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Abstract

In this paper, we study graphs with integer matching polynomial roots. We characterize
all traceable graphs whose all matching polynomial roots are integer. We show that apart
from K7 \ (E(C3) ∪ E(C4)) there is no connected k-regular graph (k ≥ 2), whose all matching
polynomial roots are integer. We also show that a graph with a perfect matching has a
matching root in the interval (0, 1]. Finally, we describe all claw-free graphs.
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1 Introduction

All graphs we consider are finite, simple and undirected. Let G be a graph. We denote the edge
set and the vertex set of G by E(G) and V (G), respectively. By order and size of G, we mean
the number of vertices and the number of edges of G, respectively. The maximum degree of G is
denoted by ∆(G) (for the simplicity by ∆). The minimum degree of G is denoted by δ(G). In
this paper, we denote the complete graph, the path and the cycle of order n, by Kn, Pn and Cn,
respectively. The set of neighbors of a vertex v is denoted by N(v). A traceable graph, is a graph
with a Hamilton path. An r-matching in a graph G is a set of r pairwise non-incident edges. The
number of r-matchings in G is denoted by p(G, r). The matching polynomial of G is defined by

µ(G, x) =

⌊n
2 ⌋∑

r=0

(−1)rp(G, r)xn−2r,

where n is the order of G and p(G, 0) is considered to be 1, see [7, 8, 9, 10, 11]. For instance the
matching polynomial of the following graph

is µ(G, x) = x5−5x3+4x. By the definition of µ(G, x), we conclude that every graph of odd order
has a zero matching root. Furthermore, if θ is a matching root of a graph, then so is −θ. We call a
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graph, matching integral if all zeros of its matching polynomial are integer. A graph is said to be in-
tegral if eigenvalues of its adjacency matrix consist entirely of integers. Since 1974, integral graphs
have been extensively studied by several authors, for instance see [2, 12]. It is worth mentioning
that if T is a tree, then its characteristic polynomial and its matching polynomial are the same,
see [6, Corollary 1.4, p.21]. Integral trees (so matching integral trees) have been investigated in [16].

In Section 2, we characterize all traceable graphs which are matching integral. In Section 3,
we study matching integral regular graphs and show that for k ≥ 2 there is only one connected
matching integral k-regular graph, namely K7 \ (E(C3) ∪ E(C4)). In order to establish our results,
first we need the following theorems:

Theorem A. [13] For any graph G, the zeros of µ(G, x) are all real. If ∆ > 1, then the zeros lie
in (−2

√
∆− 1, 2

√
∆− 1).

Remark 1. Let G be a graph. Note that if
√
∆− 1 is not integer, then µ(G, x) contains at most

2⌊2
√
∆− 1⌋ + 1 integer roots and if

√
∆− 1 is integer, then µ(G, x) has at most 4

√
∆− 1 − 1

integer roots.

Theorem B. [6, Corollary 1.3, p.97] If G is a connected graph, then the largest zero of µ(G, x) is
simple.

Let t(G) be the number of vertices of a longest path in the graph G.

Theorem C. [6, Theorem 4.5, p.107] The maximum multiplicity of a zero of µ(G, x) is at most
equal to the number of vertex-disjoint paths required to cover G. The number of distinct zeros of
µ(G, x) is at least t(G).

Theorem D. [6] If θ is a zero of µ(G, x) with multiplicity at least 2 then for any path P we have
that θ is a zero of µ(G\P, x), whereG\P is the induced subgraph ofG on the vertex set V (G)\V (P ).

Theorem D is not stated as a theorem in [6], but is used in the proof of Theorem 4.5 of Chapter
6 of [6]. Both Theorems C and D rely on the curious identity

µ′(G, x)2 − µ(G, x)µ′′(G, x) =
∑

µ(G \ P, x)2,

where the summation goes for all paths of G. For instance, if θ is a root of µ(G, x) with multiplicity
at least 2 then it is a root of both µ(G, x) and µ′(G, x) so the left hand side is 0 at θ, but the right
hand side is only 0 if all terms are 0.

