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1 Introduction

Generating functions are powerful tools for solving a nundfgroblems mostly in combinatorics,
but can be useful in other branches of mathematics as wedl gohl of this text is to present certain
applications of the method, and mostly those using the ligba knowledge.

In the beginning we have a formal treatement of generatingtfans, i.e. power series. In other
parts of the article the style of writing is more problem-isgvoriented. First we will focus on
solving the reccurent equations of first, second, and highagr, after that develope the powerful
method of ,,the snake oil, and for the end we leave some @thglications and various problems
where generating functions can be used.

The set of natural numbers will be denoted¥ywhile Np will stand for the set of non-negative
integers. For the sums going from 0 4~ the bounds will frequently be omitted — if a sum is
without the bounds, they are assumed to be 0-ard

2 Theoretical Introduction

In dealing with generating functions we frequently want s wifferent transformations and ma-
nipulations that are illegal if the generating functione arewed as analytic functions. Therefore
they will be introduced as algebraic objects in order to imbtader range of available methods. The
theory we will develope is called tHfermal theory of power series

Definition 1. A formal power seriess the expression of the form
ag+aX+ a4 = Zja;x‘.
i=

A sequence of intege{s, }; is calledthe sequence of coefficients

Remark We will use the other expressions also: series, generatimgibn...
For example the series

AX)=14+x+252 + 3+ 40X+ -
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converges only fox = 0 while, in the formal theory this is well defined formal poveeries with the
correspongind sequence of coefficients equdkidy,a = =il
Remark.Sequences and their elements will be most often denotedamricase latin lettersa( b,

3 ---), while the power series generated by them (unless statevaise) will be denoted by the
corresponding capital letterd,(B, - - ).
Definition 2. Two series A= Z}ax and B= Zjb.x are calledequalif their corresponding se-
quences of coefficients are equal, i.e=ab; for every i€ Ng.

Remark.The coefficient neax" in the power serieE will be denoted byx"|F
We can define theumand thedifference of power series in the following way

anX" £y bpx" =y (an £ bp)X"
while theproductis defined by
ax"y b= S ox", =Y abn
LD LA 3
Instead ofF - F we write F2, and more generallF™! = F . F". We see that the neutral for
addition is 0, and 1 is the neutral for multiplication. Now ean define the following term:

Definition 3. The formal power series G igciprocalo the formal power series F if F& 1.

The generating function reciprocalfowill be usually denoted by /F. Since the multiplication
is commutative we have th&iG = 1 is equivalent t@sF = 1 hencd- andG aremutually reciprocal
We also havél—x)(14+x+x24---) =145 ;(1-1—-1-1)X = L hencg1—x) and(1+x+x2+---)
are mutually reciprocal.

Theorem 1. Formal power series = Zanxn has a reciprocal if and only if @# 0. In that case
the reciprocal is unique. "

Proof. Assume thaf has a reciprocal given by/F = anx”. ThenF - (1/F) = 1 implying
1 = agbp henceag # 0. Forn > 1 we have G= Zakbn_k fro?n where we conclude.

bn = —% Zakbnfk-

The coefficients are uniquely determined by the prefious fitam
On the other hand i&y # 0 we can uniquely determine all coefficiedksusing the previously
established relations which gives the seri¢gg .10

Now we can conclude that the set of power series with the atlefired operation forms a ring
whose invertible elements are precisely those power seiteghe non- zero first coefficient.
If F =% fux" is a power seriest(G(x)) will denote the serie§ (G Z fnG(X)". This

n
notation will be used also in the case wheis a polynomial (i.e. when there are only f|n|tely many
non-zero coefficients) or if the free term@fequals 0. In the case that the free ternGafqual to O,
andF is not a polynomial, we can’t determine the particular eletiwé the serie§ (G(x)) in finitely
many steps.

Definition 4. A formal power series G is said to be an inverse of F (Gfx)) = G(F (x)) = x.

We have a symmetry here as well(fis inverse ofF thanF is inverse ofG as well.
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Theorem 2. Let F and G be mutually inverse power series. Thea Fix+ fox2+---, G = gix+
02x?+ -+, and figy # 0.

Proof. In order forF(G(x)) andG(F (x)) to be defined we must have 0 free terms. Assume that
F="fixX+-andG=geC+--. ThenF(G(x)) =x= figixX*+---, thusrs=1andr=s=1.0

Definition 5. The derivative of a power series+ z fx"is F/ = annxnfl. The derivative of
order n> 1is defined recursively by Rl = (F<”))’.n ’
Theorem 3. The following properties of the derivative hold:
o F+G)M =F0 1 GM
o (FOM =31, (PFIGM
The proof is very standard as is left to the reader.

We will frequently associate the power series with its gatieg sequence, and to make writing
more clear we will define the the relati@® in the following way:

Definition 6. A%'{a,}3 means that A is a usual power series which is generateflahyj, i.e.
A=Y ax".
?

