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Abstract

Graph orientation is a well-studied area of combinatorial optimization, one that provides a
link between directed and undirected graphs. An important class of questions that arise in this
area concerns orientations with connectivity requirements. In this paper we focus on how similar
questions can be asked about hypergraphs, and we show that often the answers are also similar:
many known graph orientation theorems can be extended fo hypergraphs, using the familiar
uncrossing techniques. Our results also include a short proof and an extension of a theorem
of Khanna et al. (Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Alogrithm, 2001, pp. 663-671), and a new orientation theorem that provides a charactenization
for (2k + 1)-edge-connected graphs.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One of the early examples of graph orientation results is the theorem of Robbins
[11]: a graph has a strongly connected orientation if and only if it is 2-edge-connected.
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As an illustration, he rephrased this as a traffic control problem: decide whether the
streets of a city can be turned into one-way streets such that any location in the
city remains reachable from any other location. Robbins’ problem of course has many
different extensions; one possible direction of generalization could be illustrated by the
following exercise. Consider m people and rn computers, where each person has access
to a given subset of the computers; the task is to decide whether the authorizations of
each person can be restricted to read-only access on all but one of the computers, such
that it remains possible to transfer data from any computer to any other. This can be
seen as a hypergraph counterpart of Robbins’ problem, the latter being equivalent to the
case when everyone has access to exactly two computers. If the connectivity condition
is required to hold even when £—1 people are absent, then we get a generalization of the
k-edge-connected graph orientation problem solved by Nash-Williams [10]. However,
one immediately sees that 2k-edge-connectivity of the access hypergraph (i.e. no matter
how the computers are divided into two groups, there are at least 2k people having
access to machines in both groups), which was a sufficient condition for graphs to
have a k-edge-connected orientation, is no longer sufficient.

The objective of the present paper is to study orientation problems where the graph
case can be extended in the above manner to hypergraphs, and where good characteri-
zations can be proved using more-or-less standard uncrossing techniques. After giving
some preliminaries on directed hypergraphs in Section 2 we prove a hypergraph ori-
entation theorem in Section 3 that provides hypergraph versions of some known graph
theorems, including those of Robbins and Nash-Williams.

In [8], Khanna et al. proposed a new framework, called network design with ori-
entation constraints, that successfully integrated network design problems like mini-
mum cost rooted k-edge-connected sub-digraphs, and orientation problems like rooted
k-edge-connected orientation of a mixed graph. In Section 4, we show that their for-
mulation is a TDI system, thus obtaining new min—-max formulas, and we extend their
result to hypergraphs, as well.

Finally, Section 5 includes a theorem on hypergraph orientations with a special local
connectivity criterion, a result that is new even when specialized to graphs; in the latter
case, it also gives a new characterization of (2& + 1)-edge-connected graphs.

All of the results are based in some way on the uncrossing technique, so the notions
related to it are presented here in some detail. On a ground set ¥, two subsets X, Y C V
are called intersecting if none of X —Y, ¥ —X and XNY is empty; they are crossing if
in addition XUY # V. A family of sets is a collection of subsets of the ground set V,
with possible repetition. The union of two families %, and %, denoted by F+.%», is
the family where the multiplicity of every subset is the sum of its multiplicitics in %,
and #;. A family is cross-free if it contains no crossing pairs of sets; it is regular if
every node of the ground set is contained in the same number of members; this number
1s called the covering number. Given a family %, co(#) denotes the family obtained
by replacing every member of & by its complement. Clearly if # is cross-free or
regular, then so is co(F). If & is a partition, then co(F) is called a co-partition. For
a vector x : ¥/ — R and a set ¥ C ¥V, we use the notation x(¥) 1=} _, x(v).

Let y : 2¥ — @, be a non-negative set function, By the uncrossing operation
we mean the following modification of y: given two crossing sets X; and X; with
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¥(X1), ¥(X2) > 0, decrease y(X)) and y(X2) by min{ y(X;), ¥(X3)}, and increase y(XiN
Xy) and y(X; UX;) by the same amount. If y(X) is defined as the multiplicity of X
in a family &, then we speak of uncrossing F.

Lemma 1.1, After ﬁni'tely many uncrossing operations y is positive only on a cross-free
Sfamily of sets.

Proof. This well-known result can be seen as a special case of the following claim
(note that the claim does not hold for non-negative real numbers!):

Claim 1.2, Let xy,...,x, be non-negative rational numbers. Suppose that we apply
repeatedly the following operation: for some indices i < j <k <1 where x; and x;
are positive, decrease x; and x; by min{x;,x; }, and increase x; and x; by min{x;,x; }.
Then this operation can be repeated only a finite number of times.

