
Chapter 2

Adjacency matrix and its rank

Perhaps the easiest way of assigning a vector to each node is to use the corresponding column

of the adjacency matrix. Even this easy construction has some applications, and we will

discuss one of them.

2.1 Neighborhoods, rank and size

If we know the rank of the adjacency matrix of a graph, how large can the graph be?

Obviously we have to make some assumption, since we can replace any node by an arbitrary

number of twins without increasing the rank of the adjacency matrix. However, if we exclude

twins, then the question becomes meaningful.

An almost trivial answer is given by the following argument. We call the rank of the

adjacency matrix AG of graph G simply the rank of G, and denote it by r = rk(G). Let,

say, the first r columns of the adjacency matrix form a basis of the column space. Two rows

that agree in their first r positions will agree everywhere, which is impossible if there are no

twins. So the initial r-tuples of rows will be all different, and hence there are at most 2r

rows.

This argument works over any field, and no better bound can be given over, say, GF (2)

(see Exercise 2.1). However, over the real field we can use geometry, not just linear algebra,

and prove a substantially better (almost optimal) bound.

Theorem 2.1.1 Let G be a twin-free graph on n nodes, and let r = rk(AG). Then n =

O(2r/2).

Before turning to the proof, we recall a result from discrete geometry. The kissing number

s(d) in Rd is the largest integer N such that there are N non-intersecting unit balls touching

a given unit ball. The exact value of s(d) is only known for special dimensions d, but the

following bound, which follows from tighter estimates, will be enough for us:

s(d) = O(2d/2). (2.1)
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For technical reasons, we state this fact as follows. There is a constant C > 16 such that,

setting f(r) = C2r/2 − 16, every set of more than f(d) vectors in Rd contains two vectors

such that angle between them is less than π/3.

Lemma 2.1.2 If a graph G of rank r has n > s(r+ 1) nodes, than it has two nodes i and j

such that |N(i)△N(j)| < n/4.

Proof. Let ai denote the column of AG corresponding to i ∈ V , and let ui = 1 − 2ai.

Clearly the vectors ui are ±1-vectors, which belong to an (at most) (r + 1)-dimensional

subspace. Applying the kissing number bound to the vectors ui, we get that there there are

two vectors ui and uj forming an angle less than π/3. For two ±1 vectors, this means that ui

and uj differ in fewer than n/4 positions. The vectors ai and aj also differ in these positions

only. �

We also need a simple facts about twins in induced subgraphs. If we delete a node from

a graph G that has a twin, then no new twins are created (if pair i, j of remaining nodes

is distinguished by some node of G, and if this gets deleted, then its twin remains and still

distinguishes i and j). Deleting a node that has a twin does not change the rank of the

graph.

Lemma 2.1.3 If two nodes i, j ∈ V of a graph G are not twins, but they are twins in an

induced subgraph H, then rk(H) ≤ rk(G)− 2.

Proof. Indeed, AG must contain a column that distinguishes rows i and j, and so it is

not in the linear span of the columns in X. Adding this column to AH increases its rank.

Adding the corresponding row increases the rank further. �

Proof of Theorem 2.1.1. We prove that n ≤ f(r) for every graph on n nodes and of rank

r, by induction on r. For r = 1, 2, 3 this is easily checked. So we may suppose that r > 3.

If |N(i)△N(j)| ≥ n/4 for any two nodes, then Lemma 2.1.2 implies that n ≤ s(r + 1) <

f(r). So we may assume that there are two nodes i and j such that |N(i)△N(j)| < n/4.

The set X = V \ (N(i)△N(j)) induces a subgraph in which i and j are twins, and hence by

Lemma 2.1.3, rk(G[X]) ≤ r − 2.

Let G[Z] be a largest induced subgraph of G with rk(G[Z]) ≤ r− 1. Since X induces one

of these subgraphs, we have

|Z| ≥ |X| > 3

4
n. (2.2)

If G[Z] does not have twins, then by the induction hypothesis applied to G[Z],

n <
4

3
|Z| ≤ 4

3
f(r − 1) < f(r).
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So we may assume that G[Z] has twins. By Lemma 2.1.3, we have rk(G[Z]) ≤ r − 2.

