R .. ted from JOURNAL OF ComBmvATORIAL THEORY, Seties B Vol. 65, No. I, September 1995
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Minimal Edge-Coverings of Pairs of Sets
ANDRAS FRANK* AND TIBOR JORDANT

Department of Computer Science, Edtvés University,
Muzeum krt, 6-8, Budapest, Hungary, H-1088

Received August 27, 1993

We derive a new min—max formula for the minimum number of new edges to be
added to a given directed graph to make it k-node-connected. This gives rise to a
polynomial time algorithm (via the ellipsoid method) to compute the augmenting
edge set of minimum cardinality. (Such an algorithm or formula was previously
known only for k=1). Qur main result is actvaily a new min-max thecrem
concerning “bisupermodular” functions on pairs of sets. This implies the node-
connectivity augmentation theorem mentioned above as well as a generalization of
an earlier result of the first author on the minimum number of new directed edges
whose addition makes a digraph %-edge-connected, As further special cases of the
main theorem, we derive an extension of (Lubiw’s extension of) Gydri’s theorem on
intervals, Mader's theorem on splitting off edges in directed graphs, and Edmonds’
theorem on matroid partitions.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Given a directed graph D=(V, 4), add a minimum number of new
edges to D to obtain a digraph with some specified connectivity properties.
This is the general form of the connectivity augmentation problem we are
considering in the present paper. Depending on the connectivity property
required for the augmented graphs, which might be called the target
connectivity, one may formulate various augmentation preblems.

Eswaran and Tarjan [4] proved a min-max theorem (and provided a
linear time algorithm) for the minimum number of new edges whose
addition to D leaves a strongly connected digraph.

A natural generalization, the edge-connectivity augmentation problem,
consists of finding a minimum number of new edges whose addition to D
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leaves a k-edge-connected digraph. A min-max formula for this minimum
and a polynomial time algorithm was described by Frank [5].

Another natural generalization, the node connectivity augmentation
problem, consists of finding a minimum number of new edges whose addi-
tion to D leaves a k-node-connected digraph. This problem was previously
open even in the special case &k =2. One of our main purposes is to solve
the node-connectivity augmentation problem for arbitrary k. We prove a
min-max formula for the minimum in question and describe a polynomial
time algorithm to compute the minimum augmentation. (The algorithm
makes use of the formula, rather than proving it, and invokes the ellipsoid
method. )

The solution method in [5] to the edge-connectivity augmentation
problem heavily uses submodular functions. This naturally gives rise to the
idea of trying to apply some general frameworks concerning sub-and super-
modular functions. In the past two decades a large number of such models
have been developed such as polymatroids, submodular flows, lattice
polyhedra, linking systems, polymatroidal flows, independent flows, kernel
systems, and A-matroids. A general account on these models and their
relationship can be found in a paper of Schrijver [22]. There is a single
most important feature of these models which is in common: each of
thetn is described by a totally dual integral (TDI) linear system [3]. This
implies, loosely speaking, that the corresponding primal and dual linear
programming problems have integer-valued optima for any integer-valued
primal cost function.

This central property of TDI-ness is an explanation why (apart from
results including parity considerations) a great part of min—max theorems
in graph theory and combinatorial optimization, especially those involving
sub- or supermodular functions, are implied by the models above.

But one runs into a serious obstacle when trying to apply any model
with a TDI description system to connectivity augmentation problems.
Already Eswaran and Tarjan [4] have pointed out that, though the
minimum cardinality augmentation problem to make a digraph strongly
connected is tractable, the minimum cost version is NP-complete as it
includes the directed Hamiltonian circuit problem. Naturally, the same
difficulty occurs in the general k-edge connectivity and k-node-connectivity
augmentation.

Therefore we cannot expect that a TDI system may be useful for solving
these augmentation problems. From this point of view TDI-ness is too
strong a property and this led us to consider general frameworks where
integral results hold only for a restricted class of cost functions while the
problem for general costs may well include NP-complete problems.

The main purpose of the present paper is to introduce such a model. We
are going to consider bi-supertnodular functions and to prove a min-max
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theorem concerning minimum *“coverings” of these functions by edges.
(Note that bi-submodular functions have been investigated by Schrijver
earlier in a different context [21].)

This implies a min-max theorem concerning the node-connectivity
augmentation problem mentioned -above which was our initial prime
interest. It implies a generalization of the edge-connectivity augmentation
theorem of Frank [5]. A nice theorem of Mader [19] on splitting off edges
in directed graphs is also a consequence, as well as Edmonds’ theorem [2]
on matroid partitions.

Finally, we show that an extension of (Lubiw’s extension [17] of)
S. Gy6ri's [11] difficult min-max theorem on intervals is also an easy
special case of our main result. This beautiful theorem has so far
notoriously resisted every attempt to relate it to other well-cultivated parts
of combinatorial optimization. Lubiw writes in a paper [17] generalizing
Gyéri’s theorem: “In [Gy] Gyéri proved a min-max equality for intervals
which is remarkable for the difficulty of the proof .. and for the lack of
similarity to previous min—max results in combinatorial optimization.”

Our model does provide the missing link and also a simple proof.
Actually, we are going to extend Lubiw’s generalization in two senses as
will be explained in Section 6.

To conclude this introductory section we remark that the proof of the
main theorem is short and based on the standard uncrossing technique.
{A price we must pay for this simplicity is that the proof is not algorithmic.
The only algorithm we have at present does use the main theorem and
some ideas from its proof and relies on the ellipsoid method.)

The reader may ponder on this phenomenon how can a theorem, with
a rather routine proof, have these far from trivial consequences? An
explanation may be based on the new view we take: we do not insist on
TDI-ness and require integrality only for a restricted class of objective
functions. We hope that this new view may also be successful in other areas
and would like to encourage the readers (and ocurselves, as well) to work
out other general models in this vein.

The organization of the paper is as follows. In Section 2 we state and
prove the main results. Section 3 includes degree-constrained and minimum
cost variations as well as the description of a relationship of our model to
contra-polymatroids. Node-connectivity and edge-connectivity augmenta-
tion problems of directed graphs are discussed in Sections 4 and 5,
respectively. Section 6 deals with Gyéri’s theorem on intervals and its
extensions. Algorithmic aspects are the topic of the last section.

Hopefully, it will not cause ambiguity that we often do not distinguish
between a one-element set {s} and its element 5. Let ¥ be a set. Given two
elements x, y of V we say that a subset X of Vis an xj-ser if xe X, y¢ X.
A family of disjoint subsets of V is called a sub-partition. Two subsets X, ¥
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of V are co-disjoint if V— X and ¥ — Y are disjoint. X, Y are intersecting if
none of X— Y, Y— X, X Yis empty. If, in addition, V¥ — (XU ¥V}# &, X
and Y are crossing. A family of subsets of V is called cross-free if it contains
no two crossing sets.

We cxtend these notions to ordered pairs of sets. Let S and 7 be two
non-empty subsets of ¥ and let A* := A(S, T) denote the set of all directed
edges st with se 8, teT. Let o/* :=&/(S, T) denote the set of all pairs
(X, ¥) with # XS, F+# Y= T The first member X (respectively, the
second member Y) of pair (X, Y} is called the tail (the head) of the pair.

For an edge e=ste A* and a pair (X, ¥)eo/* we say that e covers
(X, Y)ifseX, te?, that is, if ec A(X, ¥). For a vector z: 4* — R we use
the notation z(X, ¥) :=3 (z(xy): xe X, ye ¥). For a non-negative function
won &* let ¢,: 4% - Z | be a function defined by ¢, (e):=3 (w(X, ¥): ¢
covers (X, 1))

Two pairs (4, B), (4', B} are tail-disjoint (respectively, head-disjoint) if
their tails (resp., heads) are disjoint. If at least one of these two holds, the
pairs are called half-disjoint (or sometimes independent). The pairs are
comparable if AcA', BB or A'c A, B B The pairs (4, B), (4, B)
are called non-crossing if they are half-disjoint or comparable. Otherwise
(4, B), (A', B') are said to cress or to be crossing.

A family # < o/* of pairs of scts is cross-free if # contains no two crossing
members. # is called crossing if both (4n A, BuB)and (AuAd', BnB)
belong to # for any two crossing members (A4, B), (4', B'} of #.

We define a partial order P:=(&* <) on «* as follows. For
(X, YL X', Y)ed* let (X, < (X', V) if XS X' and Y2 Y. Note that
two members of &* are comparable if they are comparable in P. The
restriction of P to a subset # of «/* will be denoted by P(#%).

In a directed graph D=(V, 4} for subsets X, Y=V let 8,(X, ¥) =
40X, ¥):=0(X,Y) denote the number of edges xy of P for which
xeX,yeY H X=V-7, then let p (¥):=p,(¥):i=p(¥):=68,X):=
dp(X)i=3(X) :=d,(X, Y), that is, p( ¥) (respectively, §(X)) is the number
of edges entering Y (leaving X). For a function x; A >R, let p (X):=
2 (x(e). ec A, e enters X} and let §,(X) :=3 (x(e): e 4, e leaves X).

Let # be a sub-family of «#(S, T'). For a positive integer # we say that
# is h-independent if every edge ee A(S, T) covers at most # members of
#. For h =1 we simply say independent. This is equivalent to requiring that
the members of % are pairwise half-disjoint. More generally, we say that
a non-negative function w on «/* is A-independent il ¢ (e)<h holds for
every ec A*,

Throughout the paper we adopt the convention that if a function f is
defined explicitly only on some elements of ¢ *, then we mean fto be 0 on
all other elements of & *. For a function f on the elements of &/* and for
F < o ¥, we use the notation f(F) =Y (f(X, V): (X, Ve F).
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We call a set function ¢: 2" = R fully supermoduiar (in short, super-
modular) if

X +q(N)<gXnY)+q(XUT) (L.I)

holds for every pair of subsets X, Y= V. If, in addition, g is non-negative
and monotone increasing (that is, ¢(X) = q(Y) whenever ¥ < X}, then we
speak of a contra-polymatroid function. For such a g, a polyhedron Q=
{xeRY:x(A)2q(A) for all A<V} is called a contra-polymatroid. 1t is
known that Q unigely determines ¢. If (1.1} is required only for crossing
sets X, Y, we say that g is crossing supermodular. In the next section we are
going to extend these notions to functions defined on pairs of sets.

For any number x, let x* :=x if x>0 and x* =0 if x<0. For a
real-valued function f, f* denotes a function defined by f*(x) := fix)™.

2. MamN RESULTS

Let S and 7 be two non-empty subsets of a ground-set V. Let (S, T; A¥)
denote a directed graph with node-set Sw 7 and edge-set 4* = A(S, T).
Let &#* :=./(S, T) and p be a non-negative integer-valued function on
*. We call p crossing bi-supermodular if

PE D +pX, YVSPXAX, YOY)+p(XuX, YA Y) (21)

holds whenever X = 8, Y= T, Xn X', Yn Y # &, and p(X, 1),
plx, Y>>0

Throughout this section p denotes such a function. If the reverse
inequality holds in (2.1) we speak of crossing bi-submodular functions.
Bi-submodular functions were extensively studied by Schrijver [21].