Proof. By multiplying all x; values by a suitable integer, we can assume that every
x; 1s integer. Now suppose that there is an infinite sequence of operations, and let
m be the smallest index for which x, decreases infinitely many times. Then one of
X1,---,Xm—1 inCreases infinitely many times by at least 1, but decreases finitely many
times, which is impossible since 3 x; remains constant and x; > 0 for every i. O

Let Xi,...,X; be an ordering of the subsets of ¥ compatible with the standard partial
order; let x; := y(X;). Then it follows from the claim that after finitely many uncrossing
steps uncrossing is impossible, thus y is positive on a cross-free family. [

The usefulness of the uncrossing technique in combinatorial optimization follows
from the nice properties of cross-free families, that are often linked to dual integrality
properties. It is well known that every cross-free family & has a tree-representation
(7,¢), where T = (W,4) is a directed tree, and ¢ : ¥ — W is a mapping such that
{o~Y(W.) | ec 4} = F, where W, is the component of T — e entered by e. Here we
only mention the following simple consequence:

Lemma 1.3. A4 regular cross-free family decomposes into partitions and co-partitions.

2. Preliminaries on directed hypergraphs

The concept of directed hypergraphs was introduced in many different contexts, in
areas like propositional logic, assembly, and relational databases, to efficiently model
many-to-one relations; surveys of these applications can be found in {6,7]. In our
terminology, a directed hypergraph is a pair H = (V, &), where ¥ is a finite ground
set, and & is a finite collection of so-called hyperarcs' (possibly with repetition): a
hyperarc is a subset Z C V with a designated head node v € Z, and it is denoted by
Z". The nodes of Z — v are called the tail nodes of Z'. Clearly, a digraph is a directed
hypergraph where every hyperarc has two nodes.
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A natural way of looking at a directed hypergraph is that it is an orientation of
a hypergraph 4 = (V, &), i.e, a head node is assigned to every hyperedge in &. To
formulate orientation problems, some notions should be introduced on the connectivity
properties of directed hypergraphs.

A path in a directed hypergraph is an alternating sequence, without repetition, of
nodes and hyperarcs v;,e,12,€,..., e, t341, where v; is one of the tail nodes of €,
and v;;; is the head node of e;. The node ¢ is said to be weakly reachable from the
node s if there is a path from s to 7. The reason for using the adjective “weakly”
is that in some applications of directed hypergraphs such as assembly or databases, a
different notion of reachability is appropriate (see [7]). However, that framework does
not allow for an analogue of Menger’s theorem, which restricts the possible discussion
of connectivity. On the other hand, Menger’s theorem extends naturally to directed
hypergraphs with respect to weak reachability.

A hyperarc Z” is said to enter a set X if veX and Z—X # 0. The set of hyperarcs
of the directed hypergraph A entering a set X C V is denoted by A (X ), and gz(X)

denotes the number of hyperarcs in 47 7(X) (if it causes no amblgulty, then the indi-
cation of the hypergraph in the subsc‘rlpt is sometimes omitted, or the hyperarc set is
indicated instead). For two nodes s and ¢, a set X is an §t-set if s ¢ X and r€ X.

Proposition 2.1. In a directed hypergraph H=(V, &), there exist k edge-disjoint paths
from node s to node t if and only if ¢5(X) = k for every 5t-set X.

Proof. To reduce the problem to the digraph case, a new node v, is added to V for
every hyperarc e € &, and the hyperarc e=Z" is replaced by arcs uv, for every uc Z—v,
and an arc v.v. There is a one-to-one correspondence between the paths from s to ¢ in
this digraph, and the paths from s to ¢ in the original directed hypergraph. By applying
Menger’s theorem to the digraph, we get the conditions of the proposition. [

Let d3(X,Y) be the number of hyperarcs Zc & with Z C X UY, Z - X #* { and
Z — Y # (0. Analogously to the case of digraphs, the set function 07 has the following
property:

Claim 2.2. Let H be a directed hypergraph, and X,Y C V. Then gg(X)+ g(Y) =
g X NY)+os(XUY)+dy(XY).

Like Menger’s theorem, Edmonds’ disjoint branching theorem [1] can be easily
adapted to directed hypergraphs. Given a set § C V, a directed hypergraph H = (¥, &)
is connected from S if every node v €V is weakly reachable from some s€ S.

Proposition 2.3. Let H=(V,&) be a directed hypergraph, and S, ..., Sy subsets ofv;
Jor X CV, let f(X) denote the number of sets S; not dlSJalnt from X Then H can
be decompased into directed sub-hypergraphs H,,... H, such that H; is connected
Sfrom S;, if and only if

e XY=k — f(X) forevery Q£X CV.
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Proof. We prove the theorem by induction on the number of non-graph hyperarcs. If
every hyperarc is a graph arc, then we can use Edmonds’ theorem. Suppose that there
is a hyperarc e=Z"€ & with |Z| > 2. Call a set X C V —s tight if eg(X)=k— f(X).
Let & be the family of tight sets entered by e. If # ={ or # has a unique maximal
clement X, then we can replace the hyperarc Z° by an arc uv where u is an arbitrary
node in Z — X, and use induction. If % has at least two maximal elements, say X
and Y, then e cannot enter X U Y, since by Claim 2.2 the union would also be tight,
which would contradict the maximality. But then gg(X NY)+ (X UY)=gz(X)+
0g(Y)—dp(X,Y) <2k — f(XNY)— f(XUY), s0 XNY or X UY would violate the
condition.

