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A subset J of edges of a connected undirected graph G=(V,E) is called a join if |CNJ|<
[C|/2 for every circuit C of G. Answering a question of P. Solé and Th. Zaslavsky, we derive a
min-max formula for the maximum cardinality u of a join of G. Namely, p=(¢+|V[—1)/2 where
 denotes the minimum number of edges whose contraction leaves a factor-critical graph.

To study these parameters we introduce a new decomposition of G, interesting for its own
sake, whose building blocks are factor-critical graphs and matching-covered bipartite graphs. We
prove that the length of such a decomposition is always ¢ and show how an optimal join can
be constructed as the union of perfect matchings in the building blocks. The proof relies on the
Gallai-Edmonds structure theorem and gives rise to a polynomial time algorithm to construct the
optima in question.

1. Introduction

This paper is concerned with a problem related to ear-decompositions, match-
ings, and T-joins of an undirected graph. For a general account on the topic we
refer to the book of Lovdsz and Plummer [9]. The topic is also related to coding
theory. (See, for example, [11]).

Let G=(V,E) be a finite undirected graph. By an ear-decomposition of (& we
mean a sequence Gg,(G1,...,Gy = G of subgraphs of G where G consists of one
node and no edge, and each G; arises from G;_; by adding a path P, for which the
two {not-necessarily distinct) end-nodes belong to G;_1 while the inner nodes of P,
do not. The paths P; are called ears. Note that P; may consist of a single adge and
such an ear is called trivial. Sometimes we say the set  ={P(,P,,..., P;} of paths
is an ear-decomposition. The length of a path or ear is the number of its edges. An
ear is odd if its length is odd. An ear-decomposition is called odd if each of its ears
18 odd.

It is well-known that G has an ear-decomposition if and only if G is 2-edge-
connected. Actually, an ear-decomposition of any 2-edge-connected subgraph of G
can be continued to become an ear-decomposition of G. In particular, any circuit
of G can be chosen to be the first member of an ear-decomposition.

It is clear that the number of ears of an ear-decomposition is independent of
the decomposition and equals |E| - {V!+1.

There are some known results on ear-decompositions [9]. A basic one is due
to L. Lovdsz [7]. To formulate it we recall that a graph is called factor-critical (in
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short, eritical) if G —v has a perfect matching for every node v of . (Critical
graphs are sometimes called hypomatchable.)

Theorem L1 [7] A graph G is factor-critical if and only if G possesses an odd ear-
decontposition. Furthermore, for any edge e of a critical graph G there is an odd
ear-decomposition of (G such that the first ear uses e.

The second statement is not explicitely stated in Lovdsz’ paper but it follows
immediately from his proof. (It is not true, though, that any odd circuit can be
the first ear of an odd ear-decomposition.) One of our purposes is to answer the
question of how far a graph is from being critical. More precisely:

G W\SS& is the minimum number ¢ =(G) of even ears in an ear-decomposition
of G

‘We call an ear-decomposition of G optimal if the number of even ears is ().
Lovdsz’ theorem can be formulated this way: given a graph G, ¢(G)=0 if and only
if G is critical. Let us call a subset F of edges critical-making if contracting the
elements of F leaves a critical graph. We will prove (Theorem 3.2) that ¢ can be
interpreted as the minimum cardinality of a critical-making set. {One way is trivial:
pick up one edge from each even ear of an optimal ear-decomposition. Clearly this
m..waw_om. % edges is critical making. The other direction, as we shall see, is not difficult
elther.

There are some results in the literature, besides Lovdsz’ theorem, concerning
this second interpretation of . For example, Hetyei [6], [9: Theorem 5.4.1] proved
that ¢{G) =1 when G is matching-covered (that is, every edge of G belongs to
a perfect matching). Another result (see Theorem 2.2 below) asserts that for a
bipartite graph G @(G)=1 if and only if G is matching-covered.

We are going to establish a good characterization for general graphs having
»(G) =1 (Corollary 4.10). A more general purpose of the paper is to provide a
min-max expression for . In order to formulate it we need a another parameter of
(G that was introduced by P. Solé and T. Zaslavsky [15].

A subset J of edges of an undirected graph G =(V, E) is called a join if |CNJ| <
[C|/2 holds for every circuit C of G. P. Solé and T. Zaslavsky posed the problem
of studying the maximum cardinality x(G) of a join of . Originally, Solé and
Zaslavsky investigated p in a different context. They pointed out that u(G) is
equal to the so-called covering radius of the cycle code of G. The investigation of
covering radius was originated by MacWilliams and Sloane in their book [11: page
173, Research Problem (6.1)]. (We shall not discuss these concepts further here.
Interested readers should consult [15]). In Section 3 we will introduce some other
equivalent definitions of u(G).

We are going to prove the following relationship between ¢ and u.

Main Theorem. @(G)=2u{G)—|V|+1 for any 2-edge-connected graph G=(V,E).

This is a min-max theorem and, as usual, proving that max < min is rather
easy (Lemma 4.2). The proof of the other direction will be based on a theorem
asserting that a nron-critical graph < always has a certain subgraph H (called a
strong end) such that ¢(G) < o(G/H)+1 and u(G) > p(G/H) +|V(H)|/2. By
combining these inequalities and the induction hypothesis on G/H, a proof of the
main theorem will follow.
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Beside ear-decompositions, we will introduce another decomposition of G. An
end-decomposition, to be defined precisely in the next section, is one whose building
blocks are critical graphs and matching-covered bipartite graphs. We will prove that
the length of any end-decomposition is always y and show how an optimal join can
be constructed as the union of perfect matchings in the building blocks.

