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A SURVEY ON T-JOINS, T-CUTS, AND CONSERVATIVE
WEIGHTINGS

A. FRANK!

The book of L. Lovasz and M. Plummer on matching theory includes a good
overview of the topic indicated in the title. In the present paper we exhibit the
main developments of the area in the last decade. After summarizing the basic
concepts and their simple properties, we discuss several min-max theorems on
packing T-cuts. Here the central result is a theorem of A. Sebé on distances in
a graph endowed with a conservative weighting. We show how it gives rise to
a simple proof of a theorem of P. Seymour on packing T-cuts in grafts not T-
contractible to K. We also provide a new proof of a recent result of E. Korach.
An extension of a theorem of E. Korach and M. Penn is presented along with
its relationship to the planar edge—dlsjomt path problem.

1. INTRODUCTION

Matching thedry, a fundamental part.‘ of graph theory' and cbmbinatorial
optimization, is mainly concerned with subgraphs of a graph satisfying
upper and lower bound constraints on the degrees.

In many applications, however, only the parity of the degrees that really
matters. In this survey-type paper we attempt to outline the theory of T-
joins and T-cuts along with the most interesting applications. An earlier
account on the topic may be found in the book of L. Lovdsz and M. Plummer
[15). Though our main goal is to overview the developments of the area in
the last decade, in order to provide an easy access to the material, we will
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also cover earlier results. Not only the most important theorems will be
discussed but in most cases we provide proofs as well. '

After presenting the required terminology in Section 1 we summarize
some elementary properties of T-joins and T-cuts along with their relation-
ship to conservative weightings. Section 2 exhibits how a minimum weight
T-join may be determined with the help of a weighted matching algorithm.
It also includes some applications of the minimum 7'-join problem, such as
the Chinese Postman problem. In Section 3 we briefly describe the T-cut
packing problem and its relation to planar edge-disjoint paths. Section 4
1s devoted to the basic min-max results and their relationship to conserva-
tive weightings. The fundamental theorem of A. Sebd on the structure of
distances is proved in Section 5. A consequence, due to E. Korach and M.
Penn [13}, and its recent extension by A. Frank and Z. Szigeti [9) will then
be derived from Sebd’s theorem. Section 6 includes two theorems concern-
ing the special role the complete graph K, plays in the theory. The first one
is due to E. Korach while the second one is Seymour’s theorem on max-flow
min-cut matroids specialized to T-joins. In Section 7 we apply the theory
to the planar edge-disjoint paths problem.

Let G = (V, E) be an undirected graph and T C V a subset of nodes of
even cardinality. The pair (G, T) is said to be a graft. We call a subset X of
nodes T-odd (T-even) if | X NT)| is odd (even). The elements of T' are called
T-nodes. For Z CV let gr(Z) denote the number of T-odd components of
G —Z. When T =V we use the abbreviation ¢(Z) := qy(Z), that is, ¢(Z)
is the number of components of G — Z with odd cardinality.

A subset J of edges is called a T-join if dj(v) is odd precisely when
v € T. Here dj(v) denotes the number of elements of J incident to v. The
minimum cardinality of a T-join is denoted by 7(G,T). More generally, for
an arbitrary weight-function w : E - R, 7(G,T,w) denotes the minimum
weight of a T"-join. |

Given a graph G = (V, E), by a cut §(X) := [X,V — X] we mean the
set of edges connecting X and V — X. If | X| = 1 we speak of a star-cut. A
cut 8(X) of G is called a T-cut if X is T-odd. We will use the abbreviation
odd cut for a cut of odd cardinality. E(X) denotes the set of edges induced
by X.

Given a partition P = {V1,V3,...,Vi} of V, by a multicut B = B(P)
we mean the set of edges connecting different parts of P. If each V; is T-odd
and induces a connected subgraph, B is called a T-border. Then clearly k
is even, hence val(B) := k/2 is an integer, called the value of the T-border.
When k£ = 2, a T-border forms a T-cut. Note that the value of a T-cut
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is one. By a packing. of T-borders (T-cuts) we mean a family of pairwise
disjoint T-borders (T-cuts). The maximum cardinality of a packing of 7-
cuts is denoted by v(G,T).

More generally, for a non-negative integer-valued weight-function w :
E — Z we say that a family of cuts is a w-packing if every edge e belongs
to at most w(e) members of the family. ¥{G,T,w) denotes the maximum
cardinality of a w-packing of T-cuts. When w = 1 a w-packing reduces to
a packing and v(G,T,w) = v(G,T). When w = 2 we call a w-packing a
2-packing and v(G, T, w) is denoted by v2(G,T).

Observe that if B is a T-border of value k/2 defined by a partition
{Vi,..., Vi}, then the family {6(V1);...,6(Vi)} is a 2-packing of T-cuts and
hence any packing of T-borders of total value K determines a 2-packing of
T-cuts of cardinality K.

A weighting w : E — R is called conservative if w(C) > 0 for every
circuit C of G, that is, there is no negative circuit. {In directed graphs the
existence of negative directed circuits is excluded.)

Let w: E — R be an arbitrary weight-function and F a subset of edges.
By w' := w[F] we mean the following weight-function: w'(e) = w(e) ife ¢ F
and w'(e) = —w(e) if f € F. Let N, denote the set of negative edges and
Tw = {v : dn,(v) is 0dd}, that is, T,, is the set of :nodes which are incident
to an odd number of negative edges.

For a subset J of edges let kj : E — {41, —1} be defined by ks(e) := -1
ife € Jand ky(e) :==+1ife € E—J. We call J a join if x is conservative.
Let Ty := {v € V : dj(v) is odd). Note that any subset J of edges is a
Tj-join. _

"In the second half of this introduction we summarize some elementary
properties of T-joins and 7T-cuts.

Proposition 1.1. A subset J of edges is a T-join if and only if .J is the
union of edge-disjoint circuits and |T|/2 paths connecting disjoint pairs of
T-nodes.

Proposition 1.2. The intersection of a T-join J and a cut B = [X,V — X]
is of odd cardinality if and only if B is a T-cut.

Proposition 1.3. A graph G has a T-join if and only if every component
of G is T-even.

Proposition 1.4. A set F of edges intersecting each T-join includes a T-
cut.
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In what follows, one.of our main concerns will be to compute and
describe the structure of minimum weight T-joins. The following lemma
establishes a relationship between minimum weight T-joins and conservative
weightings. |

Lemma 1.5. For an arbitrary weight-function w, a T- Jjoin J is of minimum
w-weight if and only if w[J] is conservative.

Proof. If w[J] is not conservative, there is a circuit C for which w[J)(C) <
0, that is, w(CNJ) > w(C —J). Then J' = C& J is a T-join for which
w(lJ') =w(J) —w(CNJ)+w(C - J) < w(J).

Conversely, let .J be a T-join for which w[J] is conservative and let J’
be an arbitrary T-join. Since J & J' is a cycle, it decomposes into circuits.

If, indirectly, w(J') < w(J), then for at least one of these circuits we have
w(C NJ') <w(CnJ), that is, w[J)(C) < 0, a contradiction. m

When w =1 the above proposition is specialized to the following: |
Guan’s Lemma 1.5a. [11] A T-join J is of minimum cardinality if and
only if | '

|enJ<|C -] (1.1)

holds for every circuit C, or equivalently, the +1 weighting k; is conserva-
tive. ®

Condition (1.1) is called the circuit condition. This simple lemma often
(though not always; see Theorem 5.2) enables us to reformulate theorems
concerning minimum 7'-joins in terms of +1-weightings and vice versa.

Proposition 1.6. Let T} and T, be even-cardinality subsets of V and J;
a Ti-join (i = 1,2). Then J := J, & J, is a T-join where T := Ty & Ts.
In particular, the symmetric difference of two T'-joins is a cycle and the
symmetric difference of a T-join and a cycle is 2 T-join. =

2. MINIMUM WEIGHT T-JOINS AND THEIR APPLICATIONS

Given a graft (G,T) and an arbitrary weight-function w defined on the
edge-set of G, we are concerned with the following problem.

Problem (A) Determine a 7-join of minimum weight.

This will be done by a reduction to the weighted matching problem but
before doing so we exhibit some applications.
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2.1. Conservative weightings Given G = (V, E) and a weight-function
w: E — R, decide if w is conservative or not.

Let T := 0. Then the T-joins are precisely the cycles (union of edge-
disjoint circuits) of G. Since the empty set is a T-join of 0 weight, w is
conservative if and only if the minimum weight of a T-join is 0.

2.2. Max cycle and max cut problem Given again G and w, determine
a maximum weight cycle.

This problem is a maximum weight T-join problem for 7' = §. By
negating the weight-function we are at Problem (A).

For planar graphs, through planar dualization, the maximum weight
cycle problem is equivalent to the maximum weight cut problem. This,
in turn, is equivalent to finding a minimum weight subset of edges whose
removal leaves a bipartite graph.

2.3. Shortest paths Let G = (V,E) be a graph with two specified nodes
s and t and w : E — R a weight-function. Find a minimum weight simple
path connecting s and t.

If there is no restriction on w, this problem is NP-complete for both
directed and undirected graphs as the (directed) Hamiltonian path problem
can be formulated as a special case. For directed graphs a relatively simple
solution is available if w is conservative.

Therefore it is natural to.consider the shortest paths problem for undi-
rected graphs when w is conservative. If w happens to be non-negative, the
problem can easily be reduced to one for directed graphs by replacing each
- undirected edge by two oppositely directed edges. This reduction, however,
does not work for general conservative weightings since for a negative edge
we would introduce a negative (two-element) circuit.

An answer to Problem (A) solves the shortest paths problem for conser-
vative weight-functions. Namely, let T := {s, t}. Then any T-join consists
of a path P connecting s and t and some edge-disjoint circuits. If w is

conservative, there is'a minimum w-weight T-join consisting of one path
connecting s and .

