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1 Introduction

Generating functions are powerful tools for solving a number of problems mostly in combinatorics,
but can be useful in other branches of mathematics as well. The goal of this text is to present certain
applications of the method, and mostly those using the high school knowledge.

In the beginning we have a formal treatement of generating functions, i.e. power series. In other
parts of the article the style of writing is more problem-soving oriented. First we will focus on
solving the reccurent equations of first, second, and higherorder, after that develope the powerful
method of ,,the snake oil“, and for the end we leave some otherapplications and various problems
where generating functions can be used.

The set of natural numbers will be denoted byN, while N0 will stand for the set of non-negative
integers. For the sums going from 0 to+∞ the bounds will frequently be omitted – if a sum is
without the bounds, they are assumed to be 0 and+∞.

2 Theoretical Introduction

In dealing with generating functions we frequently want to use different transformations and ma-
nipulations that are illegal if the generating functions are viewed as analytic functions. Therefore
they will be introduced as algebraic objects in order to obtain wider range of available methods. The
theory we will develope is called theformal theory of power series.

Definition 1. A formal power seriesis the expression of the form

a0 +a1x+a2x
2 + · · · =

∞

∑
i=0

aix
i .

A sequence of integers{ai}∞
0 is calledthe sequence of coefficients.

Remark.We will use the other expressions also: series, generating function...
For example the series

A(x) = 1+x+22x2 +33x3 + · · ·+nnxn + · · ·
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converges only forx= 0 while, in the formal theory this is well defined formal powerseries with the
correspongind sequence of coefficients equal to{ai}∞

0 ,ai = i i .
Remark.Sequences and their elements will be most often denoted by lower-case latin letters (a, b,
a3 · · · ), while the power series generated by them (unless stated otherwise) will be denoted by the
corresponding capital letters (A, B, · · · ).

Definition 2. Two series A=
∞

∑
i=0

aix
i and B=

∞

∑
i=0

bix
i are calledequalif their corresponding se-

quences of coefficients are equal, i.e. ai = bi for every i∈ N0.

Remark.The coefficient nearxn in the power seriesF will be denoted by[xn]F.
We can define thesumand thedifferenceof power series in the following way

∑
n

anxn±∑
n

bnxn = ∑
n

(an±bn)x
n

while theproductis defined by

∑
n

anxn∑
n

bnxn = ∑
n

cnxn, cn = ∑
i

aibn−i

Instead ofF ·F we write F2, and more generallyFn+1 = F ·Fn. We see that the neutral for
addition is 0, and 1 is the neutral for multiplication. Now wecan define the following term:

Definition 3. The formal power series G isreciprocalto the formal power series F if FG= 1.

The generating function reciprocal toF will be usually denoted by 1/F. Since the multiplication
is commutative we have thatFG= 1 is equivalent toGF = 1 henceF andG aremutually reciprocal.
We also have(1−x)(1+x+x2+ · · ·) = 1+∑∞

i=1(1·1−1·1)xi = 1 hence(1−x) and(1+x+x2+ · · ·)
are mutually reciprocal.

Theorem 1. Formal power series F= ∑
n

anxn has a reciprocal if and only if a0 6= 0. In that case

the reciprocal is unique.

Proof. Assume thatF has a reciprocal given by 1/F = ∑
n

bnxn. ThenF · (1/F) = 1 implying

1 = a0b0 hencea0 6= 0. Forn > 1 we have 0= ∑
k

akbn−k from where we conclude.

bn = − 1
a0

∑
k

akbn−k.

The coefficients are uniquely determined by the prefious formula.
On the other hand ifa0 6= 0 we can uniquely determine all coefficientsbi using the previously

established relations which gives the series 1/F. 2

Now we can conclude that the set of power series with the abovedefined operation forms a ring
whose invertible elements are precisely those power serieswith the non-zero first coefficient.

If F = ∑
n

fnxn is a power series,F(G(x)) will denote the seriesF(G(x)) = ∑
n

fnG(x)n. This

notation will be used also in the case whenF is a polynomial (i.e. when there are only finitely many
non-zero coefficients) or if the free term ofG equals 0. In the case that the free term ofG equal to 0,
andF is not a polynomial, we can’t determine the particular element of the seriesF(G(x)) in finitely
many steps.

Definition 4. A formal power series G is said to be an inverse of F if F(G(x)) = G(F(x)) = x.

We have a symmetry here as well, ifG is inverse ofF thanF is inverse ofG as well.
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Theorem 2. Let F and G be mutually inverse power series. Then F= f1x+ f2x2 + · · · , G= g1x+
g2x2 + · · · , and f1g1 6= 0.

Proof. In order forF(G(x)) andG(F(x)) to be defined we must have 0 free terms. Assume that
F = frxr + · · · andG = gsxs+ · · · . ThenF(G(x)) = x = frgr

sx
rs + · · · , thusrs = 1 andr = s= 1. 2

Definition 5. The derivative of a power series F= ∑
n

fnxn is F′ = ∑
n

n fnxn−1. The derivative of

order n> 1 is defined recursively by F(n+1) = (F (n))′.

Theorem 3. The following properties of the derivative hold:

• (F +G)(n) = F (n) +G(n)

• (FG)(n) = ∑n
i=0

(n
i

)

F(i)G(n−i)

The proof is very standard as is left to the reader.2

We will frequently associate the power series with its generating sequence, and to make writing
more clear we will define the the relationosr

↔ in the following way:

Definition 6. Aosr
↔ {an}∞

0 means that A is a usual power series which is generated by{an}∞
0 , i.e.

A = ∑
n

anxn.

Assume thatAosr
↔ {an}∞

0 . Then

∑
n

an+1xn =
1
x ∑

n>0
anxn =

A(x)−a0

x

or equivalently{an+1}∞
0

osr
↔

A−a0

x
. Similarly

{an+2}∞
0

osr
↔

(A−a0)/x−a1

x
=

A−a0−a1x
x2 .

Theorem 4. If {an}∞
0

osr
↔ A the for h> 0:

{an+h}∞
0

osr
↔

A−a0−a1x−·· ·−ah−1xh−1

xh .

Proof. We will use the induction onh. For h = 1 the statement is true and that is shown before. If
the statement holds for someh then

{an+h+1}∞
0

osr
↔ {a(n+h)+1}∞

0
osr
↔

A−a0−a1x−·· ·−ah−1xh−1

xh −ah

x

osr
↔

A−a0−a1x−·· ·−ahxh

xh+1 ,

which finishes the proof.2

We already know that{(n+1)an+1}∞
0

osr
↔ A′. Our goal is to obtain the sequence{nan}∞

0 . That is
exactly the sequencexA′. We will define the operatorxD in the following way:

Definition 7. xDA= xA′ i.e. xDA= xdA
dx .

The following two theorems are obvious consequences of the properties of the derivative:

Theorem 5. Let{an}∞
0

osr
↔ A. Then{nkan}∞

0
osr
↔ (xD)kA.
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Theorem 6. Let{an}∞
0

osr
↔ A and P be a polynomial. Then

P(xD)Aosr
↔ {P(n)an}∞

0

Let us consider the generating function
A

1−x
. It can be written asA 1

1−x. As we have shown

before the reciprocal to the series 1−x is 1+x+x2+ · · · , hence A
1−x = (a0 +a1x+a2x2 + · · ·)(1+

x+x2+ · · ·) = a0 +(a0+a1)x+(a0+a1+a2)x2 + · · · .

