On series of translates of positive functions III

Zoltán Buczolich, Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: buczo@cs.elte.hu
www.cs.elte.hu/~buczo
ORCID Id: 0000-0001-5481-8797

Balázs Magał Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: magab@cs.elte.hu
www.cs.elte.hu/~magab

and

Gáspár Vértesył̣ Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: vertesy.gaspar@gmail.com

January 30, 2018

[^0]
Abstract

Suppose Λ is a discrete infinite set of nonnegative real numbers. We say that Λ is of type 1 if the series $s(x)=\sum_{\lambda \in \Lambda} f(x+\lambda)$ satisfies a zero-one law. This means that for any non-negative measurable $f: \mathbb{R} \rightarrow[0,+\infty)$ either the convergence set $C(f, \Lambda)=\{x: s(x)<+\infty\}=\mathbb{R}$ modulo sets of Lebesgue zero, or its complement the divergence set $D(f, \Lambda)=\{x: s(x)=+\infty\}=\mathbb{R}$ modulo sets of measure zero. If Λ is not of type 1 we say that Λ is of type 2.

In this paper we show that there is a universal Λ with gaps monotone decreasingly converging to zero such that for any open subset $G \subset \mathbb{R}$ one can find a characteristic function f_{G} such that $G \subset D\left(f_{G}, \Lambda\right)$ and $C\left(f_{G}, \Lambda\right)=\mathbb{R} \backslash G$ modulo sets of measure zero.

We also consider the question whether $C(f, \Lambda)$ can contain non-degenerate intervals for continuous functions when $D(f, \Lambda)$ is of positive measure.

The above results answer some questions raised in a paper of Z. Buczolich, J-P. Kahane, and D. Mauldin.

1 Introduction

This paper was written for the Kahane memorial volume of Analysis Mathematica. We selected a topic related to Jean-Pierre Kahane's work and decided to answer some questions raised in paper [1] by Z. Buczolich, J-P. Kahane, and D. Mauldin.

This line of research was started in another joint paper with Dan Mauldin [3]. In that paper we considered a problem from 1970, originating from the Diplomarbeit of Heinrich von Weizsäker [8].

Suppose $f:(0,+\infty) \rightarrow \mathbb{R}$ is a measurable function. Is it true that $\sum_{n=1}^{\infty} f(n x)$ either converges (Lebesgue) almost everywhere or diverges almost everywhere, i.e. is there a zero-one law for $\sum f(n x)$?

This question also appeared in a paper of J. A. Haight [5].
In [5] it was proved that there exists a set $H \subset(0, \infty)$ of infinite measure, for which for all $x, y \in H, x \neq y$ the ratio x / y is not an integer, and furthermore
(\dagger) for all $x>0 n x \notin H$ if n is sufficiently large.
This implies that if $f(x)=\chi_{H}(x)$, the characteristic function of H then $\int_{0}^{\infty} f(x) d x=\infty$ and $\sum_{n=1}^{\infty} f(n x)<\infty$ everywhere.

Lekkerkerker in [7] started to study sets with property (\dagger).
In [3] we answered the Haight-Weizsäker problem.
Theorem 1.1. There exists a measurable function $f:(0,+\infty) \rightarrow\{0,1\}$ and two nonempty intervals $I_{F}, I_{\infty} \subset\left[\frac{1}{2}, 1\right)$ such that for every $x \in I_{\infty}$ we have $\sum_{n=1}^{\infty} f(n x)=$
$+\infty$ and for almost every $x \in I_{F}$ we have $\sum_{n=1}^{\infty} f(n x)<+\infty$. The function f is the characteristic function of an open set E.

Jean-Pierre Kahane was interested in this problem and soon after our paper had become available we started to receive faxes and emails from him. This cooperation lead to papers [1] and [2].

We considered a more general, additive version of the Haight-Weizsäker problem. Since $\sum_{n=1}^{\infty} f(n x)=\sum_{n=1}^{\infty} f\left(e^{\log x+\log n}\right)$, that is using the function $h=f \circ \exp$ defined on \mathbb{R} and $\Lambda=\{\log n: n=1,2, \ldots\}$ we were interested in almost everywhere convergence questions of the series $\sum_{\lambda \in \Lambda} h(x+\lambda)$.

Taking more general sets than $\Lambda=\{\log n: n=1,2, \ldots\}$ was also motivated by a paper, [6] of Haight. He proved, using the original multiplicative notation of our problem that if $\Lambda \subset[0,+\infty)$ is an arbitrary countable set such that its only accumulation point is $+\infty$ then there exists a measurable set $E \subset(0,+\infty)$ of infinite measure such that for all $x, y \in E, x \neq y, x / y \notin \Lambda$, and for a fixed x there exist only finitely many $\lambda \in \Lambda$ for which $\lambda x \in E$. This implies that choosing $f=\chi_{E}$ we have $\sum_{\lambda \in \Lambda} f(\lambda x)<\infty$, but $\int_{\mathbb{R}^{+}} f(x) d x=\infty$.