2 Matching Integral Traceable Graphs

In this section, we show that there are finitely many matching integral traceable graphs and
characterize all of them. In fact, we will characterize those graphs whose matching polynomial has
only simple integer roots. By Theorem C we know that this is true for all traceable graph.

Theorem 2.1. Let G be a connected graph whose matching polynomial has only simple integer
roots. Then G is one of the following graphs: K1, K2, K7 \ (E(C3) ∪ E(C4)), G1 or G2, where

G1 :
G2 :
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In particular, this is the list of matching integral traceable graphs.

Proof. Let n and m be the order and the size of G, respectively. It is enough to prove the first
part of the theorem as the second part of the theorem indeed follows from the first one: since G
is traceable, by Theorem C, the zeros of µ(G, x) are all distinct. Now, in order to prove the first
part, we consider two cases:

Case 1. n = 2k, k ≥ 1. Since G has even order and all roots are simple, every root of µ(G, x) is
non-zero. Let θ1, . . . , θk be the positive roots of µ(G, x). Hence

µ(G, x) =
k∏

i=1

(x2 − θ2i ) = x2k − (θ21 + · · ·+ θ2k)x
2k−2 + · · ·+ (−1)kθ21 · · · θ2k.

We have

m =
k∑

i=1

θ2i ≥
k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
=

n

12

(n
2
+ 1
)
(n+ 1) .

Thus for n ≥ 8, m >
(
n
2

)
, a contradiction. Now, assume that n ≤ 6. We consider three cases:

Case 1.1. n = 2. Hence G = K2 and µ(G, x) has roots −1,+1.

Case 1.2. n = 4. Since ∆ ≤ 3, TheoremA implies that the roots of µ(G, x) lie in [−2, 2].
Hence µ(G, x) = (x2 − 1)(x2 − 4) = x4 − 5x2 + 4. Thus m = 5 and so G = K4 \ e, for some edge
e. But µ(K4 \ e, x) = x4 − 5x2 + 2, a contradiction.

Case 1.3. n = 6. Since ∆ ≤ 5, by TheoremA the roots of µ(G, x) lie in [−3, 3]. Therefore
µ(G, x) = (x2−1)(x2−4)(x2−9). Hencem = 14 and G = K6\e, for some edge e. Now, by [6, Theo-
rem 1.1(b), p.2], we find that µ(G, x) = µ(K6, x)+µ(K4, x) = (x6−15x4+45x2−15)+(x4−6x2+3),
a contradiction.

Case 2. n = 2k + 1, k ≥ 0. Let 0, θ1, . . . , θk be the non-negative roots of µ(G, x). Thus

µ(G, x) = x

k∏
i=1

(x2 − θ2i ) = x2k+1 − (θ21 + · · ·+ θ2k)x
2k−1 + · · ·+ (−1)kθ21 · · · θ2k x.

It follows that

m =
k∑

i=1

θ2i ≥
k∑

i=1

i2 =
n(n2 − 1)

24
.

Hence for n ≥ 13, m >
(
n
2

)
, a contradiction. If n ≤ 3, then clearly G = K1. Now, we consider four

cases:

Case 2.1. n = 5. Since ∆ ≤ 4, by TheoremA the roots of µ(G, x) lie in [−3, 3]. Since
m = θ21 + θ22 ≤ 10, the positive roots of µ(G, x) are either 1, 3 or 1, 2. In the first case,
µ(G, x) = x(x2 − 1)(x2 − 9). Hence m = 10 and so G = K5. Therefore, p(G, 2) = 5!

