ON THE SIZE OF THE SMALLEST NON-CLASSICAL BLOCKING SET
OF RÉDEI TYPE IN $\text{PG}(2, p)$

András Gács
Institute of Mathematics
Hungarian Academy of Sciences
H-1053, Budapest, Réaltanoda u. 13-15. Hungary
gacs@cs.elte.hu

Abstract. We prove that the number of directions determined by a set of p points in
$\text{AG}(2, p)$, p prime, can not be between $\frac{p+3}{2}$ and $\frac{p-1}{2} + \frac{1}{3} \sqrt{p}$. This is equivalent to saying
that besides the projective triangle, every blocking set of Rédei type in $\text{PG}(2, p)$ has size
at least $3\frac{p-1}{2} + \frac{1}{3} \sqrt{p}$.

1. Introduction

Throughout this paper $U = \{(a_i, b_i) : i = 1, ..., q\}$ will denote a q-element point set in
$\text{AG}(2, q)$, the Desarguesian affine plane of order q.

Definition 1.1 We say that U determines the direction $m \in \text{GF}(q) \cup \{\infty\}$ if $m = \frac{b_i - b_j}{a_i - a_j}$
for suitable $i \neq j$, and denote by D the set of determined directions. Finally, let $N = |D|$, the
number of determined directions.

The problem of determining the possible values of N and characterizing the corre-
sponding point sets is important for at least two reasons. The first is that it has applica-
tions to the theory of permutation polynomials, see [1]. The second reason is its connection
with blocking sets.

A blocking set in a projective plane is a point set meeting every line, but containing
no line. A way to construct a blocking set in $\text{PG}(2, q)$ is to take a q-element point set U
in $\text{AG}(2, q)$ and add all infinite points corresponding to the directions it determines. In
this way we get a blocking set of size $q + N$ with the property that there is a line (namely
the line at infinity) meeting the blocking set in all but q points. Blocking sets arising this
way are called of Rédei type. For more information, we refer to [2].

After results of Rédei ([3]) and Lovász and Schrijver ([4]), recently the problem of
determining the possible values of N and characterizing the corresponding point sets has
been almost completely solved by Ball, Blokhuis, Brouwer, Storme and Szőnyi ([5]) for
the case when the number of determined directions is less than $\frac{2q+3}{2}$, that is essentially all
Rédei type blocking sets of size less than $q + \frac{q+3}{2}$ have been classified.

For $q = p$ prime, there is no example in this case:
Theorem 1.2 (Lovász-Schrijver [4]) If a point set in $AG(2, p)$ is not a line, then it determines at least $\frac{p+3}{2}$ directions with equality if and only if it is affinely equivalent to the graph of the polynomial $f(x) = x^{\frac{p+1}{2}}$.

In [1] we considered the next possible value for N and proved the following:

Theorem 1.3 For $p > 11$ a set of p points in $AG(2, p)$, p prime, can not determine $\frac{p+5}{2}$ directions.

We also formulated a conjecture, which is still open:

Conjecture 1.4 Let U be a set of p points in $AG(2, p)$, p prime. One of the following holds:
(i) U is a line determining one direction;
(ii) U is affinely equivalent to the graph of $x^{\frac{p+1}{2}}$ determining $\frac{p+3}{2}$ directions;
(iii) U determines at least $\frac{2p+2}{3}$ directions. ($\frac{2p+4}{3}$ for $3 | p - 1$.)

This would be sharp, Megyesi constructed an example with $N = \frac{2p+4}{3}$ whenever $3 | p - 1$, see [1].

In this paper we prove the following:

Theorem 1.5 Let U be a set of p points in $AG(2, p)$, p prime. One of the following holds:
(i) U is a line determining one direction;
(ii) U is affinely equivalent to the graph of $x^{\frac{p+1}{2}}$ determining $\frac{p+3}{2}$ directions;
(iii) U determines at least $\frac{p-1}{2} + \frac{1}{3}\sqrt{p}$ directions.

With the blocking set terminology, the results and conjecture above say that besides the unique example of size $p + \frac{p+3}{2}$, blocking sets of Rédei type have size considerably larger than $3\frac{2p+1}{2}$. The unique blocking set of Rédei type of (minimum) size $p + \frac{p+3}{2}$ is called the projective triangle. For a direct construction in $PG(2, p)$ see [1].