With the help of an edge e=ste A* we define a 0-1 function b, on /*
by b,(A, By:=1 if e covers (4, B) and 0 otherwise. For a non-negative
vector x: A* — R, let us define a function b,: &/ = R, by b.(4, B}:=
x(A, B). The first part of the following claim is trivial, the second one easily
follows from the first.

Cramm 2.1, b, is bi-submodular. b, is bi-submodular.

We introduce two operations concerning a crossing bi-supermodular
function p. For any edge e¢=xyeA* define p*:=(p—5&,)"; that is,
X, )i=p(X, V)~1 if p(X, 7)>0 and xeX, peY and piX, ¥):=
p(X, ¥) otherwise. Since b, is bi-submodular, p — b, is crossing bi-super-
modular and hence so is p®. We call p* a reduction of p (along e).
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Let $'c S, T"= T be two non-empty subsets. A projection p' of p onto
(8", T') is defined as follows. For (X', Y e (S, T') let p'(X', ¥'):=
max{p(X, Y (X, Ve (S, T), XnS' =X, YnT'=Y). It i5s easy to
check that p’ is crossing bi-supermodular.

Let w be a non-negative, integer-valued function on (S, T). The
support &, of w is the family of pairs (X, Y) for which w(X, ¥} is positive.
We say that w is cross-free il its support is cross-free. Let p(w):=
WX, Y)plX, Y (X, Y)esd (S, T)). Define ¢, 4*=>Z, by c.ie):=
> (w(X, Y): (X, Y)esd(S, T), e covers (X, Y)) where ec 4%,

LemMa 2.2 Given a function w. &{S, T}~ Z __, there exists a cross-free
Junction w: s#(S, T)— Z . for which p{w}zp(w) and ¢, < c,,.

Proof. Let us choose a function w: &Z(S, T} —> Z, such that p(w} =
p(w), ¢z €c¢,, and such that s(w) =3 (w(X, Y) f(X, ¥): (X, YIes/*)is as
large as possible where f(X, Y) :=(]X] —|¥|)~ .

Ome can easily check that f(X, )+ X, V)= XnX,Yu¥)+
JXuX, YY) -2 XX |+ Y - Y)N|X' —X|+|Y—Y'|). Hence [ is
bi-supermodular and f(X, N+ (X, Y)=f(XnX, Yo Y)+ fl¥Yu X,
Y~ Y') holds if and only if (X, ¥) and (X", ¥’) are comparable.

We claim that w is cross-free. Suppose to the contrary that & has two
crossing members (X, ¥) and (X, ¥’). Revise w by decreasing its value on
(X, Y) and (X', Y') by 1 and increasing it on {(Xn X', Yu ¥Y') and
(XX, YY) by 1. By Claim 2.1, ¢, €c¢,. Since p is crossing bi-super-
modular, p(w') = p(W). Since s{w') > s(W} we are in a contradiction with the
choice of w. |

Let p be a non-negative, integer-valued function on (S, T). We say
that a non-negative vector z on 4* covers p or that z is a covering of p if
b,z p, or equivalently z(X, ¥)=p(X, Y) for every (X, Y}e o#(S, T). We
will be interested in integer-valued coverings minimizing ¢z for certain
linear objective functions ¢. Qur basic result concerns the case c=1. An
extension concerning more general cost-functions will be derived in the
next section.

THEOREM 2.3. For an integer-valued crossing bi-supermodular function
p=0 the following min-max equality holds. 1,:=min(z(4A*) zz0 an
integer-valued covering of p) = v, :=max(p(F ). & independent).

Proof. First we prove that v, < 7,. Let z be a covering of p and # an
independent family of pairs. Since no edge of 4* can cover more than
one member of &, we have z(A*) =23 (X, (X, NeF) =T (plX, V)

(X, Y)e #F)=p(F} and hence v, < 1,,.
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We prove now the reverse inequality. For an edge ec A* let p® be the
reduction of p along e. Since p°<p, v,— 1 <v,.<v, We call an edge e
reducing if v, <v,. The next lemma is the key in the proof.

Lemma 2.4. If p(A, BY>0 for a pair (A, Byesl*, then there is a
reducing edge e =xy with xe A, ye B.

Proof. Suppose indirectly that v,.=v, for every edge e=xyeA*
covering (A, B), that is, there is an independent family %, for which
p(F,)=v, and e does not cover any member of &,.

For each e € A* covering (4, B) let w, be a 0-1 function on &* so that
w, is 1 on the members of # and 0 otherwise. Let w, be 1 on (4, B) and
0 otherwise. Define w:=wy+ 3 (w,: e covers (A4, B)) and let A:=]4| |B].
Then p(w)=v,h+ p(A, B} and hence

pw)zv,h+1 {2.2a)
and

w is fi-independent. (2.2b)

By Lemma 2.2 we may assume that w is cross-free. Let #' := %, be the
support of w. Recall the partial order P’ := P(#") defined in the Introduc-
tion. Because &' is cross-free, if two members of &' are non-comparable
in P', then they are half-disjoint. By (2.2) there is no chain of P’ with
length greater than k. By a weighted version of the polar Dilworth theorem
(given a non-negative integer weighting w of a partially ordered set P, the
maximum weight of a chain is equal to the minimum number of anti-chains
covering all elements ve P' by w(v) times), it follows that there is an
anti-chain of weight at least v, + |, contradicting the definition of v,. This
contradiction proves the lemma. |

To prove that v, >z, we use induction on ¥ p( X, Y). If this sum is zero,
then v,=0=r1,. Let now p(4, B) >0 for a pair (4, B) e &/* By Lemma 2.4
there is a reducing edge e=stc A* with se S, re T. If 2’ is a covering of p*,
then increasing its value on edge ¢ by one, we obtain a covering of p
and hence 7,<71,+1. Since ¥ p°(X, Y} <Z p(X, Y), we can apply the
inductive hypothesis, from which we obtain 7, —1<1,=v,<v,—1, and
hence 7, < v,, as required. [l

The following corollary will be used in Section 6.
THEOREM 2.5. Given a crossing family ¥ of pairs of non-empty subsets

of V, the maximum cardinality of an independent sub-family of & is equal
to the minimum number of directed edges covering all members of &
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Proof. Let p be a 0-l-valued function on the pairs of non-empty
subsets of ¥ defined to be 1 on a pair (X, ¥) precisely when (X, ¥)e &
Clearly, p is crossing bi-supermodular and, by choosing §:=T7:=V,
Theorem 2.3 imphes the result. [

We can use the above min-max theorem to derive feasibility results
concerning coverings. Let S, T, p be the same as in Theorem 2.3. Let
Pon: S—Z, and my,: T'—> Z_ be two integer-valued functions for which
Y= Ec.:ﬁ-m.v = kw_:...A N..v

THEOREM 2.6. Let p be a non-negative, integer-valued crossing bi-super-
modular function on of = &(S, T). There exists an integer-valued covering
zz A(S, TY—=Z, of p for which

&, (v)=m . (v) Jfor every ves§ (2.3a)
and .
p:(v)=my(v) Jor every veT (2.3b)
if and only if
mo (Z) 2 p(F) (24a)

holds for every Z<= S and for every independent family # < &#(Z, T), and
M Z) 2 o(F) (2.4b)

holds for every Z = T and for every independent family & < (S, Z).
In particular, if there is a covering satisfying (2.3a) and there is a covering
satisfying (2.3b), then there is one satisfying both (2.3a) and (2.3b).

Proof. We prove only the necessity of (2.4a) since (2.4b) is analogous.
Let z be a covering of p satisfying (2.3a), Z a subset of 8 and & = 2#/(Z, T)
an independent family. Then, clearly, y = ¥ (4,(s):5¢8) = ¥ (6,(s):
SeS—Z)+ 3 (5.(s):5€Z)2mou(S—Z)+ p(F )=y — Mo Z) + p(F)
and hence m,(Z) 2 p(F), as required for (2.4a).

Sufficiency. Define p’ by modifying p as follows. Let p'(v, T) :=m,,(v)
for every veS and p'(S, v):=my,(v) for every ve T, while PX, Y):=
(X, Y) whenever | X[, |Y|=2

Since a family consisting of one pair is independent, (2.4) implies that
plo, Ty < m,,(v) for every veS. Analogously, p(S, v) <m,(v) for every
ve T. Therefore p' 2 p. It can easily be scen that p’ is crossing bi-super-
modular. Apply Theorem 2.3 to p’ and let z be a minimum covering of p'.
Clearly, z is a covering of p, as well, and y' :=z(4*)=y.

If ' =7y, then we claim that z is a covering of p satisfying (2.3). Indeed,
we have y' =3 (d,(v): veS}2 Y (m,,(v) € S) =y and hence §,(v) =m_,(v)
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follows for every ve.S, that is, (2.3a) holds. Equation (2.3b) is seen
analogously.

Suppose now that y' >y. By Theorem 2.3 there exists an independent
family &' of members of (S, T) for which p'(F') =" Since #' is inde-
pendent, it cannot contain pairs of both forms (s, T) and (S, 1) where se§
and te T. So suppose that #’ does not contain pairs of form, say, (s, T).
Let Z’ denote the subset of T consisting of those elements ¢ for which (5, ¢)
belongs to #' and let Z:=T—2Z'. (Z' may be empty.) Let % :=
{(S,0):t€Z’} and F :=F' —F. We have p(F)=p'(F)=y —p'(#)=
Y= (Z) >y —my,(Z'Y=my(Z). Since F' is independent, so is F <
(S, Z) and hence the inequality p{F ) > m,,(Z} contradicts (24). |

One may be interested in the case when a prescription is given only on
the out-degrees of elements of § while the in-degrees in T are not specified.

THEOREM 2.7, Let mg,: S—Z, be a function on 5. There is a covering
z of p satisfying (2.3a) for every ve § if and only if (2.4a) holds.

Proof. We have already seen the necessity of (2.4a). To see the
sufficiency, let z be a covering of p minimizing z(4*) and let m,(¢) =
p.(v) for every veT. Now m,(T)=z(4*)=1,=v, < m,,{S} where the
inequality follows from (2.4a). If m;, (T) <m,.(S), then increase m,(¢) by
o, (8) — my,(T) for an arbitrarily chosen element ¢ of T. Let m;, denote
the resulting function. Now (2.4a) holds by hypothesis and (2.4b) holds
due to the construction of m;,. We can apply Theorem 2.6 from which the
result follows. |1

In some important special cases v, can be expressed in considerably
simplified form. Let A*:=A(V, V) and o*:=./(V, V}. Suppose that
plX, Y} is a crossing bi-supermodular function which may be positive only
if {X, ¥} is a bipartition of V. Such a function can be identified with a
crossing supermodular function p” defined on the subsets of ¥ (namely,
p(Y}:=p(V— Y, Y)) and we will formulate the theorems to concern p”.
The following observation is the basis for the simplification.