2!22 ̸= 9,
a contradiction. In the second case, µ(G, x) = x(x2 − 1)(x2 − 4). Hence m = 5 and p(G, 2) = 4. It
follows that G is one of the following graphs:
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Case 2.2. n = 7. Since ∆ ≤ 6, TheoremA implies that the roots of µ(G, x) lie in [−4, 4]. Since
m = θ21 + θ22 + θ23 ≤ 21, the positive roots of µ(G, x) are either 1, 2, 3 or 1, 2, 4. In the first case,
µ(G, x) = x(x2−1)(x2−4)(x2−9). So m = 14, p(G, 2) = 49 and p(G, 3) = 36. On the other hand,
|E(K7\(E(C3)∪E(C4)))| = 14, p(K7\(E(C3)∪E(C4)), 2) = 49 and p(K7\(E(C3)∪E(C4)), 3) = 36.
Since K7 \(E(C3)∪E(C4)) is 4-regular, [6, Exercise 4, p.15] implies that G is 4-regular. Obviously,
there are two non-isomorphic 4-regular graphs of order 7, K7 \ E(C7) and K7 \ (E(C3) ∪ E(C4)).
Therefore G = K7 \ (E(C3) ∪ E(C4)).

In the second case, µ(G, x) = x(x2 − 1)(x2 − 4)(x2 − 16) and m = 21. Hence G = K7 and so
p(G, 3) = 7!

3!23 ̸= 64, a contradiction.

Case 2.3. n = 9. Since ∆ ≤ 8, by TheoremA the roots of µ(G, x) lie in [−5, 5]. Note
that m = θ21 + θ22 + θ23 + θ24 ≤ 36, so the positive roots of µ(G, x) should be 1, 2, 3, 4. Thus
µ(G, x) = x(x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16). Hence m = 30 and p(G, 2) = 273. Furthermore,

p(G, 2) =

(
30
2

)
−
∑9

i=1

(
di
2

)
, where d1, . . . , d9 is degree sequence of G. So we have the following:

9∑
i=1

di = 60, and
9∑

i=1

d2i = 384.

But this contradicts the Cauchy–Schwarz inequality:

602 =

(
9∑

i=1

1 · di

)2

≤

(
9∑

i=1

12

)(
9∑

i=1

d2i

)
= 9 · 384 < 602.

Case 2.4. n = 11. Since ∆ ≤ 10, by TheoremA the roots of µ(G, x) lie in [−5, 5]. Thus
µ(G, x) = x(x2 − 1)(x2 − 4) · · · (x2 − 25). Hence m = 55 and so G = K11. Therefore p(G, 5) =
11!
5!25 ̸= 14400, a contradiction.

3 Matching Integral Regular Graphs

In this section, we study matching integral regular graphs. We show the following theorem.

Theorem 3.1. If G is a matching integral k-regular graph (k ≥ 2) then it is disjoint union of
K7 \ (E(C3) ∪ E(C4)).

Let G be a graph of order n. Recall that t(G) denotes the number of vertices of a longest path
in the graph G. By Theorem A all zeros of a matching integral k–regular graph lie in the interval
(−2

√
k − 1, 2

√
k − 1) and so the number of distinct zeros is at most 2⌊2

√
k − 1⌋+1. By the second

claim of Theorem C this is an upper bound for t(G), hence

t(G) ≤ 2⌊2
√
k − 1⌋+ 1.

On the other hand, t(G) ≥ k + 1 for a k–regular graph simply by choosing the vertices of a path
greedily. This already gives that k ≤ 14. On the other hand one can improve on the bound
t(G) ≥ k+1. The following lemma is practically an immediate consequence of a theorem of Dirac.

Lemma 3.2. Let G be a k–regular connected graph on n vertices. Then

t(G) ≥ min(2k + 1, n).

Before we prove this lemma let us deduce the following corollary.
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Lemma 3.3. Let G be a matching integral k–regular graph, where k ≥ 3. Then G is a disjoint
union of a few copies of K7 \ (E(C3) ∪ E(C4)).

Proof. We can assume that G is connected since the set of matching zeros of a graph is the union
of the set of matching zeros of the components of the graph. If t(G) = n, where n is the number
of vertices then G is traceable and so by Theorem 2.1 it is K7 \ (E(C3) ∪ E(C4)). If t(G) ̸= n then
t(G) ≥ 2k + 1. Then

2k + 1 ≤ t(G) ≤ 2⌊2
√
k − 1⌋+ 1

implies that k ≤ 2 contradicting the condition k ≥ 3.

