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Abstract

Let ¢ be a prime power and g € {6,8,12}. In this paper we obtain (g, g)-
graphs on 2¢9/273(¢? —1) vertices for g = 6,8, 12 as subgraphs of known (q+1, g)-
cages. We also obtain (k,6)-graphs on 2(kq — 1) vertices, and (k, 8)-graphs on
2k (g% —1) vertices and (k, 12)-graphs on 2kq?(¢> —1), where k is a positive integer
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such that ¢ > k > 3. Some of these graphs have the smallest number of vertices
known so far among the regular graphs with girth g = 6,8, 12.
Key words. Cage, girth.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges
are considered. Unless otherwise stated, we follow the book by Godsil and Royle [14]
for terminology and definitions.

Let G = (V(G), E(G)) be a graph with vertex set V = V(G) and edge set F =
E(G). The girth of a graph G is the number g = g(G) of edges in a smallest cycle.
The degree of a vertex v € V is the number of vertices adjacent to v. A graph is
called regular if all the vertices have the same degree. A cage is a k-regular graph
with girth ¢ having the smallest possible number of vertices. Simply counting the
numbers of vertices in the distance partition with respect to a vertex yields a lower
bound ny(k, g) on the number of vertices n(k, g) in a cage, with the precise form of the
bound depending on whether g is even or odd.

T+k+k(k—1)+...+k(k—1)0632 if gis odd;

20+ (k—1) + ...+ (k= 1)9/*1) if g is even. (1)

no(k, g) = {

A (k,g)-cage with even girth ¢ and ng(k,g) vertices is said to be a generalized
polygon graph. Generalized polygon graphs exists if and only if g € {4,6,8,12} [6].
When g = 6, the existence of a graph with ng(k,6) = 2(k* — k + 1) vertices called
generalized triangle, is equivalent to the existence of a projective plane of order k — 1,
that is, a symmetric (ng/2, k, 1)-design. It is known that these designs exist whenever
k — 1 is a prime power, but the existence question for many other values remains
unsettled. Generalized quadrangles when g = 8, and generalized hexagons when g = 12
are also known to exist for all prime power values of k — 1, see [4, 6, 14].

Biggs [6] call excess of a k-regular graph G the difference |V (G)| — no(k, g). The
question of the construction of graphs with small excess is a difficult one. Cages have
been studied intensely since they were introduced by Tutte [22] in 1947. Erdés and
Sachs [10] proved the existence of a graph for any value of the regularity k& and the
girth g, thus most of work carried out has been focused on constructing a smallest one
[1,2,5,8,9, 11, 12, 16, 18, 19, 20, 23, 24]. Biggs is the author of an impressive report



on distinct methods for constructing cubic cages [7]. More details about constructions
on cages can be found in the survey by Wong [24] or in the survey by Holton and
Sheehan [15].

It is conjectured that cages with even girth are bipartite [21, 24]. In [3], (k,6)-
bipartite graphs of order 2(kq — 1) are obtained giving the incidence matrices where
k > 3 is an integer and ¢ is a prime power such that ¢ > k. When ¢ is a square prime
power it has been proved [13] that n(k,6) < 2(kq— (¢ —k)(y/q+1) —/q) forall k < ¢
using geometrical techniques. This last result improves the above one when the smallest
prime power ¢ > k happens to be a square. Otherwise even if a square prime power is
very close to ¢, say ¢ + 2, we obtain larger graphs. For example, for k = 21 a (21, 6)-
regular graph on 2(23-21—1) = 964 vertices has been constructed in [3] giving explicitly
its incidence matrix, while the result in [13] gives n(21,6) < 2(525—4(5+4+1)—5) = 992.

In this paper we obtain first (¢, g)-graphs on 2¢9/273(¢?> — 1) vertices as subgraphs
of known (¢ + 1, g)-cages for g = 6,8, 12. Second, using similar ideas, we exhibit (k, 6)-
bipartite graphs on 2(kq— 1) vertices and (k, 8)-bipartite graphs on 2(¢*k — k) vertices.
Finally, we also obtain (¢ — 1,12)-bipartite graphs on 2(q — 1)(¢® + ¢*) vertices.