Theorem 7. If {an}∞
0

osr
↔ A then

A
1−x

osr
↔

{

n

∑
j=0

a j

}

n>0

.

Now we will introduce the new form of generating functions.

Definition 8. We say that A isexponential generating function(or series, power series) of the se-
quence{an}∞

0 if A is the ususal generating function of the sequence{ an
n! }∞

0 , or equivalently

A = ∑
n

an

n!
xn.

If B is exponential generating function of the series{bn}∞
0 we can also write{bn}∞

0
esr
↔ B.

If Besr
↔ {bn}∞

0 , we are interested inB′. It is easy to see that

B′ =
∞

∑
n=1

nbnxn−1

n!
=

∞

∑
n=1

bnxn−1

(n−1)!
=

∞

∑
n=0

bn+1xn

n!

henceB′ esr
↔ {bn+1}∞

0 .

Theorem 8. If {bn}∞
0

esr
↔ B then for h> 0:

{bn+h}∞
0

osr
↔ B(h).

We also have an equivalent theorem for exponential generating functions.

Theorem 9. Let{bn}∞
0

esr
↔ B and let P be a polynomial. Then

P(xD)Besr
↔ {P(n)bn}∞

0

The exponential generating functions are useful in combinatorial identities because of the fol-
lowing property.

Theorem 10. Let {an}∞
0

esr
↔ A and{bn}∞

0
esr
↔ B. Then the generating function AB generates the se-

quence
{

∑
k

(

n
k

)

akbn−k

}∞

n=0

.

Proof. We have that

AB=

{

∞

∑
i=0

aixi

i!

}{

∞

∑
j=0

b jx j

j!

}

= ∑
i, j>0

aib j

i! j!
xi+ j = ∑

n
xn

{

∑
i+ j=n

aib j

i! j!

}

,

or

AB= ∑
n

xn

n!

{

∑
i+ j=n

n!aib j

i! j!

}

= ∑
n

xn

n! ∑
k

(

n
k

)

akbn−k,
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and the proof is complete.2

We have listed above the fundamental properties of generating functions. New properties and
terms will be defined later.

Although the formal power series are defined as solely algebraic objects, we aren’t giving up
their analytical properties. We will use the well-known Taylor’s expansions of functions into power
series. For example, we will treat the functionex as a formal power series obtained by expanding the

function into power series, i.e. we will identifyex with
∞

∑
n=0

xn

n!
. We will use the converse direction

also. Here we will list the Taylor expansions of most common functions.

1
1−x

= ∑
n>0

xn

ln
1

1−x
= ∑

n>1

xn

n

ex = ∑
n>0

xn

n!

sinx = ∑
n>0

(−1)n x2n+1

(2n+1)!

cosx = ∑
n>0

(−1)n x2n

(2n)!

(1+x)α = ∑
k

(

α
k

)

xk

1
(1−x)k+1 = ∑

n

(

n+k
n

)

xn

x
ex−1

= ∑
n>0

Bnxn

n!

arctanx = ∑
n>0

(−1)n x2n+1

2n+1

1
2x

(1−
√

1−4x) = ∑
n

1
n+1

(

2n
n

)

xn

1√
1−4x

= ∑
n

(

2n
n

)

xn

xcotx = ∑
n>0

(−4)nB2n

(2k)!
x2n

tanx = ∑
n>1

(−1)n−122n(22n−1)B2n

(2n)!
x2n−1

x
sinx

= ∑
n>0

(−1)n−1 (4n−2)B2n

(2n)!
x2n

1√
1−4x

(

1−
√

1−4x
2x

)k

= ∑
n

(

2n+k
n

)

xn
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(

1−
√

1−4x
2x

)k

= ∑
n>0

k(2n+k−1)!
n!(n+k)!

xn

arcsinx = ∑
n>0

(2n−1)!!x2n+1

(2n)!!(2n+1)

ex sinx = ∑
n>1

2
n
2 sin nπ

4

n!
xn

ln2 1
1−x

= ∑
n>2

Hn−1

n
xn

√

1−
√

1−x
x

=
∞

∑
n=0

(4n)!

16n
√

2(2n)!(2n+1)!
xn

(

arcsinx
x

)2

=
∞

∑
n=0

4nn!2

(k+1)(2k+1)!
x2n

Remark:HereHn =
n

∑
i=1

1
i
, andBn is then-th Bernoulli number.

3 Recurrent Equations

We will first solve one basic recurrent equation.

Problem 1. Let an be a sequence given by a0 = 0 and an+1 = 2an + 1 for n > 0. Find the general
term of the sequence an.

Solution. We can calculate the first several terms 0, 1, 3, 7, 15, and we are tempted to guess the
solution asan = 2n−1. The previous formula can be easily established using mathematical induction
but we will solve the problem using generating functions. Let A(x) be the generating function of
the sequencean, i.e. letA(x) = ∑

n
anxn. If we multiply both sides of the recurrent relation byxn and

add for alln we get

∑
n

an+1xn =
A(x)−a0

x
=

A(x)
x

= 2A(x)+
1

1−x
= ∑

n
(2an +1)xn.

From there we easily conclude

A(x) =
x

(1−x)(2−x)
.

Now the problem is obtaining the general formula for the elements of the sequence. Here we will
use the famous trick of decomposingA into two fractions each of which will have the corresponding
generating function. More precisely

x
(1−x)(2−x)

= x

(

2
1−2x

− 1
1−x

)

= (2x+22x2 + · · ·)− (x+x2+ · · ·).

Now it is obvious thatA(x) =
∞

∑
n=0

(2n − 1)xn and the solution to the recurrent relation is indeed

an = 2n−1. △

Problem 2. Find the general term of the sequence given recurrently by

an+1 = 2an+n, (n > 0), a0 = 1.
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Solution. Let{an}∞
0

osr
↔ A. Then{an+1}∞

0
osr
↔

A−1
x . We also have thatxD 1

1−x
osr
↔ {n·1}. SincexD 1

1−x =

x 1
(1−x)2 = x

(1−x)2 the recurrent relation becomes

A−1
x

= 2A+
x

(1−x)2 .

From here we deduce

A =
1−2x+2x2

(1−x)2(1−2x)
.

Now we consider that we havesolved for the generating series. If we wanted to show that the
sequence is equal to some other sequence it would be enough toshow that the functions are equal.
However we need to find the terms explicitely. Let us try to representA again in the form

1−2x+2x2

(1−x)2(1−2x)
=

P
(1−x)2 +

Q
1−x

+
R

1−2x
.

After multiplying both sides with(1−x)2(1−2x) we get

1−2x+2x2 = P(1−2x)+Q(1−x)(1−2x)+R(1−x)2,

or equivalently

1−2x+2x2 = x2(2Q+R)+x(−2P−3Q−2R)+ (P+Q+R).

