This new operation will induce a leveled poset on trees, on each level
the number of leaves of the trees are the same, the greatest element of the
poset is the star, the smallest element of the poset is the path. We will show
that like the Kelmans operation, the generalized Kelmans operation for trees
have many nice properties, it will increase the spectral radius, decrease the
value

∑

x,y∈V (G) d(x, y) (d(x, y) is the distance between x and y), increase
the number of closed walks of length ℓ. For the induced poset this will
simply means that these properties increase or decrease along the poset and
consequently, has the maximum for the star and minimum for the path.

The structure of this paper is the following: In the next section we intro-
duce the concept of generalized tree shift (GTS) and the induced poset and
we give the very basic facts about it. In Section 3. we will give an elementary
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property of GTS, namely we will prove that this transformation decreases
the

∑

x,y∈V (G) d(x, y). In the next section we will study the number of walks
in trees, and prove Theorem 4.6. In the last section we will give some open
problems which naturally arise after studying this method.

Notation: We will follow the usual notation: G is a graph, V (G) is the
set of its vertices, e(G) denotes the number of edges, N(x) is the set of the
neighbors of x, µ = µ1 ≥ µ2 ≥ · · · ≥ µn is the set of adjacency eigenvalues
of G, µ is also called spectral radius. Wℓ will denote the number of closed
walks of length ℓ.

2. Generalized tree shift and the induced poset

As far as our research shows Kelmans [7] was the first who studied the
following operation on graphs. Let x, y be two vertices of some graph G and
let G′ be the graph obtained from G by erasing the edges between y and
N(y)\(N(x)∪{x}) and adding the edges between x and N(y)\(N(x)∪{x}).
This transformation has many nice properties: it increases the spectral radius
and decreases the number of spanning trees [1],[13]. This transformation can
be applied to any graph, but if we consider it as a transformation on trees
we have to make a restriction on x and y, namely they should have distance
at most 2 in order to obtain a connected G′ as a result; in this case G′ will
be also a tree. Due to this restriction we cannot get any tree different from
the path as an image of this transformation which we will see later has a
crucial importance. To handle this problem we extend this transformation
as follows.

Definition 2.1. Let G2 be a tree and x and y be vertices such that all
the interior points of the path xy (if they exist) have degree 2 in G2. The
generalized tree shift (GTS) of G2 is the tree G1 obtained from G2 as follows:
let z be the neighbor of y lying on the path xy, let us erase all the edges
between y and N(y)\{z} and add the edges between x and N(y)\{z}. See
Figure 2.

In what follows we call x the beneficiary and y the candidate (for being
a leaf) of the generalized tree shift. Note that if x or y is a leaf in G2 then
G1

∼= G2, otherwise the number of leaves in G1 is the number of leaves in G2

plus one. In this latter case we call the generalized tree shift proper.

Remark 2.2. Note that x and y need not to have degree 2.

Notation: In the following we call the vertices of the path xy 1, 2, . . . , k
if the path consists of k vertices such way that x will be 1 and y will be
k. The set A ⊂ V (G2) consists of the vertices which can be reached with
a path from k only through 1, and similarly the set B ⊂ V (G2) consists of
those vertices which can be reached with a path from 1 only through k. For
the sake of simplicity we denote the corresponding sets in G1 also A and B.
The set of neighbors of 1 in A is called A0, and similarly B0 is the set of
neighbors of 1 in B ⊂ V (G1) and set of neighbors of k in B ⊂ V (G2).
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Figure 1. Original Kelmans’s transformation applied to trees.
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Figure 2. The generalized tree shift.

Definition 2.3. Let us say that G1 > G2 if G1 can be obtained from G2

by some proper generalized tree shift. The relation > induces a poset on
the trees on n vertices, since the number of leaves of G1 is greater than the
number of leaves of G2, more precisely the two numbers differ by one. Hence
the relation > is indeed extendable.

One can always apply a proper generalized tree shift to any tree which has
at least two vertices that are not leaves. This shows that the only maximal
element of the induced poset is the star. The following theorem shows that
the only minimal element of the induced poset, i. e., the smallest element is
the path.

Theorem 2.4. Every tree different from the path is the image of some proper
generalized tree shift.

