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Abstract. During the last few decades E. S. Thomas, S. J. Agronsky, J. G. Ceder,

and T. L. Pearson gave an equivalent de�nition of the real Baire class 1 functions by

characterizing their graph. In this paper, using their results, we consider the following

problem: let T be a given subset of [0, 1]×R. When can we �nd a function f : [0, 1]→ R
such that the accumulation points of its graph are exactly the points of T? We show

that if such a function exists, we can choose it to be a Baire-2 function. We characterize

the accumulation sets of bounded and not necessarily bounded functions separately. We

also examine the similar question in the case of Baire-1 functions.

1. Introduction

In the last sixty years, certain classes of real functions have been characterized with a

description of their graphs. In the case of Baire-1 functions it is worth mentioning the

article of E. S. Thomas and the article of Agronsky, Ceder, and Pearson (see [1] and [2]):

in the former one an equivalent de�nition of bounded Baire-1 functions was given, in the

latter this result was generalized for the not necessarily bounded case. In this paper we

also investigate a property of graphs of Baire-1 and Baire-2 functions. The problem is the

following: if T is a given subset of [0, 1] × R, when does there exist a Baire-1 or Baire-2

function f : [0, 1] → R such that the accumulation points of its graph are exactly the

points of T?

We answer these questions in two steps in both cases. It is easier to understand the

theorems and the proofs if we also require f to be bounded, thus we start with this case.

2. Notation

Throughout this paper we use the following notation: the graph of the real function f

is denoted by G. Analogously, the graph of f0 is G0. If f is a real function, the set of

accumulation points of G is Lf . The vertical line given by the equation x = r is denoted
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by vr. If H is a set of R2, and r is a real number, the intersection of vr and H is denoted

by H(r). For simplicity, if (r, y) ∈ H, we say that y ∈ Hr. The open ball with center r

and radius ε is B(r, ε). We use this notation for one-dimensional neighborhoods in R, and
also for two-dimensional neighborhoods in R2. We clarify this ambiguity by making clear

if the center is a point of R or of R2. The interval [0, 1] is denoted by I. The cardinality

of a set H is #(H). The diameter of a set H is diam(H). Finally, if a set A ⊆ I is the

subset of the domain of f , and a ∈ A, sometimes we refer to the point (a, f(a)) as a point

of G above A.

3. Preliminary Results

In the introduction we have already mentioned the result of Agronsky, Ceder, and

Pearson. This theorem will be a very useful tool for us, so it is appropriate to recall it.

We need the following de�nition:

De�nition 3.1. An open set S ⊆ R2 is an open strip if for every r ∈ R the set S(r) is

an open interval.

In [2, Theorem 2.2] a characterization of Baire-1 functions was given by using this de�ni-

tion:

Proposition 3.1. Let f : I → R be a function. It is Baire-1 if and only if there is a

sequence (Sn) of open strips such that ∩∞n=1Sn = G.

As we will see, this theorem is a truly useful tool if our goal is to show that a certain

function is Baire-1. Besides that we will also apply the following lemma, which handles a

variant of our original problem.

Lemma 3.1. For a given closed set T ⊆ I × R, there exists a countable set A ⊆ I such

that there is a function f : A→ R satisfying Lf = T .

Proof. Let Ti = (I × [−i, i]) ∩ T for all i ∈ N. Then every Ti is compact. Let us consider

an open ball of radius one around each point of T1. These open balls cover T1, hence it

is possible to choose a �nite covering. Let us take a point in each chosen open ball such

that the x coordinates of these points are pairwise di�erent. Let us denote the set of these

points by H1, and the set of their x coordinates by A1.
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Now, similarly, let us consider open balls with radius 1
2
around each point of T2 and

choose a �nite covering, then �nally take points in these chosen neighborhoods and de�ne

H2 and A2 analogously. We can continue this procedure by induction: in the nth step we

consider the 1
n
-neighborhoods of the points of Tn, and we de�ne the �nite sets Hn and An

using these open balls.

Let A = ∪∞n=1An and H = ∪∞n=1Hn. These are countable sets. Let f be the function

that assigns to every x ∈ A the y coordinate of the chosen point above x. Then this point

of the graph is clearly a point of H. We would like to prove that Lf = T for this function

f . We do this by verifying two containments.

(1) T ⊆ Lf . Let us consider any point P of T . By de�nition, P ∈ Tk for a suitable k

positive integer. Thus for every n larger than k there exists a point xn ∈ An such

that the distance of (xn, f(xn)) and P does not exceed 1
n
. Therefore, there exists

a sequence of distinct points in G that converges to P , hence T ⊆ Lf .