LEMMA 2.8. Let F'<of* be an independent family consisting of pairs
(X, ¥} for which X=V — Y. Then the members of %' are pairwise head-
disjoint or pairwise tail-disjoint. Equivalently, if & is a cross-free family of
subsets of V so that no member of & includes another member, then &
consists of pairwise disjoint or pairwise co-disjoint sets.

Proof. We prove the first form. Let ¥ be a minimal subset J” which is
a tail or a head of a member of &'. By symmetry, we may assume that Y
is a head, that is, (X, )& &#' where X=V — Y. Since #' is independent,
any two heads are disjoint or co-disjoint. We claim that the members
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of #' are pairwise head-disjoint. Indeed, for any member (X', Y') of &'
distinet from (X, ¥) we must have ¥ Y = ¥ since otherwise ¥ and Y
are co-disjeint and then X' < Y, contradicting the minimal choice of ¥,
Moreover, for a third member (X", Y”) of %', since both ¥’ and Y” are
disjoint from Y, they cannot be co-disjoint, therefore ¥’ and Y* are
disjoint. ||

THEOREM 2.9. Let p" be a crossing supermodular function on the subsets
of V with p"(Z)=p"(V}=0. Then min{z(A*): z>=0 integer-valued,
p:AX)2p"(Y) for every Y= Vy=max(p"(F). F is a family of pairwise
disjoint or pairwise co-disjoint non-empty subsets of V).

Proof. Let p(X, Y):=p"(Y) if X=¥— Y and zero otherwise. Clearly, p
is crossing bi-supermodular. Apply Theorem 2.3 with §= 7= V and let &'
denote an independent sub-family of «&/* on which the maximum is
attained. We may assume that p is positive on each member of #'. By the
assumption on p", each member (X, ¥) of #' forms a bipartition of V.
Since &' is independent, Lemma 2.8 implies that #' consists of pairwise
tail-disjoint or pairwise head-disjoint pairs. Then the family % :=
{Y= V:(X, Y)e F'} consists of pairwise disjoint or pairwise co-disjoint
sets and p”(F ) =p(F"'). Hence the result follows from Theorem 2.3. |

For later purposes we formulate Theorem 2.9 in an equivalent form {and
we also change the groundset from ¥ to T):

THEOREM 2.9.A. Let p" be a crossing supermodular function on the
subsets of T with p"((&) =p"(T)=0. There exists a digraph (T, F) with at
most y edges for which pp(Y}zp"(Y) for every YS T if and only if

LpX)<y (2.52)

and
Ypr(V—Xx)<y (2.5b)

holds for every sub-partition { X\, .., X,} of T.

For the feasibility problem concerning crossing supermodular functions
an even bigger simplification is possible.

THEOREM 2.10. Let my,: V= Z . and my,. V— 2, be two functions for
which m, (V) = m (V) and let p" be a non-negative, integer-valued, crossing
supermodular function on the subsets of V with p"(V)=0. Then there exists
a directed graph (V, F) for which

3(v) = mgyulv) (2.6a)

MINIMAL EDGE COVERINGS 83

and
ploy=m,(v) (2.6b)
for every ve V and for which
p(X) Zp"(X) (27)
for every X € V if and only if for every X<V
MoV —X) 2 p"(X) (2.8a)
and
mi(X) 2 p"(X). (2.8b)

In particular, if there is a digraph satisfving (2.7) and {2.6a) and if there is
a digraph satisfying (2.7) and (2.6b), then there is one satisfying (2.7) and
both (2.6a) and {2.6b).

Proof. The necessity of (2.8) is straightforward. To see the mcm._ownn.ow,
let p(X, Y} :=p"(Y)if X=V— Y and :=0 otherwise. Clearly, p is crossing
bi-supermodular. Choose §:=T:= V.

We claim that (2.4a) holds. Let Z be a subset of ¥ and F'<c (2, V)
an independent family so that p is positive on each member of #.
Then X= V— Y for each member (X, Y) of &' and, by Lemma 2.8, the
members of #' are pairwise tail-disjoint or pairwise head-disjoint. In the
former case, by (2.8a), we have m,(Z} 23 (M (X): (X, V-X)e F') =
SV -X (X V=X eF )= (X, V-X) (X, V-X)e F')=p(F),
as required for (24a). If the members of &' are not pairwise tail-
disjoint, then they are pairwise head-disjoint, and the tails then are
pairwise co-disjoint. Hence Z must be ¥ and, by (2.8b), we have m,(Z) =
Mo (V) =mu(V) 2 2 (mn(X: (V=X X)e F) 23 (p"(X)(V-X, X e
FN=S(p(V-X, X {V-X, X\)eF')=p(F'), that is, (2.4a) is satisfied
in this case, as well.

Inequality (2.4b) can be proved analogously. From Theorem 2.6 it
follows that there is an integer-valued coveting z of p satisfying (2.3}, which
is equivalent to saying that there is a digraph satisfying (2.6) and (2.7). §

Remarks. [t is useful to compare Theorems 2.6 and 2.10 and observe
that condition {2.8) in Theorems 2.10 is much simpler than (2.4). Namely,
in (24) an inequality is required for every subset Z and family %, while
{(2.8) concerns only subsets X. We also note that in [6] a different, more
direct proof of Theorem 2.10 is described. We will see in Section 5 that
Theorem 2.10 may be considered as an abstract extension of a theorem of
Mader on splitting off edges in directed graphs.
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If only out-degree specifications are given for the digraph, the following
holds.

THEOREM 2.11. Let my,: V— Z_, be a function and let p” be a non-
negative, integer-valued, crossing supermodular function on the subsets of V
with p"(V}=0. Then there exists a directed graph (V, F) satisfying {2.6a)
and (2.7} if and only if (2.8a) holds for every X < V and

Mo (V) 2 M (p(X, (2.9)

holds for every sub-partition {X;} of V.

Progf. The necessity of {2.8a) was already shown (and straightforward
anyway ). Suppose there is a digraph (V, F) satisfying the requirements and
let {X,} be a sub-partition of V. Then m, (V)= _m._ =X X2
3. p(X,), and (2.9) follows.

To see the sufficiency, suppose that (2.8a} and (2. 3 held. Let y:=

Mo (V). Now (2.5a) is the same as (2.9) and {2.5b) follows from (2.8a)
since 3., p" (V- X} <3, m . {X,) <y By Theorem 2.9.A there is a digraph
(¥, F') of y edges satisfying (2.7). Define m (v} :=pp(v) for every ve .
Now (2.8b) is satisfied and therefore Theorem 2.10 applies and implies the
existence of a digraph satislying (2.6a) and (2.7). |1

In Section 5 (after Theorem 5.2) we show an example to demonstrate
that (2.8a) without (2.9) is not sufficient in Theorem 2.11. This is related
to the fact that, in the proof of Theorem 2.10, while deriving (2.4a) we
made use of not only (2.8a) but (2.8b), as well {at least for X' =1,

3. DeGREE CONSTRAINTS AND Nopg CosTs

In the second part of the previous section we proved feasibility type
theorems concerning coverings of p, that is, we were interested in coverings
of p satisfying out-degree and in-degree specifications on the nodes of .§
and T respectively. Relying on these results, we study now the extension
when the degrees of a covering are required to satisfy lower and upper
bound constraints. The ground for the generalization is that the set of
degree-vectors of coverings, as we will prove it, spans a “contra-poly-
matroid.” This fact will enable us to handle not only degree-constrained
coverings but the problem of minimum-cost coverings, as well, provided
that the cost-function on 4* is induced by a cost-function on Su T.

Let V, S, T, A* «&*, and p be the same as in Theorem 2.3 and recall
the notation ¢,{¢) given in the Introduction. Let g be an (integer-valued)
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contra-polymatroid function defined on the subsets of S. A contra-poly-
matroid in RS is a polyhedron

Clg) = {x: x(X) = ¢(X) for every X< §}. (3.0)

It is well-known that a contra-polymatroid uniquely determines its
defining contra-polymatroid function g (namely, ¢(X) = min{x(X): x € C{g)}.
(A more general class of polyhedra, g-polymatroids, was studied by Frank
and Tardos in [8]. For a relationship of contra-polymatroids and edge-
connectivity augmentations see [5].)

Define a set-function p,, on the power set of S, as follows. For a subset
Z of §, let pb (Z) denote max(p(F): # an independent sub-family of
&(Z, T)). The notation is justified by the following result.

TueOREM 3.1. For every Z< S,

pr.(Z)=min AM (8,(v): ve Z): 22 0 an integer-valued covering e\vv
(3.1)

Proaf. For a covering z of p and for an independent sub-family # of
H(Z, T) we have Y (8,(v)veZ)=z(Z, T)22 (z(X, V) (X, NeF}=
S(p(X, ). (X, V) e F)=p(F) from which the “<™ direction follows in
(3.1).

Conversely, since the restriction p' of p to (2, T') is crossing bi-
supermodular, we may apply Theorem 2.3 and conclude that there is an
integer-valued covering z' (defined on A(Z,T)) of p' for which
Y (3,(vyveZ)=z2(Z,T)=v, =p, . (Z). Define z(xy):=z'(xy) if xeZ,
yeTand z(xy) ;=M if xe S—Z, ye T where M is a big enough number
{say, M is the maximum of p). Clearly z is a covering of p for which
Y (8, veZ)=3 (J,{v):ve Z)=p] (Z), which proves (3.1).

Perhaps the most important feature of function p! (Z) is expressed by
the following result.

TuEOREM 3.2. pl .. is a contra-polymatroid function.

Proof. Clearly, p¥,., is non-negative, monotone increasing, and zero on
the empty set. The main content of the theorem is that py  is fully super-
modular.

For a subset Z of S let #; denote an independent sub-family of #/(Z, T)
for which p(#) =p..(Z). Let wz: & (Z, T} —» Z , denote the characteristic
vector of %, that is, w(X, ¥):=1if (X, Y)e %, and :=0 otherwise. Let
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X and Y be two subsets of S and let w:= wy+ wy. By definition, p(w)=
pwy)+p(wy). For any edge e=st (se8, teT) (i) c,(e)<2 when
seXnY, (i) e f{e)<1 when se(Xu¥)—(XnY), and (iii) ¢, (e)=0
when seS—(Xu ¥).

By Lemma 2.2 there is a cross-free w satisfying (i}, (ii}, and (iii) such that
p(W) = p(w). (Note that the range of w is {0, 1,2} ). The cross-freeness of
means, by definition, that its support family & is cross-free.

Let %, consist of the minimal elements of the partial order P’ :=
P(F A (XY, T)). Due to property (i), every pair (A4, B) with
Ww(A, B)=2 belongs #. Let % :={(4, B): (4, B)=2} n(F — F). By
this definition we have

LA+ P(F) =p(#) 2 p Lo (X} + pou( 1) {32)

The family # is independent since if it has two comparable elements,
then the larger one is not minimal in P, contradicting the definition of #.
It follows that p’ (X'~ ¥} = p(F#).