Proof. Let T be a tree different from the path, i. e., it has at least one vertex
having degree greater or equal to 3. Let v be a vertex having degree one.
Further let w be the closest vertex to v which has degree at least 3. Then the
interior vertices (if they exist) of the path induced by v and w have degrees
2. The vertex w has at least two neighbors different from the one which
lying on the path induced by v and w, so we can decompose these neighbors
into two nonempty sets, A0 and B0. Let T ′ be the tree given by erasing the
edges between w and B0 and adding the edges between v and B0. Then T
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Figure 3. A tree which is not the image of the original Kel-
mans’s transformation.

can be obtained from T ′ by the GTS, where w is the beneficiary and v is the
candidate. Since A0 and B0 are nonempty this is a proper generalized tree
shift. ¤

Corollary 2.5. The star is the unique maximal, i.e., the greatest element,
the path is the unique minimal, i.e., the smallest element of the induced poset
of the generalized tree shift.

Remark 2.6. This is a finite poset so the unique maximal really means
greatest and the unique minimal really means smallest.

One can define the poset on trees induced by the original Kelmans trans-
formation by the same way we defined the poset induced by GTS. Then it
is true that star is the greatest element of the poset induced by the original
Kelmans transformation, but it is not true that the path is the only mini-
mal element of this poset. The graph in Figure 3 is not the image of any
Kelman’s shift. This explains why we needed to generalize this concept.

3. An elementary property of GTS

Theorem 3.1. The proper generalized tree shift decreases the function
∑

x,y d(x, y).

Proof. Let G2 be a tree and G1 its image by a GTS. Let dj be the distance
in the corresponding graphs.

Clearly,

d1(i, a) + d1(k + 1 − i, a) = d2(i, a) + d2(k + 1 − i, a)

for all a ∈ A and

d1(i, b) + d1(k + 1 − i, b) = d2(i, b) + d2(k + 1 − i, b)

for all b ∈ B.
Trivially d1(a, a′) = d2(a, a′) for a, a′ ∈ A, d1(b, b

′) = d2(b, b
′) for b, b′ ∈ B

and d2(a, b) = d1(a, b) + (k − 1) for a ∈ A and b ∈ B.
Altogether we have

∑

x,y

d2(x, y) =
∑

x,y

d1(x, y) + (k − 1)|A||B|.

Hence the generalized tree shift decreases
∑

x,y d(x, y). ¤

Corollary 3.2. The path maximizes, the star minimizes
∑

x,y d(x, y) among
the trees on n vertices.
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Proof. It follows from the previous theorem and the fact that the path is the
only minimal, the star is the only maximal element of the induced poset of
the generalized tree shift. ¤

Remark 3.3. Corollary 3.2 was known [8].

4. Walks in trees

In this section we prove Theorem 4.6 on the number of closed walks which
was already mentioned in the introduction. To do this we need some prepa-
ration.

Definition 4.1. Let Ĝ1 be the tree consisting of a path on k vertices and
two vertices adjacent to one of the endpoints of the path. Let Ĝ2 be the
tree consisting of a path on k vertices and two vertices which are adjacent to
different endpoints of the path; this is simply a path on k + 2 vertices. We
will refer to these graphs as the reduced graphs of the generalized tree shift.
(See Figure 4.)

Notation: The vertices of the path in each reduced graph will be denoted
by 1, 2, . . . , k. The other two vertices are a and b. In Ĝ1 vertex 1 will be
adjacent to a and b, in Ĝ2 vertex 1 will be adjacent to vertex a and vertex
k will be adjacent to vertex b.

Definition 4.2. Let R(ℓ, i, j,m, n) be the set of those walks of length ℓ

in Ĝ1 which start at vertex i, finish at vertex j and visit vertex a exactly
m times, vertex b exactly n times. Similarly let D(ℓ, i, j,m, n) be the set

of those walks of length ℓ in Ĝ2 which start at vertex i, finish at vertex j

and visit vertex a exactly m times, vertex b exactly n times. The cardinal-
ity of R(ℓ, i, j,m, n) and D(ℓ, i, j,m, n) are denoted by R(ℓ, i, j,m, n) and
D(ℓ, i, j,m, n), respectively.