For U CV subset E(U/) denotes the set of edges of G with both end-nodes in
U. GU):=(U,E(U)) is called a subgraph induced by U. Given an edge ¢ =ry of
graph G = (V,E), by the contraction of ¢ we mean a graph G/e= (V',E') where
V! arises from V by identifying x and y into a new node z while E ={ab:abe
E{a,b}n{z,y} #08}U{az:az € E,a# y}U{az:ay € E,a # t}. Thereis a 1-1
correspondence between the edge-set B/ of G’ and E —e and sometimes we do not
distinguish between a subset of E' and the corresponding subset of E.

For a connected induced subgraph (U, E(U)) of G the contraction G/U denotes
a graph arising from G by contracting all the edges in E(U). Sometimes we refer
to G/U as a graph arising from G by shrinking U into one node. Any edge ¢ of
G /U corresponds to an edge e of G with at least one end-node in V—U. We will
not distinguish between ¢’ and e. In particular, for any matching M of G/U the
corresponding edge set in G forms a matching of G and we will denote this latter
matching with the same letter M.

The deletion G—U means the subgraph of G induced by VU (that is, G-U =
G(V -U)).

For a subset X of edges and weighting w: E—R we use the notation w(X):=

S{w(e):ee X).
2. Matchings and decompositions

Let us cite first some important notions and theorems from matching theory
(see [9]). For a subset X of nodes of a graph G let [(X):={veV —X: there is an
edge uv € E with u€ X} and let ¢(X) be the number of odd components in G~ X.

By a matching M we mean a subgraph of G with no two edges incident. A
perfect matching is one covering all the nodes of G. A graph G having a perfect
matching is called perfectly matchable (or, in short, matchable). We call a matching
M of a graph a near-perfect matching if M leaves precisely one node exposed.

Let us recall Tutte’s theorem: A graph has a perfect matching if and only
if the so-called Tutte condition holds: g(X) < |X| for each subset X of nodes.
The deficiency def(G) of a graph G is defined to be max{g(X)—|X|: X C V).
A set X with g{(X) —iX| = def(G) is called a barrier of G. Obviously, any
matching of G leaves at least de f(G) nodes exposed and the Berge-Tutte formula,
a slight generalization of Tutte’s theorem, asserts that any matching of maximum
cardinality leaves precisely def(G) nodes exposed. It follows that a graph is critical
if and only if the empty set is its unique barrier.

Let S be a barrier of G. Construct a bipartite graph G5 as follows. Delete the
even components of G — S, delete the edges induced by S, and contract each odd
component of G—S. We call Gg the bipartite graph associated with barrier 5.
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Suppose that G has no perfect matching. Let D(G) denote the set of nodes
exposed by at least one maximum matching and let A(G):=T(D(G)). The following
fundamental result is called the Gallai - Edmonds structure theorem.

Theorem 2.1. [1,4] A(G) is a barrier and D(G) is the union of odd components of
G — A(G). A(G) can be described as the unigue barrier X for which the union of
odd components of G—X is of minimum cardinality. Moreover, the odd components
in D{G) are critical, and for any non-empty subset X of A(G) the number of odd
components in D(G) having a neighbour in X Is larger than |X|. |

Note that Edmonds’ matching algorithm [1] computes not only a maximum
matching but the sets A(G) and D(G), as well. The core of Edmonds’ algorithm is
an augmenting step, we call it Edmonds-augmentation, that starts with a matching
and either finds a bigger matching or finds A(G) and D(G}. Note that, with careful
implementation, one Edmonds augmentation can be carried out in O(|E|) steps.

Let G be perfectly matchable. & is matching-covered if every edge belongs
to a perfect matching. G is elementary if the union of perfect matchings forms
a connected spanning subgraph of G. We have already introduced the concept
of critical graphs along with Lovész’ theorem. In our investigations elementary
bipartite graphs play an equally important role.

Let G = (S,7;E) be a (2-edge-connected) bipartite graph with a perfect
matching M. For s€ S let s’ € T denote the node for which ss’' € M. Construct a
directed graph D:=D(G;M) on node-set S by letting uwv (u,v € S) be an edge of
D if v'v is an edge of G.

Theorem 2.2. [9: Theorems 4.1.1 and 4.1.6) For a (2-edge-connected} bipartite
graph G=(8,T;E) with a perfect matching M the following are equivalent.
a. G is elementary,

b. @ is matching covered,
c. ! has an ear-decomposition such that only the first ear P is even (and,

furthermore, P can be chosen to contain any specified edge f of G),
d. |[(X)|>|X| For every proper subset ## X CS5,
e. For a perfect matching M the wp-distance of any two nodes is non-positive,
f. D(G; M) is strongly connected. |

In particular, if G consists of parallel edges between two nodes, then G is
elementary biparite.

We will also need some new concepts concerning matchings. For a perfectly
matchable graph H we call a barrier X a strong barrier if H — X consists of | X|
odd components and no even components, each odd component is critical, and the
bipartite graph Hy associated with X is elementary. We call a perfectly matchable
graph half-elementary if it has a strong barrier. The name is justified by the

following theorem.

Theorem 2.3. [9: Theorem 5.2.2] In an elementary graph G define two nodes 2,y
to be related if either z =y or G — {z,y} is not matchable. This relation is an
equivalence relation and each equivalence class is a strong barrier.

For a graph G=(V,E) let H=G(U) be a subgraph induced by U CV so that
H is half-elementary with strong barrier X, We call H a strong end of G attached
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at X if X is a cut-set of & separating I/ —X from V —U or if U=V (in which case
G itself is half-elementary). A matching M of G is said to fit a strong end G(U7) if
the restriction of M to U forms a perfect matching of G(U).

(Note that X need not be a barrier of G and G~U may not be connected. Also,
when we say that a strong end H of G is attached at X, this will automatically
mean that X is a strong barrier of H.)

For example, if G:= Gt is a doubled tree, that is, G arises from a tree T by
replacing each edge by two parallel edges, then there is a one-to-one correspondence
between the pendant edges of T and the strong ends of G'r.