For the size of an arbitrary blocking set in $PG(2, p)$ the generalization of 1.2 holds:

Theorem 1.6 (Blokhuis [6]) In $PG(2, p)$ a blocking set has size at least $p + \frac{p+3}{2}$.

Here the characterization of the case of equality is still missing. In fact besides a sporadic example of size 12 in $PG(2, 7)$, the only known blocking set of size $p + \frac{p+3}{2}$ is the projective triangle, all known examples have size considerably larger than $p + \frac{p+3}{2}$.

In Section 2 we reduce the proof of Theorem 1.5 to a result about double power sums of polynomials over $GF(p)$, which is proved in Section 3.

2. Connection of directions to double power sums of polynomials
A polynomial is called a permutation polynomial if it is bijective as a function over the field. The following propositions show the connection between our problem and permutation polynomials.

Proposition 2.1 If a set does not determine all directions, then after a suitable affine transformation (which does not affect the number of directions), it can be taken as the graph of a polynomial.

Proof Since every function is a polynomial over a finite field, the only thing we need is that ∞ is not a determined direction, this can be achieved.

We say that a polynomial determines a direction if its graph determines it.

The use of considering polynomials can be seen through the following statement:

Proposition 2.2 If the set in question is the graph of the polynomial $f(x)$, then the direction c is determined if and only if $f(x) - cx$ is not a permutation polynomial.

Proof The direction c is determined if and only if $c = f(x_1) - f(x_2)$ for suitable $x_1 \neq x_2$, which is equivalent to saying that $f(x_1) - cx_1 = f(x_2) - cx_2$, that is $f(x) - cx$ takes a value twice, so it can not be a permutation.

This proposition will be used in conjunction with the following statement:

Proposition 2.3 (i) If $f(x) = c_{p-1}x^{p-1} + \ldots + c_0$, then $\sum_{x \in GF(p)} f(x) = -c_{p-1}$.

(ii) If $f(x)$ is a permutation polynomial, then for all $1 \leq k \leq p-2$, $f(x)^k$ has degree at most $p-2$ when reduced modulo $(x^p - x)$.

Proof (i) $\sum_x f(x) = \sum_x \sum_{i=0}^{p-1} c_i x^i = \sum_{i=0}^{p-1} c_i \sum_x x^i = -c_{p-1}$.

(ii) If $f(x)$ is bijective, then $\sum_{x \in GF(p)} f(x)^k = \sum_{x \in GF(p)} x^k = 0$ for $1 \leq k \leq p-2$. This together with (i) completes the proof.

Let f be an arbitrary polynomial over $GF(p)$. The double power of order (k, l) of f is the polynomial $x^k f(x)^l$. Here k and l are non-negative integers, $l > 0$; for $k = 0$, x^0 is defined to be 1.

The double power sum of order (k, l) of f is defined to be

$$\Sigma_{k,l} = \sum_{x \in GF(p)} x^k f(x)^l.$$

Note that according to 2.3, $\Sigma_{k,l}$ is (-1) times the coefficient of x^{p-1} in $x^k f(x)^l$, after reduction modulo $x^p - x$.

Finally, we define the index of f to be

$$I(f) = \min\{k + l : \Sigma_{k,l} \neq 0\}.$$
The following lemma and theorem can both be found (implicitly) in [4]:

Lemma 2.4 Let \(f \) be a polynomial over \(GF(p) \) and denote by \(N(f) \) the number of directions it determines. Then \(N(f) + I(f) \geq p + 1 \) holds.

Proof For \(k = 1, \ldots, p - 2 \), let \(g_k(c) = \sum_{x \in GF(p)} (f(x) + cx)^k = \sum_{i=0}^{k} \binom{k}{i} \sum_{i,k-i} \Sigma_i x^k. \) Note that \(\deg(g_k) \leq k - 1 \), since the coefficient of \(c^k \) in \(g_k(c) \) is \(\sum_{x \in GF(p)} x^k = 0. \) Whenever \(-c\) is not a determined direction, \(f(x) + cx \) is bijective, so \(g_k(c) = \sum_{u \in GF(p)} u^k = 0. \) This means, that \(g_1, \ldots, g_{p - N(f)} \) are polynomials with more roots than their degrees, so they are identically zero. Considering their coefficients, we have \(\Sigma_{k,l} = 0 \) for all \(k + l \leq p - N(f) \), so we are done.

