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Abstract. In this paper we construct trees having only integer eigen-
values with arbitrarily large diameters. In fact, we prove that for every
set S of positive integers there exists a tree whose positive eigenvalues
are exactly the elements of S. If the set S is different from the set {1}
then the constructed tree will have diameter 2|S|.

1. Introduction

An integral tree is a tree for which the eigenvalues of its adjacency matrix
are all integers [9] . Many different classes of integral trees have been con-
structed in the past decades [2],[3],[4],[5],[10],[11],[12]. Most of these classes
contain infinitely many integral trees, but till now only examples of trees
of bounded diameters were known. The largest diameter of known integral
trees was 10. In this paper we construct integral trees of arbitrarily large
diameter. In fact, we prove the following much stronger theorem.

Theorem 1.1. For every set S of positive integers there exists a tree whose

positive eigenvalues are exactly the elements of S. If the set S is different

from the set {1} then the constructed tree will have diameter 2|S|.
Clearly, there is only one tree with set S of positive eigenvalues for S = {1},

the tree on two vertices with spectrum {−1, 1} (and its diameter is 1).
The structure of this paper is the following. In the next section we will

define a class of trees recursively. All trees belonging to this class will turn
out to be almost-integral, i. e., all of their eigenvalues are squareroots of
integers. We will find integral trees in this class of trees by special choice of
parameters introduced later.

2. Construction of trees

Definition 2.1. For given positive integers r1, . . . , rk we construct the trees
T1(r1), T2(r1, r2), . . . , Tk = Tk(r1, . . . , rk) recursively as follows. We will con-
sider the tree Ti as a bipartite graph with colorclasses Ai−1, Ai. The tree
T1(r1) = (A0, A1) consists of the classes of size |A0| = 1, |A1| = r1 (so it is a
star on r1 + 1 vertices). If the tree Ti(r1, . . . , ri) = (Ai−1, Ai) is defined then
let Ti+1(r1, . . . , ri+1) = (Ai, Ai+1) be defined as follows. We connect each
vertex of Ai with ri+1 new vertices of degree 1. Then for the resulting tree
the colorclass Ai+1 will have size |Ai+1| = ri+1|Ai|+ |Ai−1|, the colorclass Ai

does not change.
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One should not confuse these trees with the balanced trees. These trees
are very far from being balanced.
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Figure 1. Let Ai+1 = Ai−1∪Bi where each element of Ai has
exacly ri+1 neighbors of degree 1 in Bi.

To analyse the trees Tk(r1, . . . , rk) we will need the following definition.

Definition 2.2. Let us define the following sequence of expressions.

Q0(.) = 1

Q1(x1) = x1

and
Qj(x1, . . . , xj) = xjQj−1(x1, . . . , xj−1) + Qj−2(x1, . . . , xj−2)

for all 3 ≤ j ≤ k. We will also use the convention Q−1 = 0. We will call these
expression continuants. Sometimes if the x = (x1, . . . , xk) is well-understood
then we will simply write Qj instead of Qj(x1, . . . , xj).

Remark 2.3. The first few continuants are

Q2(x1, x2) = 1 + x1x2, Q3(x1, x2, x3) = x1 + x3 + x1x2x3

Q4(x1, x2, x3, x4) = 1 + x1x2 + x1x4 + x3x4 + x1x2x3x4

The expressions Qj(x1, . . . , xj) often show up in the study of some Euclidean
type algorithms. For instance,

xk +
1

xk−1 +
1

xk−2 +
1

. . . +
1

x1

=
Qk(x1, . . . , xk)

Qk−1(x1, . . . , xk−1)

For more details on continuants see [8].

Lemma 2.4. Let Tk(r1, . . . , rk) be the constructed tree with colorclasses (Ak−1, Ak).
Then |Ak−1| = Qk−1(r1, . . . , rk) and |Ak| = Qk(r1, . . . , rk).

Proof. This is a trivial induction. ¤

Lemma 2.5. If r1 ≥ 2 then the diameter of Tk(r1, . . . , rk) is 2k.