This impliesP = −1, Q = 0, andR= 2. There was an easier way to getP, Q, andR. If we multiply
both sides by(1− x)2 and setx = 1 we getP = −1. Similarly if we multiply everything by 1−2x
and plugx = 1

2 we getR= 2. Now substitutingP andRand settingx = 0 we getQ = 0.
Thus we have

A =
−1

(1−x)2 +
2

1−2x
.

Since
2

1−2x
osr
↔ {2n+1} and

1
(1−x)2 = D

1
1−x

osr
↔ {n+1} we getan = 2n+1−n−1.△

In previous two examples the term of the sequence was depending only on the previous term.
We can use generating functions to solve recurrent relations of order greater than 1.

Problem 3 (Fibonacci’s sequence).F0 = 0, F1 = 1, and for n> 1, Fn+1 = Fn + Fn−1. Find the
general term of the sequence.

Solution. Let F be the generating function of the series{Fn}. If we multiply both sides byxn and
add them all, the left-hand side becomes{Fn+1}osr

↔
F−x

x , while the right-hand side becomesF +xF.
Therefore

F =
x

1−x−x2 .

Now we want to expand this function into power series. First we want to represent the function as a
sum of two fractions. Let

−x2−x+1= (1−αx)(1−βx).

Thenα = (1+
√

5)/2, β = (1−
√

5)/2, andα −β =
√

5. We further have

x
1−x−x2 =

x
(1−xα)(1−xβ )

=
1

α −β

(

1
1−xα

− 1
1−xβ

)

=
1√
5

{

∞

∑
n=0

αnxn−
∞

∑
n=0

β nxn

}

.
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It is easy to obtain

Fn =
1√
5
(αn−β n). △

Remark:From here we can immediately get the approximate formula forFn. Since|β | < 1 we have
lim
n→∞

β n = 0 and

Fn ≈
1√
5

(

1+
√

5
2

)n

.

Now we will consider the case with the sequence of two variables.

Problem 4. Find the number of k-element subsets of an n-element set.

Solution. We know that the result is
(n

k

)

, but we want to obtain this using the generating functions.
Assume that the required number is equal toc(n,k). Let A= {a1, . . . ,an} be ann-element set. There
are two types ofk-element subsets – those which containan and those that don’t. There are exactly
c(n−1,k−1) subsets containingan. Indeed they are all formed by takingk−1-element subsets of
{a1, . . . ,an−1} and addingan to each of them. On the other hand there are exacltyc(n−1,k) subsets
not contianingan. Hence

c(n,k) = c(n−1,k)+c(n−1,k−1).

We also havec(n,0) = 1. Now we will define the generating function of the sequencec(n,k) for a
fixedn. Assume that

Cn(x) = ∑
k

c(n,k)xk.

If we multiply the recurrent relation byxk and add for allk > 1 we get

Cn(x)−1 = (Cn−1(x)−1)+xCn−1(x), for eachn > 0

andC0(x) = 1. Now we have forn > 1:

Cn(x) = (1+x)Cn−1(x).

We finally haveCn(x) = (1+x)n. Hence,c(n,k) is the coefficient nearxk in the expansion of(1+x)n,
and that is exactly

(n
k

)

. △
Someone might think that this was a cheating. We have used binomial formula, and that is

obtianed using a combinatorial technique which uses the result we wanted to prove. Fortunately,
there is a proof of binomial formula involving Taylor expainsion.

We can also make a generating function of the sequeceCn(x):

∑
n

Cn(x)y
n = ∑

n
∑
k

(

n
k

)

xkyn = ∑
n

(1+x)nyn =
1

1−y(1+x)
.

In such a way we have
(n

k

)

= [xkyn](1−y(1+x))−1. Now we can calculate the sum∑
n

(

n
k

)

yn:

[xk]∑
n

∑
k

(

n
k

)

xkyn = [xk]
1

1−y(1+x)
=

1
1−y

[xk]
1

1− y
1−yx

=
1

1−y

(

y
1−y

)k

=
yk

(1−y)k+1 .

Hence we have the identities

∑
k

(

n
k

)

xk = (1+x)n; ∑
n

(

n
k

)

yn =
yk

(1−y)k+1 .

Remark:Forn < k we define

(

n
k

)

= 0.
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Problem 5. Find the general term of the sequence an+3 = 6an+2− 11an+1 + 6an, n > 0 with the
initial conditions a0 = 2, a1 = 0, a2 = −2.

Solution. If A is the generating function of the corresponding sequence then:

A−2−0 ·x− (−2)x2

x3 = 6
A−2−0 ·x

x2 −11
A−2

x
+6A,

from where we easily get

A =
20x2−12x+2

1−6x+11x2−6x3 =
20x2−12x+2

(1−x)(1−2x)(1−3x)
.

We want to find the real coefficientsB, C, andD such that

20x2−12x+2
(1−x)(1−2x)(1−3x)

=
B

1−x
+

C
1−2x

+
D

1−3x
.

We will multiply both sides by(1− x) and setx = 1 to obtainB = 20−12+2
(−1)·(−2) = 5. Multiplying by

(1−2x) and settingx = 1/2 we further getC = 5−6+2
− 1

4
= −4. If we now substitute the found values

for B andC and putx = 0 we getB+C+D = 2 from where we deduceD = 1. We finally have

A =
5

1−x
− 4

1−2x
+

1
1−3x

=
∞

∑
n=0

(5−4 ·2n+3n)xn

implying an = 5−2n+2+3n. △
The following example will show that sometimes we can have troubles in finding the explicite

formula for the elements of the sequence.

Problem 6. Let the sequence be given by a0 = 0, a1 = 2, and for n6 0:

an+2 = −4an+1−8an.

Find the general term of the sequence.

Solution. Let A be the generating function of the sequence. The recurrent relation can be written in
the form

A−0−2x
x2 = −4

A−0
x

−8A

implying

A =
2x

1+4x+8x2.

The rootsr1 =−2+2i andr2 =−2−2i of the equationx2+4x+8 are not real. However this should
interfere too much with our intention for findingB andC. Pretending that nothing wierd is going on
we get

2x
1+4x+8x2 =

B
1− r1x

+
C

1− r2x
.

Using the trick learned above we getB = −i
2 andC = i

2.
Did you read everything carefully? Why did we consider the roots of the polynomialx2 +4x+

8 when the denumerator ofA is 8x2 + 4x+ 1?! Well if we had considered the roots of the real
denumerator we would get the fractions of the formBr1−x which could give us a trouble if we wanted

to use power series. However we can express the denominator as x2(8+41
x + 1

x2 ) and consider this

as a polynomial in1
x ! Then the denumerator becomesx2

(1
x − r1

)

·
(1

x − r2
)

.
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Now we can proceed with solving the problem. We get

A =
−i/2

1− (−2+2i)x
+

i/2
1− (−2−2i)x

.

From here we get

A =
−i
2

∞

∑
n=0

(−2+2i)nxn +
i
2

∞

∑
n=0

(−2−2i)nxn,

implying

an =
−i
2

(−2+2i)n+
i
2
(−2−2i)n.