These simple results show that weak connectivity of directed hypergraphs can be
treated in essentially the same way as edge-connectivity of digraphs. Thus orientation
problems can be formulated in the same general framework that is commonly used for
graph connectivity orientation. Let H = (V, &) be a hypergraph, and 4 : 2" — Z a set
function, called the requirement function;, we always assume that (@)= h(¥)=0. An
orientation H = (V,&) of H is said to cover h if 05(X) = h(X) for every X C V.
The hypergraph orientation problem is to find an orientation of a hypergraph (or of a
sub-hypergraph with specified properties) that covers a given requirement function 4.
For example, for a positive integer %, if # equals & on all non-empty proper subsets
of V, then the task is to find an orientation where every node is connected to every
other node by & edge-disjoint paths (a k-edge-connected orientation).

In this paper we study the hypergraph orientation problem for supermodular-type
requirement functions. A set function /# on a ground set V' is intersecting (respectively
crossing) supermodular, if

BX)+hY) <X NY)+hX UY) (1)

for any intersecting (respectively crossing) pair X,Y C V; it is positively intersecting
supermodular if (1) holds whenever A(X) > 0, A(Y) > 0 and X,Y are intersecting.

3. Hypergraph orientations covering non-negative crossing supermodular set functions

In {4], the graph orientation problem for non-negative crossing supermodular func-
tions was solved, which includes as a special case k-edge-connected orientations with
upper and lower bounds on the in-degrees of the nodes. In this section we extend this
result to hypergraphs.

For a hypergraph H = (V,&) and a set X C V, let iy(X) denote the number of
hyperedges Z € & with Z C X. For a family # let

ep(F) := max { Z os(X) | H is an orientation of H} . (2)
XeF

Note that if & is regular with covering number «, then clearly

en(Fy=al6| - Y in(X). 3)

XeF
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Claim 3.1. If %, and %, are regular families, then ey(F |+F 3)=ey(F ) +eu(F)>).

If # is a partition, then ey (%) is the number of hyperedges that are not subsets of
any member of the partition (these are called cross-hyperedges). It should be noted that
for co-partitions it does not count the number of cross-hyperedges of the corresponding
partition, except when H is a graph.

The main theorem of the section is the following:

Theorem 3.2. Let H =(V,&) be a hypergraph, and h a non-negative crossing super-
modular set function. There is an orientation of H covering h if and only if

> hX) < en(F) 4)

XegF

for every partition and co-partition F .

Proof. The following hypergraph orientation lemma is a straightforward generalization
of a graph orientation lemma that reduces the problem of giving a feasible orientation
to the problem of finding suitable in-degrees.

Lemma 3.3. Given a hypergraph H and a vector x . V — Z_, there is an orienta-
tion H of H such that 0;3(v) =x(v) for every veV, if and only if x(V)=|&| and
x(Y) =z ig(Y) for every Y C V.

Proof. The necessity is straightforward. We prove the sufficiency by induction on the
number of hyperedges. Call a set Y tight if x(Y') =iy(Y). Let Z € & be an arbitrary
hyperedge; then x(Z—X) = 1 for any tight set X 2 Z (including X=0), otherwise ZUX
would violate the condition. If there is a node v€Z with x(v) > 0 such that Z C X
for every tight set X containing v, then we can remove the hyperedge Z, decrease x(v)
by one, find a feasible orientation of the resulting hypergraph by induction, and add
the directed hyperedge Z'. Otherwise, since a single tight set X 2 Z cannot contain
every node v € Z with x(v) > 0, we can choose tight sets X, X, that are both maximal
among the tight sets satisfying X NZ 3 § and Z — X # @. Then X; U X, is tight and
d(X1,X;) =0, since ig(X1) + ig(X2) = ig(X) NX2) + ig(X; UX2) — dp(X3,X2); thus
Z — (X; UX,) # 0, which contradicts the maximality of X; and X>. [

Call a partition or a co-partition F tight if ), 5 h(X) = ey(F). Observe that
the crossing supermodularity remains valid if we increase the value of 4 on some
singletons; we can thus assume that every singleton {v} is in a tight partition % ,.
Let # = } ., %, be the union (with multiplicity) of these tight partitions; then
> xez MX) =ey(F). Our aim is to show that this implies >~ ., A({v}) = |£|. We
can uncross # using the standard uncrossing operation, to obtain a cross-free regular
family % including all the singletons, for which

3" hX) = en(F), (5)

XeF!
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since an uncrossing step does not decrease D, .5 #(X) thanks to the crossing super-
modularity, and does not increase ey (% ).