We claim that #; is independent, as well. Suppose indirectly that, for two
members of #, (A, B)> (A4, B'). By property (i), w(4, By=w(4', B)=1
and hence both pairs belong to & — . Since 4°'c 4 and B< B, (i)
implies that 4" = X~ ¥. Therefore (4’, B') is in &/(X~ Y, T) but not in #,.
Hence there is a member (A", B”) of # for which (4", B")<(A4', B'). But
then the existence of these three pairs contradicts (i).

It follows from (iii) that % is an independent sub-family of &/ (XU Y, T)
and therefore p. (XU Y)2p(%). By (32) we obtain p) (X ¥+
2ol X0 Y) 2 p(3) + p(F) 2 plu(X) +piu(Y), as required.  §

Quite analogously, one can define a set-function p}, on the power set
of T by pi(Z):=max(p(#): & an independent sub-family of (5, Z))
where Z = T. Clearly, each theorem concerning p?  may be formulated to
concern p; . Let Cg (respectively, C;) denote the contra-polymatroid
defined by p7, (resp, p..).

Our next purpose is to show a relationship between coverings of p and
contra-polymatroids.

TuEOREM 3.3. (A) An integer-valued vector my,: S—Z, belongs to
Cq if and only if there is an (integer-valued) covering z of p for which
Mou(5) = 06,(3) for every se S.

(B) For any integer-valued vectors my, € Cs and my, € Cp for which
Mo Sy =mi(T) there is an (integer-valued) covering z of p for which
é.{v) =m,(v) for every ve S and p_(v) =m(v) for every veT,

Proof. Part (A) is a re-formulation of Theorem 2.7. Part (B) is
equivalent to Theorem 2.6. ||
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Let g, be a contra-polymatroid function on the subsets of a set 7, and
C,:=C(g,) the contra-polymatroid associated with ¢,. We are given
two non-negative integer-valued functions f: ¥V, —Z, and g.: V,—
Z, u{o} for which f; < g,. The following result occurs in a more general
form in {8] and more concretely in [5, Proposition 6.9].

Lemma 34. C, has an integer-valued element m,; for which fi<
m<g, and m(V))=y if and only if y<g(V)) and ¢,(X)<
min(y — fi(V; — X), g,( X)) holds for every X< V,.

By combining these results, it is possible to handle degree-constrained
and minimum-cost versions of the covering problem. First, let us be
given two non-negative integer-valued functions f,,.:S—Z,, go S—
Z,{ow} for which f,, <g.. and two non-negative, integer-valued
functions fi: T —=Z,,8in: T—Z, v {oo} for which f <g,. Let y be a
positive integer.

THEOREM 3.5. (A) There exists a non-negative, integer-valued covering
z of p with z(A*) =1y for which

Foul0) €3.(0) S goult) (3.3a)
for every ve S and
Sinl®) € p.(0) Sgin(v) (3.3b)
for every ve T if and only if
y € min(geu(S), 8:alT)) (3.4)
and

P2l Z) Smin(y — foud S — Z), 80l Z))  forevery Z<S, {35a)
PL(Z) <min(y—fi(T—Z), gu(Z))  forevery Z<T. (35b)

(B) There exists a non-negative integer-valued covering z of p
satisfying (3.3) if and only if

ﬁw:.ﬁNv mamﬂﬁﬂl\ozaﬁwle_ .w.o:_..AN: .\Qﬁ every Ze rm‘w ﬁw.mwv
and
P2y smin(a— filT—Z), g(Z))  for every Z=T, (3.6b)

where o :=min{gou(S), gial T))-
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Proof. (A) ‘Necessity. Let z be a covering of p with the desired proper-
ties, y=z(A*) =2 (5. (0): ve S) €T (goul2): vES) = gowe(S). Similarly, v <
Zu(T), and (34) follows. Furthermore, p! (Z}<Y (5,(v):veZ)<
2 (gomlv):veZ)=gulZ) and p (Z)<X(0(v}veZ)=y—-3 (d,(0)
peS—Z)Ky =3 (foulv):veS—Z)=y— [ (S—Z), from which (3.5a)}
follows. Inequality {3.5b) is analogous.

Sufficiency. Apply Lemima 34 to C,:=Cg, f1:=Fous £1 ' =Louts
g, :=ph,. By (34) and (3.5) the conditions in Lemma 3.4 are satisfied and
hence there is an integer-valued element m,,, of Cg for which m  (S)=17.
Analogously, we obtain that there is an integer-valued element m;, of Cy
for which m,,,(S)=y. By Theorem 3.3(B) the result follows.

(B) MNecessity. Let z be a covering of p satisfying (3.3) and let y:=
z(A*). Then (3.4) and (3.5) hold and hence p,.(Z) € g,u(Z) and p_,(Z) €
P—foulS—ZY<a— [, (S5—Z), from which (3.6a) follows. Inequality
(3.6b) is analogous. i

Sufficiency. Defining y 1=« we see that (3.6) implies (3.4) and (3.5}
and hence part (B) of the theorem follows from part {(A). |

We mentioned earlier that there is no hope to obtain min-max results
for the general minimum cost version of the covering problem since a
special case, finding a minimum cost strongly connected augmentation of
a digraph, is NP-complete. However, for a special class of cost functions
such a characterization exists.

Let us be given two non-negative cost functions ¢g: S— R, and
¢r: T-» R . They induce a cost function ¢ on the edge set A* .= A(S, T}
by the rule c(st) 1= cg(s) + {1} for st e A*. It is an easy exercise to check
that an integer-valued node-induced cost function on A4* can always
be induced by integer-valued cost functions on § and on T. Let p be a
crossing bi-supermodular function on &/* ;= %/(S, T}

THeOREM 3.6. For a node-induced function c:A* >R, the linear
program

min(cz: z @ covering of p) {3.7a)

has an integer-valued optimum. If, in addition, ¢ is integer-valued, the dual
linear program

max AM?\C& VVp(X, )i (X, Nesd* ) w: F*> R,
Y (w(X, ¥): (X, Y)esd* seX,teY)<c(st) for every @.mmm*v (3.7b)

also has an integer-valued optimum.
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Proof. Recall the definition of the contra-polymatroids Cs and Cr. Let
cs and ¢, be the cost functions inducing ¢ so that both c¢s and r
are integer-valued if ¢ is integer-valued. It is known from voqgmﬁ.o_a
theory that the system (3.0) is totally dual integral. Therefore there is a
(minimizing) integer vector m,, € Cy and there is a dual variable y;€2% —
R, (integer-valued, if ¢y is integer-valued) so that

Y (ys(Zy:se Z= S)<cgls) for every se§ (3.8a)
and

Mg =3, (V(Z) Poud 2. Z & S). (3.8b)

Similarly, there is a (minimizing) integer vector m, € Cr and there is a
dual vanable y,e27— R (integer-valued, if ¢ is integer-valued) so that

Y (yrZyteZ=T)<crlt) for every reT {3.9a)

and

nq.im;HMUC\u.ANvﬁwaﬁNu” ZeT). (3.9b)

It is well-known from polymatroid theory that if an element x of contra-
polymatroid C(g) is minimal in the sense that no x' with x' € x, k..wmx
belongs to €(q), then x{S}=¢(S). From this and from the non-negativity
of ¢cg and ¢ it follows that m,,{8) = pl.(S)=v,=pi( T)=m(T).

By Theorem 3.3 there is a covering zq of p for which §,(v) =m,(v) for
every ve § and p,(v) =m,(v) for every veT. .

By definition, for each Z < § there is an independent sub-family «QN of
#(Z, T) so that p! (Z)=p(¥). Similarly, for each Z< T there is an
independent sub-family 7 of #/(S, Z) so that P2 =p(TZ).

Define  wo(d, B) =3 (ys(Z): (A, B)e %, 2= S) + X (yo(Z): (4, B) e
F,, T<S). From (3.8) and (39) we obtamn for every seS, teT that
T (wolX, Y): (X, Ve s*, seX, te V)=% (ys(Z): ZS S, 5 Z}+ X (yAZ):
ZST, te Z)< cgls) + cr(t) = c{st), that is, w, satisfies (3.7b).

Furthermore, 3 (wo(X, ¥) p(X, Y): (X, Y) e #/*)}=2 (ys(Z) p(IZ): Z=S)
+ S (2 P ZET) = X (v5(Z) Plud 2): Z S S)+ T (y4(Z) P Z):
Zs H..v =Cshoy + oty = M An..wﬁ.wv %Naﬁhv” sE .MJ + M An.u.:v _ﬁuomsu le NJ"
3 (zo(st)(cs(s) + cz(N):s€ S, te TY=3 (z(st) clst): st € A*) = czy showing
that z, is a primal optimum and w, is a dual optimum. I
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4. AUGMENTING NODE-CONNECTIVITY OF DIGRAPHS

The main motivation behind the general framework we described in
the preceding sections was to develop techniques to solve connectivity
augmentation problems in directed graphs, in particular, the node-
connectivity augmentation which was open so far. Here we exhibit these
applications.

Let D=(V, A) be a digraph with possible parallel edges. The local
node-connectivity from x to y, denoted by x(x, y; D), is the maximum
number of pairwise openly node-disjoint paths from x to y. We say that D
is k-node-connected (or, in short, k-connected) if x(x, y; D) =k holds for
every ordered pair of nodes (x, y) of D. When k=1, the term strongly
connected is used. We will consider k-node-connected digraphs only for
k< |V]—1 since for larger k their structure is uninteresting: for every
possible pair {x, ¥} of nodes at least k— | V| +2 parallel edges from x to
y must belong to the digraph. Also, for node-connectivity augmentation
problems we may assume that the starting digraph is simple.

The connectivity augmentation problem for digraphs consists of finding
a minimum set of new edges whose addition to a given directed graph
leaves a k-connected digraph. When k=1, the problem was solved by
Eswaran and Tarjan [4]. For larger & only very little was known.
Masuzawa er al. [20] solved the special case when the starting digraph D
is an arborescence (that is, a directed tree in which very node is reachable
from a root.) Jordan [16] described a (combinatorial) polymial time
approximation algorithm to augment the node connectivity of a digraph
from & — 1 to k& and proved that the augmentation of his algorithm uses at
most k — 1 more edges than the optimurmn.

One of the major open question of the area is to decide if the node-
connectivity augmentation problem for undirected graphs belongs to
co-NP or if it is NP-complete. The problem is polynomially solvable for
k=1 (trivial), for k=2 [4], for k=3 [24, 13] and, providing that the
starting graph is 3-connected, for k=4 [12]. For higher %, the NP-
completeness status is not known even for the special case when we want
to increase the node-connectivity only by one. For that problem Jordan
[ 14, 15] developed an approximation algorithm that provides an augmenting
set of edges whose cardinality is at most & — 2 larger than the optimum. We
only mention these developments to provide a more general picture: the
present paper has little to say concerning node-connectivity augmentations
in undirected graphs (sece Corollary 4.8).

Assume that D= (V, 4) is a simple directed graph (that is, there are no
loops and no parallel edges from x to y for each x, y € V). We assume that
the target connectivity & < |¥] — 1. For a pair (X, ¥} of disjoint non-empty
subsets of ¥, let A(X, Y):=|V—(XwY). We call such a pair (X, ¥) a
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one-way pair if there is no edge from X to Y, that is, (X, ¥)=0. (It is easy
to see that the family of one-way pairs is crossing.)