Observe that in this case T-cuts are the cuts separating s and ¢.

2.4. The Chinese poSfman problem or how to make a graph
Eulerian A postman is supposed to pass every street of a certain district
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so that he starts from the central post office and must return there. Find a
tour for him so that the total distance he must cover is minimum.

Translating this problem to the language of graphs we arrive at the
following problem. Given a (connected) graph G = (V, E), call a closed
walk a postman tour if it uses every edge at least once. The problem is to
find a postman tour of minimum total length. By the total length of a walk
W we mean }_x(e) (or more generally, 3 z(e)w(e), where w : E — R, is
a weight function) where 2(e) denotes the number of times W uses e.

Clearly, if there is a postman tour W using every edge precisely once,
then W is optimal. Such a walk exists if and only if G is Eulerian. That
is, for Eulerian graphs there is nothing to be optimized: any Eulerian walk
serves as an optimal postman tour.

The problem becomes interesting when G is not Eulerian. The key ob-
servation is that there is a one-to-one correspondence between the postman
tours and the Eulerian supergraphs of G. Namely, an Eulerian walk of an
Bulerian supergraph of G' determines a postman tour of G. Conversely,
let W be an arbitrary postman tour. Replace each edge e by z(e) parallel
edges. By definition, the resulting graph G’ = (V, E') is Eulerian and the
total length of W is |E’|.

Therefore our problem is equivalent to making a graph G Eulerian by
adding a minimum number of new edges parallel to existing ones. Notice
that in an optimal solution at most one parallel edge is added for every
old edge. Indeed, for otherwise, discarding two new edges parallel to each
other, we would have a smaller solution. That is, our problem is finding a
minimum subset J of edges so that () doubling parallelly each element of
" J makes G Eulerian.

By observing that a certain J satisfies (*) if and only if J is a T-join,
where T' denotes the set of nodes of odd degree, we can conclude that the
Chinese Postman problem is equivalent to finding a minimum 7-join.

In this case T-cuts are precisely the odd-cardinality cuts.

2.5. Perfect matchings Determine if a graph includes a perfect match-
ing.

Let us define T = V. Then every T-join has at least |V|/2 elements
and a T-join J has precisely that many elements if and only if J is a perfect
matching of G.
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In other words G has a perfect matching if and only if the minimum car-
dinality of a T-join is |V|/2. Hence an answer to Problem (A) automatically
provides a characterization for the existence of a perfect matching.

In this sense perfect matchings are special cases of T-joins. What is even
more striking is that, conversely, T-joins can also be reduced to matchings.
Specifically, we show now how an algorithm for Problem (A) can be obtained
from a weighted matching algorithm. The approach is due to Edmonds and
Johnson [3].

Let us first assume that w > 0. For z,y € T let A(z,y) denote the
minimum w-weight of a path connecting x and y. Let Ky denote the
complete graph on node-set T and let M := {x1y1,%2¥3,...,Txys} be a
minimum weight perfect matching of K'r with respect to the weight-function
A. Let P; be a minimum weight path in G connecting x; and y; (that is,
w(P;) = AMa;y:) (=1,...,k)). Finally, let

Iy =EP)®EP)®...0 E(P). (2.1)

Claim 2.1. Jps is a minimum weight T-join.

Proof. Jy is clearly a T-join. Suppose that J is an arbitrary T-join. By
Proposition 1.1 J partitions into circuits and paths R; (i = 1,...,k). Let s;
and t; be the two end-nodes of R; and M’ := {s1t1, satg, ..., sitr}. Then we
have w(J) 2 3 w(Ri) 2 37 A(si, i) = M(M') > MM) = T w(P) > w(Jn),
as required. (Here the first and the last inequalities hold since w is non-
negative.) ®m

Therefore, in case of non-negative weight-functions the minimum weight
T-join problem can be solved, as follows. First, compute the w-distance of
each pair of nodes in T'. Second, determine a minimum weight matching M
of the complete graph on T. Finally take the paths P; in G realizing the
distance of the ends-points of each matching edge s;t;. Jus, as defined in
(2.1), is a minimum weight T-join.

Let us assume now that in Problem (A) w is an arbitrary weight-

function. We are going to define an equivalent problem where the weight-
function is non-negative.

Let |w| denote the weight-function for which |wl|(e) := |w(e)| for every
e € E. Recall the definition of N,, and T,, and the fact that N, is a.T,,-
join. Define a function ¢, : 2% — 2F by Pw(X) := X & N,. Clearly, ¢, is
idempotent, that is, ¢, (v, (X)) = X.
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Proposition 2.2. ¢, is a bijection between T-joins and (T & T, )-joins.
Furthermore, if a T-join J and a (T & T,,)-join .J' correspond to each other,
then

w(J) = [wl(F) + w(N,). (2.2)

Proof. The first part follows from Proposition 1.6. Since J' = J & N,
we have w(J) = w(J — Ny) + w(J N Ny) = |w|(J' = Np) + w(J N N,) =
[w|(J) = (N = J) +w(J 0 Ny) = [w|(J') + w(Ny — J) + w(J O N,,) =
|w|(J') + w(Ny), and (2.2) follows. m '

This immediately implies:

 Proposition 2.3. For an arbitrary weight-function w a subset J of edges
is a minimum w-weight T-join if and only if J' := J & N,, is a minimum
|w|-weight (T & Ty, )-join. m - |

This way the minimum weight T-join problem is reduced to the case
of non-negative weights. It should also be noted that the maximum weight
(in particular, the maximum cardinality) T-join problem reduces to the
minimization problem by simply negating the weight-function.

3. PAackiNnG T-CcUTS

In this section we are interested in the problem of packing T-cuts and its
applications. One basic question is as follows.

Problem (B) Given a graft (G,T), what is the maximum number v =
v(G,T) of disjoint T-cuts?

By Proposition 1.2, a T-cut and a T-join always have an element in
common, therefore the minimum cardinality 7 of a T-join is always an upper
bound for v, that is, v < 7. In general, we do not have equality here, as
is shown by the graft Ky := (K4, V(K,)) where K4 denotes the complete
graph on 4 nodes. In this case a perfect matching is a minimum 7-join and
hence 7 = 2, furthermore there are no two disjoint cuts, therefore v = 1.

In the preceding section we showed that 7 is computable in polynomial
time. Can we compute » in polynomial time, as well? A weaker problem
for a graft is to decide in polynomial time whether v = 77 (This is weaker
indeed as 7 is computable in polynomial time.) But even this second
question is NP-complete, a result due to M. Middendorf and F. Pfeiffer [16]:
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‘Theorem 3.1. Determining whether v(G,T) = 7(G,T) is NP-complete
even for planar graphs G. In particular, computing v(G,T) is NP-complete.
|

In spite of this negative result, there are important special classes of
grafts when v = 1 holds true. This is the case, for example, if G is bipartite,
or if G is series-parallel, or if G is planar and the elements of T are in the
boundary of one face. We will discuss these classes in detail in Sections 4
and 6 along with the special role played by Kj.

One of the main motivation for investigating the problem of packing
T-cuts is its close relationship to the following problem.

Edge-disjoint paths problem In an undirected graph G' = (V, E') we are
given k pairs of vertices {sq,%1),...,(sk,fx). Decide if there are k pairwise
edge-disjoint paths Py,..., P in G’ so that the end-nodes of P; are s; and
ti(i=1,...,k).

It is useful to mark each pair of terminals by a so called demand edge
sit;. (The original edges in G’ are sometimes called supply edges.) Let J
denote the set of demand edges. We call the graph H = (V,.J) formed
by the demand edges a demand graph. Therefore the edge-disjoint paths
problem is equivalent to finding |J| edge-disjoint circuits in the union graph
G = (V, E' U J) such that each circuit contains precisely one demand edge.
This formulation justifies the following definition.

Let G = (V, E) be a graph and J a subset of edges. We say that a circuit
or a cut of G is J-good if it contains precisely one edge from .J. We call a
family of |J| disjoint J-good cuts (or J-good circuits) a complete packing.
More generally, given a non-negative, integer-valued weight-function w :
E — Z,, a w-packing of J-good cuts is called complete if every element
J of J belongs to precisely w(f) members. Therefore the edge-disjoint
paths problem calls for finding a complete packing of J-good circuits. The
following condition, called the cut condition, is easily seen to be necessary
for the solvability of the edge-disjoint paths problem:

w(CNJ) <w(C — J) for every cut C. (3.1a)

~ When w = 1 this specializes to
ICNJ| < |C ~ J| for every cut C. (3.1b)

This latter is equivalent to saying that every cut of G contains at least as
many supply edges as demand edges. The cut condition is not sufficient
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in general, but there are several interesting subclasses when it is. (The
most fundamental one is when J consists of k& parallel edges: this is the
undirectéd edge-disjoint version of Menger’s theorem.) For a survey, see
Frank [6]. Here we are going to concentrate only on the special case, when
G is a planar graph, that is, the supply and the demand graph together
(!) is planar. This special case will be called the planar edge-disjoint paths
problem.

Theorem 3.1A. (M. Middendorf and F. Pfeiffer, [16]) The planar edge-
disjoint paths problem is NP-complete. m

‘We will see (Proposition 3.3) that this is just a reformulation of The-
orem 3.1. The idea behind this relationship is that for planar graphs the
problem of finding edge-disjoint J-good circuits is equivalent, by planar du-
alization, to that of finding edge-disjoint J-good cuts. This latter problem,
in turn, as we immediately point out, is strongly related to the Problem
(B), independent of planarity assumptions on G.