Theorem 2.5 If \(f \) has degree at least 2, then \(I(f) \leq \frac{p^2}{2} \) with equality iff \(f \) is affinely equivalent to \(x^{p+1} \) or \(x^2 \).

We are going to give the proof in the next section.

Now 1.5 follows from the following, which will also be proved in Section 3:

Theorem 2.6 Let \(f \) be a non-zero polynomial over \(GF(p) \), \(p > 2 \) prime. One of the following holds:

(i) \(f \) is a constant, \(I(f) = p \);

(ii) \(f \) is linear, \(I(f) = p - 1 \);

(iii) \(f \) is of degree 2, \(I(f) = \frac{p-1}{2} \);

(iv) \(f \) is affinely equivalent to \(x^{\frac{p+1}{2}} \), \(I(f) = \frac{p-1}{2} \);

(v) \(I(f) \leq \frac{p^2+3}{2} - \lfloor \frac{1}{3} \sqrt{p} \rfloor \);

(vi) The graph of \(f \) is contained in the union of two lines.

Note that (iv) is part of (vi), but we believe that (vi) is just a technical condition, which could be eliminated, see Section 4.

This result swiftly implies Theorem 1.5:

Proof of Theorem 1.5 According to 2.1, we can suppose, that \(U \) is the graph of a polynomial \(f \), where \(N(f) = N \) by definition. Apply 2.6.

If \(n \leq 1 \), then \(U \) is a line, this is case (i).

If 2.6 (v) holds, then 2.4 implies (iii).

If \(f \) is of degree 2, then it is easy to see that \(N(f) = p \).

Finally, suppose that (vi) holds, that is \(U \) is contained in the union of two lines. A theorem of T. Szönyi ([7]) states, that in this case \(N = p + 1 - \frac{p-1}{d} \) for a suitable \(d \) divides \(p - 1 \). If \(d \leq 2 \), then 1.2 implies (ii). For \(d \geq 3 \), we have \(N \geq p + 1 - \frac{p-1}{d} \), so again (iii) holds.

3. **Proof of Theorem 2.6**
First we prove some properties of $I(f)$, where $f(x) = c_n x^n + \ldots + c_0$ is a (reduced) polynomial of degree n with $2 \leq n \leq p - 1$.

Proposition 3.1 Suppose f and g are affinely equivalent, that is $f(x) = a g(bx+c) + dx + e$, where $a, b, c, d, e \in GF(p)$, $a \neq 0$, $b \neq 0$. Then $I(f) = I(g)$.

Proof Denote by $\Sigma_{k,l}^f$ and $\Sigma_{k,l}^g$ the double power sums of f and g, respectively. It is enough to prove that $\Sigma_{k,l}^f = 0$ for all $k + l \leq I(g)$, for the cases $f(x) = ag(x)$, $f(x) = g(bx)$, $f(x) = g(x+1)$, $f(x) = g(x) + x$ and $f(x) = g(x) + 1$.

First let $f(x) = ag(x)$. Then $\Sigma_{k,l}^f = a^l \Sigma_{k,l}^g$, so they are zero in the same time.

If $f(x) = g(bx)$, then $\Sigma_{k,l}^f = \sum_{x \in GF(p)} x^k g(bx)^l = \sum_{y \in GF(p)} (\frac{y}{b})^k f(y)^l = (\frac{1}{b})^{k} \Sigma_{k,l}^g$, so they are zero in the same time.

Next suppose $f(x) = g(x+1)$ and $k + l < I(g)$. Then $\Sigma_{k,l}^f = \sum_{y \in GF(p)} (y - 1)^k g(y)^l = \sum_{i=0}^k (-1)^i \Sigma_{k-i,l}^g = 0$.

Next let $f(x) = g(x) + x$ and $k + l < I(g)$. Then $\Sigma_{k,l}^f = \sum_{x \in GF(p)} x^k (g(x) + x)^l = \sum_{i=0}^l \binom{l}{i} \Sigma_{k+l-i,i}^g = 0$.

Finally, if $f(x) = g(x) + 1$ and $k + l < I(g)$, then $\Sigma_{k,l}^f = \sum_{x \in GF(p)} x^k (g(x) + 1)^l = \sum_{i=0}^l \binom{l}{i} \Sigma_{k,l}^g = 0$.

Now we prove a couple of bounds on $I(f)$, depending on n.

Proposition 3.2 $I(f) \leq p - n$.

Proof 2.3 implies that $\Sigma_{p-1-n,1} = -c_n \neq 0$.