(2) Lf ⊆ T . Let us consider any point P of Lf . Since it is an accumulation point of

G, there exists a sequence (pn) in G converging to P and containing each of its

terms only once. Now if k is given, for su�ciently large n the point pn is in Hm

with m ≥ k. It means that the distance of pn and T does not exceed 1
k
. Thus

there are points of T arbitrarily close to the sequence (pn). Therefore, the limit of

(pn) is in T , since T is closed. Hence P ∈ T and Lf ⊆ T .

�

Remark 3.1. The above proof shows that there are only �nitely many points of the graph

G that are more than ε apart from T for a given ε > 0. Later we will use this slightly

stronger result.

4. Functions of Baire Class 2

As we have promised, we consider the bounded case �rst. It is obvious that if Lf = T ,

then T must be a compact set, being bounded and closed. There is another condition

needed: T (x) is never empty for x ∈ I. Indeed, if (xn) is a sequence that converges to

x, (xn 6= x), the sequence formed by the points (xn, f(xn)) is a bounded sequence in R2,

and its limit is in T , thus T (x) 6= ∅.
We point out that until this point we have not used the Baire-2 property of the function

f . Despite that, as we will see, these conditions are also su�cient:
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Theorem 4.1. Suppose T ⊆ I × R. There exists a bounded Baire-2 function f : I → R
such that Lf = T if and only if

• T is compact,

• T (x) is nonempty for x ∈ I.

Proof. Before beginning the formal proof, we give a short sketch. First, we construct a

function f0 such that f0(x) ∈ T (x) for every x ∈ I. After this step, we apply Proposition

3.1 to prove that f0 is a Baire-1 function. Finally, we use Lemma 3.1 to modify f0 on a

countable set A to obtain a bounded Baire-2 function f such that Lf = T .

Put f0(x) = max(T (x)) for every x ∈ I. Since T (x) is nonempty, this de�nition makes

sense. The function f0 is Baire-1; this is a well-known fact since f0 is upper semicontinuous

and every upper semicontinuous function is Baire-1. Nevertheless, it is useful to �nd a

direct proof which uses Proposition 3.1 to understand better how this theorem works.

We de�ne a nested sequence of open strips, (Sn). First, we construct a subset S ′n of

Sn, that is the union of certain neighborhoods of points of G0. Let the radius of such

an open ball be εx,n, where εx,n satis�es the following three conditions: εx,n ≤ 1
n
and

εx,n ≤ εx,n−1 for every n ≥ 2. It is obviously possible. Moreover, we have a bit more

complicated so-called overlapping condition related to the projection of the open balls

B((x, f0(x)), εx,n) to the x-axis. Speci�cally:

∀x ∈ I,∀n ∈ N,∀r ∈ R, r ∈ B(x, εx,n) we have f0(r)− f0(x) <
1

n
.

Such εx,n can be chosen. If not, then there is a sequence (xk) that converges to x and

f0(xk) ≥ f0(x) +
1
n
for every k. In this case (f0(xk)) is a bounded sequence, so it has a

convergent subsequence. As a consequence, the sequence (xk, f0(xk)) has a limit point

in the plane whose �rst coordinate is x, and whose second coordinate is larger than

f0(x) = max(T (x)) by at least 1
n
. Since T is closed, it is a contradiction.

Thus for every n ∈ N and x ∈ I, we can choose some εx,n satisfying all three of our

conditions. By taking the union of the neighborhoods B((x, f0(x)), εx,n), we obtain an

open set S ′n containing G0 for every n. Also S ′n ⊆ S ′n−1 for every n ≥ 2, since S ′n is the

union of open balls with the same centers and smaller radii. However, it is not su�cient for

us: our aim is to construct open strips. But this problem can be solved easily. Speci�cally,

there is a simple way to extend an arbitrary open set H ′ to an open strip H: for every x,

let H(x) = (inf(H ′(x)), sup(H ′(x)). Figure 1 demonstrates such an extension, in a case
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where H ′ is the union of a few open disks: H is the open set bounded by the dashed lines.

It is plain to see that the set H made this way is an open strip which contains H ′. We

also use this method to construct Sn(x) by extending S ′n(x). The property Sn ⊆ Sn−1 is

obviously preserved during the extension.

Figure 1. Extending an open set into an open strip

To apply Proposition 3.1, we have to verify that S = ∩∞n=1Sn = G0. It is clear that S

contains G0 since S
′
n contains every point of G0 for all n. We have to show that S has no

other points. Proceeding towards a contradiction, let us assume that there exists a point

x ∈ I and y 6= f0(x) such that (x, y) ∈ S. We distinguish two cases.

