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(Presented by A. RENYI)

Introduction

We deal in this paper with (relational) structures (H, Ry, ..., R)) with finitely
many finitary relations over a set H. H is not necessarily non-empty. We shall con-
sider only the case when /=1, i.e. structures of form (H, R) but our results extend
without difficulty for the general case.

Our main concern will be in the direct product of finite structures (i.e. (H, R)
with finite domain H). In [1] the question was discussed under what conditions
it is true that any two direct factorizations of a structure have a common refinement.
" It was mentioned that if the structures 4, B have this “refinement-property” then
e.g. A% = B? implies A 2 B. We shall prove a general theorem from which it follows
that for finite 4, B the last implication always holds. On the other hand, it is easy
to see that not all finite structures have the refinement-property (or the unique prime
factorization-property). \

The same is true with an arbitrary natural number #» instead of 2. Further, if
A, B, C are finite structures, and the relation of C is not irreflexiv (i.e. there is an
element ¢ in C such that R(c, ..., ¢) holds, where R is the relation of C), then
AC=2BC implies A=2:B. Our general result states that under certain conditions,
a “polynomial” formed from structures assumes every value only once (up to iso-
morphism).

In §1 we define the necessary notions, among them the (cardinal) sum and
the (direct) product of two structures and.a new operation on structures which
will be called exponentiation. This operation has a remarkable resemhlance to ordinary
exponentiation in the domain of the natural numbers, when we bring it into contact
with the sum and the product operation on structures. The relevant identities will
be proved in §2. In § § 1—2 we do not suppose that the structures are finite.

- In §3 we prove our main theorem from which the result mentioned above
(concerning “polynomials” of structures) will follow easily. We mention that the
operation of exponentiation is not indispensable in our arguments in § 3, i.e. the
necessary notions derived from it could be introduced more directly. This will be
pointed out on the due place. However, the “exponentiation” seems to us to be
very natural in the present context and to be interesting also for its own sake.

§1. If Nis a set we denote its cardinality by |[N|. Let ¢,  be mappings. By.
Dom ¢, Rng ¢ we denote the definition domain and the range of ¢, respectively.
The result of application of ¢ on a€Dom ¢ is denoted by ap. The product ¢y is
defined if and only if Rng ¢ SDom ¥. In this case Dom (¢y)=Dom ¢ and @y
is determined by the equation a(¢y) = (ap)y (a ¢ Dom ¢ =Dom ¢y). If ¢ is one-to-one
then ¢~! is defined by (e¢p~1)¢ =a (a€Rng ¢). We have in this case Dom ¢~ =
Rng ¢, Rng =1 =Dom ¢. If MEDom ¢ then My ={xp:xcl
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n2 L. LOVASZ

Let k be a natural number, k=1. By a k-dimensional structure we mean a
pair (S, R), where S is a set and RS S*. S is the domain and R is the relation of
A={(S, R). Sand R are also denoted by S(4) and R(4) in dependence of A. The
elements of A are the elements of S(A). Obviously, for k=2, the 2-dimensional
structures are the directed graphs without parallel edges. On the other hand, if
& is an algebraic structure with domain S and finitary operations m,, ..., m, then
we can correspond to & the k 4/ dimensional structure (S, R) where k is the maximum
of the numbers k; of places of m; (i=1, ..., /) and R is defined as the set of the k +/
tuples . (¥y, «ooy Xpo M(Xq5 oony Xg,)s ooy 1(Xy, o0y X)), What is important for us
is that this correspondence is a one-to-one and is preserved under isomorphism and
direct product. Hence our results in § 4 extend also to finite algebraic structures.

In what follows we consider structures of a fixed dimension k. By A, B, C, D, E,
F, G (possibly with indices) we always mean structures.

IT S(4) =0, R(A)==@ then we denote A by 0. AP is the structure with the
domain bon'\lslmg ol the natural numbers 1,2, ..., p and with the identity relation;
e (X s eeey \) CR(ANP) iF and only il x| = ..—Ak

We dcnotc the set of clements v of the structure such that (x, ..., x) € R(A4)

0(4).

Let M, N be sets, ¢, ..., ¢, mappings of M into N (i.e. Dom ¢,=M,
Rng ;S N). [¢;, ..., @] denotes that mapping ol M* into N* for which the image
of (X1, ..., x)EM* is (x;¢1, ..., Xx0) € N-.