Next we prove Lemma 3.2. We will use the following theorem of Dirac.

Lemma 3.4. [5] Let c(G) be the longest cycle of a connected graph G on n vertices. Assume that
G is 2-connected and has minimum degree at least k. Then c(G) ≥ min(2k, n).

Proof of Lemma 3.2. If G is 2-connected then by Lemma 3.4 we have c(G) ≥ min(2k, n). If
c(G) = n then clearly t(G) = n. If c(G) ≥ 2k + 1 we are done again. If c(G) = 2k < n then by
connectedness of G there is a vertex v not in the cycle which is connected to some vertex of the
cycle, but then there is a path of length at least 2k + 1.

If G is not 2-connected then it contains a cut vertex v. From v let us build up two vertex
disjoint paths in two different components of G − v greedily. By concatenating the two paths we
get a path of length at least 2k + 1.

Finally for k = 2 the following lemma is an immediate consequence of Theorem 2.1.

Lemma 3.5. For every positive integer n, Cn is not matching integral.

4 Matching Integral Graphs with a Perfect Matching

In this section we study the roots of a matching polynomial of a graph with a perfect matching.

Theorem 4.1. If a graph G has a perfect matching then its matching polynomial has a zero in
the interval (0, 1]. If it has no zero in the interval (0, 1) then it is the disjoint union of some K2.

Proof. Let G be a graph on 2n vertices. Since G has a perfect matching we have p(G,n) ̸= 0,
consequently

µ(G, x) =
n∏

i=1

(x2 − θ2i ),

where θi ̸= 0. Then

p(G,n− 1)

p(G,n)
=

n∑
i=1

1

θ2i
.

Next we show that
p(G,n− 1)

p(G,n)
≥ n.

Indeed, every perfect matching contains exactly n matchings of size n− 1, and every matching of
size n− 1 can be extended to a perfect matching in at most 1 way. Hence

n ≤ p(G,n− 1)

p(G,n)
=

n∑
i=1

1

θ2i

implies that mini θ
2
i ≤ 1, and if mini θ

2
i = 1 then θ21 = · · · = θ2n = 1. Hence the graph has

θ21 + · · · + θ2n = n edges which form a perfect matching, i. e., G is the disjoint union of some
K2.
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We offer one more theorem in the same spirit. Let

f(t) =

{
t+ 1 if t ̸= 1,
3 if t = 1.

The proof of the following theorem is practically the same as the proof of Theorem 4.1. The only
extra observation one needs is that a graph on t + 2 vertices without a 2–matching contains at
most f(t) edges.

Theorem 4.2. Let G be a graph with at least one edge. Assume that the multiplicity of 0 as a
root of the matching polynomial of the graph G is t. Then the interval (0,

√
f(t)] contains a root

of the matching polynomial of G.

5 Matching Integral Claw-free Graphs

In this section we study matching integral claw-free graphs.

Theorem 5.1. Let G be a connected matching integral claw-free graph. Then G is one of K1,K2

or G2.

Note that from the list of traceable matching integral graphs G1 and K7 \ (E(C3) ∪ E(C4)) are
not claw-free.

The proof of Theorem 5.1 is quite long, and so we summarize here the plan of the proof. First
we show that a connected claw-free graph always contains a matching which avoids at most one
vertex, so if G has even order then it contains a perfect matching, and if it has odd order then
the largest matching avoids exactly one vertex. This settles the multiplicity of 0 as a root of the
matching polynomial. If G contains a perfect matching then Theorem 4.1 already gives that G
is K2. Then just as in case of regular graphs we try to find long paths in the graph. We fix the
largest degree ∆ and as we gain more and more information about the length of the longest path
we exclude the possibility of more and more values of ∆. By the time we stuck with the ideas of
finding long paths we will have enough information about the structure of G so that we get many
information about the matching polynomial. This way we can shrink the set of possible matching
polynomials. Then we translate it back to structural information about the graph and we finish
the proof.