If a graph G includes a strong end attached at X, then G —z cannot have a
perfect matching for x € X since in G—z, the set X —z violates the Tutte condition.
Hence critial graphs have no strong ends. The converse is also true:

Theorem 2.4. A pon-critical graph G=(V,E) has a strong end G(U) and a maxi-
mum matching M fitting G(U).

Hu.uoon If G has no perfect matching, define a subset §:= A(G). § is non-empty
since G is not critical. If G is perfectly matchable, define §:= A(G —v)+v where v
is an arbitrarily chosen node of G. By Theorem 2.1, in both cases S is a non-empty
barrier of &G such that G -~ S contains at least | S} critical components.

Let Gg := (S,T;E}1) be the bipartite graph associated with barrier S. By
Theorem 2.1 any maximum matching of ¢ matches the elements of § with distinct
odd components of G —S5. Hence there exists a matching Mg of Gg covering 5.
For every s€ 8 let ' denote the node for which ss’ € Mg.

Construct a directed graph D:=D(Gg; Mg) on node-set S5 by letting uv {u,v €
S) be an edge of D if u'v is an edge of Gg. By contracting each maximal strongly
connected component of D we obtain a digraph D which is acyclic. Therefore D
has a sink-node #. This sink-node Z corresponds to a set X :={zq,29...,2x}C S
that induces a strongly connected component of D so that no edge of D leaves X.
A.Zofw that by a depth-first search computation set X can be computed in O(|Eg|)
time.) Let X':={z},...,z}} and let Dy,..., Dy be the critical components of G—§
corresponding to the elements of X'.

Since X induces a strongly connected component of digraph I}, Theorem 2.2
@E&m {4) and (f}) implies that the subgraph of G5 induced by XUX' is elementary.
Since there is no edge in D leaving X, there is no edge in & connecting D1 U...UDy
and § — X. Hence I),...,D; are components of G~ X, as well, and therefore
XUDyU...UD; induces a strong end of G attached at X. [ |

Let H=G(U) be a strong end of a graph G=(V,E). By an end-reduction at
U we mean the contraction G/U. By an end-decomposition of Gy:=G we mean a
sequence (Gg,Up), (G1,U1),...,(Gg,Ur) where each U; induces a strong end of G,
each G;4; arises from G; by an end-reduction at U;, G, is critical and Uy, is empty.
The total number & of end-reductions is called the length of the end-decomposition.
We say that a sequence of matchings My, My,..., M, fits the end-decomposition if
m&mﬁ%% maximum matching of G; (i=0,...,k} and each M; (:=0,1,...,k—1) fits

i\Yi/.

For example, if G7 is a doubled tree, then an end-reduction corresponds to the

contraction of a pendant edge of T'. In this case the length of any end-decomposition



70 ANDRAS FRANK

is the same, namely, the number of edges of T'. It will turn out that, for every graph
G, the length of any end-decomposition of G is the same, namely, (G).
Repeated applications of Theorem 2.4 yields:

Corollary 2.5. Every graph has an end-decomposition (Go,Up),(G1,U1)s. .-,
(Gr,U) and a fitting sequence of matchings Mo, M1,..., M.

Let the restriction of M; to G;(U;) (i = H,.::_nl.S be denoted by N; and
N := NygU...UN;_1UMg. In the next section we will prove that N moHEm an
optimal join of G while an optimal mmn-amnoEU.o.mapos of G can be obtained by
appropriately composing optimal ear-decompositions om. n.uoacr:;Q_—n.lZlel
and Gg. Therefore, in order to construct an optimal join and an optimal ear-
decomposition of G we will have to be able to construct these sequences.

The proof of Theorem 2.4 shows how to compute the first members Gg =
G,Ug, My of these three sequences. It requires the use of at most _a\._ /2 .mQEonam.-
augmentations along with O(| Es|) additional work. By 8@@.@8&. mvmrnwsgm of ﬁ:m
step the complete sequences G;,U;, M; can be computed. A naive HBEmBmu.ESon
shows that at most k|V|/2<|V|?/2 Edmonds-augmentations plus O(| E|} additional
work are required. . :

We can, however, improve on this estimation by observing %w.ﬁ M;41 can be
computed from M; by using at most two Edmonds-augmentations (i=1,... .@. To
see this we assume, without loss of generality, that i=0. Let Mg be a maximum
matching of G=G, Ny the restriction of Mg to Up and let Mj := My — Np. Recall
that Ny is a perfect matching in Go(Up). Let up denote the node of G arisen by
the contraction of Ug. .

We claim that the cardinality of M] is at most one less than that of a maximum
matching of G1. Indeed, if there is a matching R of G1 with |R|= _b\m:w_ ﬂrmu.vw
leaving out the element of R incident to ug (if there is such) we obtain a matching
R’ of G, avoiding u; with |R/|=|M{|+1. But then R'UNp would be a matching
of G larger than My, a contradiction. By this claim a maximum matching .:\.a.u of
G and set A(G1) can be computed by using at most two Edmonds-augmentations
(one to increase M{, the second to find A(G1}). N

Summing up, the sequences Gy, U;, M; belonging to an mum-mmooavoezo.c.& G
can be computed by at most 5|V|/2 Edmonds-augmentations plus O(| E|) additional
steps. Hence the overall complexity of the algorithm can be bounded by O(|V||El).