Let G = (V,E) be an arbitrary undirected graph with a subset J of
edges. When does there exist a complete w-packing of J-good cuts? The
following circuit condition is clearly necessary for the existence of a complete
w-packing.

w(C N J) < w(C — J) for every circuit C. (3.2a)

Again, when w = 1 this specializes to
|C N J| <|C - J| for every circuit C. (3.2b)

Observe that (3.2b) is equivalent to saying that «; is conservative, which is,
by Guan’s Lemma, equivalent to requiring that J is a minimum cardinality
Tj-join where Ty consists of those vertices of G which are incident to an
odd number of elements from J.

The circuit condition is not always sufficient as is shown (again) by K4
with .J being a perfect matching. We are interested in cases when the circuit
condition is sufficient. A link between packing J-good cuts and T-cuts is
shown by the following:

Proposition 3.2. Suppose for a graph (G,E) and a subset J of edges
that the circuit condition holds (or equivalently, x; is conservative). The
following are equivalent:

(a) There exists a complete packing of J -good cuts,
(b) U(G7 TJ) = T(G1 TJ)
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Proof. (a)—(b). Suppose there is a family B of |J| disjoint J-good
cuts. Since &y is conservative, J is a minimum cardinality Tj-join, that
is, |J| = 7(G,Ty). By Proposition 1.2, each J-good cut is a T-cut and
hence B is a packing of |J| = (G, Ty) Ty-cuts.
(b)—(a). If we have a packing B of |7(G,Ty)| = |J] Ty-cuts, then each
member of the family contains precisely one elements of J, that is B is a
complete packing of J-good cuts. = |

This proposition shows that a theorem, stating that v(G,T) = (G, T)
holds under some assumptions, might be used to derive theorems stating
that, in certain circumstances, the circuit condition is sufficient for the
existence of a complete packing of J-good cuts. In the sequel we will use
this implication chiefly to derive results on the planar edge-disjoint paths

problem. But the reverse implication is equally true, as is expressed by the
following:

Proposition 3.3. Let J be a minimum cardinality T-join in a graft (G, T).
The following are equivalent:

(a) v(G,T) = 7(G,T),

(b) There exists a complete packing of J-good cuts. =

The proof is analogous to the preceding one and is left to the reader.
Proposition 3.3 shows that Theorems 3.1 and 3.1A are indeed equivalent.

We conclude this section by showing that cut packings can be re-
taylored into non-crossing forms.

Proposition 3.4. Let G = (V,E) be a graph, (G,T) a graft, J C E
a subset of edges, and w : E — Z, a non-negative, integer-valued weight-
function. If there is a w-packing consisting of k T-cuts (respectively, J -good
cuts), there is one consisting of k non-crossing T-cuts (J-good cuts).

Proof. We only prove the statement concerning T-cuts since the case of
J-good cuts is- analogous. Suppose that F= {Xj,..., X} is a family of
T-odd sets so that the family of T-cuts {6(X;)} forms a w-packing. Let s
be an arbitrary node of G. By complementing, if necessary, we may assume
that no X; contains s. If F is a laminar family, we are done. If F is
not laminar, it contains two intersecting sets, say X; and X5. Then either
(i) both Xj := X; N X3 and X} := X; U X, are T-odd or else (ii) both
X1 = X1~ Xy and X} := X3 — X; are T-odd. Accordingly, revise F by
replacing X, X, with X] and X3.

Apply this uncrossing technique as long as there are intersecting mem-
bers of the family. We claim that the procedure is finite and hence the
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final family is laminar. Indeed, 3" | X;| (< k|V|) never increases and in Case
(ii) it strictly decreases. Hence Case (ii) may occur at most k|V| times.
Moreover, if Case (i) occurs, then Y~ |X;|? (< k|V|?) strictly increases and
hence after the last occurrence of Case (ii) at most k|V|? uncrossing steps
are possible. ™

Since a non-crossing family may have at most 2n members Proposition
3.4 has the following corollary.

Corollary 3.5. There is a maximum w-packing of T-cuts (a complete w-
packing of J-good cuts) that can be polynomially encoded. w

This result is important in order to have a polynomial time algorithm
for finding a maximum w-packing whose complexity is independent of w.
Even more, it actually indicates a possible way of attack for designing such
an algorithm. Namely, it tells us that there always exists an element z of
T so that the star-cut B := é(x) belongs to a maximum packing. If we
were somehow able to pick up such an z, we could contract B and then
iterate the procedure. Although this approach cannot be expected to work
in general since the 1-packing problem of J-good cuts is NP-complete, for
bipartite graphs the idea works perfectly. How this really goes is the topic
of the next two sections.

4. MIN-MAX RESULTS

In this section we exhibit several min-max theorems concerning the mini-
mum cardinality of a T-join in a graft (G, T). Historically, Tutte’s theorem
[23] (see below) on the existence of a perfect matching may be considered
the first result of this kind because the existence of a perfect matching in a
graph G is equivalent to the statement that in the graft (G, V) the minimum
cardinality of a V-join is |V]|/2.

It will be one of our purposes to extend Tutte’s theorem to any graft.
In Section 2 we saw that determining the distance of two nodes with respect
to a conservative weighting may be reduced to a minimum 7-join problem.
Conversely, in order to handle problems on minimum T-joins, A. Sebd [17,
19] invented an extremely powerful technique which is based on the use of
distances. At the heart of this method lies the following lemma providing a
framework for inductive proofs on the structure of minimum T-joins.
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Let G = (V, E) be a (connected) graph, w a conservative £1 weighting
on E. A path or a circuit will be called negative if its w-weight is negative.
We call a path connecting nodes u and v a uv-path.

'Let s be a node of G which is the starting-node of a negative path.
Among these paths let P denote one whose w-weight is most negative, and,
subject to this, P has a minimum number of edges. The other end-node
and the last edge of P is denoted by t and xt, respectively.

Lemma 4.1. (i} Edge xt is the only negative edge incident to t.

(ii) If a circuit C of 0 w-weight uses node t, then it uses edge xt, as well.
(iii) If for some node ¢ a minimum w-weight sq path P, uses node t, then
it uses edge xt, as well.

Proof. We call a subpath Ply,t] of P an end-segment. By the choice of P
each end-segment of P has negafive weight, (%)

in particular, w(zt) < 0.

(i) Let tz be another negative edge. If z € P, then P[z,t] + tz would
form a negative circuit contradicting that w is conservative. If z € P, then
P’ := P+1tz would be a path with w(P') < w(P) contradicting the minimal
choice of P. Thus (i) follows. |

(ii) Suppose C uses t but not. zt. Let u and v be the two neighbours of
tin C and R := C —t the path connecting © and v. An arbitrary node y of
R subdivides R into two segments R[y,u] and R[y,v]. Since w(R) < 0, at
least one of the two segments is negative.

Suppose first that P and R have a node y in common. Choose y so
that P[y,t] has as few edges as possible. Assume that w(R[u,y]) < 0, say.
Property (*) implies that P[t,y] + R[y,u] + ut is a negative circuit in G, a
contradiction. ' :

Second, let P and R be disjoint. By (i) both edges tu and tv are positive
and therefore w(R) < —2. Hence P’ := P+tu+ R is a simple path starting
at s such that w(P’) < w(P) contradicting the minimal choice of P.

(iii) Suppose that P, does not use edge xt. Let y be a node belonging
to Py and P|z,s| for which Ply,#] has as few edges as possible. (Such a y
exists since s is a node belonging to both P, and P[z, s]). Then the segments
Pyly,t] and Ply,t] form a circuit K. Since w(K) > 0 and w(P[y,t]) < 0,
we obtain that w(Ply,t]) < w(Py[y,t]) but this contradicts the minimality
of P: replacing the segment P,fy,t} of P, with Ply,t] we would get an sq
path with w-weight smaller than that of ;. m
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The following result of A. Sebd, which may be interesting for its own
sake, is a consequence of Lemma 4.1:

Let D = (U,V;E) be a simple bipartite graph with at least three nodes
and w a conservative +1-weighting on E. Suppose that there is a negative
path between every two nodes of the same class. Then D is a tree and w is
identically —1.

The following fundamental result is due to P. Seymour [22].

Theorem 4.2. Let D = (U,V; E‘) be a connected bipartite graph, T an
even subset of nodes and J a subset of edges. '

(A) There is a family J of |J| disjoint J-good cuts of D if and only if the
circuit condition (3.2b) holds:

|CNJ| <|C - J| for every circuit C.

(B)
7(D,T) = v(D,T). (4.1)

By Propositions 3.2 and 3.3, the two parts of the theorem are equivalent.
We do not prove here either part since the proof of a more general result
(Theorem 4.4) will later be presented.

Let (G,T) be a graft where G = (V,E) is an arbitrary graph. Let
D = (V,U; E) denote a bipartite graph arising from G by subdividing each
edge by a new node. By applying Seymour’s Theorem 4.2 to graft (D,T)
we immediately obtain:

Corollary 4.3. Let G = (V, E) be a graph, T an even subset of nodes and
J a subset of edges.
(A) There is a complete 2-packing of J-good cuts if and only if the circuit
condition (3.2b) holds. )
(B)

7(G,T) = 1(G,T)/2. (4.2)

This theorem was formulated in a more general form by J. Edmonds and
E. Johnson (3]. It was stated and proved explicitly by L. Lovész [14]. When
‘the result is specialized to the case V = T one obtains a characterization for
the existence of a perfect matching in a general graph. Namely, there is a
perfect matching if and only if there is no 2-packing of more than V| odd-
cardinality cuts. This characterization can easily be derived from Tutte’s
theorem but it is disappointing to realize that the converse derivation does
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not seem to be straightforward at all. Therefore it is desirable to have a
strengthening of Seymour’s theorem that easily implies Tutte’s theorem.
The following result of Frank, Sebé and Tardos {5] not only fulfills this
requirement but will also be useful to derive another fundamental theorem
of P. Seymour on max-flow min-cut grafts (Section 6). The main point in
this result is that an optimal family of T-cuts or J-good cuts ensured by
Seymour’s Theorem 4.2 may be chosen in a specially structured form. The
proof we present here is due to A. Sebd [17].