But the terms of the sequence are real, not complex numbers! We can now simplify the expression
for an. Since

−2±2i = 2
√

2e
±3π i

4 ,

we get

an =
i
2
(2
√

2)n
(

(cos
3nπ

4
− i sin

3nπ
4

)− (cos
3nπ

4
+ i sin

3nπ
4

)

)

,

hencean = (2
√

2)nsin 3nπ
4 . Written in another way we get

an =



























0, n = 8k
(2
√

2)n, n = 8k+6
−(2

√
2)n, n = 8k+2

1√
2
(2
√

2)n, n = 8k+1 ili n = 8k+3

− 1√
2
(2
√

2)n, n = 8k+5 ili n = 8k+7. △

Now we will consider on more complex recurrent equation.

Problem 7. Find the general term of the sequence xn given by:

x0 = x1 = 0, xn+2−6xn+1+9xn = 2n +n za n> 0.

Solution. Let X(t) be the generating function of our sequence. Using the same methods as in the
examples above we can see that the following holds:

X
t2 −6

X
t

+9X =
1

1−2t
+

t
(1− t)2 .

Simplifying the expression we get

X(t) =
t2− t3− t4

(1− t)2(1−2t)(1−3t)2,

hence

X(t) =
1

4(1−x)2 +
1

1−2x
− 5

3(1−3x)
+

5
12(1−3x)2 .

The sequence corresponding to the first summand is
n+1

4
, while the sequences for the second, third,

and fourth are 2n, 5·3n−1, and
5(n+1)3n+1

12
respectively. Now we have

xn =
2n+2+n+1+5(n−3)3n−1

4
. △
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Problem 8. Let f1 = 1, f2n = fn, and f2n+1 = fn + fn+1. Find the general term of the sequence.

Solution. We see that the sequence is well define because each term is defined using the terms
already defined. Let the generating functionF be given by

F(x) = ∑
n>1

fnxn−1.

Multiplying the first given relation byx2n−1, the second byx2n, and adding all of them forn≥ 1 we
get:

f1 + ∑
n>1

f2nx2n−1 + ∑
n>1

f2n+1x2n = 1+ ∑
n>1

fnx2n−1 + ∑
n>1

fnx2n + ∑
n>1

fn+1x2n

or equivalently

∑
n>1

fnxn−1 = 1+ ∑
n>1

fnx2n−1+ ∑
n>1

fnx2n + ∑
n>1

fn+1x2n.

This exactly means thatF(x) = x2F(x2)+xF(x2)+F(x2) i.e.

F(x) = (1+x+x2)F(x2).

Moreover we have

F(x) =
∞

∏
i=0

(

1+x2i
+x2i+1

)

.

We can show that the sequence defined by the previous formula has an interesting property. For every
positive integern we perform the following procedure: Writen in a binary expansion, discard the
last ”block” of zeroes (if it exists), and group the remaining digits in as few blocks as possible such
that each block contains the digits of the same type. If for two numbersm andn the corresponding
sets of blocks coincide the we havefm = fn. For example the binary expansion of 22 is 10110 hence
the set of corresponding blocks is{1,0,11}, while the number 13 is represented as 1101 and has
the very same set of blocks{11,0,1}, so we should havef (22) = f (13). Easy verification gives us
f (22) = f (13)= 5. From the last expression we conclude thatfn is the number of representations
of n as a sum of powers of two, such that no two powers of two are taken from the same set of a
collection{1,2}, {2,4}, {4,8}.

4 The Method of the Snake Oil

The method of the snake oil is very useful tool in evaluating various, frequently huge combinatorial
sums, and in proving combinatorial identities.

The method is used to calculate many sums and as such it is not universal. Thus we will use
several examples to give the flavor and illustration of the method.

The general principle is as follows: Suppose we want to calculate the sumS. First we wnat to
identify the free variable on whichS depends. Assume thatn is such a variable and letS= f (n).
After that we have to obtainF(x), the generating function of the sequencef (n). We will multiply
S by xn and summ over alln. At this moment we have (at least) a double summation external in n
and internal inS. Then we interchange the order of summation and get the valueof internal sum in
terms ofn. In such a way we get certain coefficients of the generating function which are in fact the
values ofS in dependence ofn.

In solving problems of this type we usually encounter several sums. Here we will first list some
of these sums.

The identity involving∑
n

(

m
n

)

xn is known from before:

(1+x)m = ∑
n

(

m
n

)

xn.
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Sometimes we will use the identity for∑
n

(

n
k

)

xn which is already mentioned in the list of gen-

erating functions:
1

(1−x)k+1 = ∑
n

(

n+k
k

)

xn.

Among the common sums we will encounter those involving onlyeven (or odd) indeces. For

example we have(1+ x)m = ∑
n

(

m
n

)

xn, hence(1− x)m = ∑
n

(

m
n

)

(−x)n. Adding and subtracting

yields:

∑
n

(

m
2n

)

x2n =
((1+x)m+(1−x)m)

2
,

∑
n

(

m
2n+1

)

x2n+1 =
((1+x)m− (1−x)m)

2
.

In a similar fashion we prove:

∑
n

(

2n
m

)

x2n =
xm

2

(

1
(1−x)m+1 +

(−1)m

(1−x)m+1

)

, and

∑
n

(

2n+1
m

)

x2n+1 =
xm

2

(

1
(1−x)m+1 −

(−1)m

(1−x)m+1

)

.

The following identity is also used quite frequently:

∑
n

1
n+1

(

2n
n

)

xn =
1
2x

(1−
√

1−4x).

Problem 9. Evaluate the sum

∑
k

(

k
n−k

)

.

Solution. Let n be the free variable and denote the sum by

f (n) = ∑
k

(

k
n−k

)

.

Let F(x) be the generating function of the sequencef (n), i.e.

F(x) = ∑
n

xn f (n) = ∑
n

xn∑
k

(

k
n−k

)

= ∑
n

∑
k

(

k
n−k

)

xn.

We can rewrite the previous equation as

F(x) = ∑
k

∑
n

(

k
n−k

)

xn = ∑
k

xk∑
n

(

k
n−k

)

xn−k,

which gives

F(x) = ∑
k

xk(1+x)k = ∑
k

(x+x2)k =
1

1− (x−x2)
=

1
1−x−x2.

However this is very similar to the generating function of a Fibonacci’s sequence, i.e.f (n) = Fn+1

and we arrive to

∑
k

(

k
n−k

)

= Fn+1. △
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Problem 10. Evaluate the sum
n

∑
k=m

(−1)k
(

n
k

)(

k
m

)

.

Solution. If n is a fixed number, thenm is a free variable on which the sum depends. Letf (m) =
n

∑
k=m

(−1)k
(

n
k

)(

k
m

)

and letF(x) be the generating function of the sequencef (m), i.e. F(x) =

∑m f (m)xm. Then we have

F(x) = ∑
m

f (m)xm = ∑
m

xm
n

∑
k=m

(−1)k
(

n
k

)(

k
m

)

=

= ∑
k6n

(−1)k
(

n
k

)

∑
m6k

(

k
m

)

xm = ∑
k6n

(

n
k

)

(1+x)k.