Assume thaA?%" {ay}g. Then

1 A(X) —ag
ani1X' = = Z)anxn =

A
or equwalently{anﬂ}"""SrTao Similarly

(A—ag)/x—a1 _ A—an—aX

00 OSr
{an+2}0 — X 2

Theorem 4. If {a,}g %' A the for h> 0:

woest A—ag—agX— - —ap_x" 1
O

Proof. We will use the induction oh. Forh = 1 the statement is true and that is shown before. If
the statement holds for sorhghen

A—ag—ayX—---—ap X1 a
- _
o0 00 OSr X
{aninito & {aninato 2 >
h
osr A—d—arX—---—apX
A Xh+1 ’

which finishes the proofa

We already know thaf(n+ 1)a,, 1} 95'A'. Our goal is to obtain the sequenfea,}g. That is
exactly the sequenceX. We will define the operatotD in the following way:

Definition 7. XDA= xA i.e. XDA= x34.
The following two theorems are obvious consequences ofrthigepties of the derivative:

Theorem 5. Let {an}5 %" A. Then{n*an}g " (XD)¥A.
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Theorem 6. Let{an}3 %5"A and P be a polynomial. Then
P(XD)A%"{P(n)an}5

. . A
Let us consider the generating functuin— It can be written asA— As we have shown

before the reciprocal to the series-kis 1+ x4 X2+ hence— (ap+agX+apx®+---)(1+
X+X2+ ) =ap+ (ap+a1)x+ (ag+ a1 +ag)x° + - -

Theorem 7. If {a}5 %5"A then
A osr - .
1% © {ZoaJ :
1= n>0

Now we will introduce the new form of generating functions.

Definition 8. We say that A igxponential generating functidor series, power series) of the se-
quence{an}y if A is the ususal generating function of the sequeffisg 5, or equivalently

@n . n
A=) —X
2n
If B is exponential generating function of the ser{ég} 5 we can also writg{b }5 ¢5'B.

If BS"{bn}g, we are interested iB'. It is easy to see that

henceB' ¢"{bn;1}5.
Theorem 8. If {bn}g "B then for h> 0:

{bninys & B
We also have an equivalent theorem for exponential gengratnctions.
Theorem 9. Let{bn}7 ¢3'B and let P be a polynomial. Then
P(xD)BZ{P(n)bn}g

The exponential generating functions are useful in contbime identities because of the fol-
lowing property.

Theorem 10. Let {an}g $5'A and {bn}g ¢5'B. Then the generating function AB generates the se-
quence

0

{3 (ons)

Proof. We have that

or
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and the proof is complete

We have listed above the fundamental properties of gengr&iinctions. New properties and
terms will be defined later.

Although the formal power series are defined as solely algelmbjects, we aren’t giving up
their analytical properties. We will use the well-known Tas expansions of functions into power

series. For example, we will treat the functigas a formal power series obtained by expanding the
n

function into power series, i.e. we will identif§f with Zo . We will use the converse direction

also. Here we will list the Taylor expansions of most commamctions.

1 n
— =YV X
1-x nZO
1 X"
In— = z —
X & n
Xn
eX: _l
Son
2n+1
X
sinx="Y (-1)"
nso (2n+1)!
X2n
COSX = -1
& (=1) (2n)!

( 1—4x) = znil<2n>xn

(_4) "Bzn x2n

XCOtX =
n;) (2k)!
tanx = z (_1)n7122n(22n —1Ban on1
&1 (2n)!

n 1 4 _Z)BZHXZn

?nx‘n; 2m)

k
1 1—I—4x _5 2n+K)
1-4x 2X ‘ n
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k@n+k—1)1 ,

2X
. (2n— 1)@+l
aresime= n;) @ml(2n+1)

25 sinm "

e sinx = z 4 xn

n>1

2 1 anlxn

1-vI—x 2 (4n)! .

= X
X L 16M/2(2n)1 (204 1)!
(arcsinx) ?_ i At o
X 2 (k+1)(2k+1)!
n

1 . .
Remark:HereH, = Zii_’ andBy, is then-th Bernoulli number.
i=

3 Recurrent Equations
We will first solve one basic recurrent equation.

Problem 1. Let &, be a sequence given by & 0 and a,,1 = 2a,+ 1 for n > 0. Find the general
term of the sequencga

Solution. We can calculate the first several terms 0, 1, 3, 7, 15, and véeanpted to guess the
solution asa, = 2"— 1. The previous formula can be easily established usingenadkical induction
but we will solve the problem using generating functions. t A&) be the generating function of
the sequenca,, i.e. letA(x z anx". If we multiply both sides of the recurrent relation ¥yand

add for alln we get

AX)—ag A(X) 1
n_ —_— = = —_—
; an X' = < < 2A(x 1 % (2an+ 1)X
From there we easily conclude «
AN = T92=x%"

Now the problem is obtaining the general formula for the edata of the sequence. Here we will
use the famous trick of decomposiAgnto two fractions each of which will have the corresponding
generating function. More precisely

(1—X)X(2—X) _X(l—22x_ 1ix> = (242504 ) = ()X,

fes]

Now it is obvious thatA(x) = Z (2" — 1)x" and the solution to the recurrent relation is indeed
n=0

ahn=2"-1. A

Problem 2. Find the general term of the sequence given recurrently by

ani1=2ap+n, (n=0), ag=1.
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Solution. Let{an}‘”"srA Then{an;1}§ %" &2, We also have thatD 1 %' {n-1}. SincexD%; =
1

X2 = (17)()2 the recurrent relation becomes

A-1 X
— =2A+——.
X +(1—x)2

From here we deduce
o 1-2x 2@
 (1-x)2(1-2x)°
Now we consider that we haweolved for the generating seriedf we wanted to show that the

sequence is equal to some other sequence it would be enosgbvwothat the functions are equal.
However we need to find the terms explicitely. Let us try torespntA again in the form

1-2x+2x2 P L QR
(1-x2(1-2x) (1-x2 1-x 1-2x

After multiplying both sides with{1 — x)%(1 — 2x) we get
1-2x+ 23 =P(1-2X)+ Q(1—x)(1—2x) + R(1—x)?,
or equivalently
1-2x+ 24 =x2(2Q+R) +x(—2P—3Q—2R) + (P+ Q+R).