Theorem 4.4A. Let D = (U, V:E) be a bipartite graph and J a subset
of edges. There is a partition P of V so that

dj(K)<1foreach K € K (4.3)

if and only if the circuit condition (3.2b) holds where K:= {K : K a
component of D — X for some X € P}.

Proof. Let w := ky. Then the circuit condition is equivalent to w being
conservative.

To see the necessity of (4.3) let P be a partition of V satisfying the
condition. Then the family {§(K) : K € K} of cuts forms a partition of E.
Therefore, if there were a negative circuit, one of these cuts would contain
at least two negative edges proving the necessity of (4.3).

Its sufficiency is proved by induction on |J|. Choose a node s which is
incident to a negative edge (that is, to an element of J) and apply Lemma
3.1. (Recall that in the lemma ¢ and zt denote the last node end edge,
respectively). Let B denote the set of edges incident to t. B is a cut
containing one negative edge. Let D' denote the graph arising from D by
contracting the elements of B and w' the restriction of w on the edges of
D'. Then D' is bipartite so it has the form D’ := (U’ V’; E'). Let ¢ denote
the contracted node.

We claim that w' is conservative. Indeed, suppose indirectly that there
is a circuit C" in D’ of negative w'-weight. Since w is conservative in D, the
edge set in D corresponding to C’ forms a negative path R connecting two
distinct neighbours of ¢, denoted by u and v. Since D is bipartite, we have
w(R) < —2. Now C := R+ ut + tv is a circuit of D for which 0 < w(C) =
w(R) + w(ut) + w(vt) < -2+ 1+1 = 0. Hence w(ut) = w(vt) = 1 and
w(C) = 0. Therefore v and v are distinct from z, that is, C is a 0 circuit
using t but not zt, contradicting Part (ii) of Lemma 3.1.

By induction there is a partition P’ of V" satisfying (4.3) with respect
to J'. If t € U (that is, ' € V'), then P’ determines a partition P of V.
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If t € V, then define P:= P’ U {t}. In both cases it is easily seen that P
satisfies the requirements of the theorem. m

Note that Theorem 4.4A immediately implies Theorem 4.2A. We can
reformulate Theorem 4.4A in the following form.

Theorem 4.4B. Let D = (U, V;E) be a bipartite graph. For an even
subset T' of nodes

7(D,T) = max( Z qr(X) : P a partition of V), (4.4a)
' XeP '
and
7(D,T) = max( Z gr(X) : P a partition of U). (4.4b)
Xep o

Proof. Naturally, the role of the two parts U and V is symmetric and
therefore it suffices to prove only (4.4a). Let us denote the maximum in
(4.4a) by v/ = v/(D,T). For a T-join J and a partition P of V we have
Il = X xepdi(X) > Y xcp gr(X) from which +' < 7 follows. To see the
reverse inequality let J be a T-join of minimum cardinality. Then the circuit
condition holds and hence, by the preceding theorem, there is a partition P
of V satisfying (4.3). '

A component K of D — X (X € P) is T-odd if and only if dy(K) = 1.
Hence d;(X) = ¢r(X) and |J| = 2xep 4r(X), as required. m

Theorem 4.4B also has a version concerning general graphs G = (V, E).
As before, let D = au : E) denote a bipartite graph arising from G by
subdividing each edge by a new node. Here sets £ and U are in a one-to-
one correspondence and we will not distinguish between their corresponding
elements. In particular, a subset of U will be considered as a subset of E
and vice versa. We are also given an even subset T of V. While applying
Theorem 4.4B to (D,T) we may use (4.4a) or (4.4b). Accordingly, we will
qbta,in two different theorems for 7(G,T). The first one is due to A. Frank,

E. Tardos and A. Sebé [5] while the second to A. Sebd [18).

Theorem 4.5. For a graft (G,T)

(G, T) = %ma.x( Z gr(X): P a partition of V). (4.5)
XeP o
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Proof. Immediate from (4.4a) if we observe that 27(G,T) = 7(D,T) and
that ¢r(X) is the same in G andin D. m : :

Before mentioning the other characterization for 7(G,T) let us show
that Theorem 4.5, satisfying our expectation, immediately implies:

Tutte’s Theorem A graph G contains no perfect matching if and only
if there is a subset X of nodes such that G — X includes more than |X|
components of odd cardinality. '

Proof. (Sufficiency.) Apply Theorem 4.4B with the choice T := V. Notice
that in this case a set is T-odd if its cardinality is odd. If there is no perfect
matching, then the minimum cardinality of a T-join is larger than |V|/2.
By Theorem 4.5 there is a partition P of V so that ) ycp qr(X)/2 > |V|/2,
that is, 3 - xep gr(X) > Y xep |X|- Therefore there must be a member X
of P so that g7 (X) > | X/, that is, the number of components in G — X with
odd cardinality is larger than |X|, as required. =~

Let us recall the definition of a T-border. The value of a packing B of
T-borders is defined by val(B) := ) g.pgval(B). The next result was proved
by A. Sebé [18]. It will be invoked in Section 6 to prove Theorem 6.5 of P. -
Seymour. The present proof is taken from Frank and Szigeti [8].

Theorem 4.6. For a graft (G,T)
(G, T) = max( val (B) : B a packing of T' -borders). (4.6)

Proof. Since |B N J| >val(B) for any T-border B and T-join J, we get
7(G,T} > max val(B). In order to show the reverse inequality we are going
to prove that there is a T-join J of G and a packing B of T-borders of G so
that '

|J| = val (B). . - (4.7)

By Theorem 4.4B (formula (4.4b)) there is a partition &/ of U and a T-join
J' of D for which _

7= (er(X) : X €U). (4.8)

Assume that [ := |U| is as large as possible and let Z be an arbitrary
member of U with ¢r(Z) > 0. Let K;,K>,..., K}, be the components of
D—-2,Vi:=VNK; and P:= {Vj,..., W} ,

Clearly, Z 3 B(P) and, actually, here we have equality since if an edge
e nduced by V; belonged to Z, then |Z| > 2 and in I we could replace
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Z by two sets Z — e and {e} without destroying (4.8), contradicting the
maximality of [. We also claim that each V; is T-odd for otherwise |Z] > 2
and for an edge e € Z leaving V; we could replace Z by Z — e and {e}
without destroying (4.8), contradicting again the maximality of /.

Let B:= {Z € U : ¢7(Z) > 0}. We have seen that each member
Z of B is a T-border of G with val(Z) = ¢r(Z)/2. Hence (4.7) and the

theorem follows by noticing that J' corresponds to a T-join J of G with
|7 =1J]/2. =

‘Seymour’s Theorem 4.2A shows that the circuit condition is sufficient
for the existence of a complete packings of J-good cuts if the graph is
bipartite. This is not true for non-bipartite graphs in general, but the
following easy theorem shows that it is true if J forms a tree.

Theorem 4.7. Let G = (V,E) be a graph and H = (V(J),J) a sub-tree
of G. There is a complete packing of J-good cuts if and only if the circuit
condition holds. m

Proof. Let s be an arbitrary node of H and let e = uzx be any edge of H
such that u is closer to s than z. ‘

- Let V. consist of the nodesin V — V(J ) plus the nodes in the component
of H — e containing z. Let Sy := {v € V, : there is path in G(V;) from z
to v whose x;-length is non-positive.} Then it is not difﬁcult to check that
Js = {Sz : x € V(J) — s} is laminar and the family B, := {§(S;) : z €
V(J) — s} is a complete packing of J-good cuts. =

In Theorems 4.2 and 4.4 we have seen that in bipartite graphs the
packing problem of J-good cuts is equivalent to the problem of deciding for
a graft if 7(D,T) = v(D,T). The two problems, however, are not necessarily
equivalent if some extra restrictions are imposed. For example, if we want
to reformulate Theorem 4.7 in terms of T-joins, we run into the following:

Open problem 4.5. Given a graft (G,T), decide if there is a T-join of
minimuin cardinality which is, in addition, connected. More generally, find

a T-join of minimum cardinality that consists of a minimum number of
components.

We conclude this section by stating a result of W. Pulleyblank. The
problem of finding a connected T-join is NP-complete. The proof relies
on the fact that the Hamiltonian circuit problem is NP-complete even in
3-regular graphs.



A Survey on T-joins, T-cuts, and Conservative Weightings 231

5. CONSERVATIVE WEIGHTINGS AND DISTANCES

In the preceding section we have seen the benefit of making use of distances
to obtain short and simple proofs of theorems concerning minimum cardi-
nality 7-joins and maximum packing of T-cuts. In this section we go one
step further and show that distances serve not only as a powerful proof
technique but they are also the subject of a fundamental theorem due to
A. Sebd [19]. His result implies Theorem 4.4 and has some other important
- theoretical and algorithmical consequences, as well, to be discussed below.

Let D = (U,V;E) be a bipartite graph and w : E — {+1,~1} a
conservative weighting on the edges. Let J denote the subset of negative
edges. The minimum w-weight of a uv-path is called the distance of v and
v. It is denoted by d(u,v) = dy(u,v). |

Let s be a specified node of D and for every node u let A(u) := Ay(u) :=
dw(s,u). Clearly, A(s) = 0 and it is also evident that |A(z) — A(y)] = 1 for
every edge zy. Let m and M denote the smallest and the largest distance
from s, respectively. For every integer i, m < i < M, define a level set
L; .= {z : Ma) =i} and a down-set D; := {z : M(z) <i}. Let D; denote a
family of those subsets of nodes which form a connected component of the
subgraph induced by a down-set D;. The family D := UD; is laminar (i.e.,
any two members are either disjoint or one includes the other) and the cuts
determined by its members form a partition of the edge set E. ‘

Theorem 5.1. (A. Sebd, [19]) Every member I of D is entered by no
negative edge or by one negative edge according to K contains s or not.
Equivalently, the cuts determined by the members of D not containing s
form a complete packing of J-good cuts.

