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Abstract

We derive simple push-relabel algorithms for the matroid partitioning, matroid membership,
and submodular flow feasibility problems. It turns out that, in order to have a strongly polynomial
algorithm, the lexicographic rule used in all previous algorithms for the two latter problems can
be avoided. Its proper role is that it helps speeding up the algorithm in the last problem.

1 Introduction

Push-relabel algorithms (see, for example, the first one of Goldberg and Tarjan, [16]), unlike augmenting path
type algorithms, use only small, local steps. In order to make progess, in selecting the current element where
the next local step is to be performed, they use a control parameter Θ : S → {0, 1, 2, . . .} called a level (or
distance) function. Here S can be the node-set of a directed graph or the ground-set of a matroid. In the
present work the range of the level functions is {0, 1, 2, . . . , n} where n = |S| while the original algorithm of
Goldberg and Tarjan for maximum flows must have allowed {0, 1, 2, . . . , 2n − 1} for the range of Θ.

The push-relabel approach was extended to submodular optimization by S. Fujishige and X. Zhang [13],
[14]. The goal of the present paper is to develop simplified push-relabel algorithms in submodular optimization.
We exhibit versions for matroid partition, for membership in a matroid polytope, and for submodular flow
feasibility. All the previous algorithms relied on a selection rule based on a consistent ordering of the elements.
This rule can be considered as a counterpart of the lexicographic rule of Schönsleben [19] applied to augmenting
path type algorithms. The new push-relabel algorithms do not use the consistency rule and the proof of strong
polynomiality becomes much simpler. The true role of the consistency rule is that, though not needed for
strong polynomiality, it improves the complexity of the algorithm by one order of magnitude. Unlike earlier
algorithms in the area, we avoid discussing issues of data structures and technical details of the implementation:
instead, we concentrate only on the basic ideas and concepts of the algorithms.

For a given level function Θ, the sets Li = {v : Θ(v) = i} (i = 0, . . . , n) are called the level sets of Θ.
For an element s with Θ(s) = j, we say that the level of s is j or that s is in Lj . For a subset X ⊆ S, let
Θmin(X) := min{Θ(v) : v ∈ X}. One of the local steps during the algorithm is lifting an element s of S
with Θ(s) ≤ n − 1 which means that we increase Θ(s) by 1. The set of operations performed between two
lifting operations will be called a phase of the algorithm. Since the level of an element is never decreased,
the number of lifting operations, and hence the number of phases, is at most n2.

We do not distinguish between a one-element set {s} and its only element s. For example, B − s consists
of the elements of B distinct from s, while B + s is an abbreviation for B ∪ {s}. Similarly, for a set-function
b and an element s, b({s}) is denoted by b(s). For a function m : V → R, we define its extension m̃ by
m̃(X) :=

∑
[m(v) : v ∈ X] for X ⊆ S. Given a ground-set S, the characteristic (or indicator) vector of a

subset B ⊆ S will be denoted by χ
B

.
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2 Matroid partition

Both matroid optimization problems we are considering need the following lemma. For a given basis B and
element u ∈ S − B, there is a unique circuit in B + u containing u, which is denoted by C(B, u) and called
the fundemantal circuit of u. For each element v ∈ C(B, u), the set B − v + u is also a basis of M .

Lemma 2.1 Let B be a basis of a matroid M = (S,B), s ∈ S − B, t ∈ C(B, s) − s, and B′ := S − t + s. If
Θ : S → {0, 1, . . . , n} is a level function for which Θ(t) = Θmin(C(B, s)), then

Θmin(C(B′, u)) ≥ Θmin(C(B, u)) (1)

holds for u ∈ (S − B′) − t and C(B′, u) = C(B, s) for u = t.

Proof. The second part of the lemma is straightforward. For the first part, if t 6∈ C(B, u), then C(B, u) =
C(B′, u) and (1) holds (with equality). If t ∈ C(B, u), then Θmin(C(B, u)) ≤ Θ(t) and, by the strong circuit
axiom, there is a circuit C ⊆ (C(B, u) ∪ C(B, s)) − t) containing u. We must have C(B′, u) = C from which
Θmin(C(B′, u)) ≥ min{Θmin(C(B, s)), Θmin(C(B, u))} = min{Θ(t),Θmin(C(B, u))} = Θmin(C(B,u)). •

Let M1 = (S,B1), M2 = (S,B2), . . . , Mk = (S,Bk) be k matroids on an n-element ground-set S. We say
that a subset F ⊆ S is coverable if F ⊆ B1∪· · ·∪Bk for some Bi ∈ Bi (i = 1, 2, . . . , k). We construct a push-
relabel algorithm for finding a largest coverable subset. Previously, Edmonds and Fulkerson [5] developed an
augmenting path type algorithm for this purpose and proved the following min-max formula. Our algorithm
reproves their result.

THEOREM 2.2 (Matroid partition theorem, Edmonds and Fulkerson, [5]) Let M1, M2, , . . . , Mk be
matroids on a common ground-set S. The largest cardinality of a coverable subset of S is equal to

min

{
∑

i

ri(Z) + |S − Z| : Z ⊆ S

}
. (2)

Proof. For a subset Z ⊆ S and for the union F of k bases Bi ∈ Bi,

|F | = |F ∩ Z| + |F − Z| ≤
∑

i

|Bi ∩ Z| + |S − Z| ≤
∑

i

ri(Z) + |S − Z| (3)

from which max ≤ min follows. In the estimation (3), equality holds if and only if the following optimailty
criteria are met.

S − Z ⊆ ∪iBi (4)

Bi ∩ Bj ∩ Z = ∅ for 1 ≤ i < j ≤ k (5)

Bi ∩ Z spans Z in Mi for i = 1, . . . , k. (6)

We show how the push-relabel technique can be used for finding a subset Z and k basis Bi ∈ Bi satisfying the
three optimality criteria, completing in this way the proof of Theorem 2.2. At the beginning, Θ is identically
0. At an intermediate stage of the algorithm, we are given Mi-bases Bi for i = 1, . . . , k and a level function
Θ : S → {0, 1, . . . , n = |S|} for which the following level properties hold.

(L1) Θ(u) = 0 holds for every u ∈ S covered by more than one of the bases Bi.
(L2) Θmin(Ci(Bi, u)) ≥ Θ(u) − 1 holds for every u ∈ S − Bi.

The algorithm terminates when one of the following stopping rules occurs.

(A) S = B1 ∪ · · · ∪ Bk.
(B) There is an empty level set Lj so that every element under j is covered.

Lemma 2.3 If (A) holds, then the bases {B1, . . . , Bk} and Z∗ := ∅ meet the optimality criteria. If (B) holds,
then the bases {B1, . . . , Bk} and Z∗ := {u : Θ(u) > j} meet the optimality criteria.