Proposition 3.3 If $4 \leq n \leq \frac{p-1}{2}$, then $I(f) \leq \frac{p-1}{3}$ for $n \neq \frac{p+1}{3}$ and $I(f) \leq \frac{p+1}{3}$ for $n = \frac{p+1}{3}$.

Proof Write $p-1 = an + b$ with $b \leq n - 1$. Since $f(x)^a x^b$ has degree $p-1$, it is enough to prove that $a + b \leq \frac{p+1}{3}$ or $a + b \leq \frac{p-1}{3}$ according as $n = \frac{p+1}{3}$ or not. For $p \leq 23$, a case by case analysis shows that the claim is true, so we can suppose $p \geq 29$.

$a + b \leq \frac{p-n}{n} + n - 1$, so we need $p/n + n \leq \frac{p+5}{3}$. Multiplying with n, we see that the following quadratic inequality has to be satisfied: $n^2 - n^2/3 + n + 1 \leq 0$. With an easy calculation one sees that this is true for $p \geq 28$ and $4 \leq n \leq \frac{p-7}{3}$.

For $\frac{p-6}{3} \leq n \leq \frac{p-1}{3}$ and $p \geq 28$, we have $a = 3$, $b \leq 5$, so $a + b \leq 8 \leq \frac{p-1}{3}$.

For $n \geq \frac{p+1}{3}$, we have $a = 2$, $b \leq \frac{p-5}{3}$ with equality if and only if $n = \frac{p+1}{3}$.

Note that for $n = 2$ and $p > 2$, we have $I(f) = \frac{p-1}{2}$, for $n = 3$ and $p \geq 5$, $I(f) = \frac{p-1}{3}$ or $\frac{p+1}{3}$ (according as $3|p-1$ or $3|p+1$).

Proposition 3.4 Suppose $n = \frac{p+1}{2}$. Then f is affinely equivalent to $x^{\frac{p+1}{2}}$ with $I(f) = \frac{p-1}{2}$, or $I(f) \leq \frac{p+1}{4}$.
Proof After affine transformation suppose \(f(x) = x^{\frac{p+1}{2}} + g(x) \) with \(s = \deg g \leq \frac{p-3}{2} \), \(x^2 g(x) \). For \(s = 0 \), we have \(f(x) = x^{\frac{p+1}{2}} \). The calculation of \(I(f) \) is easy in this case.

Suppose \(s \geq 2 \), write \(\frac{p-3}{2} = as + b \) and consider \(f(x)^{a+1} x^b = g(x)(x)^{a+1} x^b + (a + 1)g(x)^{a}x^{\frac{p+1}{2} + b} \). We claim that the only term giving \(x^{p-1} \) after reduction is \(f(x)^{a}x^{\frac{p+1}{2} + b} \).

Take a typical term, \(r(x) = g(x)^{a+1-k}x^{\frac{p+1}{2} + b} \). For \(k \) even, \(r(x) = g(x)^{a+1-k}x^{b+k} \) modulo \((x^p - x) \), which has degree \((a+1-k)s+b+k = \frac{p-3}{2} + s-(s-1)k < p-1 \). For \(k \) odd, we have \(r(x) = g(x)^{a+1-k}x^{\frac{p+1}{2} + b} \) modulo \((x^p - x) \), which has degree \((a+1-k)s + \frac{p-1}{2} + k + b = p - 1 - (s-1)(k-1) < p-1 \) for \(k \neq 1 \) (\(k \) odd).

Now \(a + b \leq 1/s(\frac{p-3}{2} - (s-1)) + s - 1 = \frac{p-1}{2s} + s - 2 \). This is at most \(\frac{p+1}{4} \) for \(2 \leq s \leq \frac{p+1}{4} \). For \(s \geq \frac{p+2}{4} \), \(a + b \leq \frac{p+1}{4} \) obviously.

Proof of 2.5 Suppose \(I(f) \geq \frac{p-1}{2} \). According to 3.2, \(n \leq \frac{p+1}{2} \). If \(p \geq 7 \), then \(\frac{p+3}{2} < \frac{p-1}{2} \), so using 3.3 and the sentence after it, \(n = \frac{p+1}{2} \), or \(n = 2 \). For \(n = 2 \), \(f \) is affinely equivalent to \(x^2 \). For \(n = \frac{p+1}{2} \), 3.4 completes the proof. The case \(p \leq 5 \) is easy.