This impliesP = —1,Q =0, andR = 2. There was an easier way to ¢&tQ, andR. If we multiply
both sides by(1— x)? and setx = 1 we getP = —1. Similarly if we multiply everything by 1 2x
and plugx = % we getR= 2. Now substitutind® andR and settingc = 0 we getQ = 0.

Thus we have

_ -t 2
S (1-x?2  1-2¢
2 osr n+1 1 1 osr n+1
Slncel ZH{Z }and(l_x)z:Dl_xH{nJrl}wegetan:Z -n—-1.A

In previous two examples the term of the sequence was damgeodly on the previous term.
We can use generating functions to solve recurrent retidorder greater than 1.

Problem 3 (Fibonacci's sequence)Fy =0, F; =1, and for n> 1, Fy,1 = Fy+ F,_1. Find the
general term of the sequence.

Solution. Let F be the generating function of the serids}. If we multiply both sides bx" and
add them all, the left-hand side becon{€g, 1} ' F X while the right-hand side becomEst xF.

Therefore X

F=r .
1-x—x2

Now we want to expand this function into power series. Firstwant to represent the function as a
sum of two fractions. Let
X2 —x+1=(1—ax)(1-Bx).

Thena = (1++/5)/2, 8 = (1-+/5)/2, anda — 3 = /5. We further have

X B X 1
I-x—x  (I—-xa)1—-xB) a- <1 Xa l—xB>

B
S PAa ]
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It is easy to obtain

1 n_pan
Fnzﬁ(a ﬁ)A

Remark:From here we can immediately get the approximate formul&foBince|| < 1 we have

r!im B"=0and
£ L 1+v5)"
n~ \/E 2 .

Now we will consider the case with the sequence of two vagsbl

Problem 4. Find the number of k-element subsets of an n-element set.

Solution. We know that the result i§}), but we want to obtain this using the generating functions.
Assume that the required number is equal(ta k). LetA= {ay,...,an} be ann-element set. There
are two types ok-element subsets — those which con@jrand those that don’t. There are exactly
c(n—1,k—1) subsets containing,. Indeed they are all formed by takihkg- 1-element subsets of
{a1,...,an—1} and adding, to each of them. On the other hand there are exaity- 1, k) subsets
not contianingg,. Hence

c(n,k) =c(n—1,k)+c(n—1,k—1).

We also have(n,0) = 1. Now we will define the generating function of the sequet(cek) for a
fixed n. Assume that
Ch(x) = Zc(n, K)xK.

If we multiply the recurrent relation by and add for alk > 1 we get
Ca(X) — 1= (Ch-1(X) — 1) + xCy—1(x), foreachn>0
andCy(x) = 1. Now we have fon > 1:
Ca(X) = (1+X)Cn_1(X).

We finally haveC,(x) = (1+x)". Henceg(n, k) is the coefficient nea in the expansion afL+x)",
and that is exactlyy). A

Someone might think that this was a cheating. We have usemhtiah formula, and that is
obtianed using a combinatorial technique which uses thdtre® wanted to prove. Fortunately,
there is a proof of binomial formula involving Taylor expaion.

We can also make a generating function of the seqGge:

] 1
ch(x)yn: ;Z (E)Xkyn_ Z(l‘FX) Y= Ty(1+%)

In such a way we havg}) = [x*y"](1—y(1+x))~. Now we can calculate the sul (E)y”:
n

1 1 1
[XK}ZZG)XKW - [Xk]l—y(l—kx):l—y[xk]l—l%x

y
1-y\1-y (1—y)k+t’
Hence we have the identities

(s 3o

Remark:Forn < kwe define(E) =0.
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Problem 5. Find the general term of the sequengg @= 6a,,2 — 11a,,1 + 6a,, n > 0 with the
initial conditions @ =2,a; =0, ap = —2.

Solution. If Aiis the generating function of the corresponding sequerare th

_2_0-X— (—2)x2 _2_0. _
A—2-0-x—(-2)x :6A 2 Ox—llA 2+6A,
x3 X2 X
from where we easily get
20 — 12x+ 2 20x% — 12x+2

A= = .
1-6x+112—6x3  (1—x)(1—2x)(1—3x)
We want to find the real coefficieniB C, andD such that

20x% — 12+ 2 B C D

(1-x)(1—2x)(1—3x) Tx T-2x1-3

We will multiply both sides by(1—x) and setx = 1 to obtainB = (2_05)_(2_+§) = 5. Multiplying by

(1-2x) and settingc= 1/2 we further ge€C = =82 = —4. If we now substitute the found values
for BandC and putx=0we geB+C+D =2 from where we dedud® = 1. We finally have

) 4 1 2 n | amn
A71—x l—2x—|r1—3x7n;)(5 4-27+30)x

implyinga, =5—2"24+3" A

The following example will show that sometimes we can hawgelttes in finding the explicite
formula for the elements of the sequence.

Problem 6. Let the sequence be given hy-a0, a; = 2, and for n< 0:
any2 = —4ap;1— 8an.
Find the general term of the sequence.