If A4 is a structure and for the mapping ¢ we have Dom ¢ = S(A4) then B=A¢p
denotes the structure defined as follows. S(4¢)=S(4)p=Rng ¢, R(4p)=
={(x1, s X)[@, ...s 011 (x5, ..., X;) €R(A)}. In this case we call ¢ a homomorphism
of A onto B. If, in addition, ¢ is one-to-one, then ¢ is isomorphism of A onto B,
and we write 4= B. H(A, B) will denote the set of all homomorphisms of 4 onto B.

Let e=(xy, ..., %), /=15 ---»y). Then e-f denotes ((xg,y,), ..., (X, 1))
Similarly, if (x, x,, ...), (¥1, y2, ...) are vectors of the same (finite or infinite)
length then (x{, Xp, coos coop* V1o Yoy oy =Xy, Y1), (X2, ¥2)s o)

Let A and B be structures. If 4’=~ A4 and B’ = B, furthermore A” and B’ have
no element in common then the structure C defined by S(C)= S(4")U S(B’) and
R(C)=R(4A")U R(B’) is called a (cardinal) sum of A and B. Obviously, all cardinal
sums of A and B are isomorphic. Therefore we may denote an arbitrary one of
them by 4+ B and this indeterminacy will not cause any difficulty. Certainly, in
case S(A)NSB)=Y we define 4+ B by putting A’=A, B’= B in the above
construction. AB is the direct product of A and B, i.e. S(AB)=S(4)-S(B) (where
for any sets M, N M- N means the cartesian product of M and N) and if e € S(A),
f€ S(B)* then e-f¢ R(4A-B) if and only if e € R(A) and f€ R(B).

To define the exponentiation, we mean by AP the structure for which S(A%) =
= S(A)5® (i.e. the set of all mappings of S(B) into S(4)) and if ¢, ..., ¢ €S(4 )
then (@4, ..., ¢;) € R(A®) is equivalent to R(B)[¢,, ..., o] S R(4).

We remark that the following are identically true:

A0 = Ot A=A, AP A= A AP = Aep= Akt 4,

AP 4 = A-AP = 4,

O-A=A-0=0, A% = A?
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. (k) (k)
A4 = A4, (AP)YA = 4R,

APy = AP,
A% = AP,

Concerning the product of structures we mention that every element of S(AB)
“be written in the form ef with e € S(4)*, f€ S(B) in a unique way. B is called -
" ubstructure of A and we write BE A if S(B)S S(4) and R(B)S R(4). This
jon is more general then the usual notion of substructure, namely, in the case
the latter we require R(B)= R(4)N S(B)-. | :

In §3 the expression Q(4%) will play a central role. It is seen that Q(45)
sists of all ¢ € S(4)® for which By S A. Therefore we might call the elements
O(A4B) homomorphisms of B into A. F(B, A) will denote the elements of Q(4”)
ich are one-to-one mappings. Similarly, the elements of F(B, 4) can be called
morphisms of B into 4. '

Finally, we call a structure connected if it cannot be split up into a sum of two
uctures neither of which is 0. In case k =2 this is the notion of the graph-theoretic
inectedness. If ¢ is a mapping of S(4) and 4 is connected, then obviously so
A¢. . -

§ 2. We enumerate the basic identities for the addition, the multiplication .
1 the exponentiation of structures.

(2. 1) The following are identically true:

1.1) A+B=~B+4 (2.1.2) (A+B)+C=A+(B+C)
1.3) AB=BA . (2.1.4) (4B)C=A(BC)

1.5) A(B+C)=AB+AC (2.1.6) AB+Co fB. 4C

1.7) (AB)°=ACB° (2.1.8) ABC==(4P).

The relations including only the addition and multiplication are well known,
we confine ourselves to the proof of (2. 1. 6)—(2. 1. 8).