Proof. Sebd, [20] Induction on the number of nodes. We will contract
a certain cut B of D resulting in a bipartite graph D' = (U',V; E'). In
general, we use the notational convention that for any part X of D (such as
node, level set, distance, family of subsets etc.) the corresponding part of
D' is denoted by X’. For example, X'(v) denote the distance of node v from
s’ in D’. Also, w' stands for the restriction of w on E'. Let I'(z) denote the
set of neighbours of a node z.

We distinguish two cases.

Case 1. m = 0. Then no negative path of D ends at s and hence there
is no zero-circuit containing s. Therefore if we contract the set B of edges
incident to s, no negative circuit arises, i.e. w' is conservative. Clearly,
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X (v) = A(v) — 1 for every node of D'. Therefore the level sets for D and for
D' correspond to each other, as follows. L y=Ly—s,Ly=1L,— [(s)+ s,
and for i > 1, L! = L;,;. |

~ Let Ky := {s} and Ky := I'(s) + 5. Then K1,Ky € D and we have
D' =D~ {K),K3} + {s'}. We are done by induction if we notice that the
preimage of s’ is just K3 and remember that no negative edge is incident
to s. o ‘ '

Case 2. m < 0. Let P be a path starting at s with length m (that is, P is
a most negative path) and assume that P has a minimum number of edges.

We can apply Lemma 3.1 (and use the notation P,t, xt appearing there).
The cut B consisting of the edges incident to ¢ contains one negative edge
t (the last edge of P). By Part (i) of Lemma 3.1 w' is easily seen to be
" conservative (as was already shown in detail in the proof of Theorem 4.44).

Claim. X(t') =m+1 and X(2) = A(z) for every node z # ¢/ of D',

Proof. Sin¢e w' is conservative, no negative path in D — ¢ connects two _
neighbours of ¢. Hence if R is a path of D between s and a node z # t,
then for the corresponding contracted path R’ we have w'(R') < w(R). It
follows that X'(¢') <'m +1 and X(z) < A(z) for every node 2 #t' of D,

We cannot have strict inequality in the first case, for if there were a
path R in D’ from s to ¢ with w'(R’) < m, then there would exist a path
R in D between s and a neighbour of ¢ for which w(R) < m, contradicting
the fact that each neighbour of ¢ is in level set Liyt. '

To see the equality in the second case, suppose indirectly that there
is an sz-path R’ in D’ with w/(R') < Ay(s,z). Because D' is bipartite,
w'(R) < Ay(s,2z) — 2. Now R’ must contain # and the two segments
R'[s,t] and R'[t',z] correspond to an su-path R, and a vz path Ry in
D where u,v € I'(t). Now Ry := R, + ut + tv + Ry is an sz-path in
D. Neither of ut and vt can have weight -1, since then we would have
Aw(s,2) < w(Rp) < w'(R") < Aw(s,2) — 2. If, in turn, w(ut) = w(vt) =1,
then A, (s, 2) < w(Ry)+2 = w'(R')+2 < A\y(s, 2), that is, w(Ry) = Ay(s, 2),
contradicting Lemma 3.1 (iii). =

We can conclude that the level sets of D and of D’ are essentially
the same, namely, L! = L, — ¢, Liyy = Lmy1 - ID(t) + ¢, and for
12m+2, Ll = IL;.

Let Ky := {t} and K3 := I'(t) + ¢. Then K|,K; € D and we have
D'=D—{Ki, Ky} + {t'}. We are done by induction since the preimage of
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t' is just K5 and by Lemma 3.1 (i) one negative edge is incident to ¢, that
is, one negative edge enters K;. ®

Among the consequences of Theorem 5.1 we first derive Theorem 4.4A.
Suppose that s € V. For m < i < M define P; :== {P: P = L; N X, for
X € D;} and let

P :=U(P; : i even). (5.1)
Clearly, P is a partition of V' that satisfies (4.3} by Theorem 5.1. =

We know already how to compute a minimum cardinality T-join and
also the distance of two nodes with respect to a conservative weight function.
But how can we determine algorithmically a complete packing of J-good
cuts or a maximum packing of T-cuts, at least when the graph is bipartite
and Seymour’s Theorem 4.2 is available? Or more generally, how can we
compute the partition P described in Theorem 4.4A7?

A striking consequence of Sebd’s theorem is that we do not have to
design any new algorithm. All we need is to determine the distance Ay (v)
of each node v from s and to compute the components of the graphs induced
by the down-sets. Once the level sets and D are available, we can determine
a partition P satisfying (4.3) by (5.1).

The algorithm obtained this way is of polynomial time since it needs n
(: the number of nodes) minimum weight matching-computations (to deter-
mine the distances) and some manipulation with the connected components
in question. Though there are more efficient methods for computing a com-
plete packing of J-good cuts, we stress the conceptual novelty in Sebd’s
approach: with the help of n primal type computations, a solution to the
dual can be immediately extracted.

We mentioned in Section 3 that determining if a general graph G =
(V, E) has a complete packing of J-good cuts is NP-complete (where .J is a
join of G, that is, the circuit condition (3.1b) holds). Therefore we may be
satisfied with having “near-complete” packings. The following result was
proved first by E. Korach and M. Penn [13]. The present proof is due to A.
Seb6 [19]. For another, more direct proof, see Section 6.

Theorem 5.2. Let J be a join in G and let the components of the subgraph
(V(J),J) be Ko, J1,Js,...,J;. Then it is possible to contract at most one

edge from each J; so that the resulting graph has a complete packing of
J-good cuts.

Note that this generalizes Theorem 4.7.
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Proof. Let D = (U,V; E) be a bipartite graph arising from G by subdi-
viding each edge by a node. (The elements of U and E correspond to each
other.) Let w be a *1 weighting on £ so that w(e) = ~1 precisely if e
corresponds to an element of J. Since the circuit condition holds, w is con-

servative. Choose a node s in V' that belongs to Ky and apply Theorem
a.1.

We call a node v # s of D singular if there are precisely two negative
edges u1v, ugv incident to v and A(v) — 1 = A(u1) = A(ug).

Lemma 5.3. Each component C of J contains at most one singular node.
If s belongs to C, then C contains no singular node.

Proof. There are no two adjacent negative edges 1y, z2y for which

Aly) +1 = Az1) = Mza), | (%)

for otherwise there would be two negative .edges entering the component of
D)(y) containing y, contradicting Theorem 5.1.

Suppose indirectly that the component C of J not containing s contains
two singular nodes sy and s; or that a component C containing s contains
a singular node s;. In the second case let s3 ;= 5. Let y be a node of the
unique path in C connecting s; and s, for which A(y) is minimum. Now y
is distinct from sy and s; and hence the two negative edges yx; and yx2 of
the paths that are incident to y violate (x). =

Let us call an edge e of G singular if its subdividing node s, is singular
in D. By the claim each component of J; contains at most one singular edge
while Ky contains none.

Let D' := U{X € D;,i odd, s ¢ X}. The cuts determined by the
members of D’ correspond to disjoint .J-good cuts of G and each non-singular
edge enters one of these cuts. Therefore by contracting the singular edges
we obtain a graph having a complete packing of J-good cuts. m

Korach and Penn also formulated their result in an equivalent form:

Corollary 5.4. If there is a minimum cardinality T-join in a graft (G,T)
that has at most k > 1 components, then

(G, T) - (k-1)<v(G,T) < 7(G,T). (5.2)

There may be cases when a nearly perfect packing of J-good cuts
ensured by the previous theorem is not satisfactory. For example, when
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J is a matching, Theorem 5.2 is essentially meaningless. Therefore it is a
natural demand to prescribe certain (or maybe all) components of J for
which no contraction is permitted. This can be achieved by requlrmg an
appropriate strengthening of the circuit condition.

In order to generalize Theorem 5.2, assume that the components of
the subgraph (V/(J), J) are divided into two groups: {Ky, K1,..., K} and
{J1,..., 41}, (k > 0, > 0). For a circuit C let k,(C) denote the number
of those components K; (i > 1!) from which C contains at least one edge.

Let w := k;. The following result and its proof is taken from Frank and
Szigeti [9].

Theorem 5.5. If
w(C) 2 k4 (C) | (5.3)

for every circuit C of G, then it is possible to contract at most one edge
from each J; so that the resulting graph has a complete packing of J-good
cuts. In particular, if | = 0, there is a complete packing of J-good cuts.

Proof. For simplicity, here we prove only the special case I = 0. For a
sub-tree K of a graph G = (V, E) we call a circuit C continuous in K if |
z,y € V(C)NV(K) implies that the unique path in K connecting z and y
belongs to C. The following lemma is easy to prove.

Lemma 5.6. If J is a sub-forest of a graph so that x; is not conservative,
then there is a negative circuit which is continuous in each component of J.

We define an auxiliary graph as follows. First, subdivide each edge e by
a new node denoted by s.. Second, for each node v € U(V(I;) :i =1,... k)
split v into two in the following sense: add a new copy v’ of v to the graph
. along with a new edge v'v and for each original edge e = uv ¢ J replace the
edge sev by s.v'. We call the new edges v'v split edges.

It is immediately seen that the resulting graph D is bipartite. In D let
J' consist of the split edges plus the set of edges arisen by the subdivision
of the elements of J. Let s be an original node from V(Kj).

From the hypothesis of Theorem 5.5 and from the construction of D,
Lemma 5.6 implies (when applied to J') that J' is a join and thus we can
apply Theorem 5.1.