Solution. Let A be the generating function of the sequence. The recurrkationre can be written in
the form A0 x A_D
% — 42"~ _gA
X X

implying
2X
A= ———.
1+ 4x+8x2
The rootg; = —2+ 2i andr, = —2— 2i of the equation? + 4x+ 8 are not real. However this should

interfere too much with our intention for findirgjandC. Pretending that nothing wierd is going on

we get
2X B C

1+4x+82 1—r1x+ 1—rox

Using the trick learned above we ggt= 5 andC = 5.

Did you read everything carefully? Why did we consider thetsmf the polynomiak? 4 4x +
8 when the denumerator @ is 8% 4 4x+ 1?! Well if we had considered the roots of the real
denumerator we would get the fractions of the fqﬁ&l; which could give us a trouble if we wanted
to use power series. However we can express the denomirsat®(i8a- 4)—1( + Xiz) and consider this
as a polynomial irg! Then the denumerator becoméq X —ry) - (£ —r,).
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Now we can proceed with solving the problem. We get

—i/2 i/2
1-(—242)x 1—(-2-2i)x

A=

From here we get

8
8

A= (—2421)"%"+ !

=) (—2-2)",
n=0 2n=0

implying _ '
—i i
= —(=2+2)"+ z(-2-2)".
an= - (~2+20)"+ 5(~2-2)
But the terms of the sequence are real, not complex numbezstaVv now simplify the expression

for a,. Since _
242i=2V2e T,

we get
i n 3nt . . 3nm 3nt . . 3nmT
an72(2\/§) ((cos 4~ isin= ) —(cos=— +isin=-) |,
hencea, = (2/2)"sin 3%7. Written in another way we get
0, n=8k
(22", n=8k+6
an = —(2/2)", n=8k+2
%(2&)“, n=8k+1ilin=8k+3
2
(2v2)

22", n=8k+5iin=8k+7. A

Now we will consider on more complex recurrent equation.

Problem 7. Find the general term of the sequengegiven by:
Xo=X; =0, Xni2— 6Xni1+ W =2"+n zan>O0.

Solution. Let X(t) be the generating function of our sequence. Using the sanigod®as in the
examples above we can see that the following holds:
X X 1 t

Simplifying the expression we get

tZ_t3_t4
XO=Tra—ma—ae

hence
1 1 5 5

X0 = g7 -

1-2x 3(1-3) 121302

. , n+1 . .
The sequence corresponding to the first summaﬂélgrs, while the sequences for the second, third,
5(n+1)3t

and fourth are®, 5-3"1 and >

respectively. Now we have

224 n+145(n—3)3"?

Xn = 7 VAN
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Problem 8. Let f; =1, fop = f,, and Hn1 = fn+ fre1. Find the general term of the sequence.

Solution. We see that the sequence is well define because each termrisdiafiing the terms
already defined. Let the generating functi®te given by

FO) =3 fux™%

n>1

Multiplying the first given relation byx®"~1, the second by?", and adding all of them fan > 1 we
get:
it S ™ T S @ =145 T Y "+ S X
n>1 n>1 n>1 n>1 n>1
or equivalently
Z ann_l - 1+ Z an2n_1+ Z an2n+ Z fn+1X2n.

n>1 n>1 n>1 n>1

This exactly means th&(x) = x°F (x?) + xF(x?) + F () i.e.
F(X) = (1+x+X3)F (x3).

Moreover we have

Fo) =T (1+x 2.
0= )
We can show that the sequence defined by the previous forrasi@hinteresting property. For every
positive integen we perform the following procedure: Writgin a binary expansion, discard the
last "block” of zeroes (if it exists), and group the remannfigits in as few blocks as possible such
that each block contains the digits of the same type. If far twmbersn andn the corresponding
sets of blocks coincide the we hafig= f,,. For example the binary expansion of 22 is 10110 hence
the set of corresponding blocks {4,0, 11}, while the number 13 is represented as 1101 and has
the very same set of block41,0,1}, so we should havé(22) = f(13). Easy verification gives us
f(22)=1f(13)=5.  Fromthe last expression we conclude thas the number of representations
of nas a sum of powers of two, such that no two powers of two arentéioen the same set of a
collection{1,2}, {2,4}, {4,8}.

4 The Method of the Snake Oil

The method of the snake oil is very useful tool in evaluatiagous, frequently huge combinatorial
sums, and in proving combinatorial identities.

The method is used to calculate many sums and as such it ismivarsal. Thus we will use
several examples to give the flavor and illustration of théhme.

The general principle is as follows: Suppose we want to ¢atethe sunt. First we wnat to
identify the free variable on whicB depends. Assume thatis such a variable and |&= f(n).
After that we have to obtaiR (x), the generating function of the sequerfg¢e). We will multiply
Sby x" and summ over al. At this moment we have (at least) a double summation exterma
and internal inS. Then we interchange the order of summation and get the wdluernal sum in
terms ofn. In such a way we get certain coefficients of the generatingtfan which are in fact the
values ofSin dependence of.

In solving problems of this type we usually encounter seharms. Here we will first list some
of these sums.

The identity involvingz (T) X" is known from before:
n

1+x)T"=% <I:) X",

n
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Sometimes we will use the identity fcz (E) X" which is already mentioned in the list of gen-
n

a3 (e

Among the common sums we will encounter those involving avgn (or odd) indeces. For
example we havél+x)™ =% (T) X", hence(1—x)" ="} (T) (—x)". Adding and subtracting

n n

erating functions:

yields:

5 () - (L don

2n 2 ’
m n (A+x"—(1-x)M)
Z(an)X2 = 2 :

In a similar fashion we prove:

5 ()= (g g2 o

n

¥ (" =% (@ @)

n

The following identity is also used quite frequently:

1 /20, 1

Problem 9. Evaluate the sum "
3 (o5

Solution. Let n be the free variable and denote the sum by

035

Let F(x) be the generating function of the sequefie), i.e.