(1) The case y > f0(x). Since (x, y) ∈ Sn for every n, the set S ′n has a point (x, zn)

above (x, y). The sequence (zn) is obviously bounded, hence it has a limit point

z ≥ y. But S ′n is formed by open balls whose centers are the points of G0 ⊆ T

and whose radii are not larger than 1
n
. Thus (x, z) ∈ T as T is closed. So T has

a point whose �rst coordinate is x and whose second coordinate is larger than

f0(x) = max(T (x)), a contradiction.

(2) The case y < f0(x). By a similar argument to the previous one, we might notice

that S ′n has a point (x, zn) below (x, y) for every n. Let k ∈ N satisfy y < f0(x)− 1
k
.

Then if n ≥ 2k, amongst the open balls forming S ′n we might �nd a ball that

intersects vx and for its center (xn, f0(xn)) the inequality f0(xn) < f0(x) − 1
2k

holds. But by de�nition, it is impossible: this neighborhood must satisfy the

overlapping condition, thus it cannot intersect vx, a contradiction. Hence f0 is a

function of Baire class 1.
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Using Lemma 3.1, we modify f0 on a countable set A, so that the accumulation set of the

new points above A is T . We denote this altered function by f . Then it is a bounded

Baire-2 function. Nevertheless, if we consider now the whole graph, Lf = T remains true,

since every point of the graph above I \ A is in T . Therefore other accumulation points

cannot occur. �

In the following, we turn our attention to the not necessarily bounded Baire-2 functions.

In this case the conditions are more complicated and the proof is a bit more di�cult.

However, we give a similar characterization.

We approach the problem by �nding out some necessary conditions. During that pro-

cess, we use only that f : I → R, as we did earlier in our previous theorem. It is easy to

see that T must be closed in this case, too. But it is not true at all that Lf (x) = T (x)

must be nonempty for every x ∈ I. For instance, let f be the function that vanishes in

0, and elsewhere its value is 1
x
. Then Lf (0) is empty. Nevertheless, we may suspect that

T (x) cannot be empty in any set C. Our lemma is the following:

Lemma 4.1. If f : I → R and C = {x ∈ I : Lf (x) = ∅}, then C is countable.

Proof. Proceeding towards a contradiction, let us assume that C is uncountable. Put

Cn = {x ∈ C : |f(x)| < n} for every n ∈ N. Then C = ∪∞n=1Cn, and there exists an

uncountable Cn. As a consequence, it contains one of its limit points, c. Thus there exists

a sequence (ci) in Cn (ci 6= c) that converges to c. Since (f(ci)) is bounded, it has a

convergent subsequence, therefore Lf (c) cannot be empty, a contradiction. �

We state that these necessary conditions are also su�cient, namely:

Theorem 4.2. Suppose T ⊆ I × R. There is a Baire-2 function f : I → R such that

Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I such that T (x) is nonempty for x ∈ I \ C.

Proof. The concept of the proof is similar to our proof given for the bounded case. We

begin by the construction of a function f0 and then we prove that it is a Baire-1 function.

The desired function f will be obtained by modifying f0 on a countable set using Lemma

3.1.
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We start by observing that C is a Gδ set. Suppose c ∈ C. Since T is closed, it has a

Bc,n neighborhood for every n ∈ N such that for all x ∈ Bc,n distinct from c, the absolute

value of every element of T (x) is larger than n. Otherwise T (c) would not be empty.

Then for a given n, the set Bn = ∪c∈CBc,n is an open set containing C. On the other

hand, clearly ∩∞n=1Bn = C. Hence the set C is Gδ, as we wanted to show.

Now, we begin the construction of our function. The easier part is its de�nition on C.

We consider an enumeration of the countable set C = {c1, c2, ...} and we let f0(cn) = n

for every n. However, the de�nition of f0 in I \ C cannot be as straightforward as it was

in our previous proof. Namely, it is possible that T (x) has no maximum. Therefore we

have to be more careful.

For every n ∈ N, let

(4.2) Un = {x ∈ I : ∃r ∈ T (x), |r| ≤ n}.

As T is closed, it is easy to see that each Un is closed, too. It is also obvious that Un ⊆ Un+1

and ∪∞n=1Un = I \ C. Thus, for every x ∈ I \ C there is a smallest nx such that x ∈ Unx .

Using this property, we may de�ne f0(x) as the largest element of T (x), whose absolute

value does not exceed nx. We can do so since T (x) is closed and it has such an element.