Proof. The first case is obvious. To see the second, observe that S − Z∗ is covered by property (B), Z∗

contains no multiply covered element by (L1), and (6) also holds since the emptiness of Lj and (L2) imply
that Ci(Bi, s) ⊆ Z∗ for each s ∈ Z∗ − Bi. •

There are two basic operations at an uncovered element s. Lifting s means that Θ(s) is increased by 1. A
basis-change at s means that we take a basis Bi along with an element t ∈ Ci(Bi, s)− s and replace Bi with
Bi − t + s.
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The algorithm runs as follows. At a general step, assuming that neither of the stopping rules holds, we
select an uncovered element s for which Θ(s) ≤ n − 1. To see that such an s exists, observe first that there
is always an empty level set since the number of level sets is n + 1. Furthermore, the failure of (A) ensures
that there is an uncovered element, and we cannot have each uncovered element in Ln since if every element
of L0 ∪ · · · ∪ Ln−1 is covered, then any empty level set Lj (j ≤ n − 1) would satisfy (B). For the selected
uncovered element s, we proceed as follows. If there is a basis Bi (1 ≤ i ≤ k) and an element t ∈ Ci(Bi, s)− s
for which Θ(t) = Θ(s) − 1, perform a basis-change by replacing Bi with Bi − t + s. By Lemma 2.1, the level
properties remain intact. Note that t is the only element that may get uncovered and t is under s. If no such
a Bi and t exist anymore, lift s. This operation also maintains the level properties.

The algorithm terminates when lifting s leaves an empty level set such that all elements under s is covered.
In this case, (B) holds. The other way of termination occurs when after the current basis-change every element
is covered in which case (A) holds.

Lemma 2.4 The total number of lifts is at most n2. The total number of basis-changes is at most n2.

Proof. Since one element is lifted at most n times, there are at most n2 lifts. For an Mi-basis Bi, let
Θ̃(Bi) :=

∑
[Θ(v) : v ∈ Bi] and let α :=

∑
i
Θ̃(Bi). At the beginning, α = 0. A lift operation does not affect

α since only uncovered elements are lifted. At a basis-change, α is increased by exactly 1. Therefore α is equal
to the number of basis-changes. An uncovered element has no contribution to α and neither does an element
of L0. The contribution of a covered element v 6∈ L0 is Θ(v). Therefore α ≤

∑
Θ(v) ≤ n2. •

Lemma 2.4 completes the proof of the theorem. It also shows that the algorithm is polynomial provided
that there is a subroutine for each Mi that determines for an uncovered element s if there is an element
t ∈ Ci(Bi, s) − s for which Θ(t) = Θ(s) − 1. By denoting the complexity of this subroutine with γ, we can
conclude that the overall complexity of the algorithm is O(γkn2). • •

Remarks Suppose we always select an uncovered element s with Θ(s) ≤ n − 1 for which Θ(s) is maximum
(the highest level selection rule). If an uncovered element gets covered, it remains so within one phase since a
push operation at s may create a newly uncovered element only under s. Hence the number of basis-changes
in one phase is at most n and altogether is at most n3. That is, in this case, though we get a bound worse
than the one obtained above, but its proof is immeadiate. The highest level rule will have a more significant
role in other submodular frameworks.

Interestingly, the proof of the theorem and of the polynomiality of the algorithm is even easier if we
always select an uncovered element s minimizing Θ(s) (lowest level selection rule). In this case, the algorithm
terminates either when each element gets covered or at the very first moment when an empty level set arises.
After at most n basis-changes either the number of uncovered elements decreases or the level of an element is
increased. Since the first event may occur at most n times while the second one at most n2 times, the total
number of basis-changes is at most n2 + n3.
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3 Testing membership in a matroid polytope

Let M = (S, r) be a matroid. The matroid (or independence) polytope P (r) of M is the convex hull of
the characteristic vectors of independent sets of M . The base polytope B(r) of M is the convex hull of the
characteristic vectors of bases of M . In what follows we will use the slightly sloppy but shorter expression of
convex combination of bases. Edmonds [4] proved the following polyhedral descriptions:

P (r) = {x ∈ RS : x ≥ 0 and x̃(Z) ≤ r(Z) for every Z ⊆ S}. (7)

B(r) = {x ∈ RS : x ≥ 0 and x̃(Z) ≤ r(Z) for every Z ⊆ S, x̃(S) = r(S)}. (8)

P (r) and B(r) are often called the matroid (or independence) polyhedron and the base polyhedron of M ,
respectively.

By Theorem 2.2, S can be covered by k bases if and only if kr(X) ≥ |X| holds for every subset X. By
(7), this latter property is equivalent to requiring that the vector χ

S
/k is in P (r). Cunningham [1] developed

a strongly polynomial algorithm to test if a given vector g belongs to P (r). He also solved the more general
problem when g is not in P (r) and one is interested in finding a subset most violating (7) along with an
element x ≤ g of P (r) for which x̃(S) is maximum. His approach uses shortest augmenting paths and also
the technique of lexicographic selection rule introduced by Schönsleben [19]. The essence of this rule is that
it specifies a fixed total ordering on S and in finding the shortest augmenting path in the current auxiliary
digraph the algorithm breaks tie by chosing the earliest possible element of the ordering. The lexicographic
selection rule of Schönsleben turned out to be an unavoidable device in all combinatorial algorithms concerning
submodular frameworks. It was adapted to push-relabel algorithms as well. (See, for example, the works of
Fujishige and Zhang [13], [14] and of Fleischer and Iwata [7].)

We describe a simple push-relabel algorithm for the matroid membership problem that does not use the
lexicographic rule. The algorithm works for the slightly more general problem when a specified upper bound
g : S → R+ is given and we are interested in finding a member x ∈ P (r) for which x ≤ g and x̃(S) is maximum.
Clearly, g belongs to P (r) if and only if this maximum is g̃(S). Since both a matroid polyhedron and a box
{x ∈ RS : 0 ≤ x ≤ g} is a polymatroid, the following min-max result is a special case of the polymatroid
intersection theorem of Edmonds [3].

THEOREM 3.1 Let M = (S, r) be a matroid and g : S → R+ function. Then

max{x̃(S) : x ≤ g, x ∈ P (r)} = min{r(Z) + g̃(S − Z) : Z ⊆ S}. (9)

Proof. We call an element x ∈ P (r) feasible if x ≤ g. For a subset Z ⊆ S and for a feasible x ∈ R, one has

x̃(S) = x̃(Z) + x̃(S − Z) ≤ r(Z) + g̃(S − Z) (10)

from which max ≤ min follows. In the estimation (10), equality holds if and only if the following optimality
criteria are met.

x̃(Z) = r(Z) (11)

x̃(S − Z) = g̃(S − Z). (12)

We shall prove the theorem by developing an algorithm that computes a feasible x and a subset Z ⊆ S
satisfying the optimality criteria. A convex combination of bases of M will be described by a coefficient
function λ : B → R+ for which

∑
[λ(B) : B ∈ B] = 1. The element of B(r) defined by λ is xλ =

∑
[λ(B)χ

B
:

B ∈ B]. Clearly, a non-negative vector x belongs to P (r) if and only if there is a convex combination xλ of
bases such that xλ covers x in the sense that xλ ≥ x. We say that a basis B is λ-active (or simply active)
in the convex combination xλ if λ(B) > 0. By a theorem of Charathodory, every element of B(r) can be
expressed as a convex combination of at most n bases. An element s ∈ S is g-larger, g-smaller or neutral
according to whether g(s) > xλ(s), g(s) < xλ(s), or g(s) = xλ(s).