Next we recall from [1] the definition of type 1 and type 2 sets. Given Λ an unbounded, infinite discrete set of nonnegative numbers, and a measurable $f: \mathbb{R} \rightarrow[0,+\infty)$, we consider the sum

$$
s(x)=\sum_{\lambda \in \Lambda} f(x+\lambda),
$$

and the complementary subsets of \mathbb{R} :

$$
C=C(f, \Lambda)=\{x: s(x)<\infty\}, \quad D=D(f, \Lambda)=\{x: s(x)=\infty\} .
$$

Definition 1.2. The set Λ is of type 1 if, for every f, either $C(f, \Lambda)=\mathbb{R}$ a.e. or $C(f, \Lambda)=\emptyset$ a.e. (or equivalently $D(f, \Lambda)=\emptyset$ a.e. or $D(f, \Lambda)=\mathbb{R}$ a.e.). Otherwise, Λ has type 2.

That is for type 1 sets we have a "zero-one" law for the almost everywhere convergence properties of the series $\sum_{\lambda \in \Lambda} f(x+\lambda)$, while for type 2 sets the situation is more complicated.

Definition 1.3. The unbounded, infinite discrete set $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}, \lambda_{1}<\lambda_{2}<$ \ldots is asymptotically dense if $d_{n}=\lambda_{n}-\lambda_{n-1} \rightarrow 0$, or equivalently:

$$
\forall a>0, \quad \lim _{x \rightarrow \infty} \#(\Lambda \cap[x, x+a])=\infty
$$

If d_{n} tends to zero monotone decreasingly, we speak about decreasing gap asymptotically dense sets.

If Λ is not asymptotically dense we say that it is asymptotically lacunary.

We denote the non-negative continuous functions on \mathbb{R} by $C^{+}(\mathbb{R})$, and if, in addition these functions tend to zero in $+\infty$ they belong to $C_{0}^{+}(\mathbb{R})$.

In [1] we gave some necessary and some sufficient conditions for a set Λ being of type 2. A complete characterization of type 2 sets is still unknown. We recall here from [1] the theorem concerning the Haight-Weizsäker problem. This contains the additive version of the result of Theorem 1.1 with some additional information.

Theorem 1.4. The set $\Lambda=\{\log n: n=1,2, \ldots\}$ has type 2 . Moreover, for some $f \in C_{0}^{+}(\mathbb{R}), C(f, \Lambda)$ has full measure on the half-line $(0, \infty)$ and $D(f, \Lambda)$ contains the half-line $(-\infty, 0)$. If for each $c, \int_{c}^{+\infty} e^{y} g(y) d y<+\infty$, then $C(g, \Lambda)=\mathbb{R}$ a.e. If $g \in C_{0}^{+}(\mathbb{R})$ and $C(g, \Lambda)$ is not of the first (Baire) category, then $C(g, \Lambda)=\mathbb{R}$ a.e. Finally, there is some $g \in C_{0}^{+}(\mathbb{R})$ such that $C(g, \Lambda)=\mathbb{R}$ a.e. and $\int_{0}^{+\infty} e^{y} g(y) d y=$ $+\infty$.

As Λ used in the above theorem is a decreasing gap asymptotically dense set and quite often it is much easier to construct examples with lacunary $\Lambda \mathrm{s}$, in our paper we try to give examples with a decreasing gap asymptotically dense Λ.

One might believe that for type $2 \Lambda \mathrm{~s} C(f, \Lambda)$, or $D(f, \Lambda)$ are always half-lines if they differ from \mathbb{R}. Indeed in [1] we obtained results in this direction. A number $t>0$ is called a translator of Λ if $(\Lambda+t) \backslash \Lambda$ is finite. Condition $(*)$ is said to be satisfied if $T(\Lambda)$, the countable additive semigroup of translators of Λ, is dense in \mathbb{R}^{+}. We showed that condition $(*)$ implies that $C(f, \Lambda)$ is either \emptyset, \mathbb{R}, or a right half-line modulo sets of measure zero.

In [4] we showed that this is not always the case. For a given $\alpha \in(0,1)$ and a sequence of natural numbers $n_{1}<n_{2}<\ldots$ we put $\Lambda^{\alpha^{k}}:=\cup_{k=1}^{\infty} \Lambda_{k}^{\alpha^{k}}, \Lambda_{k}^{\alpha^{k}}=$ $\alpha^{k} \mathbb{Z} \cap\left[n_{k}, n_{k+1}\right)$.