We need two more lemmas before the proof of 2.6.

Lemma 3.5 Suppose \(f \) and \(g \) are polynomials of degree \(\frac{p+1}{2} + r \) and \(\frac{p+1}{2} + s \), respectively, where \(r \) and \(s \) are non-negative integers. Then there exist polynomials \(F \) and \(G \) with \(\deg(F) \leq s \), \(\deg(G) \leq r \) and satisfying \(\deg(Ff + Gg) \leq \frac{p-1}{2} \).

Proof Write \(f(x) = a_n x^n + ... + a_0 \) and \(g(x) = b_m x^m + ... + b_0 \) with \(n = \frac{p+1}{2} + r \) and \(m = \frac{p+1}{2} + s \). We use induction on \(r + s \). For \(r = s = 0 \), one can take \(F(x) = b_{\frac{p+1}{2}} \) and \(G(x) = -a_{\frac{p+1}{2}} \).

In general, w.l.o.g, suppose \(r \leq s \) and let \(g_1(x) = g(x) - \frac{b_m}{a_n} x^{s-r} f(x) \). Clearly \(m' := \deg(g_1) \leq m - 1 \). If \(m' \leq \frac{p-1}{2} \), then we are done by taking \(F(x) = -\frac{b_m}{a_n} x^{s-r} \) and \(G(x) = 1 \), otherwise by induction, we have two polynomials \(F_1 \) and \(G_1 \) with \(\deg(F_1) \leq m' - \frac{p+1}{2} \), \(\deg(G_1) \leq r \) and \(\deg(F_1 f + G_1 g_1) \leq \frac{p-1}{2} \). But \(F_1(x) f(x) + G_1(x) g_1(x) = (F_1(x) - \frac{b_m}{a_n} x^{s-r} G_1(x))f(x) + G_1(x) g(x) \), so we can take \(F(x) = F_1(x) - \frac{b_m}{a_n} x^{s-r} G_1(x) \) and \(G(x) = G_1(x) \).

Lemma 3.6 Suppose \(\Phi \) is a subspace of the vectorspace of polynomials over \(GF(p) \). Then \(\dim(\Phi) = |\{\deg(f) : f \in \Phi\}| \).

Proof Let \(\Phi_1 \subset \Phi \) contain one polynomial from \(\Phi \) of each degree. It is easy to see that \(\Phi_1 \) is a linearly independent system (here we do not think about a polynomial as a function, so for instance \(x^p - x \) is not the same as the zero polynomial), it is sufficient to show, that \(< \Phi_1 > = \Phi \). Suppose to the contrary and let \(f \in \Phi \setminus < \Phi_1 > \) of minimum degree. Choose \(f_1 \in \Phi_1 \) with \(\deg(f_1) = \deg(f) \). There is a \(c \) for which \(f - cf_1 \) has degree smaller, so it is in \(< \Phi_1 > \). But this implies \(f \in < \Phi_1 > \), a contradiction.
Proof of Theorem 2.6 The calculation of $I(f)$ is easy for $\deg(f) \leq 2$, so we can assume $\deg(f) \geq 3$. Suppose $I(f) > \frac{p+3}{2} - \frac{1}{3}\sqrt{p}$. What we need is that we are in case (vi), that is the graph of f is contained in the union of two lines. Note, that according to 2.5, we can assume $p \geq 37$, since otherwise $I(f) \geq \frac{p-1}{2}$ holds.

Write $t = \lceil \frac{1}{3}\sqrt{p} \rceil$. Recall that by the definition of $I(f)$ and by 2.3, $x^p f(x)^l$ has reduced degree at most $p-2$ for all $k + l \leq \frac{p+1}{2} - t$ (or equivalently, $\Sigma_{k,l} = 0$ for these (k,l) pairs). Using 3.2 and 3.3, we can suppose that $\deg(f) = \frac{p+1}{2} + r$ with $1 \leq r \leq t - 2$. From now on f^i will denote the i-th power of f after reduction modulo $x^p - x$. After suitable affine transformation, we can suppose that $\deg(f) < \deg(f^2)$ and also that f has at most one root. Note that $\Sigma_{0,i} = \Sigma_{1,i} = \ldots = 0$ implies $\deg(f^i) \leq \frac{p-5}{2} + t + i$ for $i < \frac{p+1}{2} - t$.