3. Equivalent definitions for 4 and ¢

Let us provide another interpretation of u. A *1 mm.mm-ﬂmmmrabm w: E =
{1,—1} of G is called conservative if w(C) 2> 0 for every circuit C of G (that is,
there is no circuit of negative total weight). For a +1 weighting w let Ju denote
the set of negative edges. For a subset J of edges let wy be defined by wjy(e):=—1
if ee and wy(e):=+1ifec E—.1. o )

Clearly, for a conservative weighting w, Jy forms a join .Eu& rwbom. wG) is
equal to the maximum number of negative edges in a conservative weighting of .Q.
Conversely, if J is a join, then wy is a conservative weighting. We call a conservative
weighting (and also a join) realizing u optimal.
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Conservative +1 weightings are intimately related to T-joins. Let T be a subset
of V with even cardinality. A subset J of edges is called a T-join if a node v is
incident to an odd number of edges from J precisely when # belongs to T. Note
that any subset J of edges is a Tj-join where T is defined to be the subset of nodes
with an odd number of incident edges from J.

Since a subset J of edges is a join if and only if J is a minimum T-join, we
have yet another meaning of y: it is the largest cardinality of a minimum T-join
over all even subsets T of nodes.

There is an extensive literature on T-joins and T-cuts [2, 3, 8, 11, 12, 13]. Here
we mention only an easy but basic result, due to A.Sebé.

Theorem 3.1. [13] Let w be a conservative weighting of a graph G =(V,E) and T
2 subset of nodes of even cardinality. A T-join J is of minimum w-weight if and
only if w' is conservative where w'(e}:= —w(e) when e€.J and w’(e):=w(e) when
e€ E~J. In particular, if J is either a circuit of zero w-weight (case of [1'!=0) or a
path of minimum w-weight, connecting two specified nodes of G (case of |T|=2),
then the operation of changing the sign of each wi(e), e€ J, results in a conservative
weighting.

Proof. The symmetric difference C ® J of a circuit € and a T-join .J is a T-
join. Therefore if there is a circuit C of negative w'-weight, then w(J ® C) =
w(J)—w(JNC)+w(C—J)=w(J)+w'(C) <w(J), showing that J is not a minimum
w-weight T-join.

Conversely, suppose that there is no circuit of negative w'-weight. For a T-
join J', D:=J®J' is a union of edge-disjoint circuits. Hence w'(D)}>0 and thus
w(J)=w(J)—w(J = J) +w(J — J) =w(J)+w/'(D) > w(J), showing that J is a
minimum w-weight T-join. |

Specializing Theorem 1.2 to w =1 one obtains a result of Mei-gu Guan [5]
that serves as a bridge between minimum cardinality T-joins and conservative
weightings: a T-join J is of minimum cardinality if and only if there is no circuit
of negative tctal ws-weight., This means that a minimum cardinality T-join can be
determined if one is able to decide whether there is a negative circuit with respect
to a +1 weighting. The cther direction is true, as well. That is, if one wants to
decide whether a given 31 weighting w is conservative, one can do it by determining
the minimumn cardinality of a Tj-join where J is the set of negative edges.

We will need the following interpretation of ¢.

Theorem 3.2, For a 2-edge-connected graph G = (G) is equal to the minimum
cardinality of a critical-making edge-set.

Proof. Let us consider an ear-decomposition # of G with @ even ears. Choose
one edge from each even ear. By contracting these ¢ edges P transforms into an
odd ear-decomposition of the contracted graph G’. By Theorem 1.1 G' is critical,
demeonstrating the existence of a critical-making set of ¢ elements.

Conversely, assume that there is a critical making set of k elements. In order
to show that (@) <k we use induction on k. The inequality is true for k=0 by
Theorem 1.1. Let e =uv be one of the £ contracted edges and let G’ denote the
graph obtained from by contracting e. (The loop arising from e is left cut.) For
every edge z # ¢ of G we let 2’ denote the corresponding edge of G'. Denote by
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ve the contracted node. Then G’ can be made critical by contracting k—1 edges
and hence, by induction, G' has an ear-decomposition #' ={P{,P},..., P/} using
at most k —1 even ears.

Let P} be the first ear in &' containing an edge f' incident to ve. f' corresponds
to an edge f of G that is incident to u or v, say to u. Let ﬂ. be the first ear in P’

ﬁ.mw contains an edge of G corresponding to an edge of G incident to v. Clearly
j > h.

7= For P € ' —{P}} let F; denote the set of edges of G corresponding to the
edges of P/. For ﬂ let P; denote the union of {e} and the set of edges corresponding
to the edges of _uu‘. . It is easily seen that # :={Pj,..., P} is an ear-decomposition
of G. Furthermore, P contains at most one more even ear than /' (namely, if ﬂ
is odd, then P; is even). Therefore ¢(G)<@(G')+1=F, as required. (]

Remark. Originally, we defined ¢ only for 2-edge-connected graphs. By this theo-
rem the definition of ¢(G) can be extended for every connected graph G. Namely,
let (G} be defined as the minimum cardinality of a critical making edge-set. This
is clearly the same as the minimum number of even ears of an ear-decomposition of
G’ where G arises from G by replacing each cut-edge e by two parallel edges ¢’ and
¢’. Since in any ear-decomposition of G’ the circuit formed by ¢’ and ¢” must ap-
pear as an even ear we see that ¢(G) is equal to the number of cut-edges of GG plus
5. (G;) where the sum is taken over the maximal 2-edge-connected subgraphs G;
of G.
The following statement will be used later.

Lemma 3.3. For any edge f of a 2-edge-connected graph G there is an optimal
ear-decomposition of G such that the first ear uses f.

