Selected topics in graph theory

Homework \# 2

Date: April 15, 2017 Due: April 24, 2017
(The solution can be submitted on paper or electronically. I recommend pdf compiled from latex.)
2.1 Problem. Let G_{1} and G_{2} be two simple graphs with $\delta_{\square}\left(G_{1}, G_{2}\right)=0$. Prove that there is a simple graph G and $n_{1}, n_{2} \geq 1$ such that $G_{1} \cong G\left(n_{1}\right)$ and $G_{2} \cong G\left(n_{2}\right)$.
2.2 Problem. If G_{1} and G_{2} are two simple graphs such that for every simple graph F we have $\operatorname{hom}\left(F, G_{1}\right)=\operatorname{hom}\left(F, G_{2}\right)$, then $G_{1} \cong G_{2}$.
2.3 Problem. Starting with a single node, at each step we create a new node, flip a coin, and connect the new node either to all previous nodes, or to none of them, depending on the outcome of the coin flip. Prove that with probability 1 , the sequence of graphs we obtain converges to the graphon

$$
W(x, y)= \begin{cases}1, & \text { if } x+y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

2.4 Problem. For a graphon W, define the following quantities analogous to the minimum degree and maximum degree of a graph:

$$
\delta(W)=\min _{x \in[0,1]} \int_{0}^{1} W(x, y) d y, \quad \Delta(W)=\max _{x \in[0,1]} \int_{0}^{1} W(x, y) d y
$$

Prove that for any tree T with k edges, $\delta(W)^{k} \leq t(T, W) \leq \Delta(W)^{k}$.
2.5 Problem. For two simple graphs G and H on node sets $V(G)=\{1, \ldots, n\}$ and $V(H)=$ $\{1, \ldots, k\}$, respectively, define

$$
f(G, H)=\max \sum_{i j \in E(H)} e_{G}\left(S_{i}, S_{j}\right)
$$

where the maximum extends over all partitions $V(G)=S_{1} \dot{\cup} \ldots \dot{\cup} S_{k}$.
(a) What is $f\left(G, K_{2}\right)$?
(b) Let \widehat{H} denote the weighted complete graph with loops on $V(H)$, where the edges of H are weighted with 2 and the edges of the complement, as well as the loops, are weighted by 1 . Prove that

$$
|\log \operatorname{hom}(G, \widehat{H})-f(G, H)| \leq n \log k
$$