CLamM 4.1. A digraph D+ =(V, A*) is k-connected if and only if
WX, Y2k (4.1)

holds for every one-way pair (X, Y).

Proof. If D* is k connected, there are k openly disjoint paths from a
node x e X to y& Y. Since there is no edge from X to ¥, each of the k paths
must contain a node in V—(Xw Y) from which the necessity of (4.1)
follows.

Conversely, assume that (4.1) holds. Suppose, indirectly, that there are
no k openly disjoint paths from a node x to another node y. If there is no
edge from x to y, then, by the directed node version of Menget’s theorem,
there is a subset C< V—{x, y} of less than k nodes covering all paths
from x to y. Now the set X of nodes reachable from x in D* - Cand ¥:=
V— X — C violates (4.1). If there is an edge ¢ = xy, then, by applying the
same argument to D* —e, we conclude that there is a pair (X, ¥') of
disjoint subsets of V such that xe X, ye ¥, A(X, Y')sk -2, and e is
the only edge of D* from X to Y. It follows from (4.1) that the in-degree
of any node is at least k. Hence we cannot have ¥" = {y}. But then ¥:=
Y —y is non-empty and (X, Y) is a one-way pair violating (41), a
contradiction. ||

The deficiency of a pair (X, Y) of disjoint non-empty subsets is defined
to be pad X, ¥):i=(k—h(X, ¥))* if (X, ¥) is a one-way pair and :=0
otherwise. Clearly, pudX, Y= (k—kd,(X, )—h(X, Y))* for every
(X, Y). This latter form shows that py is crossing bi-supermodular because
both 3 ,(X, ¥) (by Claim 2.1} and A(X, ¥) are crossing bi-supermodular.

The following statement easily follows from Claim 4.1:

CLamM 4.2, The addition of a set F of new edges to a digraph D=(V, 4)
leaves a k-connected digraph D :=(V, A+ F} if and only if

%N.;A\Wﬂ SWEQ&AN‘ 5 AL.Mu

holds for every one-way pair (X, ¥).

The main result of this section provides an answer to the directed node-
connectivity augmentation problem, the basic motivation of the whole
paper. Recall that a family # of pairs of disjoint subsets of V was called
independent if every two members (X, ¥), (X', ¥’} of # were half-disjoint,
that is, at least one of X~ X" and Y Y’ is empty.
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THEOREM 4.3. A digraph D= (V, A) can be made k-node-connected by
adding at most y new edges if and only if

2 Apad X, Y): (X, Ve F) <y (43)

holds for every choice of independent families & of one-way pairs.

Proof. The theorem immediately follows from Claim 4.2 and Theorem
23when S=T=Vand p:=pyr. [

In Section 7 we briefly indicate a polynomial-time algorithm, based on the
ellipsoid method, to compute the optimal augmentation in Theorem 4.3. No
polynomial-time combinatorial algorithm is known even if we want to increase
the connectivity by 1. In [ 7] we developed such an algorithm when the starting
digraph is strongly connected and the target connectivity is 2.

With the same approach, one can easily derive the following extension.
We say that a digraph D* =(V, A7) is k-connected from S to T, where
S, T= ¥V, if there are k& openly disjoint paths from every element of § to
every element of 7. When 8= 7T=} we are back at k-connectivity. By
Menger’s theorem, D™ is k-connected from S to T if and only if

I,(X, V) zk~hX Y) (4.4)
holds for each pair (X, Y} of disjoint non-empty subsets of V for which
XnS#g and YnT#g. {4.5)

We say that two pairs (X, ¥) and (X', ¥') of pairs of non-empty disjoint
subsets of ¥V are (S, T)-independent if at least one of X X' nS and
YnY ~Tis empty. A family & is (S, T)-independent if it consists of
pairwise (S, T)-independent pairs satisfving (4.5).

For a pair (X, Y) of disjoint non-empty subsets of V satisfying (4.5},
define pp(X, ¥) :=(k — 3 (X, Y)—A(X, V))*. By Claim 2.1, py, is crossing
bi-supermodular.

THEOREM 4.4. A digraph D=V, A} can be made k-node-connected from
S to T by adding at most y new edges with tails in § and heads in T if and

only if
2 (po(X, V) (X, NeF)<y (4.6)

holds for every choice of (S, T)-independent families .

Proof. Let F be a set of new edges satisfying the requirements of the
theorem. By (4.4} 8 ,(X, Y)+3(X, V) =k —A(X, ¥} and hence §:(X, ¥) =
pp(X, ¥) must hold for every pair (X, Y) satisfying (4.5). Since an edge

w——
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from S to T can cover at most one member of an (S, I")-independent family
F, we have y2 |F| 23 (05(X, Y): (X, V)eF) 25 (pp(X, V). (X, V)eF)
from which the necessity of (4.6) follows,

To see the sufficiency, let p' denote the projection of pp, onte (S, T).
It follows from (4.6) that p'(#") < y holds for every independent sub-family
&' of #7(S, T). By applying Theorem 2.3 to p’ we obtain that there is an
integer-valued covering z: A(S, T)—» Z* of p' for which z(4(S, T)) <.
Define F by taking z(e) parallel copies of each edge ec A(S, T). Then F
satisfies the requirements of the theorem. |

Note that other results of Sections 2 and 3 can also be applied to
the special bi-supermodular functions py, or py,. Therefore the degree-
constrained and minimum-node-cost connectivity augmentation problems
are also tractable. The detailed formulations of these results are left to the
reader; here we mention only one consequence. Let x(D) denote the
connectivity of a digraph D. Recall the notation A(X, ¥} = |V —(Xu V)|

THEOREM 4.5. For a given a digraph D=(V, A} let y denote the
minimum cardinality of a set F of new edges whose addition to D={V, A)
leaves a k-connected digraph (k < |V| —1). Then F may be chosen in such a
way that

prvysk —r(D) and Sp(v) €k — k(D) (4.7)

Jor every node v of D.

Proof. In the proof let p:=pyy. Let Z< V be a non-empty subset and
F < o (Z, V) an independent family of one-way pairs for which p(#) is as
large as possible. That is, p. (Z) =p(F).

LevMa 4.6. F has at most | Z| members.,

Progf. Let n:=|V| and ¢:=|#{ First observe that ¥ (k—d,(v):
veZ)< ) {(lk—38,(v) 1 ve Z) < pl (Z)=p(F). Second, let L(Z) denote
the set of edges of D whose tail is in Z. Since # consists of independent
one-way pairs belonging to «#(Z, V), the edge-sets A(X, ¥) (X, Ve F)
are disjoint from each other and form L{Z), as well. Since |A(X, ¥)|=
[X||¥|zn—1—h(X,Y) holds for any one-way pair (X, ¥) and the
number of non-loops in A(Z, V) is [Z] (n—1), we have |Z| (n—1)=
|[L(Z)|+ X (| X]{Y]: (X, ¥) € F). Combining these, we have |Z| (n—1—k)+
PF)2|Z (n—1—k)+ 2L (k—dp(v):veZ)=|Z| (n—1 k) + |Z| k —
Y (plv):veZ)y=|Z| (n— 1)~ X (dpv):veZ)=|Z|(n— 1) — |L(Z)| =
XY (X, VeF)2FE -1 - WX, Y): (X, NeF)=th—-1)+
2hk—hX, Y (X, NeF)—th=tn—1—-k)+ p(F).
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Since n— | — k>0, we conclude that ¢ < {Z|, as required. [

Because p(X, ¥} <k —x(D), from the lemma we obtain that
Pl Z) < |Z] (k—x(D)). (4.8a)
Since the role of p¥ . and p}, is symmetric, we also have
Pi(Zy<1Z] (k—x(D)). (4.8b)

Apply Theorem 3.5(A) with the choice S:=T:=V, fi, :=fou=0, gn =
o=k —x(D). Tt follows from (4.8) that both (3.4) and (3.5) hold
The covering z provided by Theorem 3.5 defines a set F of y new edges

satisfying the requirements.

When we want to increase the conmectivity by one, Theorem 4.5
specializes to: ‘

COROLLARY 4.7. A k-connected digraph D= (V, A) can be optimally
augmented by adding pairwise disjoint circuits and paths to obtain a
(x + V)-connected digraph. In particular, if D is a-ncxzm_.u.ma.« Eﬁ %m
in-degree and out-degree of each node is x, then there are disjoint circuits
covering V whose addition to D leaves a (i + 1)-connected digraph.

Note that, unlike edge-connectivity, node-connectivity cannot w_i.mva be
increased by adding a Hamiltonian circuit: choose D to @.m a digraph
arising from K, , by replacing each edge by two oEuOm:mG. ﬁzmsﬁa .mﬁ._m.nw.
D is 3-connected, and the only way to increase its connectivity by disjoint
circuits is to add two directed triangles. .

From the last corollary we derive the only result of this paper concerning
undirected graphs.

CoRroLLARY 4.8. A k-connected undirected graph G can be made
(x + 1)-connected by adding disjoint paths.

Proof. Let k:=x+ 1. Create a digraph D from G by replacing each
edge by two oppositely oriented edges. Then D is x connected maa 3
Corollary 4.7 there is a collection of disjoint directed paths and circuits
whose addition to D leaves a k-connected digraph. Using the same paths
and circuits in the undirected sense we get that G can be made & connected
by adding disjoint paths and circuits. Let F denote the mﬁ.on new edges. We
may assume that F is minimal in the sense that the addition Q, any proper
subset of F no longer increases the connectivity of G. That is, Q.:u. is a
k-connected graph but leaving out any element of F destroys k-connectivity.
Mader [ 18] proved that if C is a circuit of a k-connected graph G* so that
each node of C has degree larger than k, then at least one edge of C can be
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deleted from G* without destroying k-connectivity. We claim that F forms

a forest. Indeed, if some edges of F formed a circuit C, then each node of

C has degree at least k—1 in G and, hence, at least X+ 1 in G+ F. By

Mader’s theorem this is in contradiction with the minimal property of F.
1t follows that F forms a forest of disjoint paths, as required. I

Note that the augmentation ensured by the last corollary (unlike
Corollary 4.7 for directed graphs) was not proved to be a minimum
cardinality augmentation. It is tempting to conjecture that there is such an
augmentation for undirected graphs, as well; that is, a (k — 1)-connected
undirected graph can be made k-connected by adding a minimum number
of new edges so that the set of new edges forms a forest of disjoint paths.
{This can be proved for k <3.) It would also be interesting to find a more
direct proof of Corollary 4.8.

5. AUGMENTING EDGE-CONNECTIVITY OF DIGRAPHS

In this section we show how some extensions of known results
concerning edge-connectivity augmentation of digraphs may be deduced
from the general framework. For the necessary definitions see the previous
section.