Let u ∈ V \Z. By the maximality of Z, the rows of AG corresponding to Z ∪{u} span its

row-space. This implies that u must distinguish every twin pair in Z, and so u is connected

to exactly one member of every such pair. This in particular implies that G[Z] does not have

three mutually twin nodes. Let T be the set of nodes that are twins in G[Z] and are adjacent

to u, and let T ′ be the set of twins of nodes of T . Let U = Z \ (T ∪ T ′).

Next consider any other v ∈ V \ Z. We show that it is either connected to all of nodes

in T and none in T ′, or the other way around. Row v of AG is a linear combination of rows

corresponding to Z and u; let, say, the coefficient of row u in this linear combination be

positive. Then for every twin pair {i, j} (where i ∈ T and j ∈ T ′) we have au,i > au,j , but

(by the definition of twins) aw,i = aw,j for all w ∈ Z, and hence av,i > av,j . This means that

v is adjacent to i, but not to j, and so we get that v is adjacent to all nodes of T but not to

any node of T ′. Thus we have a decomposition V \ Z = Y ∪ Y ′, where every node of Y is

connected to all nodes of T but to no node of T ′, and for nodes in Y ′, the other way around.

So G has the structure in Figure 2.1.

Figure 2.1: Node sets in the proof of Theorem 2.1.1. Dashed arrows indicate twins
in G[Z].

The graph G[T ∪ U ] is obtained from G[Z] by deleting one member of each twin-pair,

hence it is twin-free. Since rk(G[T ∪ U ]) = rk(G[Z]) ≤ r − 2, we can apply the induction

hypothesis to get

|T |+ |U | ≤ f(r − 2). (2.3)

If |Y ∪ Y ′| ≤ 16, then

n = 2|T |+ |U |+ |Y ∪ Y ′| ≤ 2f(r − 2) + 16 ≤ f(r),

and we are done. So we may assume that (say) |Y ′| > 8. Since the rows in Y ′ are all

different, this implies that they form a submatrix of rank at least 4. Using that in their

columns corresponding to T these rows have zeros, we see that the matrix formed by the

rows in Y ′ ∪ T has rank at least rk(G[T ]) + 4. This implies that rk(G[T ]) ≤ r − 4.

If G[T ] is not twin-free, then any twins of it remain twins in G − U : no node in T ′ can

distinguish them (because its twin does not), and no node in V \Z can distinguish them, as
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we have seen. So G− U is not twin-free, and hence rk(G− U) ≤ r − 2 by Lemma 2.1.3. By

the maximality of Z, we have |V \ U | ≤ |Z|. Using (2.3), this gives

n ≤ |Z|+ |U | = 2|T |+ 2|U | ≤ 2f(r − 2) < f(r).

On the other hand, if G[T ] is twin-free, then we can apply induction:

|T | ≤ f(r − 4). (2.4)

Using (2.2), (2.3) and (2.4), we get that

n <
4

3
|Z| = 4

3
(2|T |+ |U |) ≤ 4

3
(f(r − 2) + f(r − 4)) < f(r).

�

The bound in Theorem 2.1.1 is sharp up to the constant. (This shows that even though

the bound on the kissing number could be improved, this would not give an improvement of

the whole argument.) Let us define a sequence of graphs Gr recursively: Let G1 = K2, and

given Gr (r ≥ 2), let Gr+1 be obtained from Gr by doubling each node (creating |V (Gr)|
pairs of twins), adding a new node, and connecting it to one member of each twin pair. It is

easy to see by induction that Gr is twin-free, |V (Gr)| = 3 · 2r−1 − 1, and rk(AGr ) = 2r.

As a corollary, we get that if the rank of the adjacency matrix of a simple graph (which

may have twins) is r, then its chromatic number is at most f(r) (since twins can be colored

with the same color). It is not known how large the chromatic number can be in terms of r.

Exercise 2.1 Show that for every even r ≥ 2, there is a twin-free simple graph
on 2r nodes whose adjacency matrix has rank r over GF (2). Find the best con-
struction for odd r.

Exercise 2.2 Prove that every graph on n nodes contains two nodes i and j with
|N(i)△N(j)| < n/2. Show that this bound is best possible.