Let #" be the family obtained by decreasing the multiplicity of every singleton
in #' by 1. By Lemma 1.3, #” decomposes into partitions and co-partitions, and by
Claim 3.1, (4), and (5), these must be tight partitions and co-partitions, and the partition
formed of singletons is tight as well. As a consequence, if we define x(v) := h({v})
for every ve ¥V, then x(V) = |&].

To complete the proof, it suffices to show that x(Y) = iy(Y) + A(Y) for every
set ¥ C V, since in this case by Lemma 3.3 and the non-negativity of 4 there is
an orientation with in-degree vector x, and since every set ¥ is entered by x(Y) —
in(Y') hyperarcs, this orientation covers &. To prove the inequality, define the partition
Fy={Y,{v}: veV — Y} for every set ¥ C V. Using (4) on the partition Zy,
we get

WYy =18 —x(V —Y)=16] - > hX)+hY)
XEFy

2 |6 - en(Fy) + M(Y)=iu(Y) + h(Y). O
Remark. In [5], Fujishige proved the following:

Theorem 3.4 (Fujishige [5]). Let p : 2V — Z U {—co} be a crossing supermodular
Sfunction. There exists a vector x 1 V — Z satisfying x(V)= p(V) and x(Y) = p(Y)
VY CV, if and only if

> pX) < p(v),
i=1

t
> p() < (t—Dp(¥)
i=1
both hold for every partition {Xi,..., X} of V.

Using Fujishige’s theorem, a short alternative proof of Theorem 3.2 can be given.
Define the set function p(X) := A(X) + ix(X); then p is crossing supermodular. If
F = {Xi,...,X;} is a partition of ¥, then, by (4) and (3), 3 p(X)) = S A(X;) +
Y in(X) < en(F) + X in(X) = 6| = p(V), and 3 p(X) = S h(XK) + 3. in(X) <
en(Co(F)) + > in(Xi) = (t — )] = (¢t — 1)p(V). Thus Theorem 3.4 implies that
if the conditions (4) hold, then there is an integral vector x : ¥ — Z satisfying
x(V)=p(V)=|&| and x(Y) 2 p(Y) =ig(Y)+ A(Y) 2 ixg(¥Y) VY C V. By Lemma
3.3, H has an orientation with in-degree vector x, and it is easy to check that this
orientation covers A. [

Remark. The proofs show that Theorem 3.2 is true under the weaker assumption that
h 1s non-negative and A+ is crossing supermodular. If 4 is monotone decreasing (that
is, H(X) 2 h(Y) f X C Y), or it is symmetric, then the co-partition type constraints are
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unnecessary, since Yy MX) 2 )y MX) and en(F) < eg(co(F)) for every
partition % .

A directed hypergraph is called (k, I)-edge-connected for non-negative integers k > [
if there is a node s € ¥ such that there are £ edge-disjoint paths from s to any other
node, and there are ! edge-disjoint paths to s from any other node. A hypergraph # is
called (k, I)-partition-connected for non-negative integers k = I if ex(F ) = k(t—1)+1
for every partition # with ¢+ members. Using Proposition 2.1, we have the following
corollary:

Corollary 3.5. A hypergraph has a (k, I)-edge-connected orientation if and only if it
is (k, I)-partition-connected.

Combining this result with Proposition 2.3, we get the following:

Corollary 3.6. A hypergraph H has a (k,)-edge-connected orientation, if and only
if any hypergraph obtained from H by removing [ hyperedges decomposes into k
disjoint (1,0)-partition-connected sub-hypergraphs.

4. Hypergraph orientations covering positively intersecting supermodular set
functions

In [8], Khanna et al. introduced the directed network design problem with orientation
constraints. By this framework they gave a common generalization of subgraph prob-
lems such as finding a minimum cost rooted k-edge-connected subgraph of a digraph
(that was solved in [3]), and orientation problems like rooted k-edge-connected orien-
tation of mixed graphs, discussed in [2]. The basic problem is to find a minimum cost
subgraph of a digraph that satisfies a prescribed connectivity property; however, there
are also orientation constraints: additional constraints on some designated oppositely
directed pairs of arcs, which require that at most one member of the pair can be cho-
sen in the subgraph (the term “orientation constraint” is appropriate since a constrained
pair of arcs can be thought of as a single undirected edge that has to be oriented or
deleted, and the two possible orientations can have different costs). One of the main
results in [8] stated that for the problem of finding a minimum cost subgraph that satis-
fies the orientation constraints and covers a given positively intersecting supermodular
requirement function, the natural LP relaxation defines an integral polyhedron (note
that for crossing supermodular requirement functions, this would include NP-complete
problems).