Write $\deg(g) = \frac{p+1}{2} + s$. As we already mentioned, we have $r \leq t - 2$ and $s \leq t - 1$. Applying 3.5, we find the following equation:

$$F(x)f(x) + G(x)f^2(x) = H(x),$$

where $\deg(F) \leq t - 1$, $\deg(G) \leq t - 2$ and $\deg(H) \leq \frac{p+1}{2}$. Supposing that this is the equation with $\deg(F)$ minimal, we have $(F,G) = 1$.

Claim 1 $\deg(H) \leq 2t$ and $H \neq 0$.

Proof Let $h = \deg(H)$ and first suppose $h \geq \frac{p+3}{2} - t$. Then, according to (1), $x^{p-1-2h}H^2(x)$ is the linear combination of double powers of f, all of them have the form $x^kf(x)^l$ with $k + l \leq 2t + p - 1 - 2h \leq 2t + p - 1 - 2\left(\frac{p+3}{2} - t\right) = 4t - 4 \leq \frac{p+1}{2} - t$. But this is a contradiction, since $x^{p-1-2h}H^2(x)$ has degree $p - 1$.

Next suppose $2t < h < \frac{p+3}{2} - t$. Then $r + h \leq \frac{p+3}{2}$, so we can consider $f(x)H(x)x^{\frac{p-3}{2} - r - h}$. It has degree $p - 1$ and is the linear combination of double powers of f of the form $x^kf(x)^l$ with $k + l \leq 1 + t + \frac{p-3}{2} - r - h \leq 1 + t + \frac{p-3}{2} - 1 - (2t + 1) = \frac{p-3}{2} - t$, a contradiction.

Finally note, that $H = 0$ would imply that $f(x)(F(x) + G(x)f(x))$ is a multiple of $x^p - x$, which is impossible, since f has at most one root and $\deg(F + Gf) < p - 1$. ☐

Claim 2 For $2 \leq i \leq t$ there exist polynomials $A(x)$ and $B(x)$ (depending on i) with $\deg(A), \deg(B) \leq 2it$, $(A,G) = 1$ and such that

$$A(x)f(x) + G^{i-1}(x)f^i(x) = B(x).$$

Proof We use induction on i, for $i = 2$ we have $A(x) = F(x)$ and $B(x) = H(x)$. In general suppose (2) holds for i. Multiplying with $G(x)f(x)$ we have

$$A(x)G(x)f^2(x) + G^i(x)f^{i+1}(x) = B(x)G(x)f(x).$$

Now (1) implies $G(x)f^2(x) = H(x) - F(x)f(x)$. Putting this into (3) and after a little counting we have

$$-(B(x)G(x) + A(x)F(x))f(x) + G^i(x)f^{i+1}(x) = -H(x)A(x),$$

where $\deg(B(x)G(x) + A(x)F(x)) \leq 2it$ and $\deg(G^i(x)f^{i+1}(x)) = \deg(H(x)A(x))$. Therefore, $\deg(B(x)G(x) + A(x)F(x)) = \deg(H(x)A(x))$ and $\deg(G^i(x)f^{i+1}(x)) = \deg(H(x)A(x))$. Comparing their degrees, we obtain the desired equation.

Therefore, $A(x)f(x) + G^{i-1}(x)f^i(x) = B(x)$, where $\deg(A), \deg(B) \leq 2it$, $(A,G) = 1$ and such that

$$A(x)f(x) + G^{i-1}(x)f^i(x) = B(x).$$

Proof We use induction on i, for $i = 2$ we have $A(x) = F(x)$ and $B(x) = H(x)$. In general suppose (2) holds for i. Multiplying with $G(x)f(x)$ we have

$$A(x)G(x)f^2(x) + G^i(x)f^{i+1}(x) = B(x)G(x)f(x).$$

Now (1) implies $G(x)f^2(x) = H(x) - F(x)f(x)$. Putting this into (3) and after a little counting we have

$$-(B(x)G(x) + A(x)F(x))f(x) + G^i(x)f^{i+1}(x) = -H(x)A(x),$$

where $\deg(B(x)G(x) + A(x)F(x)) \leq 2it$ and $\deg(G^i(x)f^{i+1}(x)) = \deg(H(x)A(x))$. Therefore, $\deg(B(x)G(x) + A(x)F(x)) = \deg(H(x)A(x))$ and $\deg(G^i(x)f^{i+1}(x)) = \deg(H(x)A(x))$. Comparing their degrees, we obtain the desired equation.
and this is what we need for $i + 1$: $\deg(-BG - AF) \leq 2it + t < 2(i + 1)t$, $\deg(-HA) \leq 2t + 2it = 2(i + 1)t$ and $(BG + AF, G) = (AF, G) = 1$.