Beside a convex combination xλ of bases, the algorithm maintains a level function Θ : S → {0, 1, . . . , n}.
In the following level properties we use again the notation Θmin(X) := min{Θ(v) : v ∈ X} for X ⊆ S.

(L1) Θ(u) = 0 holds for every g-smaller u ∈ S.
(L2) Θmin(C(B,u)) ≥ Θ(u) − 1 holds for every λ-active basis B and for every u ∈ S − B.

The algorithm terminates when one of the following stopping rules occurs.

(A) There is no g-larger element of S.
(B) There is an empty level set Lj so that there is no g-larger element under j.
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Lemma 3.2 If (A) holds, then g ∈ P (r). If (B) holds, then x∗ and Z∗ := {u : Θ(u) > j} meet the optimality
criteria where x∗ is defined by x∗(u) := min{g(u), xλ(u)}.

Proof. Suppose (A) holds, that is, g(u) ≤ xλ(u) for every u ∈ S. By xλ ∈ B(r), we conclude that g ∈ P (r).
Suppose (B) holds. By (L1), every g-smaller element is under j and hence x∗(u) = xλ(u) for every u ∈ Z∗.

By (L2), C(B, u) ⊆ Z∗ holds for every active basis B and every element u ∈ Z∗ −B. Hence r(Z∗) = |B ∩Z∗|
from which x̃∗(Z∗) = x̃λ(Z∗) = r(Z∗), that is, optimality criterion (11) holds for x∗ and Z∗. Since there is
no g-larger element under j, x∗(u) = g(u) for every u ∈ S − Z∗ and hence x̃∗(S − Z∗) = g̃(S − Z∗), that is,
optimality criterion (12) holds for x∗ and Z∗. •

Basic operations: push and lift Let s be a g-larger element for which Θ(z) ≤ n − 1. Lifting s means
again that we increase Θ(s) by 1. Push is performed at s when there is an active basis B not containing s for
which Θmin(C(B, s)) = Θ(s) − 1. Let t ∈ C(B, s) for which Θ(t) = Θ(s) − 1, let B′ = B − t + s, and define
∆ := min{g(s) − xλ(s), λ(B)}. A push decreases λ(B) by ∆ and increases λ(B′) by ∆. A push is called
neutralizing if ∆ = g(s) − xλ(s). In this case s becomes neutral. A non-neutralizing push does not change
the number of active bases while a neutralizing push either preserves or increases this number by 1. Note that
the only element that may become g-larger after a push operation is t and t is under s. This observation will
be used in estimating the number of steps.

Treating a g-larger element s with Θ(s) ≤ n − 1 means that we apply push operations at s as long as
possible. No more push is possible at s when either the last push at s was neutralizing or else when there is
no more active basis B not containing s for which Θmin(C(B, s)) = Θ(s) − 1. In the latter case, lift s.

Observe that if neither of the stopping rules hold, then there is a g-larger element but it is not possible
that each g-larger element is in Ln since then there would be an empty level and (B) would be satisfied.

The algorithms runs as follows. As long as neither of the stopping rules holds select a g-larger node s for
which Θ(s) ≤ n − 1 and Θ(s) is maximum (the highest level rule), and treat s. The algorithm terminates
either when after a push there are no more g-larger elements, that is, (A) holds, or else, when after a lift
every g-larger element is in Ln, in which case (B) holds.

It follows from Lemma 2.1 and from the rules of the algorithm, that the basic operations preserve the level
properties. Due to the highest level rule, if an element gets neutral, it remains so in the same phase. Therefore
the number of neutralizing pushes in one phase is at most n and, since the number of phases is at most n2,
altogether there are at most n3 neutralizing pushes.

The number of non-neutralizing pushes can be estimated as follows. Within one phase, there are at most
n treatments and hence the total number of treatments is at most n3. Within one treatment, there is at most
1 neutralizing push. Since only a neutralizing push can increase the number of active bases, and only by 1,
it follows that the number of active bases at the beginning of the j’th treatment is at most j. Therefore the
number of neutralizing pushes at the j’th treatment is at most j, and hence the total number of neutralizing
pushes is at most 1 + 2 + · · · + n3 ≤ n6.

Therefore the algorithm teminates after at most O(n6) basic operations. If the complexity of the required
subroutine that determines for a basis B and an element s ∈ S − B if there is an element t ∈ C(B, s) − s for
which Θ(t) = Θ(s) − 1 is γ, then the overall complexity of the algorithm is O(γn6). • •

Remark If g is rational, then the components of the coefficient vector λ can be chosen as integer multiples
of 1/K where K is the least common denominator of the components of g.

Improvement By using Gauss elimination and relying on Caratheodory’s theorem, it is possible to reduce
the number of active basis to n in O(n3) time provided that the initial number of active bases is linear in n.
A naive approach would be to apply Caratheodory every time when a neutralizing push results in n+1 active
bases. But in this case we may need Caratheodory as many times as the number of treatings, O(n3), and
hence we would get the same complexity O(n6) as before. It is more efficient to apply Caratheodory only at
the end of each phase. If there are n active bases at the beginning of a phase, there will be at most 2n active
bases at its end since the number of neutralizing pushes within one phase is at most n. Therefore we need
altogether at most n2 applications of Caratheodory, and hence the complexity of this version of the algorithm
is O(n5).
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4 Polymatroid intersection and discrete separation

The simple push-relabel algorithm for matroid partition can easily be transformed to one for matroid inter-
section. Instead of working out the details of this, we consider the polymatroid intersection problem. One
version of the polymatroid intersection theorem of Edmonds [3] provides a necessary and sufficient condition
for the intersection of two base-polyhedra to be non-empty. It was P. Schönsleben [19] who developed the
first polynomial algorithm for polymatroid intersection. His work is remarkable since it introduced the lexi-
cographic technique. This approach has been transformed to push-relabel algorithms, and the lexicographic
technique was, in fact, used in all algorithms so far concerning submodular frameworks more general than
matroids (like polymatroid intersection, polymatroidal flows by Lawler and Martel [17], [18], and submodular
flows in [8] and by Fujishige and Zhang [14]).

Let p be a fully supermodular and b a fully submodular set-function on a ground-set S of n elements for
which b(∅) = 0 = p(∅). A base-polyhedron B(b) confined by a fully submodular function b is defined by
B(b) := {x ∈ RV : x̃(Z) ≤ b(Z) for every Z ⊂ V and x̃(V ) = b(S)}. The polyhedron B′(b) := {x ∈ RV :
x̃(Z) ≥ p(Z) for every Z ⊂ V and x̃(V ) = p(V )} is also a base-polyhedron, since B′(p) = B(b∗) where b∗ is
defined by b∗(X) = p(S)− p(S −X) for X ⊆ S and hence b∗ is submodular. Before turning to the algorithm,
we prove a lemma that will be used for submodular flows as well, and plays an analogous role as Lemma 2.1
played at matroids.