In this section we extend this result to hypergraphs, and in addition show that the
LP relaxation they used is in fact a TDI system; this latter result also enables us to
formulate a min-max theorem. First, we show that in the more restricted case when
the requirement function is intersecting supermodular, the orientation constraints can be
incorporated into a construction of Schrijver [12] that transforms the problem without
orientation constraints into a submodular flow problem; moreover, this construction can
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be easily extended to the hypergraph problem described below. A mixed hypergraph is
a triple M=(V; &, ), where & is a set of hyperedges and .« is a set of hyperarcs. An
oriented sub-hypergraph of M is a sub-hypergraph of a directed hypergraph obtained
from M by orienting the hyperedges in &.

Theorem 4.1. Let M = (V; &, %) be a mixed hypergraph, and h : 2V ~ Z an inter-
secting supermodular requirement function. Suppose that a cost is assigned to each
hyperarc in A, and to each possible orientation of every hyperedge in &. Then the
problem of finding a minimum cost oriented sub-hypergraph of M covering the re-
quirement function h can be formulated as a submodular flow problem, solvable in
polynomial time.

Proof (Outline). Since the proof is a straightforward adaptation of a construction of
Schrijver [12], only an outline is given here. We define a directed bipartite graph
G =(V,W;F) with arc costs, where the nodes of W correspond to the hyperedges and
hyperarcs in & U «7; we denote a node corresponding to a hyperedge or hyperarc e by
w,.. The arc set F contains an arc from w, to the head of e (with arc cost equal to
the cost of ¢) if e i1s a hyperarc; if e is a hyperedge, then F contains arcs from w, to
every node of e (each with cost equal to the cost of the corresponding orientation of
e). A set function p is defined on the ground set ¥ U W as follows:

X NV) if w,eX implies that the nodes of e are in X,
pX):=4¢ —1 if X ={w,} for some ec &,
—00 otherwise.

The intersecting supermodularity of % implies that p is crossing supermodular. Con-
sider the submodular flow problem of finding a minimum cost directed subgraph
G =(V,W,F’) of G that satisfies

per(X)—pag(VUW —X)2= p(X) forevery X CVUW. (6)

Since p({w.})=—1 if e € &, w, is the tail of at most one arc of G'. Thus the subgraph
G’ corresponds to an oriented sub-hypergraph M’ of M. It is easy to check that M’
covers the requirement function 4 if and only if G’ satisfies (6). O

If the requirement function is only positively intersecting supermodular, then the above
construction does not lead to a submodular flow problem, and we do not know whether
the problem defines a submodular flow polyhedron. The aim of the next paragraphs
is to prove that a natural LP relaxation is nevertheless a TDI system. To formulate
the appropriate linear program, the hypergraph analogue of the orientation constraints
must be defined. A set & of hyperarcs is called parallel if every hyperarc in & is
an orientation of the same hyperedge. In Theorem 4.1, we would obtain an equiva-
lent problem if we replaced every hyperedge of the mixed graph by a set of parallel
hyperarcs (consisting of all possible orientations of that hyperedge), and imposed the
additional constraint that at most one of these parallel hyperarcs can be in the chosen
sub-hypergraph. This concept of orientation constraints can be further generalized: we
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allow arbitrary disjoint sets of paraliel hyperarcs, and arbitrary lower and upper bounds
on the number of hyperarcs selectable from such a set.

Theorem 4.2. Let H=(V,&) be a directed hypergraph, with f : & — Z. and g :
& — Z. lower and upper integral capacities on the hyperarcs. Let &,,...,6, C &
be disjoint parallel sets of hyperarcs, with corresponding lower and upper bounds
Lu; (i=1,...,t). Let h be a positively intersecting supermodular set function on V,
and ¢ : & — Z a cost function. Then the system

min » _ c(e)z(e) (7
ecd
Z z{e) 2 h(X) for every X C V, (8)
e€d(X)
f(e) < z(e) < g(e) for every ecé, (9)
LY ze)<w (i=1,...,1) (10)
EE(?,'

is TDI. Moreover, the values of an optimal dual solution corresponding to inequalities
(8) can be assumed to be positive on a laminar family of sets.