Here we have used∑m6k

(k
m

)

xm = (1+x)k. Dalje je

F(x) = (−1)n ∑
k6n

(

n
k

)

(−1)n−k(1+x)k = (−1)n
(

(1+x)−1
)n

= (−1)nxn

Therefore we obtainedF(x) = (−1)nxn and since this is a generating function of the sequencef (m)
we have

f (m) =

{

(−1)n, n = m
0, m< n . △

Problem 11. Evaluate the sum
n

∑
k=m

(

n
k

)(

k
m

)

.

Solution. Let f (m) =
n

∑
k=m

(

n
k

)(

k
m

)

andF(x) = ∑
m

xm f (m). Then we have

F(x) = ∑
m

xm f (m) = ∑
m

xm
n

∑
k=m

(

n
k

)(

k
m

)

= ∑
k6n

(

n
k

)

∑
m6k

(

k
m

)

xm = ∑
k6n

(

n
k

)

(1+x)k,

implying F(x) = (2+x)n. Since

(2+x)n = ∑
m

(

n
m

)

2n−mxm,

the value of the required sum isf (m) =

(

n
m

)

2n−m. △

Problem 12. Evaluate

∑
k

(

n
[

k
2

]

)

xk.

Solution. We can divide this into two sums

∑
k

(

n
[

k
2

]

)

xk = ∑
k=2k1

(

n
[

2k1
2

]

)

x2k1 + ∑
k=2k2+1

(

n
[

2k2+1
2

]

)

x2k2+1 =

= ∑
k1

(

n
k1

)

(x2)k1 +x∑
k2

(

n
k2

)

(x2)k2 = (1+x2)n +x(1+x2)n,

or equivalently

∑
k

(

n
[

k
2

]

)

xk = (1+x)(1+x2)n. △
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Problem 13. Determine the elements of the sequence:

f (m) = ∑
k

(

n
k

)(

n−k
[

m−k
2

]

)

yk.

Solution. Let F(x) = ∑mxm f (m). We then have

F(x) = ∑
m

xm∑
k

(

n
k

)(

n−k
[

m−k
2

]

)

yk = ∑
k

(

n
k

)

yk∑
m

(

n−k
[

m−k
2

]

)

xm =

= ∑
k

(

n
k

)

ykxk∑
m

(

n−k
[

m−k
2

]

)

xm−k = ∑
k

(

n
k

)

ykxk(1+x)(1+x2)n−k.

Hence

F(x) = (1+x)∑
k

(

n
k

)

(1+x2)n−k(xy)k = (1+x)(1+x2+xy)n.

For y = 2 we have thatF(x) = (1+ x)2n+1, implying thatF(x) is the generating function of the
sequence

(2n+1
m

)

and we get the following combinatorial identity:

∑
k

(

n
k

)(

n−k
[

m−k
2

]

)

2k =

(

2n+1
m

)

.

Settingy=−2 we getF(x) = (1+x)(1−x)2n = (1−x)2n+x(1−x)2n hence the coefficient nearxm

equals

(

2n
m

)

(−1)m+

(

2n
m−1

)

(−1)m−1 = (−1)m
[(

2n
m

)

−
(

2n
m−1

)]

which implies

∑
k

(

n
k

)(

n−k
[

m−k
2

]

)

(−2)k = (−1)m
[(

2n
m

)

−
(

2n
m−1

)]

. △

Problem 14. Prove that

∑
k

(

n
k

)(

k
j

)

xk =

(

n
j

)

x j(1+x)n− j

for each n> 0

Solution. If we fix n and let j be the free variable andf ( j) = ∑
k

(

n
k

)(

k
j

)

xk, g( j) =
(n

j

)

x j(1+x)n− j ,

then the corresponding generating functions are

F(y) = ∑
j

y j f ( j), G(y) = ∑
j

y jg( j).

We want to prove thatF(y) = G(y). We have

F(y) = ∑
j

y j ∑
k

(

n
k

)(

k
j

)

xk = ∑
k

(

n
k

)

xk∑
j

(

k
j

)

y j = ∑
k

(

n
k

)

xk(1+y)k,

henceF(y) = (1+x+xy)n. On the other hand we have

G(y) = ∑
j

y j
(

n
j

)

x j(1+x)n− j = ∑
j

(

n
j

)

(1+x)n− j(xy) j = (1+x+xy)n,

henceF(y) = G(y). △
The real power of the generating functions method can be seenin the following example.
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Problem 15. Evaluate the sum

∑
k

(

n+k
m+2k

)(

2k
k

)

(−1)k

k+1

for m,n > 0.

Solution. Since there are quite a lot of variables elementary combinatorial methods doesn’t offer an
effective way to treat the sum. Sincen appears on only one place in the sum, it is natural to consider
the sum as a function onn Let F(x) be the generating series of such functions. Then

F(x) = ∑
n

xn∑
k

(

n+k
m+2k

)(

2k
k

)

(−1)k

k+1
= ∑

k

(

2k
k

)

(−1)k

k+1
x−k∑

n

(

n+k
m+2k

)

xn+k =

= ∑
k

(

2k
k

)

(−1)k

k+1
x−k xm+2k

(1−x)m+2k+1 =
xm+2k

(1−x)m+2k+1 ∑
k

(

2k
k

)

1
k+1

{ −x
(1−x)2

}k

=

=
−xm−1

2(1−x)m−1

{

1−
√

1+
4x

(1−x)2

}

=
−xm−1

2(1−x)m−1

{

1− 1+x
1−x

}

=
xm

(1−x)m.

This is a generating function of the sequence

(

n−1
m−1

)

which establishes

∑
k

(

n+k
m+2k

)(

2k
k

)

(−1)k

k+1
=

(

n−1
m−1

)

. △

Problem 16. Prove the identity

∑
k

(

2n+1
k

)(

m+k
2n

)

=

(

2m+1
2n

)

.

Solution. Let F(x) = ∑
m

xm∑
k

(

2n+1
k

)(

m+k
2n

)

andG(x) = ∑
m

xm
(

2m+1
2n

)

the generating func-

tions of the expressions on the left and right side of the required equality. We will prove that
F(x) = G(x). We have

F(x) = ∑
m

xm∑
k

(

2n+1
k

)(

m+k
2n

)

= ∑
k

(

2n+1
2k

)

∑
m

(

m+k
2n

)

=

= ∑
k

(

2n+1
2k

)

∑
m

(

m+k
2n

)

xm = ∑
k

(

2n+1
2k

)

x−k∑
m

(

m+k
2n

)

xm+k =

= ∑
k

(

2n+1
2k

)

x−k x2n

(1−x)2n+1 =
x2n

(1−x)2n+1 ∑
k

(

2n+1
2k

)

(

x−
1
2

)2k
.

We already know that∑
k

(

2n+1
2k

)

(

x−
1
2

)2k
=

1
2

(

(

1+
1√
x

)2n+1

+

(

1− 1√
x

)2n+1
)

so

F(x) =
1
2
(
√

x)2n−1
(

1
(1−√

x)2n+1 −
1

(1+
√

x)2n+1

)

.