Let m be an element of a base-polyhedron B(b). Call a subset X ⊆ S m-tight (or just tight) if m̃(X) =
b(X). Note that S is always tight. Due to the submodularity of b, the tight sets are closed under taking union
and intersection. Let T (v) denote the unique smallest m-tight set containing v. Let s ∈ S and t ∈ T (s) − s,
and let ∆b(s, t) := min{b(X) − m̃(X) : t ∈ X ⊆ S − s}. Define m′ as follows.

m′(v) :=

{
m(s) + ∆b(s, t) if v = s
m(t) − ∆b(s, t) if v = t
m(v) otherwise

(13)

Then m′ also belongs to B(b). Let T ′(v) denote the smallest m′-tight set containing v. If the base-polyhedron
B′(p) is confined by a supermodular function p, then let ∆p(s, t) := min{m̃(X) − p(X) : t ∈ X ⊆ S − s} and

m′(v) :=

{
m(s) − ∆p(s, t) if v = s
m(t) + ∆p(s, t) if v = t
m(v) otherwise

(14)

Recall the notation Θmin(X) := min{Θ(u) : u ∈ X}.

Lemma 4.1 If Θ(t) = Θmin(T (s)), then

Θmin(T
′(u)) ≥ Θmin(T (u)) (15)

for every u ∈ S.

Proof. If T (u) is m′-tight, then T ′(u) ⊆ T (u) from which (15) follows. If T (u) is not m′-tight, then
t ∈ T (u) from which Θmin(T (u)) ≤ Θ(t) = Θmin(T (s)). This implies for T := T (u) ∪ T (s) that Θmin(T ) =
min{Θmin(T (u)),Θmin(T (s))} = Θmin(T (u)). Now T is m-tight as it is the union of two m-tight sets. Since
s, t ∈ T , it follows that T is m′-tight, too. Hence T ′(u) ⊆ T from which Θmin(T

′(u)) ≥ Θmin(T ) = Θmin(T (u)).
•

The polymatroid intersection theorem can be formulated in an equivalent form which is sometimes called
the discrete separation theorem [8]. Our main goal is to develop a simple push-relabel algorithm for proving
this result. There will be however an important difference between this algorithm and the ones described
in the previous sections for matroids. Namely, for computing ∆, here we need a subroutine for minimizing
certain submodular functions related to b while the matroid algorithms required subroutines only for finding
fundamental circuits.

THEOREM 4.2 For a fully supermodular p and a fully submodular b, the intersection B(b)∩B′(p) of their
base-polyhedra is non-empty (that is, there exists a function m : S → R separating p and b in the sense that
p ≤ m̃ ≤ b) if and only if p ≤ b. For integer-valued p and b, the separating m can also be chosen integer-valued.

Proof. As the necessity of the condition p ≤ b is straightforward, we deal with sufficiency. Suppose that
mb ∈ B(b) and mp ∈ B′(p). Call a subset X ⊆ S b-tight (with respect to mb) if m̃b(X) = b(X) and p-tight
(w.r. to mp) if m̃p(X) = p(X). Note that S is always b-tight and p-tight. Due to the sub- and supermodularity
of b and p, both the b-tight sets and the p-tight sets are closed under taking union and intersection. Let Tb(v)
and Tp(v) denote, respectively, the intersection of b-tight and p-tight sets containing v. Then Tb(v) is b-tight
and Tp(v) is p-tight.
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The algorithm needs a subroutine to compute ∆p(u, v) = min{m̃p(X) − p(X) : u ∈ X ⊆ S − v} and
∆b(u, v) = min{b(X) − m̃b(X) : u ∈ X ⊆ S − v}. We denote the complexity of this subroutine by γ. Since
mb ∈ B(b) and mp ∈ B′(p), these values are non-negative and ∆p(u, v) > 0, for example, holds precisely if
v ∈ Tp(u).

Call an element v ∈ S mp-smaller, mp-larger, and neutral according to whether if mb(v) > mp(v), or
mb(v) < mp(v), or mb(v) = mp(v). Let Θ : S → {0, 1, . . . , n} be a level function. Suppose that Θ satisfies the
following level properties.

(L1) Every mp-smaller element is in L0.
(L2) min{Θmin(Tb(v)), Θmin(Tp(v))} ≥ Θ(v) − 1 for every v ∈ S.

Let mb ∈ B(b) and mp ∈ B′(p), and let Θ be a level function. We call a triplet (mb, mp, Θ) feasible if
it satisfies the level properties. The algorithm will terminate when one of the following two stopping rules
occurs.

(A) There is no more mp-larger node.
(B) There exists an mp-larger node s and an empty level set Lℓ under s (that is, ℓ < Θ(s)).

Lemma 4.3 Let (mb, mp, Θ) be a feasible triplet. Then (A) implies that both mp and mb separate p and b
while (B) implies that the set Z := {v ∈ V : Θ(v) > ℓ} violates p ≤ b.

Proof. If (A) holds, that is, if there are no mp-larger elements, then we have p ≤ m̃p ≤ m̃b ≤ b.
Suppose now that (B) holds. By (L1) and (B), we have m̃p(Z) > m̃b(Z). Furthermore, (L2) implies that

Tb(v) ⊆ Z and Tp(v) ⊆ Z for every v ∈ Z. Since the union of b-tight sets (p-tight sets) is b-tight (p-tight), we
can conclude that p(Z) = m̃p(Z) > m̃b(Z) = b(Z). •

At an intermediate stage of the algorithm, a feasible triplet (mp, mb, Θ) is available for which neither of
the two stopping rules holds. The core subroutine of the algorithm is a treatment of a mp-larger element s
that suitably changes mp, mb, and Θ. A treatment of s ends up either by making s neutral or by lifting s by
1. It consists of applying three basic operations that are used several times.

Three basic operations at an mp-larger element s

1. Pushing mp along at s means that we decrease mp(s) by ∆ and increase mp(t) by ∆ where t ∈ Tp(s) is
an element with Θ(t) = Θ(s) − 1, and ∆ = ∆p(s, t).

2. Pushing mb at s means that we increase mb(s) by ∆ and decrease mb(t) by ∆ where t ∈ Tb(s) is an
element with Θ(t) = Θ(s) − 1, and ∆ = ∆b(s, t).

3. Lifting s.

We say that the push operation is along (s, t). A push operation at s is neutralizing if it makes s neutral.

Treating an mp-larger element s means that we apply mp-pushes and mb-pushes at s as long as possible.
When this is not possible anymore, lift s.

Description of the algorithm The algorithm starts with Θ ≡ 0, mp ∈ B′(p), and mb ∈ B(p) where mp and
mb can be found by applying the polymatroid greedy algorithm. At an intermediate stage, a feasible triplet
(mp, mb, Θ) is available. Suppose that neither of the two stopping rules holds. Then there are mp-larger
elements of S. We cannot have an mp-larger element s in Ln for otherwise at least one level set under s would
be empty, and hence Stopping rule (B) would hold. As long as there are mp-larger elements, the algorithm
selects one with highest level (highest level rule) and treats it.

One way of termination is that the current treatment neutralizes s and no more mp-larger node remains.
In this case, Stopping rule (A) holds and hence the resulting mp separates p and b by Lemma 4.3. The other
way of termination is that the current treatment lifts s and leaves its (original) level set empty. In this case,
Stopping rule (B) holds and hence the set Z = {v : Θ(v) ≥ Θ(s)} violates p ≤ b by Lemma 4.3 showing that
no separating m exists.