The inequalities nx− 1 < |f0(x)| ≤ nx are also true, as otherwise x would be the element

of Um for some m < nx. (Or, if nx = 1, then 0 = nx − 1 ≤ |f0(x)| ≤ nx = 1.)

Now, we have de�ned f0 on I. We would like to use Proposition 3.1 to show that f0

is Baire-1. In order to do this, we construct the open strip Sn for every n. First, we

de�ne the open set S ′n constisting of some balls B((x, f0(x)), εx,n). We select εx,n so that

εx,n ≤ 1
n
and εx,n ≤ εx,n−1 for every n ≥ 2, as we did earlier. Nevertheless, as we de�ned

f0 di�erently in certain sets, our further conditions should be case-speci�c: we handle

separately the case x ∈ C and the case x ∈ I \ C.

(i) The case x ∈ C. It means that x = ck for some k. Let

En = ∪x∈CB((x, f0(x)), εx,n),

and Fn be its projection onto the x-axis, that is Fn = ∪x∈CB(x, εx,n). Let us choose

these neighborhoods such that ∩∞n=1Fn = C. It is possible since C is a Gδ set.

Furthermore, we also demand that B(ck, εck,n) does not contain the points c1, ..., cn,
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with the exception of ck. We remark that these conditions imply ∩∞n=1En equals the

graph of f0|C.
(ii) The case x ∈ I \ C. Let us make some remarks concerning this complementary set.

Let V1 = U1, and for n ≥ 2, let Vn = Un \ Un−1. Then the set Vn is Fσ for every n,

as the di�erence of closed sets. Consequently, there exist closed sets Vn,i for every n

and i such that Vn = ∪∞i=1Vn,i. We can take an enumeration W1,W2, ... of the sets

Vn,i. Let x ∈ Vk. We can suppose that the εx,n are chosen so that B(x, εx,n) does

not contain the points c1, c2, ..., cn. Furthermore, we can suppose that B(x, εx,n)

does not intersect the sets W1,W2, ...,Wn, except for those which contain x. Finally,

we have a special overlapping condition, namely that f0(r) − f0(x) <
1
n
for every

r ∈ B(x, εx,n) ∩ Vk. One can prove that this condition can be satis�ed as we proved

it last time, in the bounded case. It is worth mentioning that if f0(x) < 0, then

(x,−(k−1)) cannot be a limit point of a sequence of points in G0 above I \C. Since
T is closed, if such a sequence would exist, then (x,−(k − 1)) ∈ T . But it means

that x ∈ Uk−1, hence x /∈ Vk.

Now the open set S ′n is de�ned for each n. As in the bounded case, our next step is

making strips of these open sets: let Sn(x) = (inf(S ′n(x)), sup(S
′
n(x))) for every x ∈ I.

Set ∩∞n=1Sn = S and similarly ∩∞n=1S
′
n = S ′. We are going to show that S = G0. Since

G0 ⊆ S is obvious, we can focus on proving S ⊆ G0, or equivalently, proving that S has

no point outside of G0. We examine the relation of these sets independently for every

x ∈ I: our goal is S(x) ⊆ G0(x). We distinguish the same cases which we distinguished

during the construction of S ′n(x):

(1) The case x ∈ C, that is, x = ck for some k. Let us consider the set S ′n(x). If

n ≥ k, amongst the open neighborhoods forming S ′n there can be only one that

intersects vx: the neighborhood of (x, f0(x)). Thus for su�ciently large n the

equality S ′n(x) = Sn(x) holds, and S ′n(x) contains only one open interval whose

radius is 1
n
. Hence if n converges to in�nity, we �nd that the only element of S(x)

is f0(x). Therefore S(x) ⊆ G0(x).

(2) The case x ∈ I \ C. It means x ∈ Vk and x ∈ Wm for some k and m. Let us con-

sider S ′n(x). We would like to �nd out for which r the open ball B((r, f0(r)), εr,n)

can intersect vx. It is clear that for su�ciently large n a neighborhood around

a (ci, f0(ci)) cannot do so as the intersection of these open balls are exactly the
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graph of f0|C. Furthermore, if n ≥ m, then the neighborhood chosen around

(r, f0(r)) can intersect vx if and only if r ∈ Wm. Indeed, we have chosen these

neighborhoods such that they do not intersect W1,W2, ...,Wn, unless those which

are containing r. Thus if n is large enough, vx can be intersected by a certain

B((r, f0(r)), εr,n) only if r ∈ Wm. Only these places are relevant if we want to �nd

out what S(x) is. But how did we de�ne Wm? It is a subset of Vk thus the values

of f0 inWm are between k−1 and k. It is important to us that f0 is bounded here,

and f0(x) = max(Tk(x)) for each element of Wm, where Tk = (I × [−k, k])∩ T , as
in Lemma 3.1. Therefore, in the relevant places we de�ned f0 as we would have

done in Theorem 4.1, if we had regarded Tk instead of T . Consequently, in this

case one can conclude the proof of S(x) ⊆ G0(x) as it was done there.