Lemma 5.2. Let G be a connected claw-free graph. Then it contains a matching which avoids at
most one vertex.

Proof. This is a well-known statement which can be found in the book of J. Akiyama and M. Kano
[1]. See also [14, 15].

Next we start our hunting to long paths. Our main tool is the following lemma and its corollary.

Lemma 5.3. Let H be a graph such that H has largest independent set of size at most 2. Then H
has either a Hamiltonian cycle or there are two vertex-disjoint cliques in H covering all vertices
of H.

Proof. This lemma immediately follows from the following theorem of Chvátal and Erdős [4]. It
can also be found in the book of Bondy and Murty [3] as Theorem 18.10.

Theorem. Let G be a graph on at least 3 vertices. If, for some s, G is s-connected and contains
no independent set of more than s vertices, then G has a Hamiltonian cycle.
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Clearly, if G is 2-connected then for s = 2 this immediately implies our statement. If G is not
connected then it is easy to see that G must be the union of two disjoint cliques. While, if G has
a cut vertex v, then G− v must be the union of two disjoint cliques and v must be adjacent to all
elements of at least one of the cliques. So we are done in this case too.

Lemma 5.4. (a) Let G be a connected claw-free graph with a vertex v of largest degree ∆. Then
for any u ∈ N(v) there is a path Pu starting at u which covers all vertices of N(v) ∪ {v}.
(b) We have t(G) ≥ ∆+ 1, and if G ̸= N(v) ∪ {v} then t(G) ≥ ∆+ 2.

Proof. Part (b) is an immediate consequence of part (a) since |N(v) ∪ {v}| = ∆ + 1, and if
G ̸= N(v)∪ {v} then by the connectedness of G there is a w adjacent to some u ∈ N(v) so we can
extend Pu with w.

To prove part (a), let H be the graph induced by the neighbors of v. Then H has largest
independent set of size at most 2, otherwise there would be a claw in G with center v. Then by
the previous lemma H has either a Hamiltonian cycle or there are two vertex-disjoint cliques in
H covering all vertices of H. In both cases there is a path Pu starting at vertex u which covers
V (H) ∪ {v}.

For a positive integer r let s(r) be the number of integers in the interval (−2
√
r − 1, 2

√
r − 1).

Clearly, this is 2⌊2
√
r − 1⌋+ 1 if r − 1 is not a perfect square, and 4

√
r − 1− 1 if r − 1is a perfect

square. So far we know that
∆ + 1 ≤ t(G) ≤ s(∆).

From this follows that 2 ≤ ∆ ≤ 14. Furthermore, if ∆ + 1 = s(∆) then t(G) = ∆ + 1 and then
G = N(v) ∪ {v}. In particular, it is traceable, but we already described all traceable claw-free
graphs: K1,K2 and G2 (and their largest degrees are 0, 1 and 3). The following table shows the
values of s(∆) and ∆+ 1. The case ∆ = 13 contradicts ∆ + 1 ≤ s(∆). This table also shows that
we can exclude the possibility of ∆ ∈ {2, 10, 12, 14}, because in these cases ∆ + 1 = s(∆).

r 2 3 4 5 6 7 8 9 10 11 12 13 14

2
√
r − 1 2 2.82 3.46 4 4.47 4.89 5.29 5.65 6 6.32 6.63 6.92 7.21
s(r) 3 5 7 7 9 9 11 11 11 13 13 13 15

s(r)− (r + 1) 0 1 2 1 2 1 2 1 0 1 0 -1 0

Next we show that it is not possible that ∆ ∈ {3, 5, 7, 9, 11}, and if ∆ ∈ {4, 6, 8} then the
multiplicity of some θi with |θi| > 1 is at most 1.