0=y xim=303 () =33 (, )

We can rewrite the previous equation as

SRS TR

F(x) = Zxk(1+x)k= Z(X+X2)k= 1_()(1_X2) - 1—x1—x2'

However this is very similar to the generating function ofiadhacci’s sequence, i.€.(n) = Fy1

and we arrive to ‘
Z <n_ k> = I:nJrl' A

which gives
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2 ()

Solution. If nis a fixed number, them s a free variable on which the sum depends. th) =
n
Z (—1)k(E) <:1) and letF(x) be the generating function of the sequerf¢en), i.e. F(x) =

k=m
Sm f(M)x™. Then we have

F@:zumw:zwi«w%bﬁﬁz

Problem 10. Evaluate the sum

Here we have usef« (¢ )xm = (14x)X. Dalje je

—1)”2(2) KXk = (- 1)”((1+x)—1)n:(—1)“x”

k<n

Therefore we obtainel(x) = (—1)"x" and since this is a generating function of the sequéiog
we have

0, m<n. A

Problem 11. Evaluate the sum (E) (k)

k=m

k
Solution. Let f(m ( ) (m) andF(x) = ) x™f(m). Then we have

g g R0 £ E £
implying F(x) = (2+x)". Since
(24+x)"= > (:]) on-mym

the value of the required sum fgm) = (l:]) VAUV

¥ ()

Solution. We can divide this into two sums

Problem 12. Evaluate

n

Z([g]) ;( <{2—L§1 >X2kl+k;Hl([&;l})x%ﬂ—
:;1('@) o (E) = (1) +x(1+%)",

or equivalently
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Problem 13. Determine the elements of the sequence:

g ()it

Solution. Let F(x) = 3 ,,x™f(m). We then have

@—;”Z@Nﬂﬁﬂf‘ZQWZ(£%>”
:Z(E>Yk)(k%< ) XM "_Z(n)ykxk 14 X)(1+x3)""

00 = (10 5 () 8 00 = (o180

Hence

Fory = 2 we have thaF (x) = (1+x)?™1, implying thatF (x) is the generating function of the
sequenceéznnfl) and we get the following combinatorial identity:

n\ /n—k ok _ 2n+1
2 \k [mTfk] “m )
Settingy = —2 we getF (x (1+x = (1—x)?"4x(1—x)?" hence the coefficient nesP

wl2) (2, {<m>< jjpm—-
) (2L

Problem 14. Prove that

foreachn>0

Solution. If we fix nand letj be the free variable an j) = Z (E) (Il() X, 9(j) = (D (14x)"

then the corresponding generating functions are
= gy" i), Gy = ;ng(J)
We want to prove that (y) = G(y). We have
=32 (02 (s ()= (o
henceF (y) = (1+x+xy)". On the other hand we have
ZyJ< >xJ 1+ = 2 (?)(1+x)”‘j(xy)j = (1+x+xy)",

henceF (y) = G(y). A
The real power of the generating functions method can beigge following example.
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2 (i) (O

Solution. Since there are quite a lot of variables elementary combiiziimethods doesn’t offer an
effective way to treat the sum. Sinneppears on only one place in the sum, it is natural to consider
the sum as a function anLet F (x) be the generating series of such functions. Then

- SR
- Z <2kk) (IZ—irl)lka(l _X)r(r;zl:zkﬂ - (1_X;;+m2+k2k+1 Z (Zkk> ﬁ {(1:7);)2 }k —
e

T2
n—1
This is a generating function of the seque Crﬁ

Problem 15. Evaluate the sum

formn > 0.

(
1) which establishes
n+k\ /2k\ (-Dk /n-1 A
Z m+2k/\ k) k+1 \m—-1)
Problem 16. Prove the identity
2n+1\ /m+k) /2m+1
Z k 2n /) \ 2n )’

2n+1\ /m+k 2m+ .
Solution. Let F(x Zx Z( >( on > andG(x Zx < > the generating func-

tions of the expressmns on the left and right side of the weduequallty We will prove that
F(x) = G(x). We have

X) = ;Xmg (2n+1) <m+ k) Z <2n24kr 1) % (m;] k> _
B Z <2n24kr 1) ; <m+ k) Z (anJkr 1> x"‘; <m2T1 k) gk _
_ Z (2n24IZ 1> K E Xj;2n+1 -5 _X§;2n+1 Z <2n24IZ 1> (x‘ %>2k.

We already know thag <2n24|2 1) (xf%>2k = % <<1+ %() " + (l - %() 2n+1> so

1 n 1 1
()—E(\/)_()Z 1((1_\/)—()2n+1_(1+\/)—()2n+1)'

On the other hand

G(x) = ; (Zn;: 1) _ ( _1/2) ; (2m+ 1) <X1/2> 2m+1,
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implying

- 1/2\2n 1 n 1
G0 = (") [(X 7 (W’ Wﬂ |

or

1 ne 1 1
G(x) = E(\/;()Z 1((1_\/)—()2n+1 N (1+\/)_()2n+1)‘ A

Problem 17. Prove that .
Z 2k 22k _ 4n
2k k 2n)’

Let n be the free variable on the left and right sideFdix) and G(x). We want to prove the
equality of these generating functions.