2 Results

To state our results we introduce some notation based on a standard decomposition
for a graph G of even girth g. Choose an edge zy of G and define for 0 <i: < ¢g/2 — 1
the following sets,
X, = {ueV(G) : du,z) =1, O(u,y) =1+ 1}, 2)
Y, = {veV(G) : 0w,y) =i, Ov,z) =i+ 1}.
The fact that the girth of G is ¢ implies that the sets X;,Y; (0 < i < g/2 — 1) are
pairwise disjoint.

In the next theorem we find (g, g)-graphs for ¢ a prime power and g = 6,8,12 as a
subgraphs of some generalized polygons graphs. This construction extends to g = 8,12
the results contained in [3] for (g, 6)-cages. Also this construction allows us to improve
the upper bound n(q, g) < 2(qg772) shown in [2] for ¢ a prime power and g = 6,8, 12.

Theorem 2.1 Let q be a prime power and g = 6,8,12. Then any (q + 1, g)-cage
contains as a subgraph a (g, g)-graph on 2¢9/*73(q* — 1) vertices. Hence

n(q,9) < 2¢°27*(¢* - 1).
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Proof. Let H be a generalized polygon graph of degree ¢ + 1 and girth g = 6,8, 12.
Choose an edge xy of H and consider the sets introduced in (2), which clearly partition
V(H). Let denote X = {x1,29,...,2,} and Y1 = {y1,¥2,...,y,}. Let us partition X;
and Y;, i € {1,...,9/2 — 1} into the following sets:

Difl(xj) :{’UJGXZ‘28<U},IJ') :Z—l}, j:1,2,,q

Let us show the following claim.

Claim 1 Each one of the induced subgraphs H[Dgjo_o(x;) U Dgjo_o(y;)l, 4,7 €
{1,2,...,q} of H define a perfect matching.

Suppose that there is u € Dyjs_o(x;) such that [N(u) N Dyja_o(y;)| > 2 for some
J€{1,2,...,q}. Then vww,,uw, € E(H) for wi,ws € Dgy/o_»(y;) yielding that the
shortest (y;, w;)-path of length g/2 — 2, the shortest (y;,ws)-path of length g/2 — 2,
and the edges uw;, uws create a cycle of length less than g which is a contradiction.
Therefore |N(u) N Dyja—o(y;)| < 1forall u € Dyjp_o(x;) and j =1,2,...,q. As every
vertex u € D, /2_2($i) has exactly one neighbor in X;/,_, and the other ¢ neighbors of
u must be in Y,y because g > 6, then |N(u) N Dy/a—2(y;)| = 1. Analogously every
vertex v € Dgyjo_o(y;) has [N(v) N Dyja_o(x;)| = 1, hence the claim is valid. m

Let G be the graph obtained from H by deleting X; and Y; for 0 <i < g/2 —3 and

the set of vertices
9/2—2

U (Di(zg) U Dily,)).
i=g/2—3
To illustrate the construction of this graph G, Figure 1 depicts on the left side the
spanning tree of the (4,6)-cage and the eliminated vertices from it are indicated inside
a box. And on the right side the resulting (3, 6)-graph after the deletion of the indicated
vertices is shown. Figure 2 depicts the spanning tree of the (4,8)-cage and the deleted
vertices are also indicated inside a box.

Clearly, all the remaining vertices of X/, _oUY, /55 have degree g in G since all these
vertices have the same neighbors they had in H except the removed vertex belonging
to Dyja—3(xq) U Dgja—3(yq). Furthermore, all the remaining vertices of Xg/o_1 U Y04
have degree ¢ in GG, because they have the same neighbors they had in H except one
neighbor which was in Dy/o_s(24) U Dg/a—2(yg)-
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Figure 1: Deleted vertices in the (4, 6)-cage and the resulting (3, 6)-graph on 16 vertices.
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Figure 2: Deleted vertices in the (4, 8)-cage.