For a digraph D =(V, A) the local edge-connectivity from x to y, denoted
by A(x, y; D), is the maximum number of pairwise edge-disjoint paths from
x to y. We say that D is k-edge-connected if A(x, y; D)z k holds for every
ordered pair of nodes (x, y) of D. Unlike node-connectivity augmentations,
here & may be any big integer. .

By the directed edge-version of Menger's theorem A(x, y) =k if and only
if 5{X) =k holds for every subset X with xe X< ¥ — y. It follows that a
digraph is k-edge-connected if and only if 8(X) = k holds for every non-
empty proper subset X of V.

The feasibility form of the edge-connectivity augmentation problem
consists of {inding a set of new edges that satisfies in-degree and out-degree
prescriptions at the nodes and whose addition to D leaves a k-edge-
connected digraph. Mader [19] solved this problem by showing that a
natural necessary condition is sufficient as well. (Actually, Mader’s original
theorem is formulated in terms of splitting off edges but his result can easily
be reformulated to concern the feasibility problem; see below.)

The minimization form of the edge-connectivity augmentation problem
for digraphs consists of determining the minimum number of new directed
edges whose addition to D leaves a k-edge-connected graph. This problem
was solved in [5] by invoking Mader’s theorem and the theory of
polymatroids. The solution includes a min-max theorem as well as a
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(combinatorial) strongly polynomial time algorithm to find the extrema in

question. o o
As far as undirected edge-connectivity augmentation is concerned the

minimization problem was solved first by Watanabe and Nakamura [23].
In [5] a generalization was solved when the desired local nam?
connectivities are arbitrarily prescribed. This was even further generalized
by Bang-Jensen et al. [1] where a generalization concerning mixed graphs
was described. For a survey, see [6].

Let H=(V, A') be a digraph. Splitting off a pair of edges e=us, f=st
of H means that we replace e and by a new edge ut. The resulting &,ma.m@w
will be denoted by H¥. The following important result concerning splittings
is due to Mader [19]:

THEOREM 5.1. Let H={(V+4s5,A') be a directed graph for which
Mx, y, Hy=k for every x, ye V and pu(s)=0y(s5). Then for every edge
f =st there is an edge e =us so that A(x, y, H)) 2k for every x, ye V.

By repeated applications one obtains
ToroREM 5.1.A [Mader, 19]. Let H=(V+s A') be a directed graph
for which A(x, y; H) =k for every x, y € V and py(s) = x(s). Then the edges

entering and leaving s can be partitioned into p(s) pairs so that splitting off
all these pairs leaves a k-edge-connected digraph on node-set V.

Let D=(V, 4) be a digraph and m,,: V—-Z" mﬁ.a Mo Vo Z, two
functions for which p :=m,(¥) = m.( V). The feasibility theorem for edge-
connectivity augmentation is as follows.

THEOREM 5.2. A directed graph D=(V,4) can be made k-edge-
connected by adding a set F of new edges satisfying

_Bﬁﬁzu"s:-ﬁcu DKD. %ﬁﬁcv“aﬁo:%cv mmwv
for every node ve V if and only if both

%UA5+§OEAS Wkn AMNWV

and
Po(X)+m(x) 2k (5.2b)

hold for every @ #Xc V.

Though Theorems 5.1.A and 5.2 sound different, they easily imply each
other.
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Proof of Theorem 5.2 from Theorem 5.1.A. To see that Theorem 5.2
follows from Theorem 5.1.A, extend D by a new node s and, for each ve ¥V,
adjoin m,,(v) (respectively, m,,(v)) parallel edges from s to v (from v to ).
By (5.2) the resulting digraph H=(V +s5, 4’} satisfies the hypotheses of
Theorem 5.1.A and hence we can split off y pairs of edges to obtain a
k-edge-connected digraph on node-set V. The resulting set of y new edges
(connecting original nodes) satisfies the requirement. |

Proof of Theorem 5.1.A from Theorem 52. Given H=(V +s5, A"), for
every node ve V define my(v) (respectively, m,.(v)) to be the number of
parallel edges of H from s to v (respectively, from » to s). Let P:=(V, A)
denote the digraph arising from H by deleting s.

It follows from the hypothesis of Theorem 5.1.A that p,(X)>k and
du(X)zk for every @#Xc<V. This, in turn, implies (5.2) because
Pp( XY+ m(X)=py(X) and  Sp(X)+m,(X)=3,(X). Furthermore,
Pu(s)=08y,(s) is equivalent to my,(Vy=m_,(¥} and thus we can apply
Theorem 5.2, It provides a set F of edges satisfying (5.1) whose addition to
D leaves a k-edge-connected digraph. For each edge f = uv & F assign a pair
of edges of H consisting of an edge from s to » and an edge from u to s.
By (5.1) this can be done in such a way that the pairs assigned to distinct
members of F are pairwise disjoint. By splitting off these pairs we obtain
(V, A+ F), a k-edge-connected digraph, as required for Theorem 5.1.A. 1

Proof of Theorem 52. Define p"(X)=max(0, k—p (X)) if X+ V, &
and p"(V) = p"{Z}=0. This function is crossing-supermodular so Theorem
2.10 applies and it just specializes to Theorem 52. |

In a similar way we obtain from Theorem 2.11 the following:

THEOREM 5.2.A. Given a digraph D=V, A) and a function m_,: V —
Z, ., D can be made k-edge-connected by adding a set F of new edges for
which 5 p(v) = m,(v) for every node ve V if and only if both (5.2a) holds for
every G # X< Vand

soEASWMmkiEbAN\E: T_v

holds for every sub-partition {X,} of V.

Note that in Theorem 5.2.A condition (5.24) without (%) is not sufficient,
as is shown by a digraph D on three nodes {a, b, c} with edge set {ba, ca}
ifk=1and m,(a}:=1, m (b} :=m_,(c) :=0.

The following theorem, concerning the minimization form of the edge-
connectivity augmentation problem, was proved in [5].
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THEOREM 5.3. Given a directed graph D= (V, A), the minimum number
of edges whose addition to D leaves a k-edge-connected digraph is equal to
the maximum of y; and y, where

pmmax (¥ (e=p(x))  and  y,=max AM (k=506

where both maxima are taken over all sub-partitions {X,, .., X,} of V.

Proof. 6 we define p” as before; then Theorem 2.9 specializes to
Theorem 5.3. |

Remark. Note that in [5] the minimization problem was reduced to
the feasibility problem, that is, Theorem 5.3 was proved with the help of
Theorem 5.2, while in the present paper we followed an opposite approach:
Theorem 2.10 (a generalization of the feasibility theorem) was derived
(via Theorem 2.6) from Theorem 2.3 (the minimization theorem).

In order to generalize these results, suppose that T is a subset o.w
nodes of a digraph D =(V, A). We say that D is k-edge-connected in T if
the local edge-connectivity A(x, y; D) is at least k for any two elements x, y
of T We may use Theorem 2.10 for proving a generalization of Mader’s
Theorem 5.1.A.

TueOREM 5.4. Let H=(V+35, 4") be a directed graph and TSV a
subset of nodes. Suppose that H is k-edge-connected in T, p y(5) = d g(s), and
each out- and in-neighbour of s is in T. Then the edges entering and leaving
s can be partitioned into p(s) pairs so that splitting off all these pairs leaves
a digraph which is k-edge-connected in T.

The corresponding minimization problem consists of adding a minimum
number of new edges to D so that the resuiting digraph is k-edge-connected
in 7. This problern was shown in [5] to be NP-complete even for k=1.
However, if we make a restriction on the set of possible new edges to have
both end-nodes in 7T, then the problem is tractable. For a family # of
subsets of Vet F|T:={XnT: XnT#Z, XeF}.

THEOREM 5.5. Given a digraph D and a subset T of nodes, it is possible
to make D k-edge-connected in T by adding at most y new edges connecting

elements of T if and only if

Yik—ppX) <y and Y (k-dp(XN<y (53)

MINIMAL EDGE COVERINGS 99

holds for every family & ={X,, .., X,} of subsets V for which @ < X,n
T<T and F|T is a sub-partition of T.

Proof. For every subset X of T define p”(X) := max((k — p(Xu Z))*:
Z< V—T)). This p" satisfies the hypothesis of Theorem 2.9.A. Inequality
(2.5) transforms to (5.3) and hence Theorem 2.9.A implies the result. |

More can be said if D is di-Eulerian outside T, that is, p(v) =d(v) for
every ve V- T.

CoROLLARY 5.6. Let T be a subset of nodes of a digraph D so that D
is di-Eulerian outside T. It is possible to make D k-edge-connected in T by
adding at most y new edges connecting elements of T if and only if (5.3) holds
for every sub-partition F ={X,,..,X,} of V for which ZcX,nT<T
Moreover, if D can be made k-edge comnected in T by adding y new edges,
then these y edges may be chosen 10 have both end-nodes in T.

Proof. The condition is clearly necessary; we prove its sufficiency. If the
condition of Theorem 5.5 is satisfied, we are done. Suppose indirectly that
this is not the case, that is, there is a family # = {X,, .., X,} of subsets of
V for which & | T is a sub-partition of T and & violates (5.3). We may
assume that 3° |X,| is minimum. Since a sub-partition of V satisfies (5.3),
there are two members X, ¥ of & whose intersection is non-empty. By the
hypothesis every node in X~ ¥ is di-Eulerian, therefore p(X)+ p(¥) =
p(X = Y}+p(¥Y—X). (This inequality 1s a consequence of the following
identity which is valid for any digraph: p(X) + p(¥)=p(X— )+ p(¥ — X)
+d(X, )+ (p(X Y)— (X T)) where d(X, Y) denotes the number of
edges with one end-node in X'~ ¥ and the other end-node in ¥ — (XU ).
This may be proved by observing that the contribution of every edge to the
two sides of the identity is the same.)

Replacing X and ¥ by X—Y and ¥— X we obtain a family %’ which
also violates (5.3), contradicting the minimal choice of .#.

The second part of the corollary follows from the first part by observing
that the condition is necessary even if new edges are allowed to have end-
nodes not only in 7. J

Theorem 5.5 can even further be generalized. Let D=(¥, A) be a
digraph with two specified non-empty subsets S, T of nodes (which may or
may not be disjoint). We say that D is k — edge-connected from S to T if
there are k& edge-disjoint paths from every node of S to every node of T.
(When S=T we are back at k-edge-connectivity in 7.) We say that a
family of subsets of nodes is (S, T)-independent if it contains at most one
t5-set for every pair se §, teT.
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THEOREM 5.7. Given a digraph D'={(V, A) and-two non-empty subsets
S, T of nodes, D can be made k-edge-connected from S to T by adding at
most y new edges with tails in S and heads in T if and only if

Y le—po(Y))<y (54)
7

holds for every choice of (S, T)-independent family of subsets Y, V where
THY, &, S—Y,# for each Y.

Proof. By Menger's theorem a digraph D+ is k-edge-connected from §
to T if and only if p,-{¥) =k for every set Y < V for which

YaT#@ and (V=Y)nS#T. (%)

Therefore the addition of a set ¥ of new edges to I leaves a digraph which
is k-edge-connected from S to T if and only if

P Y)2k—pp(Y) (5.3)

for every subset Y satisfying (x}. Since no edge from § to u. can enter
two (S, T)—independent sets, the number of new edges is at least
i tk—pplY)) and the necessity of (5.4) follows.