After these observations, the conclusion of the proof is clear. We use Lemma 3.1 as we

did just before and alter the function on a countable set A, such that Lf = T for the

resulting function f . Then f is obviously a Baire-2 function. �

By proving this theorem we �nished our characterization of accumulation points of

Baire-2 functions. On the other hand, our proofs clari�ed that for any ordinal number α

larger than 2 the Baire-α functions are not interesting concerning our question. Namely,

the accumulation set of the graph of a Baire-α function is also the accumulation set of

a Baire-2 function. This fact explains why we examine only the Baire-1 and Baire-2

functions.

5. Functions of Baire Class 1

First, we focus again on the bounded case. Since Baire-1 functions are also Baire-2

functions, the conditions we found earlier recur in this case: T should be compact and

T (x) should be nonempty, if x ∈ I. Nevertheless, it is clear, that these conditions are

not su�cient. Namely, if Lf = T and for a given x the set T (x) has multiple elements,

then f is discontinuous at x. But a Baire-1 function cannot have an arbitrary set of

discontinuities: it must be a meager Fσ set. Thus if D = {x : #(T (x)) > 1}, then D

should be a meager Fσ set. As we will see, these conditions su�ce. However, before the

statement of the actual theorem, let us notice that if we require T to be closed, then it is

redundant to require D to be Fσ. Indeed, let Dn = {x : diam(T (x)) ≥ 1
n
} for each n ∈ N.

Then it is easy to see that these sets are closed and their union is D. (Moreover, each Dn
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is nowhere dense, otherwise some of them would contain an interval, and D cannot do

so.) Consequently, D is an Fσ set. Using this fact, our theorem is simply the following:

Theorem 5.1. Suppose T ⊆ I ×R. There is a bounded Baire-1 function f : I → R such

that Lf = T if and only if

• T is compact,

• T (x) is nonempty, if x ∈ I,
• the set D = {x : #(T (x)) > 1} is meager.

Proof. Let us begin the proof by the construction of f . First, we use Lemma 3.1 to de�ne

f on a countable set A such that the accumulation set of the graph of f |A coincides with

T . We can suppose that A is disjoint from D. Indeed, in any neighborhood of any point

x ∈ I there are in�nitely many points of I \D, since D is meager. Thus we have de�ned

f on A. On the other hand, on I \ A let us de�ne f as we did it in the bounded Baire-2

case: let f(x) = max(T (x)). For this f , we have Lf = T , and obviously f is bounded.

We would like to apply Proposition 3.1 to f . We use the usual method: we de�ne the

open set S ′n for each n, which is the union of open balls around points of the graph with

εx,n radius, and then we extend these sets to open strips. The conditions concerning εx,n

will be case-speci�c, except for the usual size conditions.

(i) The case x ∈ A = {a1, a2, ...}. Then x = ak for some k. Our �rst condition on εx,n is

that B(x, εx,n) must not contain the points a1, a2, ..., an, except for ak. The second

condition is related to the overlapping of D. Since D is a meager Fσ set, we can

choose D1, D2, ... nowhere dense closed sets such that D = ∪∞n=1Dn. Moreover, none

of these sets contains x since x ∈ A and the sets A and D are disjoint. Therefore,

the condition "B(x, εx,n) and ∪ni=1Di are disjoint" can also be satis�ed.

(ii) The case x ∈ I \ A. First, in order to stay away from the set A, the open ball

B(x, εx,n) must not contain the points a1, a2, ..., an. The second condition is identical

to the overlapping condition of the bounded Baire-2 case: if r ∈ B(x, εx,n) \A, then
f(r)− f(x) < 1

n
.

We have �nished the construction of the open set S ′n, and now, we can extend it to obtain

the open strip Sn by taking the in�mum and the supremum along each vx. Our goal is to

prove that the intersection S of the sets Sn is G. Of course, the challenging part is the
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veri�cation of S ⊆ G. Let us consider S(x) for each x. We separate three cases by the

location of x:

(1) The case x ∈ A, that is x = ak. If n ≥ k, then amongst the neighborhoods forming

S ′n there can be only one that intersects vx, namely, the open ball centered at

(x, f(x)). Therefore, Sn(x) = S ′n(x), and

Sn(x) = (f(x)− εx,n, f(x) + εx,n) ⊆
(
f(x)− 1

n
, f(x) +

1

n

)
.