Therefore, H is a (q, g)-graph with g = 6,8,12 on
96  g=4 9=6
V(H) =2(¢-1)(g7 +¢2)=2¢7 ("~ 1)

vertices. Thus, the theorem is true. =

Let k > 3 be an integer, (k,6)-bipartite graphs for ¢ > k a prime power and on
2(kq — 1) vertices are constructed in [3], via the incidence matrix. Next we give other
graphical construction following the same ideas as in Theorem 2.1. We use the notation
Nlz] to mean the set of vertices N(x) U {x}.

Theorem 2.2 Let k > 3 be an integer and q > k be a prime power. Then any
(¢ + 1,6)-cage contains as a subgraph a (k,6)-bipartite graph on 2(kq — 1) vertices.
Hence

n(k,6) <2(kqg—1).

Proof. Let H be a generalized triangle graph of degree ¢ + 1 and girth ¢ = 6. Let
us choose an edge zy of H and consider again the sets X; = {x,29,...,7,} and
Y1 ={v1,v2,...,yq}. Observe that X, and Y5 are partitioned into the neighborhoods
N(z;) —x and N(y;) —y, 4,5 € {1,2,...,q}, respectively. By Claim 1, each one of the
induced subgraphs H[(N (z;) —x)U(N(y;)—y)], 1,7 € {1,2,...,q} of H define a perfect

5



matching. Let denote by ¢1,...,¢,_; € N(xy)—x and by ry,..., 7, € N(yx) —y such
that ¢;r; € E(H),i=1,...,q— k. Then, the structure of H induce the following two
injective mappings for all t = 2,... q.

feodly, oo b} — N(ys) —y
such that ¢;f,(¢;) € E(H), and
or{ry, .. ek} — N(xy) —

such that r;pi(r;) € E(H). Let G be the graph obtained from H by deleting the
following set of vertices and edges.

q

vertices U (N[z) UN[y]) U (Nxg) \ {1, .. lg—r}) U (Nye] \ {r1,- -, 7g-1});
edges : x_tgot(n-), wfilly), t=1,...;k—=1,i=1,...,q— k.

Figure 3 depicts on the left side the spanning tree of a (6, 6)-cage. The new graph G is
obtained by eliminating the vertices indicated inside a box, and the deleted edges are
indicated in dashed lines. On the right side of this figure, the resulting (3, 6)-graph G
on 28 vertices is shown.
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Figure 3: Eliminated vertices and edges in a (6, 6)-cage and the resulting (3, 6)-graph
on 28 vertices.

Let us see that G is a k-regular graph.

The vertices x; € X3 \ {zk, Trs1, -, T}, Y € Y1\ {Yks Ykt1, - - -, Yg} have degree k
in G because they have the same neighbors as in H except the ¢ — k corresponding to
the removed edges zyp;(7), v fe(4i), i = 1,...,q — k, and the edges incident with z,y.

Vertices w € Xo \U[_, ({1, ..., 74_x}) have degree k in G because they have lost
g — k + 1 which are: one neighbor in N(y;) —y for each t = k+1,...,¢q, and other



more in N(yx) \ {r1,...,7x}. Similarly, vertices w € Y3 \U_, fi({f1, ..., £, x}) have
degree k in G.

Vertices f;(¢;) have degree k because they are adjacent to r; and have one neighbor
in each N(y;) —y,t =1,...,k—1. Similarly ¢;(r;) is proved to have degree k. Finally,
every ;, i = 1,2,...,q — k, has degree k because it is adjacent to r; and has other
neighbor in Ny (y;) —y for each t = 1,...,k — 1. Similarly, r; has degree k.

The order of G is
V(G| =2((k—=1)+(k—1)g+ (¢ —k)) =2(kq — 1),

and clearly G has girth at least 6. To state that the girth is exactly 6 it is enough to
notice that ¢ — 1 > 3 and the number of vertices of the constructed graph is strictly
less than the lower bound given in (1) for g =8. m

Theorem 2.3 Let k > 3 be an integer and q > k be a prime power. Then any
(q + 1,8)-cage contains as a subgraph a (k,8)-bipartite graph on 2(kq* — k) vertices.
Hence

n(k,8) < 2k(q* — 1).