Sufficiency. Define a function p:&#(V,V)—=Z, by p(X, .5 1=
(k—pp(* If X=V-Y, @#YcV, and p(X, Y):=0 oEﬂE_mn.. It
follows from the submodularity of pp that such a function is crossing
bi-supermodular. Let p’ denote the projection of p onto (S, T) (for a
definition, see Section 2). Then p’ is also crossing bi-supermodular.

We claim that v, <y. Suppose, indirectly, that there is an independent
sub-family &' of &#(S, T) for which p'(¥') > y. With each member (X, ¥)
of F' with p'(X, ¥) >0 we associate a subset ¥ of ¥, as follows. By the
definition of p’ there exists a pair (X, ulqmblﬁ ¥, V) so that p'(X, Y)=
p(%, Y), XnS=X, and ¥AT=7Y. Let this ¥ be associated with (X, ¥).
From p(X, ¥)>0 we have that X=V—-Y, @#YcV, and p'(X, Y}=
pX, P)=k—pp(¥). Let F consist of those subsets of V which are
associated with the element of #'. The independence of #' is equivalent of
the (S, T)-independence of #. Since ¥ (k —pp( ¥} Ye F)=p(F') >y, the
family & violates (5.4). Therefore v, <y

From Theorem 2.3 we obtain that there is a covering z A* » Z  of p'
(where A*:= A(S, T)) for which z{4*)<y. Define F to consist of the
union of z(s, t) parallel edges from s to ¢ for each possible pair se 5, e T,
Then F has z(A*) <y elements. We claim that F satisfies (5.5). Indeed, if
there were a set 5 # Y V for which pp(Y)<k—pp(Y), then z(XN S,
YaT)=puY)<k—pp(N)<p(XnS, ¥Yn'T) where X:=V—7Y, that is,
z would not be a cover of p’. 11
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To conclude this section let us point out an important difference between
the last theorem and the previous ones. In all theorems but the last one in
this section sub-partitions play the main role in the characterizations in
question. This enables one to find alternative proofs of these theorems
using techniques developed in [5] and not using Theorem 2.3. Such an
approach has the advantage that it gives rise to purely combinatorial
polynomial time algorithms. In Theorem 5.7, in turn, the characterization
is not sub-partition type and we do not know any constructive proof of
Theorem 5.7.

(To see that this more complicated characterization is really required,
consider a digraph D on four nodes {s,, 5,, 1}, t;} With no edges, choose
S:={s,,5,} and T:= {1, #;} and let k=1. Here the optimum augmenta-
tion F consists of the four edges from S to T and the only (S, T)-independent
family of 4 members is {{s,, 2,}:4, je{1,2}}.)

6. GENERALIZING GYORI'S THEOREM

In 1984 Gyéri proved a deep min—max theorem concerning intervals of
a straight line. For our purpose it is more convenient to use a terminology
shightly different from Gyéri's and work with a system of sub-paths of a
path. To be more specific, let P = (v, €,, v,, €5, 03, .., €,, v,,) be a directed
path or circuit where the nodes v,’s of P are distinct, except that ¢, =1, in
the case P is a circuit, and each directed edge e, of P has tail »,_, and head
v, We denote the node set of P by V. Let & :={F,, ., F,} be a system of
sub-paths of P. In what follows, a path will mean the set of its edges.

We say that a system # of subpaths of P generates &% or that & is a
generator of # if each member of # is the union of some members of .
For example, & is a generator of itself, or the system {e,, .., e,} of one-
element paths is also a generator of #. Let y(#) denote the minimum
cardinality of a generator of #.

We call a pair (F, e) consisting of a path F and an element e of F a
represented path and denote by & the system of all represented paths (F, ¢)
with Fe #.

Let # :={I,, .., I,} be a family of subpaths of P and & :={/1, fo, ... f}
a system of distinct representatives of .#, that is, f;’s are distinct edges of
P so that fiel for i=1, ..t We call & a strong sysiem of representatives
if 7, I; does not include a sub-path § of P with end edges f; and f; for i, j,
lgi<j<t In this case we say that a family {{,, /1), (L, f2), s (I, )}
of represented paths is independent. (When P is a path, then there is a
unique subpath S with specified end edges. When P is a circuit there are
two such subpaths.} # :={1,, ., I,} is called strongly representable if it has
a strong system of representatives.
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It is not difficult to see, as was pointed out by Gyéri, that if P is a path,
then 7 is strongly representable if and only if there is an ordering of the
elements of .# so that no member I of # is a subset of the union of the
members of 4 preceding 7 in the given order. However, we will not use this
second property since the equivalence is no longer true if P is a circuit,
while Gyéri’s theorem will turn out to hold in this case as well.

Let o(%) denote the maximum cardinality of a strongly representable
sub-family of #. It is rather straightforward to see that for any family &
of subpaths of a path, one has o(F) < y(F). Gyéri's theorem asserts that,
in fact, equality always holds:

THEOREM 6.0 [Gyéri, 11]. If & is a family of subpaths of a path P,
then o F ) =y(F).

Gyéri used his theorem to derive a nice result in computational
geometry:

Let R be a bounded region in the plane which is bounded by horizontal and vertical
lines. Suppose that R is vertically convex in the sense that each vertical line intersects
R in a (contimious) segment. Then the minimum number of rectangles (belonging
to R) covering R is equal to the maximum member of points of R such that no two
of them belong to a rectangle lying in R.

Gy6ri’'s original proof is a long, sophisticated argument and is not
algorithmic. Later Franzblau and Kleitman {%] gave an algorithmic proof
which gives rise to a polynomial-time algorithm to compute the extrema in
the theorem. This proof is not short or simple either. Further extending the
proof technique of Franzblau and Kleitman, Lubiw [17] was able to find
a weighted generalization of Gy&ri’s theorem. Our goal here is to show that
Theorem 2.5 easily implies Lubiw’s result even in the more general case
when P is a circuit. (OQur proof is not algorithmic as it invokes Theorem
2.5 whose proof in Section 2 was not algorithmic.)

To make the exposition clearer, first we derive Gy0ri’s theorem in the
mote general form when P is a circuit. We then show how the same
idea carries over to the weighted case. Henceforth we assume that the

underlying P is a circuit.

TuEOREM 6.1. If & is a system of subpaths of a directed circuit P, the
maximum cardinality of a strongly representable sub-family of & is equal to
the minimum cardinality of a generator of #, that is, o(F )= y(F).

Proof. We are going to prove only the non-trivial direction o2 y. Let
us recall that & denotes the set of all represented paths (F, f) where
feFe#. Call a member (F, ) of & essential if there is no member F’
(#F) of & for which fe F' c F. With each essential member (F, f)of &
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we associate a pair (A4, B) of disjoint subsets of " where (A4, B) is a parti-
tion of the node set V(F) of path F so that A {respectively, B) consists of
:..w nodes of ¥ preceding edge f (following f). Let .2, denote the family of
pairs obtatned this way.

LEmMMa 6.2. &, is crossing,

Proof. Let (4, B) and (A4', B') be two crossing members of Fg. Let
(F, /) and (F', /") denote the corresponding essential members of &. Since
{4, B) and (4’, B') are crossing, fe F’' and ' € F. )

We claim that neither 4 and A’ nor B and B are comparable as sets.
Indeed, suppose to the contrary that, say, 4 includes 4'. Since (F, £} is
essential, B’ properly includes B. But this means that (4, B) and (A’, B')
are comparable pairs contradicting the assumption that they are crossing.

It follows that (4 n.A', Bu B') is a pair associated with the represented
path (F’, £} and (4L A, Bn B') is a pair associated with the represented
path (F, f").

In order to show that (4uA', B B') and (4~ A', BUB'} belong to
Zg, we have to prove that the respectively associated pairs (F*, f) and
(F, /') are essential. We prove this only for (F, f*); the proof is analogous
for (F7, f). If, indirectly, there were a member X of & so that f'e X< F,
then f¢ X since (F, f) is essential. But then X< F', contradicting Emm
(F', ') is essential. |

Clearly, an independent sub-family of %, corresponds to a strongly
representable sub-family of #.

.3089&3 let C:={¢,,..,c,} be a covering of &, , where ¢,, .., ¢, are
directed edges on the ground set V. Let B, be a sub-path of P whose first
:o_m_m (resp., last node) is the tail (head) of ¢, and let #:={8B,, .., B}. We
claim that 4 is a generator of #. For otherwise there is a minimal member
Fin & that is not the union of some members of 4. Hence there is an edge
f o.m F so that (#) there is no member B of 4 for which fe B< F. Because
C is a covering of pairs associated with essential pairs, (F, f) cannot be
essential. That is, there is a member F’ of # so that fe F' c F. By the mini-
mal choice of F, F' is the union of some members of & contradicting (*).

Now the theorem immediately follows from Theorem 2.5. |

Remark. Another natural possibility to generalize Gyéri's theorem is
that we consider a family of subpaths of an arborescence. However, as
Lubiw [17] showed by an example, the min—-max relation is not
necessarily true in this case.

Suppose that we are given a non-negative, integer-valued weight function
w on the edges of P. With the help of w we define a weight function on the
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set of represented paths, namely, w(F, f):=w(f}. (It will not cause any
ambiguity that the same term w is used for both functions.)

We say that a family # of {not-necessarily distinct) sub-paths of P
is a w-generator of & if for each pair (F,e) with e Fe # the family #
contains at least w(e) subpaths of F each containing e. Let y,(#) denote
the minimum cardinality of a w-generator of #. Clearly, when w=1, we
are back at the notion of generator. Let (%) denote the maximum
weight of an independent sub-family of %. The following theorem was
proved by Lubiw [17] in the special case when no member of & contains
v, as an inner node, or equivalently, the underlying P is a simple path.

THEOREM 6.3. Given a family ¥ of subpath of a directed circuit P, one
has o (F)=y[(F}.

Note that this theorem is of some interest even in the special case when
w is 0-1-valued. We are back at Gy6ri’s theorem when.w=1and P is a
path.

Proof. We define a function p’ on the set of all pairs (4, B) of subsets
A, B of V as follows. Let p'(A4, B) :=w(f) if (4, B) is a member of &
associated with an essential member (F, /) of % and zero otherwise. It
follows from the definition of w and from Lemma 6.2 that p' is crossing
bi-supermodular.

Now the theorem follows from Theorem 2.3 in precisely the same way
that Gy6ri's theorem was derived in the preceding proof from Theorem 2.5.
(That is, one observes that an independent sub-family of %, corresponds
to an independent sub-family of & and hence &, (%) is at least as big
as v, in Theorem 2.3. Furthermore a covering of p' corresponds to a
w-generator of % and hence y,(#) is at most 7, in Theorem 2.3.) ]

Of course, the reduction above makes it possible to use degree
constrained and/or minimum node-cost versions of Theorem 2.3 and there-
fore one can handle variations of Gy6ri’s theorem. For example, given two
cost functions on the nodes, each possible generating path having a cost
defined by the sum of the first cost of its first node and the second cost of
its last node, one can derive a formula for the minimum weight of a
generator of #.