Symmetry properties of the function R and D. Since we can "reflect"
any walk of Ĝ1 in the "horizontal axis" of Ĝ1, i.e., we can exchange the a’s
and b’s in any walk we have

R(ℓ, i, j,m, n) = R(ℓ, i, j, n,m)

for all ℓ, i, j,m, n.
Similarly we can "reflect" any walk of Ĝ2 in the "vertical symmetry axis"

of Ĝ2 and so we have

D(ℓ, i, j,m, n) = D(ℓ, k + 1 − i, k + 1 − j, n,m)

for all ℓ, i, j,m, n.

1 2 kk−1. . .

b

a

1 2 kk−1. . .a b

Figure 4. Reduced graphs of the generalized tree shift.
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Lemma 4.3. R(ℓ, 1, j,m, n) ≥ D(ℓ, 1, j,m, n) where 1 ≤ j ≤ k.

Proof. First we prove the statement in the case m = 0, j = k. Let w1w2 . . . wℓ+1

be a walk from 1 to k in Ĝ2 in which b occurs n times. Let us define vi = f(wi)
as follows:

f(wi) =

{

k + 1 − s if wℓ+2−i = s

b if wℓ+2−i = b

Then v1v2 . . . vl+1 is a walk of length ℓ from 1 to k in Ĝ1 which contains b

exactly n times. Hence we have proved that

R(ℓ, 1, k, 0, n) = D(ℓ, 1, k, 0, n)

since this algorithm gives a bijection between R(ℓ, 1, k, 0, n) and D(ℓ, 1, k, 0, n).
Now let j arbitrary, but still m = 0, i. e., the walks do not visit a. If

n = 0 then

R(ℓ, 1, j, 0, 0) = D(ℓ, 1, j, 0, 0)

trivially, because of the identical map between the vertices of 1, 2 . . . , k of
Ĝ1 and Ĝ2. If n ≥ 1 then a walk w1w2 . . . wℓ+1 in Ĝ2 surely visit the ver-
tex k, let the time of the last visit of vertex k be t. Then let us encode
w1w2 . . . wt by the function f and let v1v2 . . . vtwt+1 . . . wℓ+1 be the corre-
sponding walk to w1 . . . wl+1 in Ĝ1. This way we managed to give an injec-
tion from D(ℓ, 1, j, 0, n) to R(ℓ, 1, j, 0, n) . (Note: this mapping is no more

bijective: those walks in Ĝ1 which do not visit k are not in the image of the
mapping.)

Now let us consider the general case. Let us do the following: repeat
those sequences of the walk w1 . . . wℓ+1 of D(ℓ, 1, j, n,m) where the walk
has the form 1a1a . . . a1 and between two parts of this form we encode the
way as in the previous case. Then it is trivially an injective mapping from
D(ℓ, 1, j,m, n) to R(ℓ, 1, j,m, n).

Hence R(ℓ, 1, j,m, n) ≥ D(ℓ, 1, j,m, n). ¤

Lemma 4.4. For all 1 ≤ i, j ≤ k and for all nonnegative integers ℓ,m, n we
have

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) ≥
≥ D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n).

Proof. We prove by induction on ℓ. The claim is trivial for ℓ = 0, 1.
We can assume that i ≤ k + 1 − i. We distinguish two cases.

Case 1 Assume i ≥ 2. Let w1w2 . . . wℓ+1 be a walk of R(ℓ, i, j,m, n), i.e.,
w1 = i, wℓ+1 = j. Then w2 = i + 1 or w2 = i − 1, thus we can decompose
the set R(ℓ, i, j,m, n) into the sets R(ℓ − 1, i − 1, j,m, n) and
R(ℓ − 1, i + 1, j,m, n) respected to w2 . . . wℓ+1 starting from i − 1 or i + 1.
Similarly we can decompose the other sets respected to their first step.

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) =

R(ℓ − 1, i − 1, j,m, n) + R(ℓ − 1, i + 1, j,m, n)+

+R(ℓ − 1, k − i, k + 1 − j,m, n) + R(ℓ − 1, k + 2 − i, k + 1 − j,m, n)
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and similarly

D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n) =

D(ℓ − 1, i − 1, j,m, n) + D(ℓ − 1, i + 1, j,m, n)

+D(ℓ − 1, k − i, k + 1 − j,m, n) + D(ℓ − 1, k + 2 − i, k + 1 − j,m, n).