Lemma 4.4 The basic operations preserve the level properties.

Proof. Since a lift of s is performed only when no more pushes are available at s, the lifting operation
preserves (L2). It clearly does not affect (L1). A push operation cannot generate mp-smaller elements and
hence it leaves Property (L1) intact.

It follows from Lemma 4.1 that if an mb-push is performed along (s, t), then Θmin(T
′
b(u)) ≥ Θmin(Tb(u))

where T ′
b(u) denotes the smallest b-tight set containing u with respect to the revised vector m′

b, and analogously,
if an mp-push is performed along (s, t), then Θmin(T

′
p(u)) ≥ Θmin(Tp(u)) for every u ∈ S. Hence a push

operation also preserves (L2). •

The sufficiency of p ≤ b in the theorem follows once we show that one of stopping rules (A) and (B) occurs
after a finite number of basic opertaions. In fact, we shall prove the following polynomial bound.

7



THEOREM 4.5 The total number of basic operations is O(n4).

Proof. We claim that a single treatment of an element s needs O(n) basic operations. Indeed, there may be
one neutralizing push, one lift, and O(n) non-neutralizing pushes since if one is carried out along (s, t), then
T ′

b(s) ⊆ Tb(s) − t and T ′
p(s) ⊆ Tp(s) − t. A treatment of s is completed when s becomes neutral or when s is

lifted. Due to the highest level rule, s will not be mp-larger again within the same phase. Therefore, in one
phase there can be at most n treatments and, since the number of phases is at most n2, the total number of
basic operations is O(n4). •

This bound can be lowered to O(n3) if we introduce a consistency rule for chosing t. Also, if there is a
subset X violating p ≤ b, then the algorithm can be modified so that even a subset can be found for which
p(X) − b(X) is maximum. But the details will be worked out for the more general framework of submodular
flows, the topic of the next sections.
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5 Submodular flows

Let D = (V, A) be a directed graph with no parallel edges, and let f : A → R ∪ {−∞} and g : A → R ∪ {∞}
be two bounding functions for which f ≤ g. For a function x : A → R, let ̺x(Z) :=

∑
[x(e) : e ∈ A enters Z],

δx(Z) :=
∑

[x(e) : e ∈ A leaves Z], and

Ψx(Z) := ̺x(Z) − δx(Z).

Note that Ψx is modular in the sense that Ψ(Z) =
∑

[Ψx(v) : v ∈ Z] for Z ⊆ V . Moreover, we are given
a crossing submodular set-function b : 2V → Z ∪ {∞} for which b(∅) = 0 and b(V ) is finite. A function (or
vector) x : A → R is a submodular flow or a subflow if

Ψx(Z) ≤ b(Z) for every Z ⊆ V . (16)

Since Ψx(V ) = 0 for an arbitrary x, the b(V ) must be non-negative and, in fact, b(V ) can be reduced to
zero. Therefore we assume throughout that b(V ) = 0. A subflow x is feasible if

f ≤ x ≤ g. (17)

The set Q(f, g; b) of feasible subflows is called a submodular flow (or subflow) polyhedron. We will
say that the subflow or the subflow polyhedron is confined by function b. A feasibililty theorem for the
non-emptiness of Q(f, g; b) was described in [8]. In the special case of fully submodular functions, it is as
follows.

THEOREM 5.1 Let f and g be functions on the edge-set of a digraph D = (V, A) for which f ≤ g and let
b be a fully submodular function. There is a feasible subflow if and only if ̺f − δg ≤ b, that is, if

̺f (Z) − δg(Z) ≤ b(Z) for every Z ⊆ V . (18)

If each of f, g, b is integral, then (18) implies the existence of an integral feasible subflow.

For a feasible subflow z, we have ̺f (Z) − δg(Z) ≤ ̺z(Z) − δz(Z) ≤ b(Z), and hence (18) is necessary.
For proving sufficiency, an augmenting path type algorithm was constructed in [8]. Fujishige and Zhang [14]
developed a push-relabel algorithm for finding a feasible submodular flow. Here we exhibit a largely simplified
push-relabel algorithm that either finds a feasible subflow or finds a set Z violating (18), completing this way
the proof ot Theorem 5.1.

Due to the modularity of Ψx, there is a feasible subflow precisely if there is such an element m of the
base-polyhedron B(b) := {x ∈ RV : x̃(Z) ≤ b(Z) for every Z ⊂ V and x̃(V ) = b(V )} for which there exists a
feasible m-flow. Here an m-flow x : A → R is a function for which Ψx(v) = m(v) for every v ∈ V .

The algorithm maintains a feasible vector x and a member m of B(b). During the course of the algorithm,
we revise gradually both x and m so as to make Ψx(v) ≤ m(v) at every node v. Once this goal is achieved,
the algorithm terminates by returning the final x∗ as a feasible subflow. We refer to a node v as Ψ-larger,
Ψ-smaller, or neutral according to whether Ψx(v) − m(v) is positive, negative, or zero, respectively.

First we concentrate on the special case when the confining function b is fully submodular. Later we will
outline how the general case of crossing submodular functions can be reduced to this special case. We can
assume that b(V ) = 0 for if b(V ) < 0, then Q is empty while if b(V ) > 0, then lowering b(V ) to zero does not
change Q and preserves submodularity.

An edge e ∈ A is decreasable or increasable when x(e) > f(e) or x(e) < g(e), respectively. Given an
m ∈ B(b), a subset X ⊆ V is m-tight (or just tight) if m̃(X) = b(X). The ground-set V is tight as m ∈ B(b).
Since b is fully submodular, the set of tight sets is closed under taking intersection and union. Therefore there
is a unique smallest tight set T (u) containing u for every node u ∈ V. For any two distinct elements u and v
of V , define

∆(u, v) := min{b(X) − m̃(X) : u ∈ X ⊆ V − v}. (19)

Then ∆(u, v) is non-negative since m ∈ B(b), moreover, ∆(u, v) > 0 if and only if v ∈ T (u)−u. The algorithm
below can be used when a subroutine is available for computing ∆(u, v). The complexity of this subroutine
is denoted by γ. Note that a general-purpose subroutine for computing ∆(u, v) is available via submodular
function minimization, but in applications it is often the case that ∆(u, v) can be computed with the help of
a Max-flow Min-cut computation.

5.1 Level properties and stopping rules

At a general stage of the algorithm, a triplet (x, m, Θ) is available where x is a feasible vector, m is a member
of B(b), and Θ : V → {0, 1, . . . , n} is a level function. As before, by the level Θmin(X) of a (non-empty) subset
X ⊆ V , we mean Θmin(X) = min{Θ(v) : v ∈ X}. Consider the following level properties.
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(L1) Every Ψ-smaller node is on the lowest level, that is, in L0.

(L2′) Θ(v) ≥ Θ(u) − 1 for every increasable edge uv (each increasable edge steps down at most one level).
(L2′′) Θ(v) ≤ Θ(u) + 1 for every decreasable edge uv (each decreasable edge steps up at most one level).