On the other hand

G(x) = ∑
m

(

2m+1
2n

)

xm =
(

x−1/2
)

∑
m

(

2m+1
2n

)

(

x1/2
)2m+1

,
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implying

G(x) =
(

x−1/2
)

[

(x1/2)2n

2

(

1

(1−x1/2)2n+1
− (−1)2n 1

(1+x1/2)2n+1

)

]

,

or

G(x) =
1
2
(
√

x)2n−1
(

1
(1−√

x)2n+1 −
1

(1+
√

x)2n+1

)

. △

Problem 17. Prove that
n

∑
k=0

(

2n
2k

)(

2k
k

)

22n−2k =

(

4n
2n

)

.

Let n be the free variable on the left and right side ofF(x) andG(x). We want to prove the
equality of these generating functions.

F(x) = ∑
n

xn ∑
06k6n

(

2n
2k

)(

2k
k

)

22n−2k = ∑
06k

(

2k
k

)

2−2k∑
n

(

2n
2k

)

xn22n,

F(x) = ∑
06k

(

2k
k

)

2−2k∑
n

(

2n
2k

)

(2
√

x)2n.

Now we use the formula for summation of even powers and get

∑
n

(

2n
2k

)

(2
√

x)2n =
1
2
(2
√

x)2k
(

1
(1−2

√
x)2k+1 +

1
(1+2

√
x)2k+1

)

,

and we further get

F(x) =
1

2(1−2
√

x) ∑
k

(

2k
k

)(

x
(1−2

√
x)2

)k

+
1

2(1+2
√

x) ∑
k

(

2k
k

)(

x
(1+2

√
x)2

)k

.

Since∑
n

(

2n
n

)

xn =
1√

1−4x
we get

F(x) =
1

2(1−2
√

x)
· 1
√

1−4 x
(1−2

√
x)2

+
1

2(1+2
√

x)
· 1
√

1−4 x
(1+2

√
x)2

,

which implies

F(x) =
1

2
√

1−4
√

x
+

1

2
√

1+4
√

x
.

On the other hand forG(x) we would like to get the sum∑
n

(

4n
2n

)

xn. Since∑
n

(

2n
n

)

xn =
1√

1−4x

we have∑
n

(

2n
n

)

(−x)n =
1√

1+4x
hence

G(x) =
1
2

(

1
√

1−4
√

x
+

1
√

1+4
√

x

)

andF(x) = G(x). △
The followng problem is slightly harder because the standard idea of snake oil doesn’t lead to a

solution.
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Problem 18 (Moriati). For given n and p evaluate

∑
k

(

2n+1
2p+2k+1

)(

p+k
k

)

.

Solution. In order to have shorter formulas let us introducer = p+k. If we assume thatn is the free
variable then the required sum is equal to

f (n) = ∑
r

(

2n+1
2r +1

)(

r
p

)

.

TakeF(x) = ∑
n

x2n+1 f (n). This is somehow natural since the binomial coefficient contains the term

2n+1. Now we have

F(x) = ∑
n

x2n+1∑
r

(

2n+1
2r +1

)(

r
p

)

= ∑
r

(

r
p

)

∑
n

(

2n+1
2r +1

)

x2n+1.

Since

∑
n

(

2n+1
2r +1

)

x2n+1 =
x2r+1

2

(

1
(1−x)2r+2 +

1
(1+x)2r+2

)

,

we get

F(x) =
1
2
· x
(1−x)2 ∑

r

(

r
p

)(

x2

(1−x)2

)r

+
1
2
· x
(1+x)2 ∑

r

(

r
p

)(

x2

(1+x)2

)r

,

F(x) =
1
2

x
(1−x)2

(

x2

(1−x)2

)p

(

1− x2

(1−x)2

)p+1 +
1
2

x
(1+x)2

(

x2

(1+x)2

)p

(

1− x2

(1+x)2

)p+1 ,

F(x) =
1
2

x2p+1

(1−2x)p+1 +
1
2

x2p+1

(1+2x)p+1 =
x2p+1

2
((1+2x)−p−1+(1−2x)−p−1),

implying

f (n) =
1
2

((−p−1
2n−2p

)

22n−2p+

(−p−1
2n−2p

)

22n−2p
)

,

and after simplification

f (n) =

(

2n− p
2n−2p

)

22n−2p. △

We notice that for most of the problems we didn’t make a substantial deviation from the method
and we used only a handful of identities. This method can alsobe used in writing computer algo-
rithms for symbolic evaluation of number of sums with binomial coefficients.

5 Problems

1. Prove that for the sequence of Fibonacci numbers we have

F0 +F1+ · · ·+Fn = Fn+2 +1.

2. Given a positive integern, let A denote the number of ways in whichn can be partitioned as a
sum of odd integers. LetB be the number of ways in whichn can be partitioned as a sum of
different integers. Prove thatA = B.

3. Find the number of permutations without fixed points of theset{1,2, . . . ,n}.
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4. Evaluate∑
k

(−1)k
(

n
3k

)

.

5. Letn∈ N and assume that

x+2y= n hasR1 solutions inN
2
0

2x+3y= n−1 hasR2 solutions inN
2
0

...

nx+(n+1)y= 1 hasRn solutions inN
2
0

(n+1)x+(n+2)y= 0 hasRn+1 solutions inN
2
0

Prove that∑
k

Rk = n+1.

6. A polynomial f (x1,x2, . . . ,xn) is called asymmetricif each permutationσ ∈ Sn we have
f (xσ(1), . . . ,xσ(n)) = f (x1, . . . ,xn). We will consider several classes of symmetric polyno-
mials. The first class consists of the polynomials of the form:

σk(x1, . . . ,xn) = ∑
i1<···<ik

xi1 · · · · ·xik

for 1 6 k 6 n, σ0 = 1, andσk = 0 for k > n. Another class of symmetric polynomials are the
polynomials of the form

pk(x1, . . . ,xn) = ∑
i1+···+in=k

xi1
1 · · · · ·xin

n , wherei1, · · · , in ∈ N0.

The third class consists of the polynomials of the form:

sk(x1, . . . ,xn) = xk
1 + · · ·+xk

n.

Prove the following relations between the polynomials introduced above:

n

∑
r=0

(−1)rσr pn−r = 0, npn =
n

∑
r=1

sr pn−r , andnσn =
n

∑
r=1

(−1)r−1sr σn−r .

7. Assume that for somen∈ N there are sequences of positive numbersa1, a2, . . . , an andb1, b2,
. . . , bn such that the sums

a1 +a2, a1 +a3, . . . , an−1 +an

and
b1 +b2, b1 +b3, . . . , bn−1 +bn

the same up to permutation. Prove thatn is a power of two.

8. (Leo Moser, Joe Lambek, 1959.) Prove that there is a uniqueway to partition the set of natural
numbers in two setsA and B such that: For very non-negative integern (including 0) the
number of ways in whichn can be written asa1 +a2, a1,a2 ∈ A, a1 6= a2 is at least 1 and is
equal to the number of ways in which it can be represented asb1 +b2, b1,b2 ∈ B, b1 6= b2.

9. Given several (at least two, but finitely many) arithmeticprogressions, if each natural number
belongs to exactly one of them, prove there are two progressions whose common differences
are equal.