Finally we remark that the path problem in Theerem 6.3 was reduced to
such a special case of the problem of covering bi-supermodular functions
when the number of pairs with positive p(X, ¥) is bounded by |P|?, a
power of the size of the ground set. In Section 7 we exhibit a polynomial
time algorithm for such a p. That algorithm relies on the ellipsoid method
and we consider it solely as a proof of the existence of a polynomial-time
algorithm.
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In .Ea m—unam_ case when P is a path, Lubiw [17] designed a purely
combinatorial algorithm which provides a proof of the theorem, as well. Is

there an analogous combinatorial algorithm for the general case when P is
a circnit?

7. ALGORITHMIC ASPECTS

.Ioi can we construci an optimal (integer-valued) covering of a
bi-supermodular function? The proof of the main Theorem 2.3 includes
non-constructive parts and at the present time we do not know any other
proof (even for the consequence Theorern 2.5) that may give rise to a
polynomial-time algorithm. (Note however that, relying on contra-
polymatroids, there is a combinatorial algorithmic approach to Theorems
2.9 and 2.10.} Because of the applications we discussed in previous sections,
it would be highly desirable to develop a constructive proof for
Theorem 2.3.

In order to indicate the level of difficulties, here we briefly mention that
maﬂ_.nwsam. well-known theorem on partition of matroids follows from our
model.

.,_,Emo_wmz 7.1 [Edmonds, 2]. Given k matroids M, on a ground set S
with rank-function r;, S includes k pairwise disjoint bases, one from each
matroid, if and only if

Y q(Z)< 12| (7.1)

holds for every subset Z of § where gq.(Z) =r8)—ri{S—-2).

Proof. Note that ¢,(Z) may be interpreted as the minimum cardinality
of the intersection of Z and a basis of matroid M, (and this is why g, is
sometimes called the co-rank function of M,). This interpretation shows the
necessity of (7.1).

To prove the sufficiency, let T:={¢,, .., .} be a set of k new clements
and define a function p: 4(S, T} > Z ., as follows. For X< S, Y< T, let
.ﬁC\, Y):=g,(X) if Y={t;} for some i=1, .., k and :=0 otherwise. This p
is a crossing bi-supermodular function. Let m_,,(5) :=1 for each se S

wwcoo q; is monotone increasing, we see that # ;= {(Z, t,):i=1, .., k} is
an independent subfamily of «/(Z, T) for which p(#) is maximum and
hence p;, (Z)=p(F) =73 ¢,(Z). Therefore (7.1) implies p* (Z)<|Z! for
every Z< 5, that is, (2.4a) is satisfied with respect to the given choice of p
and m,,,. By Theorem 2.7 there is an integer-valued covering z of p so that
9. (s)=1 for every seS. Let S;:={seS z(st,)=1}. {S:i=1,. k) is
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a partition of S. Since |§,|=2z(S,1)=2p(S, 1;)=¢4,(S)=r,(S5), each §,
includes a basis of M, as required. ||

The purpose of this section is to prove that there is a (strongly) polyno-
mial algorithm to compute a minimum covering of a crossing bi-super-
modular function p. We also exhibit an algorithm, at least for a special
class of bi-supermodular functions, to compute an independent family &
for which p(#) is maximum. These algorithms rely on the ellipsoid method
and they are pretty pedestrian anyway. We do not think that this kind
of algorithm might have any practical use or mathematical beauty. But
their existence may serve as an encouragement to construct purely
combinatorial, more efficient polynomial time algorithms for the covering
problem. o

Let p, §, T, A%, of* be the same as in Theorem 2.3. For simplicity we
assume that S and T are disjoint. (If this were not the case, then by
splitting each element of $ T into two one can easily formulate a new
covering problem which is equivalent to the original one and the corre-
sponding sets §', T’ are disjoint.) Theorem 2.3 asserts that the following
pair of dual linear programs have integer-valued optima:

min(z(A*): z: A* >R, z{X, Y)2p(X, Y) for every (X, Ve ) (72)

max AM (w(X, NplX, V) (X, Ned*xw &* >R,
(13)

Y (w(X, Y)Y (X, V)es* xe X, ye ¥Y) <1 for every x&m\h*v.

For a polyhedron P defined by linear inequalities a separation n__.wo:.%i
determines if a given point z belongs to P or not, and in the latter case it
determines an inequality defining P which is violated by z.

LeMMa 7.2. There is a polynomial-time separation algorithm for the
covering problem (7.2).

Proof. For an edge e=ste A* define p(X, Y):=p(X, Y) if e covers
(X, Y) and :=0 otherwise. Then p, is crossing bi-supermodular. Clearly, z
is a covering of p if and only if z is a covering of each p_, ¢ € A*. Therefore
it suffices to solve the separation problem separately for each of the
possible |3] {T| edges.

Let us fix now e = s¢ and define a set-function g, on the subsets of SU T
as follows. For X< 8§, Yc T, let g{Xu({T—Y)):=p (X, Nifp(X, ¥)=>0
and — oo otherwise. Then g, is a fully supermodular set-function. Since J,
is fully submodular, so is » :=8, —g,. Now z is a covering of p, if and o&w
if b is non-negative. Grotschel er al. [ 10] developed a strongly polynomial
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algorithm to minimize a submodular function. With the help of this one
can compute a subset Z< 5 u T for which &(Z) is minimum. If this value
is non-negative, then we conclude that z is a covering of p,. If 5(Z) <0,
then by letting X:=8SnZ, Y:=T~Z we have z(X, V) =5 (Z)=b(Z) +
gAZ)=b(Z) +p (X, Y}<pX, V). ]

Note that the algorithm of Grétschel et al. relies on the ellipsoid method.
There are special classes of crossing bi-supermodular functions when direct
combinatorial algorithms are available for the separation problem. One
can show that this is the case for the special functions analyzed in the
previous sections. For example, by using max-flow min-cut computations
one can decide in polynomial time if a given augmentation of a digraph is
k-connected. Similarly, in Gydri’s theorem (and in its extensions) it is easy
to decide if a system of paths is indeed a generator of a specified path
system.

The algorithm we propose is going to use the ellipsoid method in a
second level, as well. Therefore, even in this special case when the separa-
tion is possible combinatorially, we need the ellipsoid method.

LeMMa 7.3, There is a polynomial-time algorithm to compute fractional
optimal solutions to (1.2} and to (7.3} and, in particular, to compute their
optimum value v, in common.

Proof. It is well-known (Grotschel er al. [ 10, Theorem 6.4.1]) that the
optimal solutions in question may be computed in polynomial time if a
separation algorithm is available. This was ensured by Lemma 7.2, ||

Algorithm for the Primal Optimum

Lemma 7.4, There is an algorithm to compute an optimal integer-valued
solution to (72) such that the complexity of the algorithm is polynomial in
Mh where M denotes the maximum value of p and h:=|S} |T}.

Proof. The idea behind the algorithm comes from the proof of
Theorem 2.3. We consider all the edges in A(S, 7) in an arbitrarily
specified order and compute z({e) for the currently considered edge e. At the
beginning z =10.

Choose the first edge e=st. Recall the definition of the projection p*
of p along e and also that ¢ was called reducing if (x) v,—l=v,. By
Lemma 7.3 we can compute v, and v, and hence we can decide in
polynomial time if a given edge is reducing or not.

In an elementary step of the procedure we increase z{e) by 1 if ¢ is
reducing. Iterate this elementary step by restarting with the same edge e
and with the revised function p :=p, as long as ¢ is reducing with respect
to the current p. When the current edge is no more reducing, z(e) is
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declared final and we proceed with the subsequent edge in the given
ordering of edges by iterating the above procedure.

Since this algorithm is nothing but the repeated mvu_mnwaou. of the
elementary steps applied in the proof of Theorem 2.3, the final z will be an
optimal integer-valued covering of p. .

Let M denote the maximum value of p. Since any edge can be reducing
at most M times, for a fixed edge we need at most M elementary steps; that
is, we have to apply the algorithm ensured by Lemma 7.3 at most AM

times. §

The above algorithm is of polynomial time only if the maximum of p is
bounded by a power of A

TueoreM 7.5. There is a polynomial-time algorithm to compute an
optimal integer-valued solution to (7.2).

Proof. We show how the general covering problem can .@o reduced in
polynomial time to another covering problem where the maximum value of
the defining bi-supermodular function is at most £ ,

By Lemma 7.3 we can compule an optimal fractional solution x to (7.2).
Let z, denote the componentwise integer part of x; that is, for every ec A¥*,
z(e):=x(e) ] and let x" :=x—2z,. .

Define p' as follows. p'(X, ¥} :=max{(0, p(X, 5IN~.§.\, ). Now p' 15
crossing bi-supermodular and its maximum value M’ is at most r By
Lemma 7.4 we can find an optimal integer-valued covering 2z’ of p’ in no
more than AM' < h? elementary steps. Since x' is a fractional covering of ,a.n
Theorem 2.3 ensures that z'(A*)=v, <x'(4*). Morcover, N.“uu_..f.\ is
clearly an integer-valued covering of p and Nﬁm*vmik*v. .man x is an
optimal covering, z(A4*)=x(A*) and hence z is an optimal integer-valued
covering of p. §

Algorithm for the Dual Optimum in a Special Case

We do not have any polynomial time algerithm for finding an integer-
valued optimum to (7.3). In particular, we do not know roﬁm to find a
family of one-way pairs violating (4.3), if there is one. There is r.oiﬂwoa
such an algorithm for the class of functions when the :E:v.mn of pairs E_F
positive p-value is “small.” Note that Gydri’s theorem and its extensions in

Section & belong to this category.

LEMMA 7.6. There is a algorithm to compute an integer-valued optimum
to the dual covering problem (1.3) in polynomial time whenever the number
F of pairs (X, Y) for which p(X, ¥)>0is bounded by a power of h :={8| |T|.
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Proof. For any subset F< A(S, T) we can consider a reduced problem
defined by p. where pp(X, ¥) :=p(X, ¥) if F does not cover (X, ¥) and
=10, otherwise. By Claim 2.1, p, is crossing bi-supermodular and hence
with the Primal Algorithm we can compute v, in polynomial time.

The idea behind the algorithm is the easy observation that a pair (X, ¥)
belongs to an optimal independent family & of pairs of subsets (in
Theorem 2.3) if and only if v, = p(X, Y) +v,, where F:= A(X, ¥).

Therefore we test this equality for each (X, ¥) with positive p(X, ¥).
Since there are f such pairs, after at most f applications of the Primal
Algorithm we find a pair (X,, ¥,) for which the equality holds. We then
iterate the same procedure by starting with the reduced problem defined by
Pr Where F:=A(X |, Y,). Since an independent family may have at most 4
members, altogether we need the Primal Algorithm no more than A°
times. |1
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