Let k(r) = s(r) − (r + 1), it expresses how much longer the longest path can be than ∆ + 1
if r = ∆. As before let v be a vertex of degree ∆ and N(v) denotes its set of neighbors. We will
show that if k(∆) = 1 then G \ (N(v) ∪ {v}) is an empty graph on some vertices, and if k(∆) = 2
then G \ (N(v) ∪ {v}) is a union of K1 and K2.

For a vertex u ∈ N(v) let Gu be the graph obtained from G by deleting N(v) ∪ {v} except u.
Let Cu be the component of u in Gu. We show that if k(∆) = 1 then |Cu| ≤ 2, and if k(∆) = 2
then |Cu| ≤ 3. Let u1, . . . , ur be the neighbors of u in Cu. The vertices u1, . . . , ur have to form a
clique otherwise there would be a claw u, v, ui, uj with center u for some non-adjacent ui and uj .
This means that we can add a path u1u2 . . . ur to the path Pu covering N(v) ∪ {v}. In particular,
this means that in case of k(∆) = 1 we have r ≤ 1, and in case of k(∆) = 2 we have r ≤ 2. If
k(∆) = 1 and r = 1 the vertex u1 cannot have further neighbor in Cu so |Cu| = 2. Similarly, if
k(∆) = 2 and r = 2 the vertices u1 and u2 cannot have further neighbors in Cu: if some w is
adjacent to say u1 then wu1u2Pu be a path of length ∆ + 4. If k(∆) = 2 and r = 1 the vertex u1

can have at most one further neighbor, but not more: if u2 and u3 are adjacent to u1 then they
are adjacent to each other too since otherwise we have a claw u1, u, u2, u3 with center u1, but then
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u2, u3, u1, Pu is again a path of length ∆+4. Finally, if k(∆) = 2 and r = 1, and the vertex u1 has
a further neighbor u2, then u2 cannot have further neighbors in Cu, so |Cu| ≤ 3. This proves that
if k(∆) = 1 then |Cu| ≤ 2, and if k(∆) = 2 then |Cu| ≤ 3. In particular, it shows that if k(∆) = 1
then G \ (N(v)∪{v}) is a disjoint union of K1, and if k(∆) = 2 then G \ (N(v)∪{v}) is a disjoint
union of K1 and K2.

Now let P be the path going through N(v) ∪ {v}. If θ is a zero of µ(G, x) with multiplicity at
least 2 then by Theorem D we have that θ is a zero of

µ(G \ P, x) = µ(K1, x)
α1µ(K2, x)

α2 = xα1(x2 − 1)α2 ,

where α2 = 0 if k(∆) = 1. If k(∆) = 1 then it means that θ = 0, and if k(∆) = 2 then it means
that θ ∈ {−1, 0, 1}. Since in a connected claw-free graph there is always a matching which avoids
at most 1 vertex we have that the multiplicity of 0 as a root is at most 1. This means that if
k(∆) = 1 then all zeros are simple, but then by Theorem 2.1 we know the complete list of these
graphs. In the list the only claw-free graphs were K1,K2, G2.

Note that in the cases ∆ = 4, 6, 8, all integers in the interval (−2
√
∆− 1, 2

√
∆− 1) must be

a zero of µ(G, x) since otherwise the number of distinct zeros is at most s(∆) − 2 ≤ ∆ + 1 (the
missing root cannot be 0 since if G contains a perfect matching then we are done by Theorem 4.1)
and so t(G) = ∆+ 1 and the graph is traceable, and we discussed this case already.

So we have the remaining cases for ∆ = 4, 6, 8:

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9),

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9)(x2 − 16),

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25).

Next we prove that the cases ∆ = 6, 8 are not possible and in case of ∆ = 4 there are 7 vertices
of degree 4, all other vertices are of degree 1.

Let ai be the number of vertices with degree i. Then ai = 0 if i > ∆ or i = 0 (G is connected),
and

∑
ai = n is the number of vertices;

∑
iai = 2m, two times the number of edges; and∑

i2ai =
∑

d(u)2 = m(m+ 1)− 2p(G, 2).
In particular, for ∆ = 4 we have

4∑
i=1

ai = 5 + 2α,
4∑

i=1

iai = 26 + 2α,
4∑

i=1

i2ai = 110 + 2α.