Proof. Note that each vertex is at distance at most k from the only element
v0 of the set A0. Thus the diameter is at most 2k. On the other hand, if we
go from v0 to two different leaves through two different elements of A1 which
are at distance k from v0 (so these are the elements of Ak\Ak−2) then this
two leaves must have distance 2k. ¤
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Remark 2.6. Note that Tj(1, r2, r3, . . . , rj) = Tj−1(r2 +1, r3, . . . , rj). Hence
all constructed trees different from the tree on two vertices have a represen-
tation Tk(r1, . . . , rk) in which r1 ≥ 2.

The next lemma will be the main tool to determine the spectrum of the
tree Tk(r1, . . . , rk). Before we state it we introduce the following notation.

Definition 2.7. Let Sp(G) denote the spectrum of the graph G. Let
NG(λi > 0) denote the number of positive eigenvalues of G and NG(λ = t)
denote the multiplicity of the eigenvalue t.

Lemma 2.8. Let G = (A,B,E) be a bipartite graph with λ 6= 0 eigenvalue

of multiplicity m. Let G′ be obtained from G by joining each element of

B with r new vertices of degree 1, so that the obtained graph has |A| +
(r + 1)|B| vertices. Then ±

√
λ2 + r are eigenvalues of G′ of multiplicity

m. Furthermore, the rest of the eigenvalues of the new graph are ±√
r with

multiplicity |B| − NG(λi > 0) and 0 with multiplicity |A| + (r − 1)|B| and

there is no other eigenvalue.

Proof. Since G and G′ are both bipartite graphs we only need to deal with
the non-negative eigenvalues. Let 0 < µ 6= √

r be an eigenvalue of the

graph G′ of multiplicity m. We prove that
√

µ2 − r is an eigenvalue of G of
multiplicity m. (Note that it means that 0 < µ <

√
r cannot occur since the

eigenvalues of a graph are real numbers.)
Let x be an eigenvector belonging to µ. We will construct an eigenvector

x′ to
√

µ2 − r in the graph G. Let vi ∈ B and its new neighbors wi1, . . . , wir.
Then

x(vi) = µx(wi1) = µx(wi2) = · · · = µx(wir).

Since µ 6= 0 we have x(wi1) = · · · = x(wir). Moreover, for each vi ∈ B and
uj ∈ A we have

µx(vi) =
∑

vi∼uk

x(uk) + rx(wi1)

and
µx(uj) =

∑

uj∼vl

x(vl).

Since x(vi) = µx(wi1) we can rewrite these equations as

(µ2 − r)x(wi1) =
∑

vi∼uk

x(uk)

and
µx(uj) =

∑

uj∼vl

µx(wl1).

In the second equation we can divide by µ since it is not 0. Hence it follows
that

√

µ2 − r(
√

µ2 − rx(wi1)) =
∑

vi∼uk

x(uk)

and
√

µ2 − rx(uj) =
∑

uj∼vl

(
√

µ2 − rx(wl1)).
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Thus the vector x′ which is equal to
√

µ2 − rx(wi1) on the vertices of B and
x(uj) on the elements of A is an eigenvector of the graph G with eigenvalue
√

µ2 − r. Clearly, this vector is not 0, otherwise x should have been 0. It also
implies that if the vectors x1, . . . , xh are independent eigenvectors belonging
to µ then the constructed eigenvectors x′

1, . . . , x
′
h are also independent. Note

that this construction can be reversed if
√

µ2 − r 6= 0 implying that for

µ 6= √
r the multiplicity of µ in G′ is the same as the multiplicity of

√

µ2 − r

in G.
We can easily determine the multiplicity of the eigenvalues 0 and

√
r as

follows:

e(G)+r|B| = e(G′) =
∑

µ>0,µ∈Sp(G′)

µ2 =
∑

λ>0,λ∈Sp(G)

(λ2 +r)+NG′(µ =
√

r)r =

e(G) + NG(λ > 0)r + NG′(µ =
√

r)r

Hence NG′(µ =
√

r) = |B| − NG(λ > 0). Finally the multiplicity of 0 as an
eigenvalue of G′ can be determined as follows:

NG′(µ = 0) = |A| + (r + 1)|B| − 2NG′(µ > 0) =

|A| + (r + 1)|B| − 2NG(λ > 0) − 2NG′(µ =
√

r) = |A| + (r + 1)|B| − 2|B|.
¤

Theorem 2.9. The set of different eigenvalues of the tree Tk(r1, r2, . . . , rk)
is the set

{±√
rk,±

√
rk + rk−1,±

√
rk + rk−1 + rk−2, . . . ,±

√
rk + · · · + r1, 0}.