10. (This problem was posed in the journalAmerican Mathematical Monthly) Prove that in the
contemporary calendar the 13th in a month is most likely to be Friday.

Remark:The contemporary calendar has a period of 400 years. Every fourth year has 366
days except those divisible by 100 and not by 400.
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6 Solultions

1. According to the Theorem 7 the generating function of the sum of first n terms of the se-
quence (i.e. the left-hand side) is equal toF/(1−x), whereF = x/(1−x−x2) (suchF is the
generatring function of the Fibonacci sequence). On the right-hand side we have

F −x
x

− 1
1−x

,

and after some obvious calculation we arrive to the requiredidentity.

2. We will first prove that the generating function of the number of odd partitions is equal to

(1+x+x2+ · · ·) · (1+x3+x6 + · · ·) · (1+x5+x10+ · · ·) · · · = ∏
k>1

1
1−x2k+1 .

Indeed, to each partition in whichi occursai times corresponds exactly one term with coeffi-
cient 1 in the product. That term is equal tox1·a1+3·a3+5·a5+···.

The generating function to the number of partitions in different summands is equal to

(1+x) · (1+x2) · (1+x3) · · · = ∏
k>1

(1+xk),

because from each factor we may or may not take a power ofx, which exactly correpsonds to
taking or not taking the corresponding summand of a partition. By some elementary transfor-
mations we get

∏
k>1

(1+xk) = ∏
k>1

1−x2k

1−xk =
(1−x2)(1−x4) · · ·

(1−x)(1−x2)(1−x3)(1−x4) · · · = ∏
k>1

1
1−x2k+1

which proves the statement.

3. This example illustrates the usefullness of the exponential generating functions. This problem
is known asderangement problemor ”le Problème des Rencontres” posed by Pierre R. de
Montmort (1678-1719).

Assume that the required number isDn and letD(x)esr
↔ Dn. The number of permutations

having exactlyk given fixed points is equal toDn−k, hence the total number of permutations
with exactlyk fixed points is equal to

(n
k

)

Dn−k, because we can choosek fixed points in
(n

k

)

ways. Since the total number of permutations is equal ton!, then

n! = ∑
k

(

n
k

)

Dn−k

and the Theorem 10 gives
1

1−x
= exD(x)

implying D(x) = e−x/(1−x). Sincee−x is the generating function of the sequence
(−1)n

n!
, we

get
Dn

n!
= 1−1+

1
2!

− 1
3!

+ · · ·+(−1)n 1
n!

,

Dn = n! ·
(

1
2!

− 1
3!

+ · · ·+(−1)n 1
n!

)

.
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4. The idea here is to consider the generating function

F(x) = ∑
k

(

n
3k

)

x3k.

The required sum is equal tof (−1). The question now is how to make binomial formula to
skip all terms except those of order 3k. We will use the following identy for the sum of roots
of unity in the complex plane

∑
ε r=1

εn =

{

r, r|n
0, otherwise.

LetC(x) = (1+x)n and let 1,ε, andε2 be the cube roots of 1. Then we have

F(x) =
C(x)+C(εx)+C(ε2x)

3

which forx = −1 gives

F(−1) =
1
3

{(

3− i
√

3
2

)n

+

(

3+ i
√

3
2

)n}

and after simplification

∑
k

(−1)k
(

n
3k

)

= 2 ·3n/2−1cos
(nπ

6

)

5. The number of solutions ofx+2y= n in N
2
0 is the coefficient neartn in

(1+ t + t2+ · · ·) · (1+ t2+ t4+ · · ·) =
1

1− t
1

1− t2

The reason is that each pair(x,y) that satisfies the condition of the problem increases the
coefficient neartn by 1 because it appears as a summand of the formtxt2y = tx+2y. More
generally, the number of solutions ofkx+(k+ 1)y = n+ 1− k is the coefficient neartn+1−k

in
1

1− tk

1
1− tk+1 , i.e. the coefficient neartn in

xk−1

(1− tk)(1− tk+1)
. Hence,

n

∑
k=1

Rk is the coef-

ficient neartn in ∑
k

tk−1

(1− tk)(1− tk+1)
= ∑

k

1
t − t2

(

1
1− tk+2 −

1
1− tk+1

)

=
1

(1− t)2 . Now it

is easy to see that∑
k

Rk = n+1.

6. The generating function of the symmetric polynomialsσk(x1, . . . ,xn) is

Σ(t) =
∞

∑
k=0

σkt
k =

n

∏
i=1

(1+ txi).

The generating function of the polynomialspk(x1, . . . ,xn) is:

P(t) =
∞

∑
k=0

pkt
k = ∏ 1

1− txi
,

and the generating function of the polynomialssk is:

S(t) =
∞

∑
k=0

skt
k−1 =

n

∑
i=1

xi

1− txi
.
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The functionsΣ(t) andP(t) satisfy the following conditionΣ(t)p(−t) = 1. If we calculate the
coefficient of this product neartn, n > 1 we get the relation

n

∑
r=0

(−1)rσr pn−r = 0.

Notice that

logP(t) =
n

∑
i=1

log
1

1− txi
and logΣ(t) =

n

∑
i=1

log(1+ txi).

Now we can expressS(t) in terms ofP(t) andΣ(t) by:

S(t) =
d
dt

logP(t) =
P′(t)
P(t)

and

S(−t) = − d
dt

logΣ(t) = −Σ′(t)
Σ(t)

.

From the first formula we getS(t)P(t) = P′(t), and from the secondS(−t)Σ(t) = −Σ′(t).
Comparing the coefficients neartn+1 we get

npn =
n

∑
r=1

sr pn−r and nσn =
n

∑
r=1

(−1)r−1sr σn−r .

7. LetF andG be polynomials generated by the given sequence:F(x) = xa1 +xa2 + · · ·+xan and
G(x) = xb1 +xb2 + · · ·+xbn. Then

F2(x)−G2(x) =

(

n

∑
i=1

x2ai +2 ∑
16i6 j6n

xai+a j

)

−
(

n

∑
i=1

x2bi +2 ∑
16i6 j6n

xbi+b j

)

= F(x2)−G(x2).

SinceF(1) = G(1) = n, we have that 1 is zero of the orderk,(k > 1) of the polynomial
F(x)−G(x). Then we haveF(x)−G(x) = (x−1)kH(x), hence

F(x)+G(x) =
F2(x)−G2(x)
F(x)−G(x)

=
F(x2)−G(x2)

F(x)−G(x)
=

(x2−1)kH(x2)

(x−1)kH(x)
= (x+1)k H(x2)

H(x)

Now for x = 1 we have:

2n = F(1)+G(1) = (1+1)kH(x2)

H(x)
= 2k,

implying thatn = 2k−1.

8. Consider the polynomials generated by the numbers from different sets:

A(x) = ∑
a∈A

xa, B(x) = ∑
b∈B

xb.

The condition thatA andB partition the wholeN without intersection is equivalent to

A(x)+B(x) =
1

1−x
.
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The number of ways in which some number can be represented asa1+a2, a1,a2 ∈A, a1 6= a2

has the generating function:

∑
ai ,a j∈A,ai 6=a j

xai+a j =
1
2

(

A2(x)−A(x2)
)

.