This fact immediately implies that the only element of S(x) is f(x).

(2) The case x ∈ D. It means that x ∈ Dk for some k. Thus if n ≥ k, the neigh-

borhoods B((ak, f(ak)), εak,n) cannot intersect vx. Therefore, if n is su�ciently

large, if we want to describe Sn(x), we have to deal only with the points in I \A.
But above I \ A we de�ned f and the neighborhoods forming S ′n as we de�ned

f0 and S ′n in the proof of Theorem 4.1. Consequently, the proof given there for

S(x) = G0(x) for any x ∈ I works.

(3) The case x ∈ I \ (A ∪D). Proceeding towards a contradiction, we assume that

S(x) has an element y distinct from f(x). Then S ′n(x) has a point zn for each n

such that |f(x)− zn| ≥ |f(x)− y|. By de�nition, the set G is bounded, thus it is

obvious that there exists some K ∈ R such that for any n and x, the S ′n(x) has no

element larger than K. It implies that the sequence (zn) is bounded. Therefore,

it has a convergent subsequence whose limit is some z ∈ R. For this limit z the

inequality |f(x)− z| ≥ |f(x)− y| also holds, thus f(x) 6= z. Since there is a point

of G whose distance from (x, zn) does not exceed 1
n
, the point (x, z) is also an

accumulation point of G, thus (x, z) ∈ Lf , a contradiction. Namely, for our f the

equation Lf = T holds, however, the only element of T (x) is f(x) 6= z ∈ Lf (x).

Therefore S = G, thus we can apply Proposition 3.1. Hence f is a bounded Baire-1

function, such that Lf = T . �

As we have characterized the bounded Baire-1 functions, now we might focus on the

most challenging problem appearing in this paper: the characterization of the not nec-

essarily bounded Baire-1 functions. However, as we will see, during the proof we will

apply the same ideas. Following the usual scheme, we begin by thinking about necessary

conditions concerning T .
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The conditions we found during the examination of the general Baire-2 case obviously

recur: T is a closed set and T (x) = ∅ can hold only on a countable subset of I. As T

is closed, this subset is Gδ. Of course we need more than these simple conditions. We

have to pay attention to the fact that a Baire-1 function cannot have an arbitrary set of

discontinuities: it must be a meager Fσ set, and at points of continuity, #(Lf (x)) = 1,

thus #(T (x)) = 1. However, we must be careful. In the bounded case, the property

#(Lf (x)) = 1 already guaranteed that f is continuous at x, or f has a removable discon-

tinuity at x. But in this case, it is not true at all: for instance, if f(x) = 1
2x−1 for x > 1

2
,

and f(x) = 0 for x ≤ 1
2
, then although Lf

(
1
2

)
= 0, it does not imply that f is continuous

at 1
2
or it has a removable discontinuity there. Therefore, we must pay attention to the

in�nite limits. If we embed T into I ×R and take its closure T , then we have to demand

that this T can intersect the extended vertical lines in multiple points only above a meager

Fσ set. However, the additional Fσ condition is unnecessary since we supposed that T is

closed. Indeed, if Dn = {x : diam(T (x)) ≥ 1
n
}, then these sets are nowhere dense closed

sets and their union is D, hence D is Fσ.

If we collect all of these remarks, we gain a more complicated system of conditions than

the ones in the previous cases. We show that it is su�cient.

Theorem 5.2. Suppose T ⊆ I × R. There is a Baire-1 function f : I → R such that

Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I, such that T (x) is nonempty for x ∈ I \ C,

• the set D = {x : #(T (x)) > 1} is meager.

Proof. We de�ne f on a countable set A, such that the accumulation set of the graph of

f restricted to A equals T . We do so using the method given in Lemma 3.1. It is easy to

see that we can construct such a set A disjoint from C and D.

Now let us focus on I \ A. We de�ne f on this set as we de�ned f0 in the proof of

Theorem 4.2. First, if C = {c1, c2, ...}, then f(cn) = n for each n ∈ N. Besides that we

also de�ne Un as we did it in (4.2). These are closed sets in this case, too, though not

necessarily disjoint from A. At places which are not in A let us de�ne f as we de�ned f0

after (4.2): if x ∈ Un, let f0(x) be the largest element of T (x) which has absolute value

not exceeding n. Now we are ready with the construction of f and Lf = T clearly holds:

12



if we consider only the points of the graph above A, it is true by de�nition, furthermore,

sequences containing in�nitely many points of the graph above C cannot converge, and

points of the graph above I \ (A ∪ C) are in T . Thus every accumulation point of G is

also the accumulation point of the graph of f |A, and the set of these accumulation points

is T . (We note that C might intersect D, a concern that we will address later.)