By induction we have

R(ℓ − 1, i − 1, j,m, n) + R(ℓ − 1, k + 2 − i, k + 1 − j,m, n) ≥
≥ D(ℓ − 1, i − 1, j,m, n) + D(ℓ − 1, k + 2 − i, k + 1 − j,m, n)

and

R(ℓ − 1, i + 1, j,m, n) + R(ℓ − 1, k − i, k + 1 − j,m, n) ≥
≥ D(ℓ − 1, i + 1, j,m, n) + D(ℓ − 1, k − i, k + 1 − j,m, n).

By adding together the two inequalities we get the desired inequality

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) ≥
≥ D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n).

Case 2 Assume i = 1. Then we see that

R(ℓ, 1, j,m, n) + R(ℓ, k, k + 1 − j,m, n) =

= R(ℓ − 1, a, j,m, n) + R(ℓ − 1, b, j,m, n)+

+R(ℓ − 1, 2, j,m, n) + R(ℓ, k − 1, k + 1 − j,m, n)

while

D(ℓ, 1, j,m, n) + D(ℓ, k, k + 1 − j,m, n) =

= D(ℓ − 1, a, j,m, n) + D(ℓ − 1, 2, j,m, n)

+D(ℓ − 1, b, k + 1 − j,m, n) + D(ℓ − 1, k − 1, k + 1 − j,m, n).

By induction we have

R(ℓ − 1, 2, j,m, n) + R(ℓ − 1, k − 1, k + 1 − j,m, n) ≥
≥ D(ℓ − 1, 2, j,m, n) + D(ℓ − 1, k − 1, k + 1 − j,m, n).

Further we have by Lemma 4.3

R(ℓ − 1, a, j,m, n) = R(ℓ − 2, 1, j,m − 1, n) ≥
≥ D(ℓ − 2, 1, j,m − 1, n) = D(ℓ − 1, a, j,m, n)

and by the symmetry properties and Lemma 4.3

R(ℓ − 1, b, j,m, n) = R(ℓ − 2, 1, j,m, n − 1) = R(ℓ − 2, 1, j, n − 1,m) ≥
D(ℓ−2, 1, j, n−1,m) = D(ℓ−2, k, k+1−j,m, n−1) = D(ℓ−1, b, k+1−j,m, n).

By adding together the three inequalities we obtain the required inequality

R(ℓ, 1, j,m, n) + R(ℓ, k, k + 1 − j,m, n) ≥
≥ D(ℓ, 1, j,m, n) + D(ℓ, k, k + 1 − j,m, n).

Hence we completed the proof of the inequality. ¤
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Corollary 4.5. We have the following inequalities

R(ℓ, a, a,m, n) ≥ D(ℓ, a, a,m, n)

and
R(ℓ, b, b,m, n) ≥ D(ℓ, b, b,m, n)

and
k

∑

i=1

R(ℓ, i, i,m, n) ≥
k

∑

i=1

D(ℓ, i, i,m, n).

Proof. To obtain the first inequality we use Lemma 4.3.

R(ℓ, a, a,m, n) = R(ℓ − 2, 1, 1,m − 2, n) ≥
≥ D(ℓ − 2, 1, 1,m, n) = D(ℓ, a, a,m, n).

Similarly, using Lemma 4.3 and the symmetry properties we have

R(ℓ, b, b,m, n) = R(ℓ − 2, 1, 1,m, n − 2) = R(ℓ − 2, 1, 1, n − 2,m) ≥
≥ D(ℓ − 2, 1, 1, n − 2,m) = D(ℓ − 2, k, k,m, n − 2) = D(ℓ, b, b,m, n).

To obtain the third inequality we put i = j into the previous lemma

R(ℓ, i, i,m, n) + R(ℓ, k + 1 − i, k + 1 − i,m, n) ≥
≥ D(ℓ, i, i,m, n) + D(ℓ, k + 1 − i, k + 1 − i,m, n).

Summing these inequalities for i = 1, . . . , k, after dividing by two we get

k
∑

i=1

R(ℓ, i, i,m, n) ≥
k

∑

i=1

D(ℓ, i, i,m, n).

¤

Theorem 4.6. The proper generalized tree shift increases the number of
closed walks of length t.