Proof. By Theorem 1.1 the lemma is true for critical graphs. Assume that G is not
critical, that is, (G) > 1. Let us consider an ear-decomposition of G containing
@(G) even ears. Choose an edge e from one of these even ears that is distinct from
f. Let G’ denote the graph obtained from G by contracting e. By the preceding
theorem 9(G') =¢(G)—1. By induction G’ has an optimal ear-decomposition such
that the first ear uses f. By the second part of the proof of the preceding theorem
this ear-decomposition defines an optimal ear-decomposition of G. ]

Remark. It is not true that for every edge f there is an optimal ear-decomposition
that starts with an even ear using f. Indeed, take G to be K4 minus an edge and let
f be the edge of G connecting the two nodes of degree three. It can be proved (but
we do not need it here) that for a given edge f there is an opimal ear-decomposition
in which the first ear is even and uses f if and only if (@) > @(G/f)-

4. Joins and ears

The purpose of this section is to prove the main theorem formulated in the
Introduction. Along the way we prove some other results concerning the behaviour
of these parameters in an end-decomposition of G.
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Lemma 4.1. Let G = (V,E) be a graph obtained from G' = (V',E") by adding an
ear P of length p. Then u(G") > u(G) - |p/2].

Proof. Let u and v be the two (not necessarily distinct) end-nodes of P. Let w
be an optimal +1 weighting of G. Let p~ (p*) denote the number of negative
(positive) edges of P and let w denote the restriction of w to E'. First suppose
that p~ <p*. Then p~ < |p/2] and we have u(G') 2 p(G) ~p~ 2 u(G) — p/2]
as required. Second, suppose that p~ > p*t, that is, w(P) < 0. Then, since w is
conservative, every path in G’ connecting v and v has w'-weight at least ~w(FP), a
positive number. Theorem 3.1 shows that interchanging the sign of w' along a path
of minimum w’-weight provides a conservative weighting w” of ' and the number
of edges with negative uw/’-weight is at least p(G)—p™ — w{P). Therefore u(G') >

WGy —p~ —w(P)=p(G) —pT > 1(G) — |p/2| as required. 1
Lemma 4.2.
(4.1} P(G) = 2u(G) — VI + 1.

Proof. By induction on the number of ears (=|E|—|V|+1). Let P be the last ear of
an ear-decomposition of G with (G) even ears. Let ¢ be 1if P is odd and 0 if P is
even. Using Lemma 4.1 and the induction hypothesis we have ¢(G)=p(G)+1-¢>
2(C") — V'] + 1— e+ 12 2(u(G) — |p/2)) ~ V' —€ +2=24(G) ~ (= 1+ V') +1=
2u(G)-VI+ 1. 1

The next theorem determines @ and p for critical graphs and for half-
elementary graphs.

Theorem 4.3. (a) For a critical graph G = (V,E) @(G) =0 and any near-perfect
matching of G is a maximum join, that is, u(G) =(|V]-1)/2. (b} Let H be a half-
elementary graph with strong barrier X and f an edge connecting X and V(H)-X.
Then any perfect matching of H is a maximum join, that is, p(H) = [V(H)|/2.
Furthermore, @(H)=1 and there is an optimal ear-decomposition starting with an
even ear that contains f.

Proof. (a) If G is critical, then u(G) =0 and by Lemma 42 p(GY < ([Vi-1)/2.
Moreover a near-perfect matching M of G is a join of (JV1—1)/2 elements and hence
w(GY=(|V|-1)/2, that is, M is an optimal join.

(b) Let X be a strong barrier of H. Since H has an even number of nodes,
w(H) > 1. To see that equality actually holds we can suppose that X induces
no edge since deleting these edges leaves H half-elementary. We use induction
on the number of nodes. If every component of H — X is a singleton, then H is
elementary bipartite and, by Theorem 2.2, w(H)=1. Moreover, the first ear in an
ear-decomposition of H is even and uses f.

Now let K be a component of H — X with 1K|>1. Let H' denote the graph
obtained from H by shrinking K into a new node vg. H' is half-elementary as X
is a strong barrier for this graph. By induction, H' has an ear-decomposition &’ so
that the first ear is even while all the other ears are odd. Let P be the first ear in
' that contains vx. Suppose that z1v; and Zavg are edges in H corresponding to
the two edges of P incident to vx (1,22 € X and v1,vp € K). If vy =v9, then by
inserting Py, into P’ right after P we obtain an ear-decomposition of H in which the
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first ear is even and uses f while all the other ears are odd. In particular, p(H)=
1 follows.

Suppose now that vy #ve. Introduce a new edge e=v1v2 in K. By Theorem
1.1 there is an odd ear-decomposition Py of K+e so that the first ear Py contains
e. Py is an odd circuit and hence Py—e is an even path in K connecting v; and va.
Define P’ by replacing the subpath (z1vg,vxx2) by (191, Py—e,vaza). Obvicusly
the length of P’ has the same parity as that of P. Modify #' by replacing first P
by P’ and, then, by inserting Py — { P} right after P’. This way we obtain an
ear-decomposition of H in which the first ear is even and uses f while all the other
ears are odd. In particular, ¢(H)=1 follows.

By Lemma 4.2 pu(H) < |V(H)|/2. Hence we have equality as any perfect
matching is a join of cardinality [V (H)|/2. 1

Lemma 4.4. Let H=(U,E(U)) be a strong end of G attached at X and let G’ :=
G/U=(V',E'). Then

(4.2) u(G) > p(G") + |V (H)|/2 and
(4.3) (G) < p(G) +1.

Proof. Let u' denote the node of & arisen by shrinking ¥/ into one node. Let J/ be
an optimal join of ' and let J denote the subset of edges of G corresponding to J'.
Let N be any perfect matching of H. We claim that JUN is a join of . Indeed,
let C be any circuit of &. If C' is disjoint from X then it is either a circuit of H or
corresponds to a circuit of G avoiding «’. In both cases we have wy n(c)=20as N
is a join of H and J' is a join of G’. If C intersects X, then C partitions into edge-
disjoint paths so that the ends of these paths belong to X while the inner nodes
(if any) do not. Therefore the 1wy n-weight of each such path is non-negative and
thus w7 n(cy = 0- Hence JUN is a join of G of cardinality u(G')+|V(H)|/2 and
(4.2) follows.