Note that the previous claim shows in particular, that $\deg(f^t) > \frac{p+1}{2}$.

Now let $\Phi = \{Af + Bf^t : \deg(A), \deg(B) \leq 2t^2\}$ and $\Psi = \{\phi \in \Phi : \deg(\phi) \leq \frac{p-1}{2}\}$, these are subspaces of the vector space of polynomials over $GF(p)$. Let $\psi_0(x) = A_0(x)f(x) + B_0(x)f^t(x)$ be a non-zero element of Ψ with $\deg(A_0)$ minimal. According to 3.5, $\deg(A_0) \leq 2t - 3$, $\deg(B_0) \leq t - 2$.

Claim 3 $\deg(\psi_0) \leq \frac{p-1}{2} - 2t^2$.

Proof Let $u = \deg(\psi_0)$ and first suppose $\frac{p+1}{2} - 2t^2 \leq u \leq \frac{p+1}{2} - t$. Then we can consider $f(x)^u \psi_0(x)x^{\frac{p-3}{2} - r - u}$, which is a polynomial of degree $p - 1$ and is an linear combination of double powers of f of the form $x^k f(x)^l$ with $k + l \leq 1 + 2t - 2 + \frac{p-3}{2} - r - u \leq 1 + 2t - 2 + \frac{p-3}{2} - 1 - \left(\frac{p+1}{2} - 2t^2\right) = 2t^2 + 2t - 4 \leq \frac{p+1}{2} - t$, a contradiction.

Next suppose $\frac{p+3}{2} - t \leq u \leq \frac{p+1}{2}$. Then $\psi_0^2(x)x^{p-1-2u}$ gives the contradiction.

Claim 4 The system $\{f(x), xf(x), ..., x^{2t^2} f(x), f^t(x), xf^t(x), ..., x^{2t^2} f^t(x)\}$ is linearly independent, so $\dim(\Phi) = 4t^2 + 2$.

Proof A zero linear combination is equivalent with an equation of the form $A(x)f(x) + B(x)f^t(x) = 0$, where $\deg(A), \deg(B) \leq 2t^2$. But this would imply $f(x)(A(x) + B(x)f^t(x)) = 0$ (as a function), which means, that $x^p - x$ divides $f(x)(A(x) + B(x)f(x))$. Since f has at most one root and $\deg(A + Bf) < p - 1$, this is only possible for $A(x) = B(x) = 0$.

Claim 5 $\Psi = \{C(x)\psi_0(x) : \deg(C) \leq c\}$, for a c.

Proof Write $d = \deg(A_0), e = \deg(B_0)$ and, w.l.o.g., suppose $d \geq e$. Let $c = 2t^2 - d$.

There are $2t^2 - d + 1$ different degrees in the set $\{C(x)\psi_0(x) : \deg(C) \leq c\}$, so according to 3.6 and the previous claim, we only have to find $4t^2 + 2 - (2t^2 - d + 1) = 2t^2 + d + 1$ different degrees bigger than $\frac{p-1}{2}$ in Φ.

Let $\Phi' = \langle f(x), xf(x), ..., x^{d-1} f(x), f^t(x), xf^t(x), ..., x^{e-1} f^t(x) \rangle$.

It is easy to see that its elements have $d + e$ different degrees, all between $\frac{p+1}{2}$ and $d + 1 + \deg(f) = e - 1 + \deg(f^t)$.

The set $\{x^e f^t(x), ..., x^{2t^2} f^t(x)\}$ gives the rest of the desired degrees.

Claim 6 $G(x)$ is a constant.

Proof Apply Claim 2 with $i = t$. $\deg(A), \deg(G^{t-1}) \leq 2t^2$, $\deg(B) \leq 2t^2 \leq \frac{p-1}{2}$, so by Claim 5, B is divisible by ϕ. Since $(A, G) = 1$, this is only possible, if G^{t-1} is a constant multiple of B_0. Considering the degrees, this is only possible, if G is a constant.

Now we consider two cases according to the degree of F. 8
Case 1 $\deg(F) \leq 1$.

