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Abstract. In this note we prove that the trees T (n2

k
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k−1
, n2
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) described in "Péter Csikvári: Integral trees of ar-

bitrarily large diameters" are integral. The short proof given here is due
to Andries E. Brouwer.

I also propose some open questions.

1. Introduction

In [2] we constructed integral trees of arbitrarily large diameters. In fact,
we defined a large class of trees and we determined the spectrum of each tree
belonging to this class. Then we selected the trees with spectrum consisting
of only integers. In this paper we describe Andries Brouwer’s ingenious
proof that these selected trees are indeed integral without determining the
spectrum.

The structure of this paper is the following. In the next section we define
the trees T (r1, . . . , rk) and we give those fundamental facts which we need
later. In Section 3. we prove the integrality of the trees T (n2

k − n2
k−1, n

2
k−1 −

n2
k−2, . . . , n

2
2 − n2

1, n
2
1).

2. The trees T (r1, r2, . . . , rk)

Definition 2.1. We will define the trees Tk = Tk(r1, . . . , rk) recursively
as follows. We will consider the tree Tk as a bipartite graph with col-
orclasses Ak−1, Ak. The tree T1(r1) = (A0, A1) consists of the classes of
size |A0| = 1, |A1| = r1 (so it is a star on r1 + 1 vertices). If the tree
Ti(r1, . . . , ri) = (Ai−1, Ai) is defined then let Ti+1(r1, . . . , ri+1) = (Ai, Ai+1)
be defined as follows. We connect each vertex of Ai with ri+1 new vertices
of degree 1. Then for the resulting tree the colorclass Ai+1 will have size
|Ai+1| = ri+1|Ai| + |Ai−1|, the colorclass Ai does not change. Note that
the only element of v0 ∈ A0 has a special role; when we consider the tree
Tk(r1, . . . , rk) as a rooted tree then we select v0 to be the root of the tree.

We need one more definition.

Definition 2.2. Let (T1, x) and (T2, y) be rooted trees with roots x and y,
respectively. Then the tree T1 ∼ T2 obtained from T1 ∪ T2 by joining the
vertices x and y. We obtain the tree T1 ∼ mT2 by taking T1 and m copies
of T2 and we join x to each copies of y.
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Figure 1. Let Ai+1 = Ai−1∪Bi where each element of Ai has
exacly ri+1 neighbors of degree 1 in Bi.

Lemma 2.3. We have the following relations for the constructed trees

Tk(r1, . . . , rk) = Tk−2(r3, r4, . . . rk) ∼ r1Tk−1(r2, r3, . . . , rk)

and

Tk−1(r1 + r2, r3, . . . , rk) = Tk−1(r2, r3, . . . , rk) ∼ r1Tk−2(r3, r4, . . . , rk).

Proof. Both statement are clear from the definition. ¤

3. Proof of the integrality

Definition 3.1. Let ϕG(z) be the characteristic polynomial of the adjacency
matrix of the graph G.

Let MG(z) be the matching polynomial of the graph G, i.e. ,

MG(z) = zn − m1(G)zn−2 + m2(G)zn−4 + · · · + (−1)[n/2]m[n/2]z
n−2[n/2]

where mr(G) is the number of r-matchings.

We use the following well-known and easy statement about the character-
istic polynomials of trees.

Lemma 3.2. For any tree T we have

ϕT (z) = MT (z).

Lemma 3.3. Let T = T1 ∼ T2 where the roots of T1 and T2 are x and y,

respectively. Furthermore let Tm = T1 ∼ mT2. Then

ϕT (z) = ϕT1
(z)ϕT2

(z) − ϕT1−x(z)ϕT2−y(z).

Furthermore,

ϕTm
(z) = ϕm

T2
(z)(ϕT1

(z)ϕT2
(z) − mϕT1−x(z)ϕT2−y(z)).

Proof. Let G be a graph and e = (x, y) ∈ E(G) then for the matching
polynomial we have the identities

M(G, z) = M(G − e, z) − M(G − {x, y}, z)

and
M(G1 ∪ G2, z) = M(G1, z)M(G2, z).

Thus the first statement of Lemma 3.3 follows from Lemma 3.2 and from
these identities.

The second statement is an easy induction on m. ¤
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Corollary 3.4. Let T = T1 ∼ T2 where the roots of T1 and T2 are x and

y, respectively. If the trees T1, T2, T1 ∼ mT2 are all integral then so the tree

T2 ∼ mT1.

Proof. Using Lemma 3.3 observe the symmetry between the characteristic
polynomials of T1 ∼ mT2 and T2 ∼ mT1. ¤

Now we are ready to prove that the integrality of the introduced trees.

Theorem 3.5. All eigenvalus of the trees

Tk(n
2
k − n2

k−1, n
2
k−1 − n2

k−2, . . . , n
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2
1)

are integers.

Proof. We prove by induction on k. Clearly, the trees T1(n
2) are integral

with spectrum {±n, 0n2
−1}. Assume that we already know the statement for

n = k − 1. We need to prove it for n = k. By induction we have that the
trees
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are integral. We also know that
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is integral by the second part of Lemma 2.3 and by the induction. Hence by
Corollary 3.4 and the first part of Lemma 2.3 we have that

T2 ∼ (n2
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is also integral. ¤

Remark 3.6. One can prove Theorem 2.9 of [2] in the very same way.

4. Open problems

Question 1.: Are there integral trees for arbitrary odd diamater?

Note that for a fixed value, say 9, one may wish to distinguish two ques-
tions:

Question 1.1. Is there an integral tree of diameter 9?

Question 1.2. Is there an infinite class of integral trees of diameter 9?

The constructed trees also provide some questions.

Question 2.1: Are the constructed trees are determined by their spectrum
among trees? (I think the answer is yes.)

Question 2.2: Are the constructed trees are determined by their spectrum
among graphs? (I think the answer is no for the most of the trees. For in-
stance, T (3, 1) has the same spectrum as the 6-cycle plus an isolated vertex.)
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The constructed trees are so large that makes me conjecture the following.

Conjecture 3.1 For a given set S of positive integers, the constructed tree
is the largest among the trees whose different positive eigenvalues are the
elements of S.

In fact, one can conjecture the same for almost-integral trees (trees having
eigenvalues only square roots of integers).

Conjecture 3.2 For a given set S of positive integers, the constructed tree
is the largest among the the trees whose different positive eigenvalues are
square roots of the elements of S.

Two weak heuristics supply these conjectures: from the set of eigenvalues
one can bound the diameter and the largest degree (and so the number of
vertices). For the constucted trees the diameters are as large as possible,
while the largest degrees are not far from the best possible.

Since we require for the constructed trees that r1 ≥ 2 there is a little gap
between the two largest eigenvalues. This motivates the following question.

Question 4. Is there a tree whose eigenvalues are square roots of integers
and the two largest eigenvalues are

√
n − 1 and

√
n for some integer n?
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