PROOF OF (2. 1. 6). We may suppose that B and C have no element in common.
@ € S(AB+C) then we can associate with ¢ the pair (o, 7) in a one-to-one way such
at o € S(A4%), 1€ S(4°) and x¢ =xo if x € S(B) and x¢ = xt if x€ S(C). Obviously,
s pairs (o, 7) associated to all @ € S(48+€) exhaust the set S(A%-A°): With this
rrespondence, the mapping ¥ defined by @y =(o, 7) is an isomorphism of 4B+¢
to AB-A€. To show this, let @y, ..., 9, €S(4E*°), oy =(0;, 7)) (=1, ..., k).

this case . o |
|  RB+O)py, .. o= |
=R(B)[<P1, o O JURO)oy, ..., (ka = RB)[o4, ..., 6JU RC)[t1, oons Tl

rerefore  R(B+O)[o,, ..., 9] SR(4A) if and only if R(B)[oy, ..., 6] S R(4)
d R(C)[zy, ..., 1] S R(4). Hence we have (¢, ..., ;) € R(4%+€) if and only if
1y 2oy ak)ER(AB) and (115 oo Tk)ER(AC)s ie. if ((0-19 1’-1)9 AT ] (O-ka tk))=((p1> weey

y @)Y, .., YIER(AC- BY). Qe.d. |
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(2. 1.7) If p€S(4B)*© then we can associate with ¢ in a one-to-one way
the pair (0, 1) (6€S(4), 1€ S(B)) such that for every y€S(C) y-o=(ya, y1).
The mapping  defined by @ =(g, 7) is one-to-one and maps S((4B)) onto
S(4° BX). We show that i is an isomorphism. Let ¢, ..., ¢, € S((4B)°) and
oY =(0;, 1) (=1, ..., k). If e is any element of S(C)* then

(1) e[(pla v (Pk]ze[als LA O'k]'e[‘cl, : Tk]'

(@15 . P) ER((AB)C) if and only if the expression on left hand side of (1) is an
element of R(4B) for any e € R(C), i.e., by (1), if for any e € R(C) we have e[oy, ...,
.oy O] €R(A) and e[z,, ..., 1, ]€R(B). The last condition is equivalent to saying
that (a4, ..., 0,) € R(A) and (4, ..., T,) € R(BC), or in other words that (¢, ..., ¢;)*
‘W - ¥l=((04, 11), ..., (04, 7)) ER(A°BC). Our proof is complete.

(2. 1..8) First we prove that for any £ € S(45€) there is exactly one ¢ € S((47)°)
and conversely, for any ¢ € S((45)) there is exactly one & € S(45€) such that

(2) . (x, »¢& =_x(y¢)

is true for any x € S(B) and y € S(C). The unicity in both directions and the existence
of the appropriate £ for given ¢ are obvious. It remains to show that for any appro-
priate. & there exists a ¢. Let y€ S(C). Let 7, be the mapping of S(B) into S(A4)
satisfying xt,=(x, y)¢ for any x¢€ S(B). Then the mapping ¢ defined by yp =1,
is the required one.

We prove that the mapping v, defined by & =@y, where ¢ € S((AP)°) & € S(4E°)
and (2) holds, is an isomorphism. Indeed 4

(T ER((AB)C)
if and only if for any e € R(C)

oy, ..., o] €R(AP).
This is equivalent to that for every e€ R(C), f€ R(B)

(3) fleley, - 0] € R(4).

Applying (2) for the components of the vector standing on the left hand side of
the last formula, we obtain

f[e[‘/’l > vres (Pk]] =(f-e)lp¥, ..., oYl
This means that the assertion that (3) holds for every e € R(C), f€ R(B) is the same as

(Pt o @) =(@y, -, @Y, ..., YIER(LP)

what was to be proved.

We have finished the verification of (2. 1).

We close this section with three simple remarks.

(2.2) If D is connected and S(A4), S(B) are disjoint then we have Q((4 + B)®) =
=0(4”)U Q(BP). The O inclusion is obvious. Conversely, if ¢ € Q((4 + B)P) then
D¢ is a connected substructure of 4 + B, therefore Do S A or Do & B.

(2.3) Q(4B)=0Q(4) Q(B).
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(2.4) If Q(4) is non empty, then so is Q(45). Indeed, if x€Q(4) then the
mapping of S(B) which maps every element of B into x is an element of Q(A45).
. § 3. In this section we deal with finite structures. The operations 4¢, 4 + B,
" A- B, A® applied to finite 4, B give again finite structures. Furthermore, the followmg ,
are obvrously true:

(3.1) A finite structure has finitely many different substructures.