Proof. Let ¢ be an integral objective vector. Let y; denote the dual variables associated
with the inequalities in (8), and let y, denote the dual variables associated with the
other inequalities. For a hyperedge ¢ € &, the dual constraints are of the form

S 5@ | + ke < ce) (11)

Xiecdy X

for appropriate vectors b.. For an appropriate vector b, the dual objective function is

Y @ORX) + b | . (12)

ACV

Let (»7,¥5) = 0 be an optimal dual solution. The main observation is that we can
assume that y{ is positive only on a laminar family #. If y{ is positive on a set
X with A(X) = 0, then we can decrease y{(X) to 0. Suppose that y} is positive
on two intersecting sets X and ¥ where A(X),A(Y) > 0; let a = min{h(X),A(Y)}.
Decrease yj(X) and y{(Y) by o, and increase y[(X NY) and y{(X UY) by a. Since
(X )+ 0.(Y) 2 (X NY)+ (X UY) for each edge e, inequality (11) is preserved.
The positively intersecting supermodularity of 4 implies that the dual objective function
(12) does not decrease. By Claim 1.2, after a finite number of uncrossing steps, we
obtain an optimal dual solution where y{ is positive on a laminar family %
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Modify system (S) by replacing (8) with

> z2e) > hX) for every X € F; . (13)
e€d (X)

let us denote this system by (S’). Then (37, y3) remains a feasible dual solution, and of
course it is optimal. Thus if the modified system has an integral optimal dual solution,
it is optimal for the dual of (8) as well. The rest of the proof consists of showing
that system (S') can be described by a network matrix, hence it has an integral dual
optimal solution, since network matrices are totally unimodular.

The rows of the network matrix will correspond to the arcs of a directed tree 77 =
(W',4"), and the corresponding lower and upper bounds will be denoted by /' and
. The laminar family & has a tree-representation (7, @) where T = (W, 4) is an
arborescence; 7' will include T as a subtree; for an arc @ of T let /'(a) = —oo and
u'(a)=—h(e¢ ' (W,)), where W, is the component of 7 — a entered by a. The node set
W' is obtained by adding new nodes w; (i=1,...,¢) to W (that is, one new node w;
for each orientation constraint &;). For every Z C ¥ let w; € W denote the root node
of the minimal subtree of 7 containing all nodes of ¢(Z). To finish the construction
of T/, add an arc 4 = wzw; to A" for i=1,...,t, where Z; is the hyperedge whose
orientations are in &;. Define the coxrespondmg lower and upper bounds as '(a;) =1,

w'(a;) = u.

The columns of the matrix will represent a set B’ of arcs, with a one-to-one cor-
respondence between the hyperarcs in & and the arcs in 8. To a hyperarc Z' € &,,
assign an arc w;v. To hyperarcs Z* € & not appearing in any &, assign an arc wyb.

Let N denote the network matrix given by the above network (W’;4’,B’). Then the
matrix of the system

{z:B' >R |I'<zN <, f<z<g)}

is totally unimodular. Moreover, by the one-to-one correspondence between the arcs in
B' and the hyperarcs in &, this system is equivalent to system (S’). This implies that
(S') has an integral dual optimal solution, which in turn is an optimal dual solution
for (S). O

The theorem implies that the polyhedron described by (S) is integral, and for every
integer cost function there exists an integral optimal dual solution where the family
of the sets with positive dual variable is laminar. This allows us to formulate fairly
friendly new min-max formulas for some graph problems. For example, what is the
maximum number of undirected edges, or the maximum number of arcs, that can
be removed from a mixed graph such that the obtained subgraph has an orientation
covering a given set function 4? The following corollary describes a min—max formula
that involves both of these problems. The notation eg(#) is used for the value of (2)
corresponding to the undirected graph H defined by a set E of undirected edges.

Corollary 4.3. Let G=(V;E,A) be a mixed graph (where E is the set of undirected
edges and A is the set of arcs). Let ¢ : EUA — {0,1} be a cost function, and
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h:2Y — Z, a positively intersecting supermodular set function. Then the minimum
cost of a subgraph that has an orientation covering h equals
e F) —
Jmax 3 R —ep(F) = Y ealX)+q(F), (14)
XeF XeF

where q(F) is the sum of the costs of the edges and arcs that enter at least one
member of F.

Proof. To formulate the problem in the terms of Theorem 4.2, let the directed hyper-
graph H = (V, & ) be the digraph obtained by replacing the undirected edges of G by
a pair of oppositely directed edges; assign an orientation constraint to every such pair
with /; =0, »; = 1. The cost of the arcs in a pair is the cost of the corresponding
undirected edge in E. The capacities of the arcs are bounded by f =0, g = 1.

For a {0, 1}-valued cost function ¢, consider system (S), and let the dual solutions be
denoted by (y1, y2), where y; consists of the dual variables associated to the constraints
in (8). Take an integral dual optimal solution (y7,y5) = 0, where y; is positive on a
laminar family, and |y3] is minimal. Let # be the laminar family where every set X
has multiplicity y{(X). Then the value of this dual solution is

D hX) —ex(F)— > ea(X) + g(F).