If $\alpha=\frac{1}{q}$ for some $q \in\{2,3, \ldots\}$, then a slight modification of the proof of Theorem 1 of [1] shows that $\Lambda^{\left(\frac{1}{q}\right)^{k}}$ is of type 1 and condition $(*)$ is satisfied.

If $\alpha \notin \mathbb{Q}$, then one can apply Theorem 5 of [1] to show that $\Lambda^{\alpha^{k}}$ is of type 2 .
The difficult case is when $\alpha=\frac{p}{q}$ with $(p, q)=1, p, q>1, p<q$. In this case we showed that $\Lambda^{\left(\frac{p}{q}\right)^{k}}$ is of type 2. In the cases $\Lambda^{\left(\frac{p}{q}\right)^{k}},(p>1)$ condition (*) is not satisfied and we also showed in [4] that there exists a characteristic function f such that $C(f, \Lambda)$ does not equal \emptyset, \mathbb{R}, or a right half-line modulo sets of measure zero. This structure of $C(f, \Lambda)$ had not been seen before our paper [4].

From the point of view of our current paper the following question (QUESTION 2 in [1]) is the most relevant:

Question 1.5. Given open sets G_{1} and G_{2} when is it possible to find Λ and f such that $C(f, \Lambda)$ contains G_{1} and $D(f, \Lambda)$ contains G_{2} ?

It was remarked in [1] that if the counting function of $\Lambda, n(x)=\#\{\Lambda \cap[0, x]\}$
satisfies a condition of the type

$$
\forall \ell<0 \forall a \in \mathbb{R} \quad \limsup _{x \rightarrow \infty} \frac{n(x+\ell+a)-n(x+a)}{n(x+\ell)-n(x)}<+\infty
$$

(as is the case for $\Lambda=\{\log n\})$ then either $C(f, \Lambda)$ has full measure on \mathbb{R} or $C(f, \Lambda)$ does not contain any interval.

It was also mentioned in [1] that if Λ is asymptotically lacunary then it is possible to construct $f \in C_{0}^{+}(\mathbb{R})$ such that both $C(f, \Lambda)$ and $D(f, \Lambda)$ have interior points.

In this paper we give an almost complete answer to Question 1.5. In Section 2 we prove Theorem [2.1. This theorem states that there is a universal decreasing gap asymptotically dense Λ such that for any open subset $G \subset \mathbb{R}$ one can find a characteristic function f_{G} such that $G \subset D\left(f_{G}, \Lambda\right)$ and $C\left(f_{G}, \Lambda\right)=\mathbb{R} \backslash G$ modulo sets of measure zero. We also show that one can also select a $g_{G} \in C_{0}^{+}(\mathbb{R})$ with similar properties.

In Section 3 we consider the question of subintervals in $C(f, \Lambda)$ when $f \in$ $C_{0}^{+}(\mathbb{R})$. In Theorem 3.1 we prove that there exists a universal asymptotically dense infinite discrete set Λ such that for any open set $G \subset \mathbb{R}$ one can select an $f_{G} \in C_{0}^{+}(\mathbb{R})$ such that $D\left(f_{G}, \Lambda\right)=G$. In this case there is no exceptional set of measure zero, $D\left(f_{G}, \Lambda\right)$ equals G exactly. On the other hand, Λ is not of decreasing gap. As Theorem 3.4 shows it is impossible to find such a universal Λ with decreasing gaps. In Theorem 3.4 we prove that if Λ is a decreasing gap asymptotically dense set, $f \in C^{+}(\mathbb{R})$ and x is an interior point of $C(f, \Lambda)$ then $[x,+\infty) \cap D(f, \Lambda)$ is of zero Lebesgue measure.

The example provided in Theorem 3.3 demonstrates that there is a decreasing gap asymptotically dense Λ and an $f \in C_{0}^{+}(\mathbb{R})$ such that $D(f, \Lambda)$ and $C(f, \Lambda)$ both contain interior points. Of course, as Theorem 3.4 shows the interior points of $D(f, \Lambda)$ are to the left of those of $C(f, \Lambda)$.

2 A universal decreasing gap asymptotically dense Λ set

Let μ denote the one-dimensional Lebesgue measure.
We denote by $\mathbb{N}:=\{n \in \mathbb{Z}: n \geq 1\}$ the set of natural numbers. For every $A, B \subset \mathbb{R}$ we put $A+B:=\{a+b: a \in A$ and $b \in B\}$ and $A-B:=\{a-b: a \in$ A and $b \in B\}$.

The integer, and fractional parts of $x \in \mathbb{R}$ are denoted by $\lfloor x\rfloor$ and $\{x\}$, respectively.