We would like to apply Proposition 3.1 to f by giving the open sets S ′n formed by

neighborhoods of points of G and extending them to open strips. Again, we separate

some cases. We also use our familiar notation: A = {a1, a2, ...}, C = {c1, c2, ...}, and
D = ∪∞n=1Dn, where Dn is a nowhere dense, closed set for each n.

(i) The case x ∈ C, x = ck. Here, we de�ne our neighborhoods with εx,n radius quite

comfortably, namely, we can de�ne the sets En and Fn as we did it in (i) of the

proof of Theorem 4.2 and repeat the conditions used there. Hence we can choose

these open balls such that ∩∞n=1Fn = C, and B(ck, εck,n) does not contain the points

c1, ..., cn, with the exception of ck. We also require that this neighborhood is disjoint

from {a1, a2, ..., an}. We remark that these conditions imply ∩∞n=1En equals the graph

of f0|C.
(ii) The case x ∈ A. We evoke the conditions of (i) of the proof of Theorem 5.1. Namely,

B(x, εx,n) does not intersect the closed sets D1, D2, ..., Dn, and it does not contain

a1, a2, ..., an, with the exception of x. Furthermore we give the following additional

condition: these neighborhoods have to stay away from C, thus they must not

contain c1, c2, ..., cn.

(iii) The case x ∈ I \ (A ∪ C). We evoke the condition system of (ii) of the proof of

Theorem 4.2. We de�ne the sets Vn and Wn as we did there: V1 = U1, and Vn =

Un \Un−1 for n ≥ 2. Then any set Vn is Fσ. Let W1,W2, ... be an enumeration of the

closed sets forming them. Now if x ∈ Vk, we require B(x, εx,n) to be disjoint from

c1, c2, ..., cn, and also disjoint from the setsW1,W2, ...,Wn, except for those containing

x. Furthermore, of course, we give an overlapping condition: f0(r) − f0(x) < 1
n
for

each r ∈ B(x, εx,n)∩Vk. These are exactly the conditions we used in (ii) of the proof

of Theorem 4.2. The only additional condition is the following: B(x, εx,n) must not

contain the points a1, a2, ..., an.

Thus we have constructed the open set S ′n for each n. We extend it in the usual way

to form the open strip Sn. Our goal is to verify that their intersection S equals G. The
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challenging part is to show that S contains no points distinct from G. Let us consider

S(x) and S ′(x) for each x. We separate four cases by the location of x:

(1) The case x ∈ C, x = ck. This is obvious: if n ≥ k, the only chosen neighborhood

that intersects vx amongst the ones forming S ′n(x) is the neighborhood of (x, f(x)),

and thus S ′n(x) = Sn(x). Therefore, Sn(x) is an interval whose diameter does not

exceed 2
n
and contains f(x). Thus the only element of S(x) is f(x), as we wanted

to show.

(2) The case x ∈ A, x = ak. We can simply repeat our previous argument: for

su�ciently large n, there is only one chosen neighborhood that intersects vx, and

since the diameters of these neighborhoods converge to 0, the only element of S(x)

is f(x).

(3) The case x ∈ D \ C. It means x ∈ Dk for some k ∈ N. Now, if n ≥ k, the

neighborhood B((x′, f(x′)), εx′,n) for x
′ ∈ A cannot intersect vx. It is also true that

for su�ciently large n, the neighborhood B((x′, f(x′)), εx′,n) for x′ ∈ C cannot

intersect vx, since these neighborhoods are nested and their intersection is the

graph of f |C. Hence it is enough to consider the graph of f above I \ (A∪C). At
these places we de�ned f and the open balls forming S ′n as we de�ned f0 and the

open balls forming S ′n during the proof of Theorem 4.2. Consequently, case (2) of

the proof of Theorem 4.2 can be used to prove S(x) = G(x).