XcF XeF
Conversely, the value of (14) corresponds to the value of the following dual solution
(¥1,¥3). Let & be a laminar family where the maximum is attained in (14). For X C
¥, let y7(X) be the multiplicity of X in #. Define the values of the dual variables
in y; as required by the dual constraints, always setting a variable corresponding to
an arc to 0 if the arc also belongs to an orientation constraint. In this case the dual
objective value is equal to expression (14). [J

5. Special k-edge-connected orientations

A natural generalization of the orientation problems discussed so far would be the
study of orientations satisfying local edge-connectivity requirements. A classical result
in this area is the Strong Orientation Theorem of Nash—Williams [10]; however, its
known proofs require more sophisticated methods than the uncrossing techniques dis-
cussed here. Furthermore, given an undirected graph G=(V,E)and r: V XV — Z,,
the problem of deciding whether there is an orientation of G with at least »(x, y)
edge-disjoint paths from x to y for each x, y € ¥ is NP-complete; the following is a
sketch of the reduction of 3-SAT.

Consider a collection 4 of clauses, and construct the following graph G. For every
pair {x,x} of complementary literals, create two nodes v, and vs, and an edge v,v;.
For each clause c€ %, add nodes s.,#,w.,z:; for each literal y €c, add edges vys,
vyte, V5w, and v,z.. Consider the problem of finding an orientation of G such that for
every clause ¢ € ¢ there arc at least 3 edge-disjoint paths from s, to w,, 3 edge-disjoint
paths from z, to ¢, and 1 path from s, to f.. It is easy to see that the existence of
such an orientation is equivalent to the satisfiability of &.



A. Frank et al. | Discrete Applied Mathematics 131 (2003) 385400 397

In this light, a solution to the following rather restricted local edge-connectivity
orientation problem may have some interest. We consider k-edge-connected orientations
of graphs and hypergraphs, where the number of edge-disjoint paths required between
two designated special nodes can be more than k. First we formulate a partition-type
condition for the hypergraph case, and prove its sufficiency using a modified uncrossing
method; then we show that for graphs a cut-type condition is sufficient; this latter result
is also proved directly using Mader’s splitting off theorem. As a special case we give
an orientation-type characterization of (2k + 1)-edge-connected graphs.

Theorem 5.1. Let H=(V,&) be a hypergraph, s,t €V and ky,k, = k positive integers.
For a non-empty subset X C V let W(X) := k| if X is an 5t-set, (X) .=k if X is
a is-set, and h(X) ‘= k otherwise. Then H has a k-edge-connected orientation such

that there are k| edge-disjoint paths from s to t and k, edge-disjoint paths from t to
s, if and only if

en(F) = ) hX) (15)

XeF

for every partition F (where ey(F) is defined in (2)).

Proof. The goal is to find an orientation that covers 4. Observe that the set function A
has none of the properties discussed in the previous section. As in the proof of Theorem
3.2, we increase the value of & on the singletons so that every singleton {v} is in a
tight partition &, (a partition that satisfies (15) by equality); let # := >, &, be
the union of these partitions, and let #' denote the modified set function; then

S HX) = en(F). (16)

Xe#F

Apply one of the following three operations on % as long as one of them can be
applied:

(1) uncross X and Y if they are crossing unless one of them is an 5z-set and the other
is a fs-set;

(2) if # contains a co-partition, replace it by the partition obtained by taking the
complement of every member;

(3) if X is an 5t-set, ¥ is a fs-set, and there is a sub-family ¢ C & such that co(%)
is a partition of X NY or co(%)={X NY}, replace X, Y and ¥ in F by X - Y,
Y — X and co(%).

Claim 5.2. These operations do not increase en(F), and do not decrease ) ;s h'(X).

Proof. A simple case analysis shows that the operations do not increase ey (5 ), as
it suffices to check that the operations do not increase ), . g.(X) for any hyper-
arc e. An even more simple case analysis shows that the operations do not decrease
> xes X)), consequently they cannot decrease the value >, A'(X), since single-
tons are never removed from the family. [l
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Obviously # remains regular, and since the second and the third operations decrease
the covering number, and by Claim 1.2 the first operation can be applied only finitely
many times consecutively, after a finite number of steps none of the three operations
can be applied. Let us denote the obtained regular family by #; Claim 5.2 and (16}
imply that >,z #(X) 2 ey(F'). Let F” be the regular family obtained from %’
by decreasing the multiplicity of every singleton by one.

Proposition 5.3. F" decomposes into partitions.

Proof. We can assume that there is an 5t-set and a Zs-set, otherwise by the unavail-
ability of the first and the second operation #” is a cross-free family that decomposes
into partitions. The $t-sets in F" form a chain, the 7s sets likewise. Let X be the
minimal §¢-set, and Y the maximal 7s-set in F".

If X NY # @, then for every v X N Y there is a #t-set in F', since F' is regular;
let o/ denote the family of these sets. By the minimality of X, the members of <7 are
not §z-sets. Furthermore, they are neither crossing each other, nor X, nor ¥ , since the
first operation cannot be applied. This is only possible if the minimal sets in co(./)
define a partition of X NY (or X N Y €co()). But then the third operation would
have been applicable, contradicting the assumption.