By Theorem 4.3 H has an ear-decomposition #; using one even ear. By Lemma
3.3 G’ has an optimal ear-decomposition £’ such that the first ear contains u'. Any
ear P’ in # for which one or both end-nodes are u' corresponds to a path P” of
G having one or both end-nodes in X, respectively. Let #” be obtained from #
by replacing all such P’ by P”. Then P :=(#;,P") is an ear-decomposition of G
using ©(G’') +1 even ears. Therefore p(G)<@(G')+1. 1

We are now in the position to prove the main theorem:

Theorem 4.5. For every connected graph G=(V,E)
(4.4) 9(G) = 2u(G) - V| + 1.

Proof. If G contains a cut-edge ¢, then for G’ ;= G/e = (V',E’) one has ¢(G') =
W(GY—1,u(G") = u(G) — 1,|V!|=|V| - 1. Hence (4.4) follows by induction. Hence
we may assume that G is 2-edge-connected.

If G is critical, then (G} =0 and (4.4) is equivalent to p(G)=(|V|-1)/2. This
has already been proved in Theorem 4.3.
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If G is not critical, then, by Theorem 2.2, G has a strong end H = (U, E(U)).
Let &' = G/U. By induction we assume that (4.4) holds for G’, that is, ¢(G') =
(G - V'I+1.

Combining this relation with (4.1), (4.3}, and (4.2) we get

(45) 9(G) S (G +1=2u(G") - {V'| +2 < 2u(G) — (IV(H)} + V') +2
= 2p(G) ~ V| +1 < 9(G).

Hence equality holds throughout from which (4.4) follows. |

For 2-edge-connected graphs there is an equivalent formulation of the main
theorem.

Theorem 4.5'. The maximum number of odd ears in an ear-decomposition of a
2-edge-connected graph G = (V,E) is equal to the minimum of w(E) over all
conservative +1 weightings w of G.

Proof. The maximum in question is |E}—{V|+1—@{G) since the total number of
ears in any ear-decomposition is }E}—|V|+1. On the other hand the minimum of
w(E) can be expressed as |E| —2u(G). By (4.4} the theorem follows. |

Our next result descibes how pz and ¢ behave under the operation of end-
reduction.

Theorem 4.6. Let H = (U, E(U)) be a strong end of G attached at X and f an
arbitrary edge of H connecting X and U —X. Let G' := G/U = (V',E’) be the
end-reduction of G at U. Then

(a) ¢(G)=w{G")+1. There is an optimal ear-decomposition of G that starts
with an optimal ear-decomposition of H. There is an optimal critical-making edge-
set of G that consists of an optimal critcal-making edge-set of G' plus edge f.

(b) u(G)=u(G")+|U|/2 and there is 8 maximum foin of G which is the union
of a maximum join of G' and a perfect matching of H. Every maximum join of G
arises as the union of 2 maximum join of H and a maximum join of G'.

Proof. (a) By (4.5) we have equality in (4.3). Hence the ear-decomposition £ given
in the proof of Lemma 4.4 has () even ears. This ear-decomposition may start
with any optimal ear-decomposition of H#. By Theorem 4.3 (b) H has an optimal
ear-decomposition in which the first ear is even and uses a specified edge f. By
Theorem 3.2 it follows that an optimal critical-making edge-set can be obtained
from an optimal ear-decomposition by chosing an arbitrary edge from each even
ear. This implies the last statement of part (a).

(b) By (4.5) we have equality in (4.3) and in (4.2). Therefore JUN constructed
in the proof of Lemma 4.4 is a maximum join of G.

Let now J be an arbitrary maximum join of G and P an optimal ear-
decomposition of G that starts with an (optimal) ear-decomposition of H. By
the estimation in the proof of Lemma 4.2, |JNP|=||P|/2] for each P€P. Hence
Ji is an optimal join of Gy, where Gy is the union of the first k ears of P and Ji
is the restriction of J to Gy. In particular, JNH is a maximum join of H. Hence
there is a path P of H connecting x and y for which |PNJ|>|P—Jj for every pair
,y of nodes of H. Therefore J':=.J — H is a join of G'. ]
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In Corollary 2.5 we proved that a graph G has an end-decomposition. The
next theorem tells ns how any end-decomposition of G determines an optimal join
and an optimal critical making edge-set.

Theorem 4.7. Let (Go,Uo),(G1,U1),...,(Gx,Ux) be an arbitrary end-decomposition
of a 2-edge-connected graph G =(V, E). Then the length k of the end-decomposition
depends only on G aud equals ¢(G}).

(a) Let f; be an arbitrary edge of G; (i =0,...,k - 1) connecting X; and
V(G;) — X; (where X; denotes the strong barrier belonging to G;(U3)). Then
{fo,f1,--.,fu—1} is an optimal critical-making edge-set of G.

‘(b) Let N; be a any perfect matching of G;(U;) (i=0,...,k—1) and My, any
near-perfect matching of G. Then J :=NgU...UNy_UM, is an optimal join of G.

Proof. Repeated applications of Theorem 4.6 implies the result. [ §

Algorithmic remarks. In Section 2 we described how to compute an end-
decomposition of G along with a fitting sequence of matchings in O(|V||EY) steps.
By the preceding theorem an optimal join and an optimal critical-making set can
be immediately constructed. Since we proved that in {4.3) always equality holds
the ear-decomposition of G described in the proof of Lemma 4.4b is an optimal
ear-decomposition of G. In the next section we will see that for bipartite graphs a
significantly simpler approach is available.

Theorem 4.5 provides a characterization for graphs with ¢(G)=1. For this
special case we have a more structured characterization. The theorems above imply
that if p(G)>1, then there is an optimal ear-decomposition starting with an even
cireuit. If ¢(G) =1, then the first ear is even and the other ears are odd. Obviously,
such a graph has a perfect matching. Therefore in any characterization for graphs
with ©{G)=1 we may assume that G has a perfect matching.