(L3) Θmin(T (v)) ≥ Θ(v) − 1 for every node v.

A triplet (x, m,Θ) is feasible if f ≤ x ≤ g, m ∈ B(b), and Θ fulfils the level properties.

Lemma 5.2 Let (x, m,Θ) be a feasible triplet. Suppose that Lℓ is an empty level and Z := {v : Θ(v) ≥ ℓ} is
non-empty. Then Z is m-tight and Ψx(Z) = ̺f (Z) − δg(Z).

Proof. The emptiness of Lℓ and Property (L3) imply that T (v) ⊆ Z for every v ∈ Z. It follows that the
union ∪(T (u) : u ∈ Z) is equal to Z. Since the union of tight sets is tight, we can conclude that m̃(Z) = b(Z).

The emptiness of Lℓ implies that every edge e leaving Z steps down at least two levels and hence (L2′)
implies x(e) = g(e), that is, δx(Z) = δg(Z). Similarly, every edge e entering Z steps up at least two levels and
hence (L2′′) implies x(e) = f(e), that is, ̺x(Z) = ̺f (Z). Therefore Ψx(Z) = ̺f (Z) − δg(Z). •

The algorithm terminates when one of the following two stopping rules occurs.

(A) There is no more Ψ-larger node.
(B) There exists a Ψ-larger node s and an empty level set Lℓ under s (where ℓ < Θ(s)).

Lemma 5.3 Let (x,m, Θ) be a feasible triplet. Then (A) implies that x is a feasible subflow while (B) implies
that the set Z := {v ∈ V : Θ(v) > ℓ} violates (18).

Proof. If there is no Ψ-larger node, then Ψx(Y ) =
∑

[Ψx(v) : v ∈ Y ] ≤
∑

[m(v) : v ∈ Y ] = m̃(Y ) ≤ b(Y )
for every Y ⊆ V , and hence x is a feasible subflow.

Suppose now that (B) holds. By Lemma 5.2, we have m̃(Z) = b(Z) and Ψx(Z) = ̺f (Z) − δg(Z). Since
all the Ψ-smaller nodes are in L0 by (L1), Z contains no Ψ-smaller node. But Z does contain the Ψ-larger s
and therefore Ψx(Z) =

∑
[Ψx(v) : v ∈ Z] > m̃(Z) = b(Z), implying that ̺f (Z) − δg(Z) = Ψx(Z) > b(Z), and

hence (18) is violated. •

5.2 The algorithm for fully submodular b

At an intermediate stage, a feasible triplet (x,m, Θ) is available for which neither of the two stopping rules
holds. The core subroutine of the algorithm is a treatment of a Ψ-larger node s that suitably changes x, m,
and Θ. A treatment of s ends up either by making s neutral or by lifting s. It consists of applying three basic
operations that are used several times.

5.2.1 Three basic operations at a Ψ-larger node s

1. Edge-push at s changes x(e) on an edge e entering or leaving s, as follows.

(Increasing) If e = su is an increasable edge stepping down from s by one level (that is, Θ(u) = Θ(s)− 1),
then increase x(e) by α where α := min{g(e) − x(e), Ψx(s) − m(s)}.
(Decreasing) If e = us is a decreasable edge stepping up to s by one level (that is, Θ(s) = Θ(u) + 1), then
decrease x(e) by α where let x′ := x − αχ

e
where α := min{x(e) − f(e), Ψx(s) − m(s)}.

2. Node-push at s to change m applies only when Θmin(T (s)) = Θ(s) − 1. It selects an arbitrary
element t ∈ T (s) for which Θ(t) = Θ(s) − 1, increases m(s) by α, and decreases m(t) by α where α :=
min{Ψx(s)−m(s), ∆(s, t)}. We say that the node-push is carried out along (s, t). Also, this choice of t will
be said to be generic, to be distinguished from a specific choice introduced and analysed later.

3. Lifting s.

An edge- or node-push at s is neutralizing if it converts s neutral. Otherwise (when s remains Ψ-larger),
the push is non-neutralizing. The core subroutine of the algorithm is as follows.

5.2.2 Treating a Ψ-larger node s

Step 1 (edge-pushes at s) As long as s stays Ψ-larger and there is an increasable edge stepping down from
s by one level or a decreasable edge stepping up to s by one level, apply an edge-push at s.

Step 2 (node-pushes at s) Suppose that no more edge-push is possible at s. As long as s stays Ψ-larger and
Θmin(T (s)) = Θ(s) − 1, apply a node-push at s.

Step 3 (lifting s) When s is still Ψ-larger but no more edge- or node-push is possible at s, apply a node-lift
at s.

As mentioned above, a treatment of s terminates when either s becomes neutral or s is lifted.
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5.2.3 Description of the algorithm

The algorithm starts with an arbitrary feasible triplet (x, m, Θ). This can be obtained by choosing an arbitrary
x with f ≤ x ≤ g, by taking any arbitrary element m of B(b) (which can be determined by the greedy algorithm
for base-polyhedra), and by taking Θ to be identically 0.

At an intermediate stage, a feasible triplet (x,m, Θ) is available. Suppose that neither of the two stopping
rules holds. Then there are Ψ-larger nodes but none of them can be in Ln since Θ(s) = n for a Ψ-larger node
s would imply that at least one level set under s is empty, and hence Stopping rule (B) would occur. As long
as there are Ψ-larger nodes, the algorithm selects one with highest level (highest level rule) and treats it.

One way of termination is that the current treatment neutralizes s and no more Ψ-larger node remains. In
this case, Stopping rule (A) holds and hence the resulting x is a feasible subflow by Lemma 5.3. The other
way of termination is that the current treatment lifts s and leaves its (original) level set empty. In this case,
Stopping rule (B) holds and hence the set Z = {v : Θ(v) ≥ Θ(s)} violates (18) by Lemma 5.3 showing that
no feasible subflow exists.

5.3 Correctness and complexity

Consider a transition from a stage to the subsequent one which transforms the current functions x,m, Θ, T, Ψ,
respectively, into x′, m′, Θ′, T ′, Ψ′. It is evident from the definition of the corresponding α that the vector x′

arising from x by an edge-push is feasible and the vector m′ arising from m by a node-push is in B(b).

Lemma 5.4 The basic operations preserve the level properties.

Proof. An edge-push has no effect on (L3). It creates no new Ψ-smaller nodes, so Property (L1) is also
preserved. Because it operates on an edge uv for which |Θ(u)−Θ(v)| = 1, Property (L2) cannot break down
either.

A node-push along (s, t) does not affect x (that is, x′ = x). Hence it has no effect on (L2). The definition
of α at a node-push implies that α ≤ Ψx(s)−m(s). Therefore s cannot become Ψ-smaller and thus Property
(L1) is also preserved. Property (L3) for m′ in place of m follows from Lemma 4.1.

A node-lift of s keeps (L1) intact since Θ′(s) > Θ(s) only if s is Ψ-larger. It preserves (L2), since node-lift
was applied only when there was no increasable edge stepping down from s and no decreasable edge stepping
up to s. It preserves (L3), since a node-lift was applied at s only when Θmin(T (s)) = Θ(s). • •

The non-trivial direction of Theorem 5.1 follows once we show that one of stopping rules (A) and (B)
occurs after a finite number of operations. In fact, we shell prove the following polynomial bound.