Proof. Let G2 be a tree and G1 a tree obtained from G2 by a generalized
tree shift. We give an injective mapping from the closed walks of length t

of G2 to the closed walks of length t of G1. We can decompose a closed
walk of G2 into parts which are entirely in A, entirely in B or entirely in the
path {1, 2, . . . , k} of G2. By substituting a or b instead of the parts walking

in A, respectively in B we get a walk of Ĝ2. By the previous corollary we
know that there is an injective mapping from the closed walks of length ℓ

with given number of a’s and b’s of Ĝ2 to the closed walks of length ℓ with
given number of a’s and b’s of Ĝ1, moreover we can ensure that those walks
which start with a or b have the image starting with a or b, respectively.
Now by substituting back the a’s and b’s by the parts of walks going in A or
B, respectively, we get an injective mapping from the closed walks of length
t of G2 to the closed walks of length t of G1. ¤

Vladimir Nikiforov observed (private communication) that Theorem 4.6
already implies known and new results in a simple manner.

Corollary 4.7. The proper generalized tree shift increases the spectral radius
and the Estrada index.
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Proof. Let G2 be a tree and G1 a tree obtained from G2 by a generalized
tree shift. Then

µ(G1) = lim
k→∞

W2k(G1)
1/(2k) ≥ lim

k→∞

W2k(G2)
1/(2k) = µ(G2)

by the identity W2k =
∑n

i=1 µ2k
i and Theorem 4.6.

Similarly, we have

n
∑

i=1

eµi =
n

∑

i=1

∞
∑

t=0

µt
i

t!
=

∞
∑

t=0

1

t!

k
∑

i=1

µt
i =

∞
∑

t=0

Wt

t!

proving the second statement. ¤

Corollary 4.8. (a)The path minimizes the spectral radius and the Estrada
index among all connected graphs on n vertices.

(b) The star maximizes the spectral radius and the Estrada index among
all trees on n vertices.

Proof. (a) The statement concerning the spectral radius is obvious since by
the monotonicity of the spectral radius it is enough to find the minimizing
graph among the trees. Since the only minimal element of the induced poset
of the generalized tree shift is the path, the claim immediately follows from
Corollary 4.7.

Similarly, it is enough to find the graph minimizing the Estrada index
among the trees, because of the identity

n
∑

i=1

eµi =
∞

∑

t=0

Wt

t!
.

This implies the minimality property of path the same way as before.
(b) Again it follows from the previous corollary and the fact that the star
is the only maximal element of the induced poset of the generalized tree
shift. ¤

Remark 4.9. The statement in Corollary 4.8 concerning the Estrada index
was conjectured in the paper [3]. While both statements concerning the
spectral radius are well-known in the previous corollary [9]. We mention
that Nikiforov’s inequality [10]

µ(G) ≤
√

2e(G)

(

1 − 1

ω(G)

)

also implies the second inequality concering the star and the spectral radius
since for trees we have e(G) = n − 1, ω(G) = 2 and the greatest eigenvalue
of the star is exactly

√
n − 1. (It was Nosal who proved that for triangle-

free graphs µ ≤
√

e(G) holds, later Nikiforov [11] proved that in Nosal’s
inequality equality holds if and only if the graph is complete bipartite with
some isolated vertices.)

Remark 4.10. The author recently learnt that H. Deng [4] also proved the
conjecture concerning the Estrada index. His proof goes in a very similar
fashion. He uses two different transformations for proving the minimality of
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the path and the maximality of the star; both transformations are special
cases of the generalized tree shift.

5. Open problems

We have seen that several properties increase or decrease along the poset
induced by the generalized tree shift. Such property was the number of
leaves, the

∑

x,y d(x, y), the greatest eigenvalue or the number of closed walks
of length ℓ. Is it true that one of them implies another? For example, is it
true that if trees the G1, G2 satisfy

∑

x,y∈V (G1)

dG1
(x, y) >

∑

x,y∈V (G2)

dG2
(x, y)

then
Wℓ(G1) ≤ Wℓ(G2)

for all ℓ?

We have seen that the star maximizes, path minimizes the number of
closed walks of length ℓ among the connected graphs with n−1 edges. What
is the truth for general m instead of n− 1, i.e., which graphs maximizes and
minimizes the number of closed walks of length ℓ among the (connected)
graphs on n vertices and m edges? Is there a universal graph for all ℓ as in
the case of m = n − 1 for both the minimizing and maximizing problem?

Acknowledgement. The author is very grateful to Vladimir Nikiforov and
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