Corollary 4.8. Let M be a perfect matching of a graph G =(V,E). The following
are equivalent:

(a) p(G)=1,

(b) M is a maximum join,

(c) the wys-distance of any two nodes is non-positive.

(d) There are no two disjoint non-empty subsets A, B of nodes so that G—(AUB)
contains JA| + |B| odd componeats (i.e., AUB is a barrier) among which |A]
components are connected only to A and the other | B| components are connected
only to B.

Proof. (a)—(b). By (4.1) we have u(G)=|Vi/2, that is, M is a maximum join,

{b)—(c). Immediate from Theorem 3.1.

(c)—(d). I there were two subsets A, B with the given properties, then the
wps-distance of any node of A and any node of B would be positive.

(d)—(a). G has a perfect matching, so |V(G)| is even and hence ¢(G)>1. By
Theorem 4.7 it suffices to show that there is an end-decomposition of G of length
1. By Theorem 2.4 G has a strong end H=(U, E(U)). Assume that H is attached
at its strong barrier A. Let G':=G/U=(V',E’') and let ' denote the contracted
node. We are going to show that G is critical,

Indeed, if G’ is not critical, then B:= A(G’) is non-empty. Since the restriction
M’ of M to G is a near-perfect matching of G, M’ is a maximum matching of G’
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avoiding /. By Theorem 2.1 we see that u/ ¢ B, that is A and B are disjoint and
satisfy the properties in (d), a contradiction. | |

Remark. (For readers interested in coding theory.) From (4.1} it follows that the
covering radius cr{G)(= u(G)) of the cycle space of a connected graph G =(V,E} is
always at least |n/2| where n=|V|. For odd n er(G) is precisely [n/2] if and only
if G is critical. For even n Corollary 4.8 describes the graphs for which er(G) =
n/2. The next result may also have some interest for coding theorists.

OE.A...E-J. 4.9. If G=(V,E) is a connected subgraph of G' ={V,E’), then u(G) >
u(G").
Proof. Immediate from Theorem 4.5. |

5. Bipartite graphs

In this section we show that for a bipartite graph & value p(G) is related to
another interesting parameter of G. We need some further notions. In a directed
graph the set of edges entering a subset X of nodes called a directed cut if no edge
leaves X. A digraph is strongly connected if there is a directed path from every
node to any other. It is well-known that a digraph is strongly-connected if and
only if it does not contain directed cuts. Another easy but important result claims
that a directed graph is strongly connected if and only if it has a so-called directed
ear-decomposition where each ear is a directed path.

A fundamental theorem of Lucchesi and Younger concerning directed cuts is
as follows.

Theorem 5.1. [10] In a digraph the maximum number of disjoint directed cuts is
equal to the minimum number of edges covering all the directed cuts.

(A set F of edges is said to cover a directed cut C if CNF#0.) It is easy to
see that the minimum can be interpreted as the minimurm number of edges whose
contraction leaves a strongly connected digraph.

For a graph G let ¢{X) denote the number of components of G —X. Let G=
(A, B;E) be a 2-edge-connected bipartite graph and let G’ denote a directed graph
obtained from G by orienting each edge from A to B. ,

Theorem 5.2. [3] The minimum number o =g () of edges entering A in a strongly
connected orientation of G is equal to maxy,c{A;) where the maximum is taken
over gll partitions {A;} of A. ]

We call a strongly-connected orientation of G optimal if the number of edges
entering A is minimum. Obviously a set F of edges entering A in a strongly-
connected orientation of G corresponds to a set of edges in G’ covering all directed
cuts of G'. Furthermore any partition {A;} of A determines 3 c(A;} disjoint
directed cuts. Therefore 6{G) can be viewed as the minimum number of edges
covering all directed cuts of G’ and Theorem 5.2 can be considered as a refinement
of the Lucchesi-Younger theorem for directed bipartite graphs.

We need the following version:
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Thegrem 5.2°. Let F be an edge-set of minimum cardipality (¢(G)) entering A in
a strongly connected orientation of G. Then there is a partition {4,,..., Ay} of
A such that for each component K of G~ A; there is exactly one edge from F
connecting A; and K {i=1,... k). ]

The main purpose of this section is to establish the following:

Theorem 5.3. For a bipartite graph G = (A,B;E) o(G) = u(G), that is, the
maximum cardinality of a join of G is equal to the minimum number of edges
entering A in a strongly connected orientation of G.

For the proof we need the following basic result of P.Seymour.

Theorem 5.4. [13] A subset F of edges of a bipartite graph G is a join if and only
if there are |F| disjoint cuts of G such that each contains one edge from F. |

In {3] we provided a refinement of Seymour’s theorem.

Theorem 5.5. A subset F of edges of & bipartite graph G = (A, B;E) is a join if
and only if there is a partition # of A such that for any Pe® each component of
(G — P has at most one entering edge of F. [ |

Proof of Theorem 5.3. Let F be a set defined in Theorem 5.2". Theorems 5.2 and
5.5 show that F is a join and hence p(G) > o(G).

To see the reverse inequality let F be a maximum join. Let # be a partition
guaranteed in Theorem 5.5. Then p{G)=|F| <Y (c{X): X € P) <o(G). Here the
second inequality follows from (the trivial part of) Theorem 5.2. 1

Next, we exhibit a further result concerning . As an application of the
Lucchesi- Younger theorem D. Younger proved that the maximum number of disjoint
cuts in an (undirected) bipartite graph G is the maximum number of disjoint
directed cuts in G?. This result and its proof were communicated to me by W.
Pulleyblank and, as far as I know, it has never been published. Younger’s proof
consists of showing how a family of k£ disjoint (undirected) cuts of G can be
transformed into a family of k& disjoint directed cuts of G'.

In the present context Younger’s theorem can be stated as follows.