THEOREM 5.5 The total number of basic operations is O(n4).

Proof. We claim that a single treatment of a node s needs O(n) basic operations. Indeed, there may be just
one neutralizing push, one node-lift, O(n) non-neutralizing edge-pushes since we excluded parallel edges in D,
and finally O(n) non-neutralizing node-pushes since if one is carried out along (s, t), then T ′(s) ⊆ T (s)− t. A
treatment of a node s is completed when s becomes neutral or when s is lifted. Due to the highest level rule, s
will not be Ψ-larger again within the same phase. Therefore, in one phase there can be at most n treatments
and, since the number of phases is at most n2, the total number of basic operations is O(n4). •

5.3.1 Improving the complexity

We describe now a tiny modification of the algorithm above that gives rise to a O(n3) bound. This is the
place where the lexicographic idea of Schönsleben does play a role. The proof, however, will need a little more
care. The idea is that we make the generic choice of t during a node-push specific. To this end, we choose a
fixed linear ordering of the nodes of D in advance. This is arbitrary but fixed and is specified by a one-to-one
function ϕ : V → {1, . . . , n}. We will say that u is earlier than v if ϕ(u) < ϕ(v).

Recall that a node-push at s is generic when only

t ∈ T (s) and Θ(t) = Θ(s) − 1 (20)

were required for t, meaning that when more than one such node existed it did not matter which of them has
been selected. A node-push operation is ϕ-consistent if t is selected to be the earliest node meeting (20). In
addition to the highest level rule, the revised algorithm selects t throughout ϕ-consistently.

THEOREM 5.6 The total number of basic operations, when ϕ-consistent node-pushes are applied through-
out, is O(n3).

Proof. In the foregoing proof, we have already pointed out that within one phase there are at most n
neutralizing pushes and hence their total number is at most n3.
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Claim 5.7 The total number of non-neutralizing edge-pushes is at most n3.

Proof. A non-neutralizing edge-push on e either increases x(e) to g(e) making e non-increasable or decreases
x(e) to f(e) making e non-decreasable. Therefore, after a non-neutralizing edge-push on e, the next edge-push
on e can occur only when the sign of Θ(s)−Θ(u) has changed. By that time the sum Θ(s) + Θ(u) must have
been increased by at least two. Hence the number of non-neutralizing edge-pushes on a single edge is at most
n and thus the total number of non-neutralizing edge-pushes is at most |A|n ≤ n3. •

So far we have not used the ϕ-consistent selection rule. It is needed only for the next lemma which will
complete the proof.

Lemma 5.8 The total number of non-neutralizing node-pushes is at most n3.

Proof. Given a feasible triplet (x, m, Θ) at a stage of the algorithm, let

B(v) := {u : u ∈ T (v), Θ(u) = Θ(v) − 1} and β(v) := min{ϕ(u) : u ∈ B(v)}

where β(v) is meant to be ∞ if B(v) = ∅. We use the notational convention that the corresponding functions
after performing a basic operation will be denoted by primed letters.

Claim 5.9 If a ϕ-consistent node-push is carried out along (s, t), then

β′(v) ≥ β(v) (21)

for every node v. Moreover, the inequality is strict when v = s and the node-push is non-neutralizing.

Proof. The definition of ϕ-consistency shows that β(s) = ϕ(t). When v = s and the node-push is non-
neutralizing, we have B′(v) ⊆ B(v) − t. This and the ϕ-consistent choice of t imply that β′(v) > ϕ(t) =
β(s) = β(v).

Suppose now that v 6= s. If B′(v) ⊆ B(v), then (21) follows immediately so we can assume that

B′(v) 6⊆ B(v) (22)

and, in paricular, B′(v) 6= ∅. Then T ′(v) 6⊆ T (v) and hence T (v) is not m′-tight implying that t ∈ T (v). The
set T := T (v) ∪ T (s) is m-tight and it is m′-tight, too, since s, t ∈ T . Therefore T ′(v) ⊆ T . We cannot have
Θ(t) ≥ Θ(v) since then Θmin(T (s)) = Θ(t) would imply B′(v) ⊆ B(v) contradicting (22). Hence t ∈ B(v),
Θ(v) = Θ(s), and B′(v) ⊆ B(v) ∪ B(s) from which β′(v) ≥ min{β(v), β(s)} = min{β(v), ϕ(t)} = β(v). •

Observe that lifting a node s results in T ′(v) = T (v) and B′(v) ⊆ B(v) for every node v 6= s from which
β′(v) ≥ β(v) follows. This and Claim 5.9 imply that, as long as the level of a node is fixed, the number of
non-neutralizing node-pushes at this node is at most n. Since one node can be lifted at most n times and
there are n nodes, the total number of non-neutralizing node-pushes is at most n3, completing the proof of
the lemma and the theorem. • •

Remark The technique of ϕ-consistent changes was originally introduced by Schönsleben [19] under the name
of lexicographic selection rule in an augmenting path type polynomial time algorithm for finding a maximum
element of the intersection of two polymatroids. This approach has later been applied to other submodular
frameworks such as submodular flow feasibility in [8], testing membership in a matroid polyhedron [1] by
Cunningham, optimization over polymatroidal flows [17, 18] by Lawler and Martel, or submodular function
minimization [20] by Schrijver. It was also used in a push-ralabel algorithm for submodular flows by Fujishige
and Zhang [14] and for submodular function minimization by Fleischer and Iwata [7].

The ϕ-consistent node-push operation above can be considered as a lexicographic rule for a push-relabel
algorithm. In this environment, as we pointed out above, the ϕ-consitent selection rule is avoidable if our
goal is only to have a polynomial time algorithm. Its main role was to help improving on the running
time. Interestingly, each polynomial time augmenting paths type algorithm known so far for polymatroid
intersection, say, did use the lexicographic selection rule.
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6 Extensions

6.1 Most violating set

In the case when no feasible subflow existed, the algorithm described above found a subset Z violating (18).
With a slight modification of the procedure even a most violating subset can be computed, where X is most
violating if ̺f (X) − δg(X) − b(X) is as large as possible.

To this end, the algorithm does not terminate when a node-lift operation leaves a level set empty. Therefore
there can be Ψ-larger nodes in level set Ln and this motivates the other modification: s is to be chosen a
Ψ-larger node of highest level under n. The algorithm terminates when there are no more Ψ-larger nodes
under level n. Let x∗ denote the feasible vector x and m∗ the element of B(b) available at termination. If
there are no Ψ-larger nodes at all, then x∗ is a feasible subflow. Suppose that the there are Ψ-larger nodes at
termination. Then these are in L0 and there is an empty level set Lj .

THEOREM 6.1 When there are Ψ-larger nodes at termination of the revised algorithm, the set Z∗ := {v :
Θ(v) > j} violates (18) most, and we have the following min-max relation.

min
{∑

[(Ψx(v) − m(v))+ : v ∈ V ] : f ≤ x ≤ g, m ∈ B(b)
}

= (23)

max {̺f (X) − δg(X) − b(X) : X ⊆ V } (24)

If f, g, b are integral, the optimal x in the minimum is attained by an integral vector. Moreover, Z∗ (defined
above) is a maximizer in (24) while the couple (x∗, m∗) is a minimizer in (23).