Then $(ax + b)f(x) + f^2(x) = H(x)$ with $a \neq 0$, since we had $\deg(f) < \deg(f^2)$. Write $g(x) = f(x) + a/2x + b/2$ and $H_1(x) = H(x) + 1/4(ax + b)^2$. Then $g^2(x) = f^2(x) + (ax + b)f(x) + 1/4(ax + b)^2 = H_1(x)$ (here g^2 is the square of g after reduction modulo $x^p - x$).

All values of H_1 are square elements, so it cannot be linear. If it is a constant or of degree 2, then the graph of g (and hence of f) is contained in the union of two lines.

If $\deg(H_1) \geq 3$, then, since we also have $\deg(H_1) \leq 2t$, for $d := \deg(g^{2(t-1)})$ we have $3t - 3 \leq d \leq 2t^2 - 2t \leq \frac{p-1}{2} - t$.

Now $\deg(g) + \deg(g^{2t-2}) = \frac{p-1}{2} + t + \frac{p-1}{2} - t = p - 1$, so $\deg(g^{2t-1}) = \deg(g) + \deg(g^{2t-2}) \geq \frac{p+1}{2} + d \geq \frac{p+1}{2} + 3t - 3$, which is a contradiction, since we saw that $\deg(f^i) \leq \frac{p-3}{2} + t + i$.

Case 2 $k := \deg(F) \geq 2$.

After linear transformation, we can suppose that $\deg(H) > k$.

We consider two subcases according to the degree of H.

Subcase 1 $k < \deg(H) < 2k$.

By induction on i, one can easily prove that in equation (2) of Claim 2, we have $\deg(A) = (i - 1)k$ and $\deg(B) = \deg(H) + (i - 2)k$, implying $\deg(f^i) = \deg(f) + k(i - 1) \geq \frac{p+1}{2} + 2(i - 1)$. For $i = t$ this is a contradiction.

Subcase 2 $\deg(H) \geq 2k$.

Recall that we also have $\deg(H) \leq 2t$. It is easy to see that if $\deg(f) = \frac{p+1}{2} + r$, then $\deg(f^2) = \frac{p+1}{2} + r + k$.

Consider $U(x) = H^{t-1}(x)$ and write $u = \deg(U)$. We have $2k(t - 1) \leq u \leq 2t(t - 1) \leq \frac{p-1}{2} - 2t \leq \frac{p-1}{2} - r - k - 1$.

$f(x)^2U(x)x^{\frac{p-1}{2} - u - r - k - 1}$ is a polynomial of degree $p - 1$ and is the linear combination of double powers of f of the form $x^{a}f(x)^b$ with $a + b \leq 2 + (t - 1)(k + 1) + \frac{p-1}{2} - k - r - u - 1 \leq 2 + (t - 1)(k + 1) + \frac{p-1}{2} - k - 1 - 2k(t - 1) - 1 = \frac{p-3}{2} - (k - 1)t \leq \frac{p-3}{2} - t$, a contradiction.

4 Final Remarks

With a bit more careful counting, $\frac{1}{3}$ can be replaced with any $c < \frac{1}{2}$ constant for sufficiently large p both in 2.5 and 2.6.

With the terminology of blocking sets, 2.6 can be formulated in the following way:

Theorem 4.1 A blocking set of Rédei type in $PG(2,p)$, p prime, is the projective triangle (of size $p + \frac{p+3}{2}$) or has size at least $p + \frac{p+3}{2} + \frac{1}{3}\sqrt{p}$.

For an arbitrary square prime power q, Szőnyi, Polverino and Weiner [8] constructed blocking sets of Rédei type of size $q + \frac{q+3}{2} + \frac{1}{2}\sqrt{q}$.

Finally, we formulate two conjectures motivated by this text. In both of them f is a polynomial over $GF(p)$, p prime, of degree at least 4. The first one would imply that condition (vi) is not necessary in the statement of 2.6.
Conjecture 4.2 If the graph of f is contained in the union of two lines, then its degree is $\frac{p+1}{2}$ or at least $\frac{p+1}{2} + \frac{1}{3}\sqrt{p}$.

Our last conjecture would imply 1.4.

Conjecture 4.3 If f is not affinely equivalent to $x^{\frac{p+1}{2}}$, then $I(f) \leq \frac{p-1}{3}$ or $\frac{p+1}{3}$ (according as $3|p-1$ or $3|p+1$).

Acknowledgements. The author acknowledges the financial support of OTKA Grants F-016302, T-019367.

5. References