Let us consider the level sets L; := {x € V(D) : A(s,z) = i}. The
orlgmal nodes of Kj lie in even levels while the original nodes of Ki,... K,
lie in odd levels.
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- (**) The subdividing node of an original edge e is in an even level
precisely if e isin Ky U... UK.

Let D' := U{X € D; :i odd, X € s } and let B’ be the family of cuts
in the original graph determined by the members of 7’ not containing split
edges. For each singular edge e belonging to some K; (; > 1), two members
of B’ contain e. Revise B’ by leaving out one of them and let B denote the
resulting family of cuts.

By Sebg’s theorem and by property (x), B consists of edge-disjoint J-
good cuts covering each edge of J. Therefore B is a complete packing of
J-good cuts. =

We close this section by citing another type of result on conservative
+1 weightings of the edge-set of a 2-edge-connected undirected graph G =
(V,E). We are interested in such a weighting for which the number of
negative edges is as large as possible. This is equivalent to the problem of
finding a conservative +1 weighting w for which the total Welght w(E) of
the edge-set is minimum. '

Before answering this question let us mention an apparently quite dif-
ferent problem. It is well-known that if G is 2-edge-connected, then it has
an ear-decomposition, that is, G can be obtained from a vertex by adding
successively paths so that the two (possibly identical) end-nodes of the cur-
rently added path P belong to the subgraph constructed so far while the
inner nodes (if there is any) are new. The number of paths in an ear-
decomposition is |E| — |V| 4+ 1. A less trivial result, due to L. Lov4sz,
asserts that each ear can be chosen of odd length if and only if @ is factor-
critical (that is, G — v has a perfect matching for every node v of G.) For
general graphs one may be interested in ear-decompositions using as many
odd ears as possible. The following result shows a surprising relationship
between the two problems.

Theorem 5.7. (Frank, [7]) Given a 2-edge-connected graph G = (V, E),
the minimum of w(E) over all conservative +1 weightings w of G is equal
to the maximum number of odd ears in an ear-decomposition of G.

6. THE ROLE OF K}

We have mentioned that the example K, prevents us to extend Seymour’s
Theorem 4.2 to arbitrary graphs. One may expect that the chances for
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having a complete packing of J-good cuts are better if the graph does not
include K4 in some sense. In this section we exhibit two theorems, due to
E. Korach and to P. Seymour, showing that this is indeed the case. But the
“sense” in which Ky is excluded is quite different in the two theorems.

While proving min-max theorems concerning grafts on bipartite graphs,
Lemma 4.1 provided a useful reduction technique. Roughly, it implied that,
given a conservative =1 weighting, a cut (namely the star of node t) can
be contracted without creating a negative circuit. This is not true for non-
bipartite graphs, in general, but something can be said and that will be
enough for our purposes.

Lemma 6.1. Let G = (V, E) be a graph and H = (V(J), J) a sub-forest
of G for which the circuit condition (3.6b) holds. If every component of H,
except possibly one, has at least two edges, then there is an end-node t of H
(i.e., ds(t) = 1) such that (i) no member of J is induced by the neighbours of
t in G and (ii) contracting the star-cut B := §(t) does not destroy the circuit
condition (that is, (3.6b) holds in G' := G/B with respect to J' := J/B).

Proof. Let H; = (V(J;),J;) (i =1,...,k) denote the components of H
(where each J; # @) so that if there is an exceptional tree (:having one edge),
it is Hy. Let w := ky and w' := k. Recall that the circuit condition with
respect to G and J is equivalent to saying that w is conservative.

Let s be an arbitrary node of V(J;) and P a path starting at s so that
its weight m := w(P) is minimum and, in addition, P has as few edges as
possible. Let ¢ denote the other end-node of P and zt the last edge of P.
We call a subpath P[y,t] of P an end-segment. Clearly m < 0 by the choice
of s and N . '

any end-segment of P has negative weight, (*)
in particular, w(zt) < 0.

We claim that d;(t) = 1. Assume to the contrary that beside 2t there is
another edge ¢z in .J. But this is impossible since if z € P, then P[z,t] 4tz
would form a negative circuit, and if z € P, then P’ := P + ¢z would be a

path with w(P’) < w(P). The following claim shows that node ¢ satisfies’
both (i) and (ii).

Claim. In G —{ there is no negative path R connecting two nleighbours
u,v of t. )

Proof. Let R be such a path for which w(R) is minimum and suppose for
a contradiction that w(R) < 0. Clearly v and » are distinct from z since
otherwise R + ut + tv would form a negative circuit in G.
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An arbitrary node y of R subdivides R into two segments R[y,u| and

R[y, v]. Since w(R) < 0, at least one of the two segments has negative
weight. We use this fact throughout the proof.

Suppose first that P and R have a node y in common. Choose y so that
Ply,t] has as few edges as possible. Assume that w(R[u,y]) < 0. Using (%)
we get that P[t,y] + Ry, u] + ut is a negative circuit in G, a contradiction.

Let now P and R be disjoint and let y be an arbitrary node of R.
Assume that w(R[u,y]) < 0 and let zy denote the last edge of Rlu,y]. Now
w(zy) = 1 for otherwise w(R[u, z]) < —2 and hence P' := P + tu + Rlu, ]
would be a path starting at s with w(P’) < m. Moreover, we claim that
zy is the only negative edge incident to y. To the contrary, let yz' be
another one. By the minimal choice of R, y2’ cannot be a chord of R. Let
R' := tu + R[u,y] + yz'. This is a simple path with w(R') < 0. But now
if 2’ € P, then (x) implies that P[2/,t] + R’ is a negative circuit, if 2/ ¢ P,
then P’ := P 4+ R’ is a path starting at s with w(P’) < m, and both cases
are impossible. :

We can conclude that any node y of R is incident to precisely one
negative edge. This implies that a negative edge of R forms a component
of H contradicting the hypothesis. =

We briefly mention that the lemma above immediately implies the the-
orem of Korach and Penn that was proved in Section 5 via Sebd’s Theorem

5.1.

Proof of Theorem 5.2. Let us call a packing satisfying the requirements
in Theorem 5.2 near-complete. We use induction on |J|. The statement is
trivial for |J| = 1, so we have |J| > 1. We claim that every J; (i = 2,...,k)
has at least 2 elements. Indeed, if Ja, say, consists only of one edge, then
contracting this edge we are done by induction.

Therefore we can apply Lemma 6.1. By the inductive hypothesis there
is a near-complete packing B’ of J'-good cuts in G'. Adding the star-cut
6(t), provided by Lemma 6.1, to B’ we obtain a near-complete packing of
J-good cutsin G. =

Theorem 4.7 shows that the circuit condition is sufficient for the ex-
istence of a complete packing of J-good cuts if J is connected. In what
follows we consider the next special case when H consists of two disjoint
trees H; = (V(J;),J;) (i=1,2). In this case the circuit condition is not suf-
ficient in general. Our goal now is to find a further condition to ensure the
existence of a complete packing.
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Let W be a graph arising from the complete graph K, by subdividing
its edges with some nodes. The four nodes of W corresponding to the nodes
of K4 are called the principal nodes while the others are the inner nodes.
Principal paths of W are those connecting principal nodes. A circuit C of
W is a 4-circuit (resp., 3-circuit) if C contains 4 (resp., 3) principal nodes.
Recall that the circuit condition is equivalent to saying that w := k; is
conservative. We say that W is a bad K4-graph (with respect to J or w)
(in short, a bad-K4) if it has two 4-circuits of zero weight and W is non-
bipartite. Notice that the union of two 4-circuits of W is W. If a graph G
includes a bad K4-graph as a subgraph, we say that G has a bad-K or that

a bad-K4 is in G. One can easily show that each 3-circuit of a bad-K is of
odd length.

The name “bad” is justified by the observation that in a bad K4-graph
W no complete packing B of J-good cuts may exist where J denotes the
set of negative edges. Indeed, if such a B exists, then every edge of a circuit
- of zero weight and therefore every edge of W must belong to a member of
B. That is, W is the union of disjoint cuts and therefore it is bipartite. It
also follows that, given a graph G and a subset J of its edges, there is no
complete packing of J-good cuts if G has a bad-K,.

Lemma 6.2. Let C| and Cy be two 4-circuits of zero length in a bad K4-
graph W. (i) The two (disjoint) principal paths shared by Cy and C, have
negative weight while the other four principal paths have non-negative. (ii)
Any two nodes v and v of W is connected by a non-positive path.

Proof. (i) Let s; (i = 1,2,3,4) denote the principal nodes of W, let P
(I €4 < j £ 4) denote the six principal paths and let wi; = w(Py).
Assume that Cp is the union of {Pjy, Pys, Pi4, P14} and Cy is the union of
{ P12, Pay, P34, P13}.

w(C1) = 0 implies that one of the two segments of C; connecting s; and
s3 1s non-positive. Since P;3 forms a circuit with both segments and since w
is conservative, we have w;3 > 0. Analogously, we obtain wyy > 0, weg > 0
and w14 > 0. Among these four values let w13 be a smallest one. Since each
3-circuit is of odd length we have 0 < w3 + wyg + W3 = W13 — Wig — W34.

Hence wj4 > wy3 > wyg + w3y and therefore w3g < 0. wiga < 0 follows
analogously.

(ii) If C; contains both « and v, then one of the two segments of C;
connecting u and v is non-positive. Therefore we may assume that none
of C; and C; contains both « and v. Then both u and v are inner nodes
and, by re-numbering the indices if necessary, we may assume that u is an
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inner node of P4 and v is an inner node of Py3. Let P, (respectively, P,)
denote the segment of Pj4 (resp., Pi3) between s1 and u (resp., s; and v).
By symmetry we may assume that w(P,) > w(Py). Now P/ .= C, - P,+ P,
is a path connecting u and v and w(P') = w(C1) - w(P,)+w(P,)<0. m

Theorem 6.3. (E. Korach, [12]) Let G = (V,E) be a graph and H =
(V(J),J) a sub-forest with two components so that the circuit condition
holds. The following statements are equivalent. S

(a) There exists a complete packing of |J|-good cuts.