Proof. Let H be a generalized quadrangle graph of degree ¢ + 1 and girth g = 8.
Choose an edge xy of H and consider the sets introduced in (2), which clearly partition
V(H). Let denote by X; = {xy,xa,...,2,} and Y7 = {y1,%2,...,¥y,}. Let us partition
X, and Y}, © = 2, 3 into the following sets:

D y(zj) ={we X;: 0(w,z;) =i—1}, j=1,2,...,q.

D 1(y;)) ={weY;:0(w,y;) =i—1}, j=1,2,...,q.

By Claim 1 each one of the induced subgraphs H|[Ds(x;) U Da(y;)], 4,5 € {1,2,...,q}
of H define a perfect matching which induces the following one-to-one mapping:

fij + Da(x:) — Da(y;),

such that wf;j(w) € E(H) for all w € Dy(z;). Let us denote Dy(zx) = {Zk1, - .., Tiq},
Dl(yt) = {ytla s 7ytq}7 k7t = 17' -4, hence D2(‘rk) - ?:1<NH(ZEk]> - xk) and
Dsy(y,) = U?Zl(NH(ytj) — 7). Let us see that there is exactly one edge joining the
set Ny(zy;) — xp and the set Ny (y;) — yi. Otherwise suppose that |(Ng(yi;) —



ye) N fee(Ng(xgi) — )| > 2 for some y; € Di(y:). Then there are two distinct
vertices u,v € Np(xp;) — x such that fi(u), fie(v) € Np(yw;) — y yielding that
Thi, W, fre (W), yij, fre(v), v, 2k, is & cycle of length 6 which is a contradiction. Therefore
|(Nu(yeg) = ye) O fre (N (2s) — @i)| = 1 for all yy; € D1 (yr).

Let denote L = ?;f(NH(aski) — x) C Do(xy) and R = U?;f(NH(gkj) —yr) C
Ds(yg). Now, let G be the induced subgraph G = H[S] — M of H where S C V(H)
and M C E(H) are the following:

q—k

k-1 2
S = U U i) uDily) | J{@kiryrs} U (LUR)
t=11i=1

=1
w € E(H):ue XoUY2,v€ XgUY3, N(v)N(LUR) #0}.

=
[

By way of example, Figure 4 shows the spanning tree of a (5,8)-cage. The new
graph is the induced subgraph for the vertices outside of the box for the case k = 3.

LYYV VYUYV Y VUV Vv Vv vy y

Figure 4: Eliminated vertices and edges in a (5, 8)-cage for k = 3.

Let us continue proving that the degree of G is k.

Every vertex y;; € Di(y:) (t = 1,...,k —1, j = 1,...,q) has degree k in G
because Ng(y1;) = Nu(ytj) \ {y:} U (Ne(ye;) N fre(L)). The same argument is valid for
proving that the vertices yy1, . .., Ykq—r € D1(yx) have degree k. Similarly, every vertex
24; € Dy(r;) has degree k in G because Ng(z1;) = N () \ ({z:}U(Ng(x) N f (R)).

If w € fix(L) then w has degree k in the new graph G, because it has lost ¢+ 1 — k&
neighbors, one in each Dy(z;), j =k +1,...,q and one y;; € U,?;f D1 (y;) because of
the eliminated edges. Analogously, w € f,;tl(R) is proved to have degree k.