Now the second condition can be expressed as
(

A2(x)−A(x2)
)

=
(

B2(x)−B(x2)
)

.

We further have

(A(x)−B(x))
1

1−x
= A(x2)−B(x2)

or equivalently
(A(x)−B(x)) = (1−x)(A(x2)−B(x2)).

Changingx by x2,x4, . . . ,x2n−1
we get

A(x)−B(x) = (A(x2n
)−B(x2n

))
n−1

∏
i=0

(1−x2i
),

implying

A(x)−B(x) =
∞

∏
i=0

(1−x2i
).

The last product is series whose coefficients are±1 henceA andB are uniquely determined
(since their coefficients are 1). It is not difficult to noticethat positive coefficients (i.e. coef-
ficients originating fromA) are precisely those corresponding to the termsxn for which n can
be represented as a sum of even numbers of 2s. This means that the binary partition ofn has
an even number of 1s. The other numbers formB.

Remark:The sequence representing the parity of the number of ones inthe binary representa-
tion of n is calledMorsesequence.

9. This problem is posed by Erdösz (in slightly different form), and was solved by Mirsky and
Newman after many years. This is their original proof:

Assume thatk arithmetic progressionss{ai +nbi} (i = 1,2, . . . ,k) cover the entire set of pos-

itive integers. Then
za

1−zb =
∞

∑
i=0

za+ib, hence

z
1−z

=
za1

1−zb1
+

za2

1−zb2
+ · · ·+ zak

1−zbk
.

Let |z| 6 1. We will prove that the biggest number amongbi can’t be unique. Assume the
contrary, thatb1 is the greatest among the numbersb1,b2, . . . ,bn and setε = e2iπ/b1. Assume
thatzapproachesε in such a way that|z| 6 1. Here we can chooseε such thatεb1 = 1, ε 6= 1,
andεbi 6= 1, 1 < i 6 k. All terms except the first one converge to certain number while the
first converges to∞, which is impossible.

10. Friday the 13th corresponds to Sunday the 1st. Denote thedays by numbers 1,2,3, . . . and
let t i corresponds to the dayi. Hence,Jan.1st2001 is denoted by 1 (ort), Jan.4th2001 byt4

etc. LetA be the set of all days (i.e. corresponding numbers) which happen to be the first in a
month. For instance, 1∈ A, 2∈ A, etc.A = {1,32,60, . . .}. Let fA(t) = ∑n∈A tn. If we replace
t7k by 1, t7k+1 by t, t7k+2 by t2 etc. in the polynomialfA we get another polynomial – denote
it by gA(t) = ∑6

i=0ait i . Now the numberai represents how many times the day (of a week)
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denoted byi has appeared as the first in a month. SinceJan1,2001 was Monday,a1 is the
number of Mondays,a2- the number of Tuesdays,. . . , a0- the number of Sundays. We will
consider nowfA modulust7−1. The polynoimalfA(t)−gA(t) is divisible byt7−1. Since we
only want to find which of the numbersa0,a1, . . . ,a6 is the biggest, it is enough to consider
the polynomial modulusq(t) = 1+ t + t2+ · · ·+ t6 which is a factor oft7−1. Let f1(t) be the
polynomial that represents the first days of months in 2001. Since the first day of January is
Monday, Thursday– the first day of February, ..., Saturday the first day of December, we get

f1(t) = t + t4+ t4+1+ t2+ t5+1+ t3+ t6 + t + t4+ t6 =

= 2+2t + t2+ t3 +3t4+ t5+2t6 ≡ 1+ t +2t4+ t6 (mod q(t)).

Since the common year has 365≡ 1 (mod 7) days, polynomialsf2(t) and f3(t) corresponding
to 2002. and 2003., satisfy

f2(t) ≡ t f1(t) ≡ tg1(t)

and
f3(t) ≡ t f2(t) ≡ t2g1(t),

where the congruences are modulusq(t). Using plain counting we easily verify thatf4(t) for
leap 2004 is

f4(t) = 2+2t + t2+2t3+3t4+ t5+ t6 ≡ 1+ t + t3+2t4 = g4(t).

We will introduce a new polynomial that will count the first days for the period 2001−2004
h1(t) = g1(t)(1+ t + t2)+ g4(t). Also, after each common year the days are shifted by one
place, and after each leap year by 2 places, hence after the period of 4 years all days are shifted
by 5 places. In such a way we get a polynomial that counts the numbers of first days of months
between 2001 and 2100. It is:

p1(t) = h1(t)(1+ t5+ t10+ · · ·+ t115)+ t120g1(t)(1+ t + t2+ t3).

Here we had to write the last for years in the formg1(t)(1+ t + t2 + t3) because 2100 is not
leap, and we can’t replace it byh1(t). The period of 100 years shifts the calendar for 100 days
(common years) and additional 24 days (leap) which is congruent to 5 modulus 7. Now we
get

gA(t) ≡ p1(t)(1+ t5+ t10)+ t15h1(t)(1+ t5+ · · ·+ t120).

Similarly as before the last 100 are counted by last summandsbecause 2400 is leap. Now we
will use thatt5a+t5(a+1)+ · · ·+t5(a+6) ≡ 0. Thus 1+t5+ · · ·+t23·5 ≡ 1+t5+t2·5 ≡ 1+t3+t5

and 1+ t5+ · · ·+ t25·5 ≡ 1+ t5+ t2·5+ t4·5 ≡ 1+ t + t3+ t5. We further have that

p1(t) ≡ h1(t)(1+ t3+ t5)+ tg1(t)(1+ t + t2+ t3) ≡

g1(t)[(1+ t + t2)(1+ t3+ t5)+ t(1+ t + t2+ t3)]+g4(t)(1+ t3+ t5) ≡
g1(t)(2+2t +2t2+2t3+2t4+2t5+ t6)+g4(t)(1+ t3+ t5) ≡−g1(t)t

6 +g4(t)(1+ t3+ t5).

If we now put this into formula forgA(t) we get

gA(t) ≡ p1(t)(1+ t3+ t5)+ th1(t)(1+ t + t3+ t5)

≡ −g1(t)t
6(1+ t3+ t5)+g4(t)(1+ t3+ t5)2

+tg1(t)(1+ t + t2)(1+ t + t3+ t5)+ tg4(t)(1+ t + t3+ t5)

≡ g1(t)(t + t3)+g4(t)(2t +2t3+ t5+ t6)

≡ (1+ t +2t4+ t6)(t + t3)+ (1+ t + t3+2t4)(2t +2t3+ t5 + t6)

≡ 8+4t +7t2+5t3+5t4+7t5+4t6 ≡ 4+3t2+ t3+ t4+3t5.
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This means that the most probable day for the first in a month isSunday (becausea0 is the
biggest).

We can precisely determine the probability. If we use the fact that there are 4800 months in
a period of 400, we can easily get the Sunday is the first exactly 688 times, Monday – 684,
Tuesday – 687, Wednesday – 685, Thursday – 685, Friday – 687, and Saturday – 684.
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