Then

0 ≥ −2(a2 + a3) =
4∑

i=1

(i− 1)(i− 4)ai =

(
4∑

i=1

i2ai

)
− 5

(
4∑

i=1

iai

)
+ 4

(
4∑

i=1

ai

)
= 0,

so a2 = a3 = 0 and a4 = 7, a1 = 2(α− 1).
For ∆ = 6 we have

6∑
i=1

ai = 7 + 2α,
6∑

i=1

iai = 58 + 2α,
6∑

i=1

i2ai = 382 + 2α.

Then

0 ≥
6∑

i=1

(i− 1)(i− 6)ai = 18,
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a contradiction.
For ∆ = 8 we have

8∑
i=1

ai = 9 + 2α,
8∑

i=1

iai = 108 + 2α,
8∑

i=1

i2ai = 1032 + 2α.

Then

0 ≥
8∑

i=1

(i− 1)(i− 8)ai = 132,

again contradiction.

Next we eliminate the case ∆ = 4. In this case we know that 7 vertices have degree 4, and the
rest of the vertices have degree 1. Clearly, two degree 1 vertices cannot be adjacent, because G is
connected. One vertex of degree 4 cannot be adjacent to two vertices of degree 1 since there would
be a claw in the graph. We can assume that there are indeed vertices of degree 1 since otherwise
all roots would be simple. In this case we know from Theorem 2.1 that the only candidate is
K7 \E(C3) ∪E(C4) which is not claw-free. If we delete all degree 1 vertices we get a graph G′ on
7 vertices where all degrees are 3 or 4. Both 3 and 4 should exist since we assumed the existence
of degree 1 vertices, and it cannot occur that all degrees are 3 since the number of edges would be
7 · 3/2 = 10.5. Clearly, G′ is still claw-free as it is an induced subgraph of G.

We show that G′ contains a Hamiltonian cycle. G′ is clearly connected since G is connected.
We show that G′ is also 2-connected. Indeed, if there were a cut-vertex u then by the minimal
degree at least 3 condition the only possibility is that G− u has 2 components of size 3 and every
vertex is connected to u, but then u has degree 6. Then again we use Dirac’s theorem, Lemma 3.4:
the graph contains a cycle C of length at least 6. If the length is 7 then we are done. If the length
of C is 6, then let the vertices of C be v1 . . . v6 and v7 be the remaining vertex. The degree of v7 is
at least 3, if it is adjacent to 2 neighboring vertices of C then we can extend C to a Hamiltonian
cycle. Since the degree of v7 is at least 3, the only case we have to consider is when v7 is adjacent
to vertices of even indices, or those of odd indices. By symmetry we can assume that v7 is adjacent
to v1, v3, v5. Next observe that if any 2 of v2, v4, v6 are adjacent then there is a Hamiltonian cycle:
if v2 and v6 are adjacent then v1v2v6v5v4v3v7v1 is a Hamiltonian cycle, the other two cases are
symmetric to this one. Because of the minimum degree at least 3 condition v2 has to be adjacent
to v5, v4 has to be adjacent to v1, and v6 has to be adjacent to v3. The obtained graph is actually
a K3,4 with classes v1, v3, v5 and v2, v4, v6, v7. This graph doesn’t contain a Hamiltonian cycle, but
it contains a lot of claws, for instance v1, v2, v4, v6. If we add one more edge which we can assume
to be v2v4 by symmetry then it will contain a Hamiltonian cycle: v1v7v3v6v5v4v2v1.

Now we can show a path consisting of 8 vertices in G: start at some pendant vertex, and after
jumping to its unique neighbor go through a Hamiltonian path of G′. Hence t(G) = 8 > 7 = s(4),
so G cannot be matching integral. Hence we eliminated the case ∆ = 4 too. We are done.

We close the paper with the following question:

Question. Is it true that there are finitely many matching integral 2-connected graphs?
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