(3.2) Every finite structure can be written uniquely as the sum of connected
substructures.

, (3. 3) If both of two structures are isomorphic to a substructure of the other
then the two structures are 1somorphlc to each other.

(3.4 Ifopisa mappmg of S(D) then [S(Dgo){<iS(D)| and here equahty
holds if and only if ¢ is one-to-one.

(3.5 If € H(G, G) i.e. ¢ is a homomorphism of G onto itself, then ¢ is an
isomorphism of G onto G, i.e. an automorphism of G. :

Our main aim is to prove the following theorem.

(3. 6) THEOREM. With every finite structure A we can associate an infinite vector
(A4) of type w whose components are natural numbers and the following are satisfied:

(i) (4+B)= <A>+<B>

(i) (4B)=(4)-(B),

(iii) If Q(A) is non—empty, then all components of (A) are non-zero.
(iv) (4)=(B) if and only if A=B.

Let us select a series D,, D,, ... of connected finite structures such that for
i#j D, is not isomorphic to D; but every connected finite structure is isomorphic
to one of D, D,, ... . Then we can make the following addition to (3. 6):

For the i-th component of (A) we can take |Q(AP)|.

PROOF The statements (i), (ii), (iii) assert that
(4 + B = |04+ 1QB™);
iQ((AB)D)l = |Q(4P)] |Q(BP);

and if [Q(A)|>O then |Q(ADI)[>O These follow from (2 2), (2. 1 7, 2. 3), (2. 4).‘
directly.

We remark that (11) could be shown more directly, without the notion of
exponentiation but using the alternative characterlza’uon of Q(AP) given at the
end of § 1 as a definition.

Obviously, A4 = B implies (4)={(B). Therefore it suffices to prove the followmg

 If for every connected D
4 | |Q(4°)|=|0(B)),
then A= B. : .

Suppose that for every connected D (4) holds. Let C be an arbitrary structure.
By (3.2) we have C=C, +... + C. where Cl, ..., C, are connected. Using (2. 1. 6)
and (2. 3) ' :

1Q(4)] = |Q(4)]...|Q(4%)| = |Q(B)I...|Q(B)| = |Q(B)],
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i.c. (4) holds for arbitrary (not necessarily connected) structures. Therefore it is
suflicicnt to show that L

If for cvery D
(5) Q47| = |2(B)|
then A B.

Suppose that (5) holds for every D. By (3. 3) it is sufficient to prove that 4 and B
arc isomorphic to a substructure of the other, i.e. that |{F(4, B)| >0 and |F(B, 4)|=0.

This will follow from |F(A4, B)| = |F(4, 4)| and |F(B, A)| = |F(B, B)|. More
generally we shall show that |F(D, A)| = |F(D, B)| for every D.

Let G, G,, G5, ... be a sequence of finite structures such that no two of them
are isomorphic, and every finite structure is isomorphic to a G;.

1. First we deduce the following formula

© lewl = Z 2 B FG, 4

By (3. 1), the sum on the right hand side of the formula contains only finitely many
members different from 0. If ¢ is a mapping of-S(D), then D¢ is isomorphic to
exactly one G;. Let Q, be the subset of Q(4P) consisting of those ¢ for which D¢ = G;.
Then obviously |Q(4A?)|= >'|Q;|. Hence (6) will follow from

1HD, G|\ poe
HG,, Gy T Al

(7 Qi =
For any ¢ € Q; we consider the set X, of all pairs (&, ¥) such that € H(D, G)),
Y € F(G,;, A) and ¢ = &f. We show that (a) for any ¢ there are exactly |H(G;, G))|
elements in X,, and (b) for different mappings ¢,, ¢, X, N X, =9, and finally,
(c) every pair (£, ) with £€ H(D, G,) and y € F(G;, A) is an element of an X, for
some @ €Q;. (b) and (c) are trivial. We deal with (a). For ¢ €Q; X,, is non-empty
since by Do == G, there is an isomorphism y with Do = G}, consequently Y € F(G;, 4),
and if we put é=¢-Yy '€ H(D, G;) then o =&y. .