Thus X and Y are disjoint. For every ve ¥ — X — Y there is a fv-set in F" , since
F" is regular. By the maximality of Y, these sets are not s-sets, so they are disjoint
from X and Y, otherwise they would cross X or Y. The minimal such sets are also
disjoint from each other, so they form a partition 2 of ¥ —X — Y. Thus %" contains
the partition 2 + {X, Y}. By induction, #” decomposes into partitions. L]

If the conditions of the theorem are met, then Y xegn H(X) <ex(F"),50 3 YeF
H'(X) = en(F') implies that the partition formed by the singletons must be tight. Let
the vector x : ¥ — Z be defined by x(v) := #'({v}); then x(V) = {&).

The end of the proof is the same as for Theorem 3.2. Define the partition Fy =
{Y.{v}: ve¥ ~ 1} for every set ¥ C V. The conditions of the theorem imply that

M) =6l -x(V - Y)=|6] - > KX)+H (),
XeFy

Z || —ex(Fy)+H(Y)=ig(Y)+ W (Y).

Thus x(¥) Z ig(Y) + K (Y) for every set ¥ C V, and by Lemma 3.3 therc is an
orientation with in-degree vector x that covers 4’, hence it covers k. [J

A simple observation shows that for graphs the condition of Theorem 5.1 can be
further simplified.

Theorem 5.4. Let G =(V,E) be an undirected graph, with s,tc Vv special nodes, and
let k,ky,ky be positive integers for which ki,k > k. Then G has a k-edge-connected
orientation such that there are k edge-disjoint paths from s to t and k, edge-disjoint
paths from t to s if and only if d(X) = 2k for every 9 £ X C V, and do(X) 2 ki+k
for every 5t-set.
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Proof. Let the definition of & be the same as in Theorem 5.1. Suppose that indirectly
the conditions of the theorem hold, yet there is a partition & such that
da(X
en(F)=Y_ &) _ Y hX).

2
XeF XeF

From this, there is a2 member X of # such that A(X) > dg(X)/2; X must separate
s and ¢, otherwise it would violate the conditions. Let ¥ be the other member of %
separating s and ¢, Then either &; +k; > (dg(X)+dg(Y))/2, or k > dg(Z)/2 for some
other member Z of %, contradicting the conditions. [J

Theorem 5.4 can also be proved using a different approach that does not seem

to extend to hypergraphs, namely a simple application of the undirected splitting off
theorem of Mader.

Alternative proof of Theorem 5.4. We use induction on the number of edges of G.
Call a set X tight if d(X) =4k + k and X separates s and ¢, or d(X) =2k and X
does not separate s and £. We can assume that every edge enters a tight set, otherwise
it can be deleted. If every edge of G enters a tight set separating s and ¢, then the
edge set of G can be partitioned into k| + k, simple paths between s and ¢, and every
node v is reached by at least & such paths, since d(v) > 2k. Let G be the digraph
obtained by orienting k; paths from s to ¢, and k; paths from ¢ to s; then ea(X) =k
and ga(V ~X) = k for every set § £ X C V — {s,}, thus G is a good orientation.

We can now assume that there exists a minimal tight set W not containing s and .
Observe that if X' and Y are crossing tight sets, then either one of them is an §t-set
and the other is a #s-set, or X N'Y is tight; thus the minimality of W implies that
an edge spanned by W could not enter a tight set, hence ig(W)=0. Thus W is a
singleton {w} with d(w) =2k. A complete splitting at w consists of partitioning the
neighbours of w into k pairs, for every pair {u,v} adding an edge uv to the graph,
and deleting w. The following splitting-off theorem by Mader [9] can be applied to
this node:

Theorem 5.5 (Mader [9]). Let G =(V + w,E) be a connected graph, where d(w) is
even and there is no cut-edge incident to w. Then there is a complete splitting at w
that does not decrease local edge-connectivity.

By Mader’s theorem, there is a complete splitting at w that preserves the conditions
of the theorem. By induction, the resulting graph has a good orientation, which can be
transformed into a good orientation of the original graph by the inverse operation of
edge splitting: if the orientation of a split off edge is an arc uv, then replace it by arcs
uw and wo. [

Finally, let us mention a corollary regarding (2k+1)-connected graphs. Nash-Williams
[10] proved that 2k-edge-connected graphs are exactly those that have a k-edge-
connected orientation. There is no similarly elegant characterization of (2k + 1)-edge-
connected graphs, but Theorem 5.4 implies the following:
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Corollary 5.6. A graph is (2k +1)-edge-connected if and only if for every pair s,t €V
it has a k-edge-connected orientation with k + 1 edge-disjoint paths from s to t.
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