(4) The case x ∈ I \ (A ∪ C ∪D). Proceeding towards a contradiction, let us suppose

that S(x) contains some y ∈ R, where y 6= f(x). It means that for every n we can

choose a point zn in S
′
n(x), such that |f(x)−zn| ≥ |f(x)−y|. Since zn ∈ S ′n(x), the

point (x, zn) is in one of the open balls forming S ′n. Here, if n is su�ciently large,

then this ball is centered at a point of the graph above I \C. Indeed, if n is large

enough, the neighborhoods around points of the graph above C cannot intersect

vx by de�nition. Now, the sequence (zn) has a limit point z in R. Obviously, for
this z the inequality |f(x)−z| ≥ |f(x)−y| also holds, thus f(x) 6= z. However, if n

is su�ciently large, there is a point of the graph not above C whose distance from

(x, zn) does not exceed
1
n
. Consequently, there is a sequence (pn) of points of the

graph above I \C such that (pn) converges to (x, z). Without loss of generality, we

might assume that the elements of this sequence are all distinct. Since these points

are not above C, they are above A or they are also elements of T . Nevertheless,
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if n is su�ciently large, for any given ε > 0, a point pn that is above A cannot be

farther than ε from a point of T , as we noted in Remark 3.1. This fact immediately

implies (x, z) ∈ T , a contradiction, since the only element of T (x) is f(x) by our

assumptions.

Hence S = G, therefore we might apply Proposition 3.1. Thus f is a Baire-1 function

satisfying Lf = T . �

6. Concluding Remark

Before the end of this paper, we would like to point out something in connection with our

theorems about the not necessarily bounded functions. Namely, amongst the conditions of

the last theorem there was one condition about T . However, T = Lf does not necessarily

hold for the function we constructed.

For instance let T be the following closed set: let C = { 1
n
: n ∈ N} ∪ {0}, c1 = 0, and

for n ≥ 2, let cn = 1
n−1 . For each point x in I \ C let T (x) = {− 1

d(x,C)
}, where d(x,C)

is the distance of x from C. Then it is easy to see that this set T satis�es the conditions

of Theorem 5.2 with regards to the not necessarily bounded Baire-1 functions. It is also

true, that T (0) = {−∞}. Now, let us consider f , speci�cally Lf (0). We recall that in

our construction f(cn) = n. It implies Lf (0) = {−∞,+∞}. It means that although

Lf (0) = T (0) = ∅, T (0) 6= Lf (0). Thus the sets we examined earlier are equal, but these

extended sets are not.

This example raises two new questions: if we regard our theorems about the not nec-

essarily bounded Baire-1 and Baire-2 functions and we do not change the conditions, is it

possible to construct a function f in each of these cases that satis�es Lf = T and Lf = T

simultaneously? However, we might answer these questions easily:

Proposition 6.1. Suppose T ⊆ I × R.

• If there exists a Baire-2 function satisfying Lf = T , then it can be chosen such

that Lf = T also holds.

• If there exists a Baire-1 function satisfying Lf = T , then it can be chosen such

that Lf = T also holds.
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Proof. We will appropriately modify the functions we have constructed in the proofs of

Theorem 4.2 and Theorem 5.2. It is clear that for those functions T ⊆ Lf holds. Indeed,

for any point t ∈ T there are points of G arbitrarily close to t. Thus if we consider a

point (x,∞) of T , then it is also an accumulation point of G. Hence if Lf 6= T , then T is

a proper subset of Lf .

For those functions it is also clear that if Lf has a point p which is not in T , then it is

an accumulation point of the graph of f |C. Namely, if we take a sequence (pn) in G which

converges in I×R and contains only �nitely many points of G above C, then after a while

every term of this sequence is above A or in T . The terms above A will get arbitrarily

close to a point of T if n is su�ciently large. Thus if we have a point in Lf which is a

limit point of such a sequence, then it is also a point of T . Hence if Lf has a point outside

T , then there exists a sequence in the graph of f |C converging to this point.

It is a problem we can easily handle in both cases by modifying f on C: if C =

{c1, c2, ...}, then let |f(cn)| = n. The sign is determined by whether T contains (cn,+∞)

or (cn,−∞). If both of them occurs, then let f(cn) = n. If we de�ne the function f on

C this way, then Lf clearly does not change, the equality Lf = T still holds. Indeed,

if a sequence of points of G above C converges to a point in I × R, then the second

coordinate of this point is +∞ or −∞. By symmetry, we can consider the +∞ case.

For a subsequence (cnk
) the sequence (cnk

, f(cnk
)) converges to some (x,+∞) ∈ I × R.

We can suppose that all the numbers f(cnk
) are positive. Then by de�nition, in the 1

nk

neighborhood of cnk
we might choose a point ak such that T (ak) has an element larger

than nk. We denote this element of T by tk. Now it is clear that the sequence (tk) is in

T and it also converges to (x,+∞). Hence all the elements of Lf are in T , too. Thus we

constructed a function of the corresponding Baire class satisfying Lf = T and Lf = T

simultaneously. �
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