On the other hand, let @ =&y, E€H(D, G), Y € F(G;, A). If a€H(G;, G)
then by (3. 5) we can write ¢ =(¢a) (¢~ 1) and here we have éu € H(D, G)), a~ 1§ €
€ F(G;, A). Consequently, with (¢, ¥)€X, we have also (a, «~'¢)€X,, for all
a € H(G;, G)).

For different o, a, € H(G,, G;) Eu,Ea, is clearly true, using Rng {=G;.
Therefore the set X[, = {(éa, a~1¢): a € H(G;, G))} is a subset of X, and has the
cardinality |H(G;, G;)]. To complete our proof it is sufficient to show X,& X,,.
Let ¢ =& =&Y’ where & € H(D, G;) and §’ € F(G;, A). Then a =y’ is defined
and o€ H(G;, G)), furthermore & = fa and Y’ =a~'y. Therefore we have really
X,E X, and thus X, =X,. We have completed the proof of the assertion (a).

To sum up our considerations, (a), (b), (c) show that the sets X,, for different
@ €Q, form a partition of a set with the cardinality |H(D, G)||F(G;, A)| into
disjoint subsets, furthermore all X, have the same cardinality |H(G,, G;)|. This
gives (7), and as mentioned above, also (6).

Suppose now that [|Q(4P)} = |Q(BP)| for every D. '

II. We prove by induction on |S(D)| that |F(D, 4)|=|F(D, B)|. For |S(D)|=0
this is obvious, for |S(D)|=1 we have |F(D, 4)| = |Q(4P)| = |Q(B")| = |F(D, B)|.
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. Suppose that our assertion is true for any D’ such that IS(D')] <|S(D)|. By (3. 4),
(6) can be written in the form ,

o) = 1F@, M1+ 3 S irG, 4.

i IH(Gu Gl)
o 15(G)H <|S(D)}
Therefore _ ,
NFD, A= |FD B = 2 e ‘(IF(G., B)| = |F (G, A)])

IS(G)| <|S(D)|

and by the induction hypothesis the right hand side is equal to 0, thus |F(D, 4)|=
=|F(D, B)|.
By the remarks given above we have finished the proof of (3. 6).

§ 4. We prove the result mentioned in the mtroductmn

(4.1) TueoreM. If C,, ..., C, are finite structures and [Q(CI +...+C,)|=0
' then for the “polynomial” (A) Co+CiA+...+C, A" we have that f(A)=f(B)
implies A>~B (A, B are finite structures).

Taking Cy=...=C,_; =0, C,=A4A® we get : |
(4. 2) If A and B are finite structures and A"=B" then A~B.
Taking n=1, C,=0 we obtain

(4.3) If A, B, C are finite structures and Q(C) is non-empty then AC=BC
implies 4= B.

ProOF OF (4. 1). Let f(A4) = f(B) We have by (3. 6){f (A)> ( f(B)). We introduce
the notations (4)={(ay, ...), (B)=(b,, ...), {C)={c;{, ...). Then by (3. 6)

(9) c0j+cljaj+"' +C,,ja}'= Coj"‘cljbj’*";.. +anb.'; :

for every j=1,2, .... There is an i (i=1, ..., n) such that |Q(C;)| >0. This implies
¢y >0 for every j=1,2, ... by (3. 6) Therefore the function cy;+c¢, ,t+ Aty t”
is strictly monotonic and thus (9) gives that a;=b5; for every j=1, 2, .

This means {(A)=(B) and by (3. 6) 4 ~B q.e. d.

We note that the condition |Q(C, + ...+ C,)| >0 cannot be left out from (4. 1).
Let namely k=2, S(C)= {x,»}, R(C)= {(x ), 0, X))}, f(A)=CA. In this case
C-AP = C-C but C AP . However, I do not know whether this condition can be
weakened.

- Since the identical mapping of S(D) is always an element of ¢(DP) therefore

- if AD=BD then we have APDP=BPDP and- (4. 3) AP=BP. Therefore we can
infer from the last example that (4{)¢=CC i.e. the exponenuatlon does not have
an inverse in general.

Finally, we note that the structure AP.C=C-C deﬁned above has two irre-
ducible direct factorizations which are essentlally different. The unique prime-fac-
torization property appears not even in case [Q(4)]>0 (see [2],[3]).

({ Recemed 8 July 1966)
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