(b) The union of circuits with zero kj-weight is bipartite.

(c) G has no bad-Kj,. -

Proof. (The present proof follows a line different from Korach’s original
proof). We have already seen (a) — (b) — (c). To prove (¢) — (a) let
H; = (V(J;),Ji) (i = 1,2) denote the two components of H. We use
induction on the cardinality of .J. If one of J1 and J; is empty, (a) follows
from Theorem 4.7. Assume now that |[J1] = |J2] = 1, and let u;v; denote
the only element of J;. Since (c) holds, the four nodes u;, v1, #2,v2 do not
induce a complete graph, that is, two of them, say u;, and us, which are
not adjacent in G. Now the two star-cuts 6(u;) and 6(ug) form a complete
- packing of J-good cuts. | |

Hence we may assume that both J; and J; are non-empty and |J| > 3.
Then Lemma 6.1 applies and ensures the existence of an end-node ¢ of
H so that contracting the star-cut B := 6(t) does not destroy the circuit
condition. The next lemma tells us that, very luckily, this contraction does
not create a bad Ky-subgraph either. Let G’ := G/B, J' := J/B,J;:= J;/B
(¢t = 1,2),w' := ky. Assume that ¢t ¢ V(J1). Let y1 denote the unique
neighbour of ¢ in J; and # the contracted node in &' :

Lemma. G’ has no bad—K4 (with respect to w').

Proof. Assume, indirectly, that G’ has a bad K4-subgraph W' (with respect
to J'). Let W denote the subgraph of G formed by the edges corresponding
to the edges of W’'. We are going to prove that G also has a bad-Kj,
contradicting (c).

The contracted node ¢ must belong to W' for otherwise W is a bad-K
in G. Let us denote two neighbours of #' in W' by u1,u3 and if ¢’ is principal,
u3 denotes its third neighbour. The four principal nodes of W’ are denoted
by s1,82, 53,54 := t' so that u; lies on the principal path Py (3 = 2,3, 4).
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Any subpath P of J' connecting two nodes of W' is in W’. For other-
wise, there is a subpath P’ of P connecting two nodes u and v of W’ so that
- P and W' are edge-disjoint. By Lemma 6.2 (ii) there is a non-positive path
P" in W' connecting u and v and hence P’ U P” would include a negative
circuit.

It follows that the elements of J' belonging to W' form a forest H” with
at most two components. Actually, by Lemma 6.2 (i),

H" has precisely two components. (*)

By combining these observations we can conclude that at least one of
the edges t'u;, say u;t’, belongs to J'. Then the edge of G corresponding to
u1t’ must be uyy;. Let w;y; (2 = 2,3) denote an edge of G that corresponds
to an edge u;t’ of W/ where y; is a neighbour of ¢.

Case 1. t' is an inner node of W'. If y; = y2, then W is a bad-K4 in G.
If y1 # y2, then W + 1t  ty, is a bad-K4 in G (Fig. 1.).

e==xxg gdges of J

- Figure 1.

Case 2. t' is a principal node of W!. If y; = y3 = y3, then W is a bad-K}
in G (Fig. 2.). If for some permutation (7, J, k) of (1,2,3) y; # y; = ¥, then
P' := (y;t,ty;) is a path P’ of zero length and W + P’ is a bad-K4 in G

with principal nodes sy, s9, s3,y; (Fig. 3.). '



242 A. Frank

Figure 3.

Finally, let y1,y2, 33 be distinct. The edges u;y; (1 = 2,3) do not belong
to J since if uyy,, say, belongs to J;, then the subpath of J; connecting y;
and yz, which is in W, along with (y1t,tys) would form a negative circuit
in G. () shows that uyy, cannot belong to J,.

Furthermore, (*) implies that the negative principal path of W’ ending
at t', which is ensured by Lemma 6.2 (i), must be Pr4. Hence both 4-circuits
of W' with zero weight use Pi4. But then W + ty,, +ty2 + ty; is a bad-K;4
in G (Fig. 4.). =



A Survey on T-joins, T-cuts, and Conservative Weightings | 243

Since |J'| = |J| ~ 1, the theorem, by induction, is valid for G'. It follows
from the Lemma that in G’ there is a complete packing B’ of J'-good cuts.
Then the cuts in G corresponding to the members of B' plus the star-cut
6(t) form a complete packing of J-good cutsin G. =

The following example (Fig. 5.) shows that Theorem 6.3 is no more
true if J has more than two components. Observe that in this graph there
1s no circuit of zero x;-weight.

Figure 5.



244 | | | A. Frank

In general, there is no known way to reformulate Theorem 6.3 in terms
of T-joins and T-cuts since we do not know how to decide for a given graft
(G,T) if there is a minimum cardinality T-join having at most 2 components.
But this property is automatically guaranteed when |7} = 4. In this case
Theorem 6.3 translates to:

Theorem 6.4. (P. Seymour, 22]) In a graft (G, T) with |T| = 4
™G, T) -1 <v(G,T) < (G, T). (6.1)

Moreover, the following are equivalent:

(a) 7(G,T) = v(G,T). ,

(b) The union of minimum T-joins forms a bipartite graph.

(c) There is no Ky-subgraph W of G with T as its principal node-set such
that each of the three pairs of disjoint principal paths forms a minimum
T-join and such that the 3-circuits of W have odd length.

Proof. Since |T| =4 , a minimum T-join consists of at most two compo-
nents. Hence (6.1) follows from Corollary 5.4.

(@) — (b) By (a) there is a packing B of  T-cuts. Then every edge
in a minimum T-join must belong to a member of B. Therefore the union
of minimum T-joins is included in the union of some disjoint cuts which is
bipartite.

(b) — () is trivial. To prove (c) — (a) let J be a minimum T-join (that
is, |J| = 7) and assume, indirectly, that v < 7. Since IT| = 4, J consists
of two disjoint paths. By Theorem 6.3, there exists a bad K4-subgraph W
in G. Let C; and C; denote the two 4-circuits of W with zero x ;-weight.
Then the symmetric differences J; := C; @ J (2 = 1,2) are minimum T-joins
and hence W violates (c). =

" In Chapter 7 some applications concerning the planar edge-disjoint
paths problem will be discussed.

Let us turn to the second theorem we promised where the role of K is
crucial, but in a different sense. The following material is taken from Frank
and Szigeti [8]. We need some notation. Let G = (V,E) be a graph and
T an even subset of nodes. For an edge e = uv we define the elementary
T'-contraction as a graft (G',T') where G’ arises from @ by contracting e
and T" := T — {u,v} if |{u,v} N T| is even and T/ := T — {u,v} + x4, if
[{u,v}NT| is 0dd where x,,, denotes the contracted node. The T-contraction
of a graph means a sequence of elementary T-contractions. If X C V induces
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a connected subgraph of G, then by T-contracting X we mean the operation
of T-contracting a spanning tree of X.

Let K, denote a graft (K4, V(K3)) where Ky is a complete graph on 4
nodes. Note that a graft (G, T) can be T-contracted to K4 precisely if there
is a partition {Vi,V2,V3,Vy} of V into T-odd sets so that each V; induces
a connected subgraph and there is an edge connecting V; and V; whenever
1<i<j<4 |

A graph G = (V,E) is called bi-critical if G contains an edge and
G - {u,v} contains a perfect matching for every pair of nodes u,v. It
follows immediately from Tutte’s theorem that G is bi-critical if and only if

g(X) < |X| — 2 for every subset X C V with |X| > 2 (6.2)

where ¢(X) denotes the number of odd—cardmahty components of G — X

The border graph Gp of a T- border B = B(P) is one obtained by
contracting each V; into one node. Let us call a T-border bi-critical if its
border graph is bi-critical.

P. Seymour [21] proved a difficult and deep theorem on characterizing

binary matroids with the max-flow min-cut property. A special case of his
result is the following.

Theorem 6.5. If a graft (G,T) cannot be T-contracted to Kg, ‘then
(G, T) = v(G,T).

Before proceeding to the proof we need two lemmas. The first one is a
due to A. Sebd.

Lemma 6.6. If in (4.5) the optimal packing B of T-borders is chosen in
such a way that r := |B| is as large as possible, then each member of B is
bi-critical.

Proof. Suppose, indirectly, that a member B € B is not bi-critical. That
is, by (6.2), the border graph Gp of B includes a subset X of nodes with
|X| > 2 for which ¢(X) > |X|. (Here ¢(X) denotes the number of odd-
cardinality components of Gg — X )

For any odd component K of Gg —X let us define a partition of V(G p)
consisting of the elements of K as singletons and a set V(Gg) — K. This
partition defines a T-border of G with value (|K| + 1)/2. For any even
component L of Gg — X let us define a partition of V(Gg) consisting of the
elements of L — v as singletons and a set V(Gpg) — (L — v) where v is an
arbitrary element of L. This partition defines a T-border of G with value
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|L}/2. The T-borders defined this way are pairwise disjoint subsets of B
and their total value is [V(Gg)|/2, the value of B. This contradicts the
maximal choice of r. = - :

The following lemma, interesting for its own right, was stated by A. Sebé
[18]. He noted that it follows from Seymour’s Theorem 6.5 and observed
that, conversely, Theorem 6.5 is an easy consequence of Lemmas 6.6 and
6.7. Frank and Szigeti [8] contains the following simple proof.

Lemma 6.7. The node set of an arbitrary bi-critical graph Gg on k > 4
nodes can be partitioned into four subsets Vy, Va, V3, V4 of odd cardinality so
that each V; induces a connected subgraph and there is an edge connecting
Vi and V; whenever 1 < i < j < 4. (That is, Gg can be V-contracted
to K4.)