0302, () ()7 =2 (2 "3 e
=2, ()2 3 (@) eve

Now we use the formula for summation of even powers and get

;( )(Zﬂ %(Zﬁ)Zk((l—z}o%ﬁ(1+2\lﬁ<)2k+1>’

and we further get

"0~ 3 (0) (7o) a2 (0) (o)

2n 1
Since XN = we get
2 ( n) Vi—ax 9

F(x) = 1 1 1 1
21-2%) f1- 4w T2 2® i Aarar
which implies
1 1
F(x) = + .
2\/1—4/%  2\/1+4yX
On the other hand foB(x) we would like to get the sunz (4n) X", Sincez <2n> X" = !
= \2n —\ N 1-—4x

2n 1
we have —X)"= ——— hence
Z ( n >( ) V144X

G(x) = ! ! + 1
2 V1I-4x  J/1+4X
andF (x) = G(x). A

The followng problem is slightly harder because the stashithra of snake oil doesn’t lead to a
solution.
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Problem 18 (Moriati). For given n and p evaluate

2n+1 p+k
Z 2p+2k+1 k )
Solution. In order to have shorter formulas let us introduce p+ k. If we assume that is the free
variable then the required sum is equal to

=3 () 6)

TakeF (X ZXZ””f n). This is somehow natural since the binomial coefficientamstthe term

2n+1. Now we have

AR

Since
2n+1 201 _ Xt 1 N 1
Z 2r+1 2 (1—x)Z+2 " (14x)2+2)"
we get
1 X r 2 \" 1 x r 2\’
72 <1—x>22(p> (757) 2 a2 () (@)
2 p 2 p
F(X) } < X 2) +} X ((1;(_)()2)
2(1 2 P20 X2 ([ e \PL
< ) ( _(1+x)2>
1 x2ptt 1 X2p+1 $2p+1
=5 3 -p-1 oy —P-1
F(X) 21 Zx)p+1 22001~ 2 (L4+2¢) P14 (1—-2x) P,
implying

_} _p_l 2n—2p S 1 2n—2p
f(n)2<(2n—2p>2 T on—2p)?

and after simplification
_ 2n— p 2n—2p
f(n)<2n_2p)2 BVAN

We notice that for most of the problems we didn’t make a suttistedeviation from the method
and we used only a handful of identities. This method can laésased in writing computer algo-
rithms for symbolic evaluation of number of sums with binahtoefficients.

5 Problems

1. Prove that for the sequence of Fibonacci numbers we have

Fo+Fi+ - +F=Fy2+1

2. Given a positive integer, let A denote the number of ways in whidircan be partitioned as a
sum of odd integers. L& be the number of ways in whialcan be partitioned as a sum of
different integers. Prove thét= B.

3. Find the number of permutations without fixed points ofgbg1,2,...,n}.
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Evaluate% (1) ( ;k) .

Letn € N and assume that
X+2y=n hasRy solutions inN3

2x+3y=n—1 hasR; solutions inN3

nx+(n+1)y=1 hasR, solutions inN3
(N+1)x+ (n+2)y=0 hasR,,1 solutions inN3
Prove that% R¢=n+1.

. A polynomial f(x1,Xo,...,%n) is called asymmetricif each permutatioro € S, we have

f(Xo(1)s -+ Xom)) = F(Xa,...,%). We will consider several classes of symmetric polyno-
mials. The first class consists of the polynomials of the form

Ok(X1, ..., %) = Z Xig = Xiy
i1<~"<ik
for1 < k< n, gp =1, andogg = 0 fork > n. Another class of symmetric polynomials are the
polynomials of the form
PO, X)) = Y Xiooxn whereig,--- ,in € No.
i1+ Fin=k
The third class consists of the polynomials of the form:
Sc(Xts o Xn) = X XK

Prove the following relations between the polynomialsddtrced above:

n n

n
(=1)'0rpnr =0, nph =Y SPnr, andno, = (—1)r_1San_r.
r;) r; er

. Assume that for somee N there are sequences of positive numlzgrsy, ..., a, andbg, by,

..., by such that the sums
a+ap, a+az, ..., d-1+an

and
b1+bp, by+bs, ..., by_1+bn

the same up to permutation. Prove thas a power of two.

. (Leo Moser, Joe Lambek, 1959.) Prove that there is a unigyyeo partition the set of natural

numbers in two seté& and B such that: For very non-negative intege(including 0) the
number of ways in whiclm can be written ag; +ap, aj,ax € A, a3 #ayisatleast1 andis
equal to the number of ways in which it can be representdd &y, bi,b, € B, by # by,

. Given several (at least two, but finitely many) arithmetiogressions, if each natural number

belongs to exactly one of them, prove there are two progressivhose common differences
are equal.

(This problem was posed in the jourdaherican Mathematical MonthjyProve that in the
contemporary calendar thettidn a month is most likely to be Friday.

Remark: The contemporary calendar has a period of 400 years. Everjhfgear has 366
days except those divisible by 100 and not by 400.
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6 Solultions

1. According to the Theorem 7 the generating function of tine ®f first n terms of the se-
quence (i.e. the left-hand side) is equaFtd(1 — x), whereF = x/(1— x—x?) (suchF is the
generatring function of the Fibonacci sequence). On thHd-tignd side we have

F—x 1

X 1-x
and after some obvious calculation we arrive to the requdentity.