Theorem 5.8. In a bipartite graph G the maximum number M of disjoint cuts is
o{G).

Proof. Theorem 5.2 shows that there are o(G) disjoint cuts in G, that is, M >
a(Z). To see the other direction let us consider a family of M disjoint cuts. Let F'
be a set of edges containing one edge from each of the given M cuts. By Theorem
5.4 F is a join. By Theorem 5.3 we have M =|F|<u(G)=0(G), as required. 11

Finally we show a relationship between optimal ear-decompositions and opti-
mal strongly-connected orientations of a bipartite graph G.

On one hand, every optimal ear-decomposition determines an optimal strongly-
connected orientation as follows. If P is an ear in the decomposition, then orient its
edges s0 as to form a directed path that, in addition, goes from A to B whenever P
is odd. This way we get a strongly-connected orientation of & in which the number
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o(A) of edges entering A is (|E|—7(G))/2 where 7(G) denotes the number of odd
ears. Since m(G)+@(G)=|E| -V (G)|+1, Theorem 4.7 shows that ¢(G) < g(A)=
(|E| - m(G))/2=(p{G) +|V(G)}I —1)/2=p(G) = 0(G),that is the given orientation
is optimal. .

On the other hand, let us be given an optimal strongly connected orientation
of @ (with (G) edges entering A). Then it has a directed ear-decomposition. We
claim that this decomposition, when the ears are considered undirected, is optimal.
Tndeed, let ¢’ and 7' denote the number of even and odd ears, respectively. Then
we have 0(G)=o(4) > (|E|-7')/2= (¢ +|V(G)| - 1)/2 2 (p(G) + |V(G)| - 1)/2=
u(G) =0(G), from which equality follows everywhere. In particular, ' =w(G), as
required.

6. Concluding remarks and open problems

In this paper we analysed some properties of parmeters ¢ and p. Parameter
¢ has various interpretations. By definition ¢ is the minimum number of even
ears in an ear-decomposition of G. It is equal to the minimum cardinality of a
critical-making set of edges. Furthermore, y is the number of end-reductions in
any end-decomposition of G.

Similarly, i+ has various meanings. By definition g is the maximum cardinalicy
of a join. Furthermore, g is the maximum number of negative edges in a conservative
+1 weighting, g is the maximum cardinality of a minimum T-join where the
maximum is taken over all even T, and s is the covering radius of the cycle code
of a graph.

We derived a min-max formula concerning sz and o, namely u={(|V!|—1+¢)/2.
Also, we analysed the relationship of these parameters to end-decompositions of G.
Concerning these parameters several questions arise. Given a weight-function w:
E— R, what is the maximum weight of a join? What is the minimum weight of
a critical-making set? When w is a 0—1 function these: questions specialize to the
following, Given a subset F' of edges, find a join J C F of maximum cardinality.
When does there exist a critical-making subset of F'? If there is one, find the
smallest. How can all optimal critical-making sets be described? And the same
question for maximum joins.

Another type of question arises if we vary the notion of a join. For example, D.
Welsh asked if there is a polynomial time algorithm for the maximum cardinality
u< of a strong join. A strong join J of a graph G is a subset of edges so that
|C'NJ| <|C|/2 holds for every circuit C of G. Recently A. Fraenkel and M. Loebl
[17] proved that this problem is NP-complete even for planar bipartite graphs. On
the other hand in [18] we proved that 4= is at most |(|V]|—1)/2] for every 2-edge-
connected graph and for bipartite graphs we described a polynomial-time algorithm
to decide if == [(|V|-1)/2].

It is natural to consider analogous problems for directed graphs D= (V,E).
Namely, find a conservative +1 weighting of D so that the number of negative edges
is maximum, or, equivalently, find a maximum join of D. (A weighting is called
conservative if there is no directed circuit of negative total weight. A subset .J of
edges is a join if |CNJ|<|C|/2 for every directed circuit.) Note that the problem
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of deciding whether a specified +1 weighting is conservative or not is much easier
in a directed graph than in an undirected graph. In this light the following result
is slightly surprising.

Theorem 6.1. The maximum join problem for digraphs is NP-complete.

Proof. We reduce the problem to the undirected max-cut problem that is known
to be NP-complete. The reduction runs as follows.

From network flow theory' it is well-known that an edge-weighting w of a
digraph is conservative if and only if there is a node-function 7: ¥ — R such that
w(uv) > m(v) — w(u) for every edge uv of D. Therefore an optimal £1 weighting
can be cbtained as follows. Take a partition {V1,Va,...,V;} of V into non-empty
subsets and call an edge uv a forward edge if u € V; and v €V with { < 4. Define
w(uv) to be —1 on forward edges and w(uv):=1 otherwise. Therefore the problem
is equivalent to (*) finding a partition {Vj,V2,...,V;} of V so that the number of
forward edges is maximum. Let Z(D)} denote this maximum.

Now let G=(V, E) be an undirected graph and let x(G) denote the maximum
cardinality of a cut of G. Construct a digraph D'=(V, 4) from & by raplacing each
edge uv of G by two oppositely directed edges uv and vu. Clearly, (D) > &(G).
We claim that G(D) < &(G). Indeed, let {V3,V3,...,V}} (k>2) be a partition of V
with [J(D)forward edges of £2. Then the bipartition (Vi UVaU...UVp41U...,VoU
VaU...UVo;U...) of G determines a cut of G with Z(D) edges. Hence (D) =x(G)
showing that problem (*) is not easier than the NP-complete undirected max-cut
problem. ’ |

Note added in proof. In a recent paper entitled “On Lovisz’ cathedral theorem”,
Z. Szigeti solved the problem of minimum weight critical-making sets by proving
that the family of edge-sets F, whose contraction decreases p by |F|, forms the
independent sets of a matroid.

%
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