- Proof. Let M be a perfect matching of G, wv € M and Myy := M — yv.
Let z(# v) be a neighbour of u. Since ¢ B is bi-critical Gp — {«v, z} contains
a perfect matching M,,. The symmetric difference My, ® M, consists of
node-disjoint circuits and a path P connecting z and u. Now C :— P+uzis
an odd circuit of Gg so that, starting at w and going along C, every second
edge of C belongs to M. ' '

Let u,u3,...,u; be the nodes of C (in this order). Because of the
existence of M, the component K of Gp — V(C) containing v is of odd
cardinality while all the other components are of even cardinality.

Let V| := K. It follows from (6.2) that Gy is 2-connected and, more-
over, contains no separating set X of two elements for which g(X) > 0.
Hence K must have at least three distinct neighbours u,u;,u; in C.

If there is a matching edge zy € M on C so that U, Ui, T, Y, u; reflects the
order of these nodes around C (where both u; = z and uj = y are possible),
then define V) := {u;,u,,...,z}, Vi={y,...,un1,us}, Vy = {u}.

If there is no such matching edge, that is, j =7+ 1 and i is even, then
define Vi := {u;}, V4 := {uiy1}, VJ := V(C) - {wiyuip1}.

- In both cases {V}, V5, V]} is a partition of V(C). Let £ denote the set
of even components of Gp — V(C). For each L € £ choose a subscript
s = s(L)(= 2,3,4) so that L is connected to a node in V!. Fort =234
define V; := VYU U(L € £: s(L) = t).

The partition {V}, V3, V3, V,} constructed this way satisfies the require-
nients. M ‘

Proof of Theorem 6.5. Let B be an optimal packing of bi-critical T-
borders provided by Lemma 6.6. We claim that each member of B is a
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T-cut. Indeed, if B € B is a T-border determined by a partition P of V
- (IP] =z 4) into T-odd sets, then the graft (Gp,V(Gp)) arises from (G, T)
by T-contracting each member of P and then, by Lemma 6.7, (G,T) can
be T-contracted to K4, a contradiction. =

Actually, Seymour formulated Theorem 6.5 in a slightly stronger form:

Theorem 6.5°. For a graft (G,T)
G, T, w) = v(G, T, w) (6.3)

holds for every non-negative integer~valuéd weight-function w if and only if
(G,T) cannot be T-contracted to K,.

Proof. Necessity. Assume that (G,T') can be T-contracted to Ky, that is,
there exists a partition {V;,V5,V3,V4} of V into connected T-odd sets so
that there is an edge e;; connecting V; and V; whenever (1 < i < j < 4).
Define w to be 1 on these six edges and 0 otherwise. Then 7(G,T,w) = 2
and v(G,T,w) = 1, that is, (6.3) is not satisfied.

To see the sufficiency contract each edge e with w(e) = 0, subdivide
every edge e by w(e) — 1 new nodes when w(e) > 0 and finally apply
Theorem 6.5 to the resulting graft. m | '

Let us consider two interesting special cases of Seymour’s theorem.

A graph G = (V, E) is called series-parallel if it cannot be contracted to
K 4. This is equivalent to saying (easy) that G does not include a subdivided
K, as a subgraph. G. Dirac proved (and this justifies the name) that
connected series-parallel graphs are precisely those graphs which can be
obtained from a node by applying four operations in arbitrary order: adding
a loop, adding an edge connecting an existing node and a new node, adding
an edge parallel to an existing one, subdividing an edge..

Clearly, a series-parallel graph cannot be T-contracted to K4 hence
(6.3) holds for every even T C V.

Another interesting example is when G is planar and the elements of T
are in the boundary of one face, say, the infinite face O of G. We then say

that (G,T) is a planar graft. It is easy to see that a planar graft cannot be
T-contracted to K4 and hence (6.3) holds.

Note that, by a clever elementary construction, the undirected edge-
Menger theorem implies directly (6.3) for planar grafts.

(Hint. T subdivides the boundary of O into an even number of paths
Py,...,Pa;. In the planar dual of G split the node corresponding to O
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into two nodes s and t so that the edges corresponding to the edges of
Py; (respectively, Py;y1) are incident to s (resp., t) and let G’ denote the
resulting graph. Show that a path in G’ connecting s and ¢ eorresponds to

a T-cut of G and a cut of G’ separating s and ¢ corresponds to a T-join
of G.)

Theorem 6.5’ provides a characterization for grafts (G,T) having the
property 7(G,T,w) = v(G,T,w) for every non-negative integer-valued w.
That is, in this case G and T are fixed. If each of G,T,w is fixed, then the
problem to decide if 7(G,T,w) = v(G,T,w) holds is NP-complete (The-
orem 3.1). There is one more natural question here to ask: what if only
G and w are fixed. We consider the case when w = 1. A (connected)
graph G is called a Seymour-graph if for every even cardinality subset T
of nodes v(G,T)) = 7(G,T). For example, hipartite graphs and series-
parallel graphs are Seymour-graphs. B. Gerards [10] described a class of
Seymour-graphs which includes both bipartite and series-parallel graphs.
Generalizing this result and answering a conjecture of A. Sebé in the affir-
mative, A. Agaev, A. Kostochka and Z. Szigeti proved recently the following
characterization of Seymour-graphs [1].

Theorem 6.6. A graph G is Seym_ou.r if and only if for every conservative
+1 weighting of the edges the subgraph formed by the negative edges and
by the union of O-circuits is bipartite.

7. PLANAR EDGE-DISJOINT PATHS PROBLEM

We introduced the edge-disjoint paths problem in Section 3 and noted that
it is equivalent to that of finding a complete packing of J-good circuits. For
planar graphs, in turn, this latter problem is equivalent to the one of J-good
cuts and hence we may apply the results developed in earlier sections to the

planar edge-disjoint paths problem.

We use the notions and notation introduced in Section 3. In particular,
we are given a supply graph G’ a demand graph H so that G := G' + H
is planar. The cut condition (3.1b) is a necessary condition and may be
re-formulated in the following way.

de(X) 2 dg(X) for every X C V o (1.1)
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Since the dual of a planar graph G is bipartite if and only if G is
Eulerian, Theorem 4.2A of P. Seymour immediately yields:

Theorem 7.1. If G := G' + H is p.lanar and Eulerian, the edge-disjoint
paths problem has a solution if and only if the cut condition holds. =

From Theorem 5.2 of Korach and Penn we obtain:

Theorem 7.2. Suppose that G := G’ + H is planar and the cut condition
holds. Then it is possible to leave out at most one demand edge from every
finite face of G’ so that the resulting planar edge-disjoint paths problem has
a solution. =

Note that the edges in the dual of G correspondmg to the edges in
H (:the demand edges) form a forest. Each component of this forest cor-
responds to a subset of demand edges belonging to one face of G'. The
exceptional component Kg in Theorem 5.2 corresponds to the subset of
demand edges belonging to the infinite face of G'.

In other words Theorem 7.2 tells that the cut condition in the planar
edge-disjoint path problem, though not sufficient in general, ensures a nearly
complete solution. In the unlucky case, however, when each face of G’ con-
tains at most one demand edge, then the themem is basically meaningless.
But even in this mtuatlon the following welghted version may be extremely
useful.

Let w: E'UJ — Z be a non-negative integer-valued weight-function.
For a demand edge f = s;t;, w(f) indicates that we want to have w(f)
paths in G’ connecting s; and ¢;. For a supply edge e € E', w(e) means that
at most that many paths may use edge e

Theorem 7.2B (Korach and Penn, [13]) Suppose that G := G' + H is
planar and the weighted cut condition (3.1a) holds. Then it is possible to
find at most one demand edge f from every finite face of G' and decrease its

demand w(f) by one so that the resulting (weighted) planar edge-disjoint
paths problem has a solution. =

If we are not allowed to loose any demand, then we are forced to assume
something stronger than the cut condition. For a cut B := §(X) we define

the surplus s(B) := dg(X) — dg(X). The cut condition is equivalent to
saying that the surplus is non-negative.

Theorem 5.4 gives rise to the following:
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Theorem 7.3. (Frank and Szigeti, [9]) Let G' + H be planar. Suppose
that the surplus s(B) of every cut B is at least the number of those finite
faces of G which contain a demand edge from B. Then the edge-disjoint
paths problem has a solution. =

If in the planar edge-disjoint paths problem each demand edge is in one
face of G’, then the cut condition is sufficient. This may be seen directly
quite easily, or it is a special case of Theorem 7.2. Let’s assume now that
the demand edges lie in two faces of G'. Beside the cut condition one can
formulate the following necessary condition. Call a subset X of nodes and
the cut §(X) tight if dg{X) = du(X).

Intersection condition. For tight sets X and Y, dg(X NY) is even.

To see the necessity, assume that the edge-disjoint paths problem has a
solution. Then every supply edge in a tight cut is used by a path. Therefore
every supply edge in the cut 6(X NY) is used. On the other hand, if
de(XNY') were odd, then an odd number of supply edges in the cut §(XNY)
were not used by any path.

Theorem 7.4. (Frank, [5]) If G’ + H is planar and the demand edges lie
in two faces of G, then the cut condition and the intersection condition is
- necessary and sufficient for the solvability of the edge-disjoint paths problem.

By planar dualization this theorem may be derived from Theorem 6.3b
of Korach. One has only to observe that two tight cuts violating the
intersection condition corresponds to a bad-K} in the dual.

Corollary 7.5. Assume that G' + H is planar and the demand edges lie
in two faces of G'. If the surplus of every cut is positive, then there is a
solution to the edge-disjoint paths problem. =

Actually, this result follows not only from Theorem 7.4 but from Theo-
rem 7.3, as well. The next example (Fig. 6.), due to E. Korach, shows that
the analogous statement is no more true if the demand edges lie in three
faces of the supply graph G'. '
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