2. We will first prove that the generating function of the nianbf odd partitions is equal to

(Ax+X4) - (A28 ) (A x4 —|‘| T T

Indeed, to each partition in whidloccursa; times corresponds exactly one term with coeffi-
cient 1 in the product. That term is equabftfat3as+5as+-

The generating function to the number of partitions in défg summands is equal to

(14X -1+ - 1+x3)--- = |_|(1+xk),
k>1

because from each factor we may or may not take a powenualiich exactly correpsonds to
taking or not taking the corresponding summand of a pantiti®y some elementary transfor-
mations we get

—x* (1—x3)(1—xH---

=X (1-x1-x)(1-x)(1- ST XZk”

|_| 1+ x
K>1 k>1

which proves the statement.

3. This example illustrates the usefullness of the expdalgenerating functions. This problem
is known asderangement problerar "le Probléme des Rencontres” posed by Pierre R. de
Montmort (1678-1719).

Assume that the required numberDg and letD(x)¢$'D,. The number of permutations
having exactlyk given fixed points is equal tB,_k, hence the total number of permutations
with exactlyk fixed points is equal tdy) Dn_«, because we can chookéixed points in ()
ways. Since the total number of permutations is equaltthen

(o

1

and the Theorem 10 gives

. . . . . . —1)"
implying D(x) = e */(1—x). Sincee * is the generating function of the sequergeﬁl)—, we

get
Dn 1 1
n' =1- 1+§—§+ +( 1)

nl
n!
1 1 1
Dn:n!'(§—§+ 4 ( n—)
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4. The idea here is to consider the generating function

F=Y (;k>>c°’k.

The required sum is equal tif—1). The question now is how to make binomial formula to
skip all terms except those of ordek. 3Ve will use the following identy for the sum of roots
of unity in the complex plane

o [ ot
£Z=1 0, otherwise.

LetC(x) = (1+x)" and let 1 ¢, ande? be the cube roots of 1. Then we have

2
F(x) = C(x) +C(s;<) +C(&°%)

which forx = —1 gives

ot ()

and after simplification

(—1)f( ) =232 1gos( T
33 (g) =29 o[

. The number of solutions af+ 2y = nin N3 is the coefficient neaf' in

1 1

Tht+t24- ) (L+t24t44 )= — ——
(At ) (Pt ) = o

The reason is that each pdit,y) that satisfies the condition of the problem increases the
coefficient neat" by 1 because it appears as a summand of the f8ifh=t**%. More
generally, the number of solutions kk+ (k+ 1)y = n4 1 —k is the coefficient nea™1 -«
1 1 Xkt
n ——--———, i.e. the coefficient neaf in ———————. Hence, is the coef-
1—thk1—thtl (1—tk)(1—tk+1) Z Re

1 1
ficient neat" in = . Now it
Z(l—tk tk+1 Zt t2 ( —tk+2 1_tk+1> (1—t)2
is easy to see th% R¢=n+1.

. The generating function of the symmetric polynom@léx, ..., Xn) is

fes]

- k- .
Z(t)fkgoakt i|:|(1+tx.)

The generating function of the polynomiglg(xa, .. .,Xn) is:

= 1
_ k_
—kzopkt =1 Tt

and the generating function of the polynomigiss:

t) = is«t“—i X
& 5 1-tx
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The function (t) andP(t) satisfy the following conditiox (t) p(—t) = 1. If we calculate the
coefficient of this product neaf, n > 1 we get the relation

n

(—=1)'Grpn—r =0.
r;) r¥n—r

Notice that

logP(t) leog = and logx(t) Zilog 1+1tx).
- |

Now we can expresS(t) in terms ofP(t) andZ(t) by:

i) = Hloge(t) = 51U

and q -
(1) = - g 00Z(0) =~ 3

From the first formula we geB(t)P(t) = P'(t), and from the secon&(—t)Z(t) = —X'(t).
Comparing the coefficients ne@r* we get

n n
npn = Z S Pn—r and NoOn = Z (—1)r_1San_r.
r=1 r=1

7. LetF andG be polynomials generated by the given sequeR¢g) = x? +x® + - - - +x and
G(X) = XxP1 +xP2 ... 4+ xP. Then

n n
F2(x) - G?(x) = ( X“a’)—( X 42 Xbi”’i)
;l \g\ ;l 1<i<j<n

= F(¥®)—G().

SinceF (1) = G(1) = n, we have that 1 is zero of the ordkr(k > 1) of the polynomial
F(x) — G(x). Then we havé (x) — G(x) = (x— 1)*H(x), hence

F(x)+G(x) =

Now for x = 1 we have:

implying thatn = 21,
8. Consider the polynomials generated by the numbers fréfereint sets:
=5 X2, B(X =5 X2,
acA beB
The condition thaf andB partition the wholeN without intersection is equivalent to

1

AX)+B() = 7.
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The number of ways in which some number can be representada®, aj,ax €A, a;#ay
has the generating function:

XA+a) — % (A%(x) — A(X%)) .

8j,8j €A #a;

Now the second condition can be expressed as
(A%(x) —A(X?)) = (B?(x) — B(x?)).

We further have 1
(AX) ~ B(X) 7= = A(¥’) ~B(®)

or equivalently
(A(X) = B(x)) = (1= X)(A(X*) = B(<)).

Changingk by x2,x4,... . x2" " we get

implying

0

A(X) — B(x) = _D)(l —x2).

The last product is series whose coefficients-afehenceA andB are uniquely determined
(since their coefficients are 1). It is not difficult to notitet positive coefficients (i.e. coef-
ficients originating fronA) are precisely those corresponding to the texff®r which n can
be represented as a sum of even numbers of 2s. This meanksdhmbary partition oh has
an even number of 1s. The other numbers f&m

Remark:The sequence representing the parity of the number of orthe ininary representa-
tion of nis calledMorsesequence.