If we Dy(yi) \ fee(L), then w has degree k in the new graph G, because it has lost
¢ + 1 — k neighbors, one in each Dy(z;), j = k + 1,...,¢ and one other more in the
removed part of Dy(xy). Analogously, w € Day(z,) \ f;;'(R) is proved to have degree k.
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Therefore we conclude that the degree is k as claimed. The order of G is

((k=1)(¢* +q) + (¢ = k)(g+ 1))
(kq2 _k)a

V(@) =

2
2
and clearly G has girth at least ¢ = 8. If ¢ = 4 and k& = 3 the girth is 8 as it is can
easily be checked working in the indicated way with a (5, 8)-cage. To state that the
girth is exactly 8 for other values of ¢ and k, it is enough to notice that the order of

the new graph G is strictly less than the lower bound given in (1) when the girth is 10.
]

Theorem 2.4 Let k > 3 be an integer and q > k. Then any (¢ + 1,12)-cage contains
a (k,12)-graph as a subgraph on 2kq*(¢* — 1) vertices. Hence

n(k,12) < 2k (¢ — 1),

Proof. Let H be a generalized hexagon graph of degree ¢+ 1 and girth g = 12. Choose
an edge zy of H and consider the sets introduced in (2), which clearly partition V (H).
For any vertex u € X; and j <5 —1 let

Dj;(u) ={v € Xiy; : O(u,v) = j}.

For u € Y define D;(u) C Yiy; similarly. Note that |D;(u)| = ¢/ and that X;;; =
U.ex, Dj(2), where the sets D;(2), 2 € X; are disjoint.

Claim 2 Let i+ j > 6 (1 < 1,5 <5). Then for any u € X; and v € Y; there is at
most one edge between the sets Ds_;(u) C X5 and Ds_;(v) C Ys. If i+ j = 6, then
there 1s exactly one edge.

Proof. Suppose on the contrary that there are two edges between the sets Dj_;(u)
and Ds_;(v), say ujv; and uove. Then the natural walk given by the paths u —
Uy, UUy, V1 — U, v — U1, Uglg, Uy — u would contain a cycle of length at most
20—1i)+2(5—j)+2=20—-2(:+j)+2 < 10, contradicting that the girth of H is 12.

On the second hand, suppose i+ j = 6. There are exactly ¢q-¢°~* = ¢°* edges going
from Ds_;(u) to Y5, where Y5 is partitioned by the ¢/ = ¢°* sets D5_;(z), 2 € X, and
as seen before, only one edge can go to each set of the partition. The equal number of
edges and sets proves the statement. =



Let X; = {z1,...,2,} and Y7 = {w1,...,y,}, furthermore let D;(zy) =
{Tk1, -, T} and Dl(yk) {Yk1, - - - ,ykq} Let X* C Dy(zy) C Xsand Y* C Dy(yx) C
Y; be the sets Dg(l'kl) and (J7_| Dg(y]ﬂ) respectively.

Now let G be the subgraph H[S] — M of H where S C V(H) and M C E(H) are
the following:

5= UU () U Dy(y1)) U QLJQ(DM»UDJ-(W»?

M={weE(H) ueX,UY,veXsUY5 N(v)Nn (Y UX")#0}.

Let us check if G is k-regular. Let u € V(G) N X5 and let the unique vertex
of N(u) N X4 be denoted by r € V(G). Then by Claim 2, u originally had exactly
one neighbor in each set Dy(y;), i = 1,...,q, say uy,...,u,, among which uy, ... ux_1
are in V(G), Ugt1,...,u, are not in V(G) and uy is in V(G) depending on whether
ur € Y* C V(G) or not. In both cases u has exactly k neighbors in G, since either uy
is deleted and the kth neighbor of u is r or ux € Y*, thus the edge ur € E(H) is not
included in E(G).

If u e V(G) N Xy, then all the neighbors of w in G are found in Dy(u) C X5. By
Claim 2, there is exactly one edge between the sets D;(u) and Ds(yx;), i = 1,...,q,
say Uivy, ..., UgU,. Since v; € Y if and only 1 < ¢ < ¢ — k, uu; € E(G) if and only if
qg—k+1<1i<gq, hence the valency of v in G is k.

The order of G is

V(@) =2(k=1)(¢"+¢") + (a— k)¢ +¢*) =2¢°(kq’ — k),

which finishes the proof. m
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