Furthermore, the multiplicity of 0 is

Qk(r1, . . . , rk) − Qk−1(r1, . . . , rk−1)

and the multiplicity of the eigenvalues ±√
rk + rk−1 + · · · + rj are

Qj−1(r1, . . . , rj−1) − Qj−2(r1, . . . , rj−2)

where Qi’s are the continuants.

Proof. We will use the short notation Qj for Qj(r1, . . . , rj). We prove by
induction on k. The statement is true for k = 1. Assume that the statement
is true for n = k − 1. We need to prove it for n = k. By the induction
hypothesis the tree Tk−1(r1, . . . , rk−1) has spectrum

{±√
rk−1,±

√
rk−1 + rk−2, . . . ,±

√
rk−1 + · · · + r1, 0}.

Furthermore, the multiplicity of the eigenvalues ±√
rk−1 + · · · + rj are Qj−1−

Qj−2. Now let us apply Lemma 2.8 with G = Tk−1(r1, . . . , rk−1) and r = rk.
Then G′ = Tk(r1, . . . , rk) has spectrum

{±√
rk,±

√
rk + rk−1,±

√
rk + rk−1 + rk−2, . . . ,±

√
rk + · · · + r1, 0}.

Furthermore, the multiplicity of the eigenvalues ±√
rk + rk−1 + · · · + rj are

Qj−1 − Qj−2 for j ≤ k − 1. The multiplicity of
√

rk is

Qk−1 − ((Qk−2 −Qk−3) + (Qk−3 −Qk−4) + · · ·+ (Q0 −Q−1)) = Qk−1 −Qk−2.
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Finally, the multiplicity of 0 is

(rk − 1)Qk−1 + Qk−2 = Qk − Qk−1.

¤

Remark 2.10. Note that if r1 ≥ 2 then the tree Tk(r1, . . . , rk) has 2k + 1
different eigenvalues and diameter 2k. Since the number of different eigen-
values is at least the diameter plus one for any graph [7] these trees have the
largest possible diameter among graphs having restricted number of different
eigenvalues.

Theorem 1.1 For every set S of positive integers there exists a tree whose
positive eigenvalues are exactly the elements of S. If the set S is different
from the set {1} then the constructed tree will have diameter 2|S|.
Proof. Let S = {n1, n2, . . . , n|S|} where n1 < n2 < · · · < n|S|. Then apply
the previous theorem with

r|S| = n2
1, r|S|−1 = n2

2 − n2
1, . . . , r1 = n2

|S| − n2
|S|−1.

If the set is different from {1} then r1 ≥ 2 and in this case the diameter of
the tree is 2|S| by Lemma 2.5. ¤

Example : Let S = {1, 2, 4, 5} then r4 = 1, r3 = 3, r2 = 12, r1 = 9. The
resulting tree has 781 vertices and the spectrum is

{−5,−48,−2100,−1227, 0109, 1227, 2100, 48, 5}.
Here the exponents are the multiplicities of the eigenvalues.

Example : Let S = {1, 2, 3, 4, 5, 6} then r6 = 1, r5 = 3, r4 = 5, r3 = 7, r2 =
9, r1 = 11. The resulting tree has 27007 vertices and the spectrum is

{±6,±510,±489,±3611,±22944,±18021, 03655}
The diameter of this tree is 12.

Remark 2.11. Recently Andries E. Brouwer (private communication) found
a very elegant (and very short!) proof that T (n2

k−n2
k−1, n

2
k−1−n2

k−2, . . . , n
2
2−

n2
1, n

2
1) are integral trees. It is really worth reading this proof. This proof

is outlined on Brouwer’s homepage [1] or a bit more detailed version of this
proof can be found at [6].

Acknowledgment I am very very grateful to András Gács and Andries E.
Brouwer for numerous remarks and suggestions.
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