Proof. For a feasible vector x, m ∈ B(b), and subset Z ⊆ V , we have

̺f (Z) − δg(Z) − b(Z) ≤ ̺f (Z) − δg(Z) − m̃(Z) ≤ ̺x(Z) − δx(Z) − m̃(Z) =
∑

[Ψx(v) − m(v) : v ∈ Z] ≤
∑

[(Ψx(v) − m(v))+ : v ∈ V ]

from which max ≤ min follows. Here equality holds if and only if (i) m̃(Z) = b(Z), (ii) ̺f (Z) =
̺x(Z), δg(Z) = δx(Z), and (iii) Z contains every Ψ-larger node but no Ψ-smaller nodes.

We are going to show that the triplet (x∗, m∗, Θ) fulfils these optimality conditions. Indeed, by Lemma
5.2, Z∗ is m∗-tight, that is, (i) holds. Since no increasable edge leaves Z∗ and no decreasable edge enters Z∗,
we have ̺f (Z∗) = ̺x∗(Z∗), δg(Z) = δx∗(Z∗), that is, (ii) holds. Since every Ψ-larger node is in Ln and every
Ψ-smaller node is in L0, we conclude that Z∗ meets (iii), as well. •

Remark Theorem 6.1 can be used to compute a feasible submodular flow x, when one exists, for which x(e0)
is maximum for a specified edge e0 = st of the digraph.

6.2 Crossing submodular functions

How can one find a member of a subflow polyhedron Q = Q(f, g; b) confined by a crossing submodular function
b? We can assume that b(V ) = 0 for if b(V ) < 0, then Q is empty while if b(V ) > 0, then lowering b(V ) to zero
does not change Q and preserves crossing submodularity. For crossing submodular functions, the feasibility
theorem becomes more complicated. Let {Z1, . . . , Zt} be a partition of Z, and for each Zi, let {Z1

i , . . . , Zti

i }
be a partition of V − Zi (ti ≥ 1). Then the set-system D = {V − Zj

i } is called a double-partition of Z. In
other words, a double-partition consists of the sets occurring in the co-partitions of the members of a partition
of Z. Note that a partition of Z is a special double partition. The following result appeared in [8].

THEOREM 6.2 Let b be crossing submodular for which b(V ) = 0. There is a feasible subflow if and only if

̺f (Z) − δg(Z) ≤
∑

[b(X) : X ∈ F ]. (25)

for every subset Z ⊆ V and every double partition F of Z. When b is intersecting submodular, F can be
restricted to partitions of Z. If each of f, g, b is integer-valued and there is a feasible subflow, then there is one
which is integer-valued. •

First we check whether B(b) is empty or not. This can be done by the bi-truncation algorithm described
in [9]. If B(b) turns out to be empty, then the bi-truncation algorithm produces a partition or a co-partition
F of V for which 0 >

∑
[b(X) : X ∈ F ]. In this case, the algorithm for testing Q = Q(f, g; b) for emptiness

concludes that Q is empty and returns F as a double partition of V which violates (25) since ̺f (V )−δg(V ) = 0.
Suppose now that B(b) is non-empty and a member m of B(b) has already been computed. In this case,

there is a unique fully submodular function b↓, called the the full truncation of b for which B(b) = B(b↓)
(see [15] or [11]). Obviously Q(f, g; b) = Q(f, g; b↓) and therefore the algorithm described above for fully
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submodular border functions can, in principle, be applied to b↓ in place of b. There are two issues here to be
settled.

First, the algorithm above required a subroutine for computing ∆
(b↓−m̃)

(u, v) := min{b↓(X) − m̃(X) : u ∈

X ⊆ V − v}. The next lemma shows that it suffices to have a subroutine for computing

∆
(b−m̃)

(u, v) := min{b(X) − m̃(X) : u ∈ X ⊆ V − v}. (26)

which is simpler since ∆
(b−m̃)

(u, v) is a function depending directly on the original b and not on its full

truncation b↓. In applications to connectivity problems, (26) is typically available via a max-flow min-cut
computation.

Lemma 6.3 Let b be a crossing submodular function for which b(V ) = 0 and m a member of B(b). Then
∆

(b↓−m̃)
(u, v) = ∆

(b−m̃)
(u, v).

Proof. We need two observations.

Claim 6.4 B(b − m̃) = B(b↓ − m̃) and
(b − m̃)↓ = b↓ − m̃. (27)

Proof. For a vector x with x̃(V ) = 0, we have the following sequence of equivalences. x ∈ B(b − m̃) ⇐⇒
x̃ ≤ b− m̃ ⇐⇒ x̃ + m̃ ≤ b ⇐⇒ x + m ∈ B(b) ⇐⇒ x + m ∈ B(b↓) ⇐⇒ x̃ + m̃ ≤ b↓ ⇐⇒ x̃ ≤ b↓ − m̃ ⇐⇒
x ∈ B(b↓ − m̃). Hence B((b − m̃)↓) = B(b↓ − m̃).

Now B(b − m̃) is non-empty since the origin belongs to it. Therefore the full truncation (b − m̃)↓ of b− m̃
esists and then B(b − m̃) = B((b − m̃)↓). This and the firs part imply that B((b − m̃)↓) = B(b↓ − m̃). Since
both (b − m̃)↓ and b↓ − m̃ are fully submodular for which B(b − m̃) = B(b↓ − m̃), we conclude that (27)
holds. (Here we use the consequence of the polymatroid greedy algorithm of Edmonds that a base-polyhedron
uniquely determines its fully submodular bounding function. •

Claim 6.5 Let h be a non-negative crossing submodular function on ground-set V for which h(V ) = 0. Then
the full truncation h↓ of h exists and ∆h↓ = ∆h.

Proof. Note that B(h) is non-empty since the non-negativity of h implies that the origin is in B(h). Hence
the full truncation of h indeed exists. Since h↓ ≤ h, we have ∆h↓ ≤ ∆h. Let u and v be two elements of V
and let Z be a uv̄-set for which ∆h↓(u, v) = h↓(Z).

It was shown in [10] that there exists a double partition D [10] of Z such that h↓(Z) =
∑

[h(X) : X ∈ D].
It follows from this definition that dD(u) = dD(v) + 1. Therefore there is a uv̄-member Z′ of D and the
non-negativity of h implies that h(Z′) ≤ h↓(Z) from which ∆h(u, v) ≤ ∆h↓(u, v) follows implying ∆h↓(u, v) =
∆h(u, v). •

The lemma follows by applying Claim 6.5 to h := b − m̃. • •

The second problem to be overcome arises when the subflow polyhedron is empty and the algorithm
terminates by returning a subset Z for which ̺f (Z)−δg(Z) > b↓(Z). In this situation, an algorithm described
in [8] for computing a double partition F of Z for which b↓(Z) =

∑
[b(X) : X ∈ F ] is to be used. A greatly

simplified approach is suggested in a recent work [12].
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