. This problem is posed by Erddsz (in slightly differentrf), and was solved by Mirsky and

Newman after many years. This is their original proof:
Assume thak arithmetic progressionds; + nb} (i=1,2,...,k) cover the entire set of pos-

A .
itive i .Th =5 AP h
itive integers en— i; , hence

z n 72 N +i
1-z 1-22 1-7% 1— 2%

Let |z < 1. We will prove that the biggest number amdngcan’t be unique. Assume the
contrary, thab; is the greatest among the numbbrsh,, ..., b, and set = € m/b1 Assume
thatz approaches in such a way thalz] < 1. Here we can choosesuch that = 1, & # 1,
ande® £ 1, 1<i <k All terms except the first one converge to certain numbetenthie
first converges teo, which is impossible.

Friday the 13th corresponds to Sunday the 1st. Denotdaye by nhumbers,2,3,... and
lett' corresponds to the ddy Hence Jan1st2001 is denoted by 1 (a), Jan4th2001 byt*
etc. LetA be the set of all days (i.e. corresponding numbers) whiclpéajo be the first in a
month. Forinstance,& A, 2€ A, etc. A= {1,32,60,...}. Let fo(t) = T eat". If we replace
t’ by 1,t"*1 pyt, t’*+2 by t2 etc. in the polynomiafa we get another polynomial — denote
it by ga(t) = ziezoa;t‘. Now the numbeg; represents how many times the day (of a week)
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denoted byi has appeared as the first in a month. Sidagl, 2001 was Mondaya; is the
number of Mondaysa,- the number of Tuesdays,., ag- the number of Sundays. We will
consider nowfa modulust’ — 1. The polynoimala(t) — ga(t) is divisible byt” — 1. Since we
only want to find which of the numbegg, a, ..., aq is the biggest, it is enough to consider
the polynomial modulug(t) = 1+t +t?+--- +t® which is a factor of’ — 1. Let f1(t) be the
polynomial that represents the first days of months in 200dceSthe first day of January is
Monday, Thursday- the first day of February, ..., Saturdayfitst day of December, we get

f1(t) = t+t* -t L P P LB+ Ot 1 10 =

=24+ 2+t2 4+ 34+ 3+ t5 1 25 =1+t + 2t +t®  (modq(t)).

Since the common year has 363 (mod 7) days, polynomials,(t) andfs(t) corresponding
to 2002. and 2003., satisfy

fa(t) =tfi(t) =tou(t)
and
fa(t) = tfa(t) =t2gy(t),

where the congruences are moduj@ls. Using plain counting we easily verify th&i(t) for
leap 2004 is

fat) =2+ 20+ 1? + 234+ 3+ 2+t = 1+t + 34+ 2% = gu(t).

We will introduce a new polynomial that will count the firstydafor the period 200+ 2004
hy(t) = ga(t)(1+t+12) 4+ ga(t). Also, after each common year the days are shifted by one
place, and after each leap year by 2 places, hence aftertiloel pé4 years all days are shifted
by 5 places. In such a way we get a polynomial that counts theeus of first days of months
between 2001 and 2100. Itis:

pr(t) = hy () (1 + 5+ 1204 . 4119 4 t220g, (1) (14t +- 2+ t3).

Here we had to write the last for years in the fogatt)(1+t 4-t2 +t3) because 2100 is not
leap, and we can't replace it iy (t). The period of 100 years shifts the calendar for 100 days
(common years) and additional 24 days (leap) which is caagrto 5 modulus 7. Now we
get

gat) = pr(t) L+ 2+ t20) +tB¥hy () (L +t5+ - +t120).

Similarly as before the last 100 are counted by last summbacsuse 2400 is leap. Now we
will use thatt5 5+ ... 1 15@+6) =0, Thus 1+t54 .- +1235 = 14+ t34+ 125 = 1413415
and 14+-t5+ -+ 41255 = 1+ 5+ t25 1 t45 = 1+ t 4+ t3 +t°. We further have that

pr(t) =h () (L+ 3+t +tgr () (L +t+ 2 +t3) =

GO [(L 4+t -+t A+ 3+t (1t + 2 +13)] + ga(t) (L + 34+ 1°) =
91(t)(2+ 2t + 262+ 23 4 2t 4+ 265 +-15) + ga(t) (1 + 3 +1°) = —ga ()t® + ga(t) (L + 13+ 1°).
If we now put this into formula foga(t) we get

o) = pr) A+ +t2) +thy )1+t +t3+1°)
= —gWA+3+1%) 4 ga(t) (1 +13+15)2
+gr () (L+t+ ) (1t 4+ 3 4+%) +tgat) L+t + 3+ 1°)
= gu(t)(t+t3) +gat) (2t + 263 +t°+1°)
= (I+t4+20 4+t +3) + A+t+3+ 2% (2 + 23+ 12+ 15
= 84+4t+ 72453+ 54+ 70+ 40 =44+ 32+ 3414 4 35
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This means that the most probable day for the first in a monBuisday (becauss, is the
biggest).

We can precisely determine the probability. If we use the taat there are 4800 months in
a period of 400, we can easily get the Sunday is the first gx&88 times, Monday — 684,
Tuesday — 687, Wednesday — 685, Thursday — 685, Friday — 685 a&urday — 684.
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