Selected topics in graph theory

Homework # 1 Date: March 18, 2017 Due: March 27, 2017. (The solution can be submitted on paper or electronically. I recommend pdf compiled from latex.)

1.1 PROBLEM. The half-graphs H_n are bipartite graphs defined as follows.

$$V(H_n) = \{1, \dots, n\} \cup \{1', \dots, n'\}$$

$$E(H_n) = \{(i, j') : i \le j\}.$$

Prove that for every simple graph F, $t(F, H_n)$ has a limit as $n \to \infty$. Find a combinatorial "meaning" for the limiting value.

1.2 PROBLEM. Let A be an $n \times n$ real matrix and let $\mathcal{P} = V_1 \cup \ldots \cup V_k$ be a partition of $\{1, \ldots, n\}$. Recall that the matrix $A_{\mathcal{P}}$ is defined as the $n \times n$ matrix in which

$$(A_{\mathcal{P}})_{ij} = \frac{1}{|V_s| |V_t|} \sum_{x \in V_s, y \in V_t} A_{xy} \qquad (i \in V_s, \ j \in V_t)$$

Prove that $||A_{\mathcal{P}}||_{\Box} \leq ||A||_{\Box}$.

1.3 PROBLEM. For a symmetric $n \times n$ matrix A, define a modified cut norm by

$$\|A\|_{\blacksquare} = \max_{S \subseteq \{1,\dots,n\}} \left| \sum_{i,j \in S} A_{ij} \right|.$$

Prove that

$$\frac{1}{2} \|A\|_{\Box} \le \|A\|_{\blacksquare} \le \|A\|_{\Box}.$$

1.4 PROBLEM. Prove that for every graphon W,

$$t(C_6, W)^2 \le t(C_4, W)t(C_8, W).$$

(Here C_m denotes the cycle of length m.)

1.5 PROBLEM. Prove that

 $||A||_{\Box} \le ||A||_1 \le n^2 ||A||_{\Box}$

for every $n \times n$ matrix A. Improve the factor n^2 to 2n. [Bonus problem] Improve the factor n^2 to $10\sqrt{n}$.