Theorem 2.1. There is a strictly monotone increasing unbounded sequence $\left(\lambda_{0}, \lambda_{1}, \ldots\right)=$ Λ in \mathbb{R} such that $\lambda_{n}-\lambda_{n-1}$ tends to 0 monotone decreasingly, that is Λ is a decreasing gap asymptotically dense set, such that for every open set $G \subset \mathbb{R}$ there is a function $f_{G}: \mathbb{R} \rightarrow[0,+\infty)$ for which

$$
\begin{gather*}
\mu\left(\left\{x \notin G: \sum_{n=0}^{\infty} f_{G}\left(x+\lambda_{n}\right)=\infty\right\}\right)=0, \text { and } \tag{1}\\
\sum_{n=0}^{\infty} f_{G}\left(x+\lambda_{n}\right)=\infty \text { for every } x \in G \tag{2}
\end{gather*}
$$

moreover $f_{G}=\chi_{U_{G}}$ for a closed set $U_{G} \subset \mathbb{R}$. By (11) and (2) we have $D\left(f_{G}, \Lambda\right) \supset$ G, and $C\left(f_{G}, \Lambda\right)=\mathbb{R} \backslash G$ modulo sets of measure zero.

One can also select a $g_{G} \in C_{0}^{+}(\mathbb{R})$ satisfying (1) and (2) instead of f_{G}.
Remark 2.2. Observe that in the above theorem we construct a universal Λ and for this set, depending on our choice of G we can select a suitable f_{G} such that $D\left(f_{G}, \Lambda\right)=G$ modulo sets of measure zero.

Proof. Let

$$
\mathcal{I}:=\left\{(j, k): j \in \mathbb{N} \text { and } k \in \mathbb{Z} \cap\left[0,2 j \cdot 2^{j}\right)\right\}
$$

with the following lexicographical ordering: if $(j, k),(\widetilde{j}, \widetilde{k}) \in \mathcal{I}$ then

$$
(j, k)<_{\mathcal{I}}(\widetilde{j}, \widetilde{k}) \Leftrightarrow(j<\widetilde{j} \text { or }(j=\widetilde{j} \text { and } k<\widetilde{k})) .
$$

Given $(j, k) \in \mathcal{I}$ we define its immediate successor $(\hat{\jmath}, \hat{k})$ the following way: let $\hat{\jmath}:=j$ and $\hat{k}:=k+1$ if $k<2 j \cdot 2^{j}-1$, and let $\hat{\jmath}:=j+1$ and $\hat{k}:=0$ if $k=2 j \cdot 2^{j}-1$. It is clear that starting with $(1,0)$ by repeated application of taking the immediate successor we can enumerate \mathcal{I} and hence we will be able to do induction on \mathcal{I}. We will also introduce the operation of taking the predecessor of $(j, k) \neq(1,0)$ which will be denoted by ($\check{\jmath}, \check{k}$) and which is defined by the property $(\hat{\jmath}, \hat{\tilde{k}})=(j, k)$.

For every $(j, k) \in \mathcal{I}$ let

$$
I_{j, k}:=\left[j-(k+1) 2^{-j}, j-k 2^{-j}\right]=\left[a_{I_{j, k},}, b_{I_{j, k}}\right] .
$$

In (6) a set $U_{j, k}$ will be defined such that with a properly selected Λ we have
$I_{j, k} \subset U_{j, k}-\Lambda=\left\{x \in \mathbb{R}: \exists n \in \mathbb{N} \cup\{0\}\right.$ such that $\left.x+\lambda_{n} \in U_{j, k}\right\}$ and

$$
\begin{align*}
& \mu\left(\left\{x \in[-j, j]: \exists \text { infinitely many }\left(j^{*}, k^{*}\right) \in \mathcal{I}\right.\right. \tag{3}\\
& \left.\left.\quad \text { for which } x \in\left(U_{j^{*}, k^{*}}-\Lambda\right) \backslash I_{j^{*}, k^{*}}\right\}\right)=0 . \tag{4}
\end{align*}
$$

Figure 1: Definition of $I_{j, k}$ and $U_{j, k}$

Let G be an arbitrary open subset of \mathbb{R} and let

$$
U_{G}:=\bigcup\left\{U_{j^{*}, k^{*}}:\left(j^{*}, k^{*}\right) \in \mathcal{I} \text { and } I_{j^{*}, k^{*}} \subset G\right\}
$$

Put

$$
f_{G}(x):= \begin{cases}1 & \text { if } x \in U_{G} \tag{5}\\ 0 & \text { else }\end{cases}
$$

We will prove that Λ and f_{G} satisfy the conditions of the theorem.
Now we define the sets $U_{j, k}$. Before doing this we recall and introduce some notation. For every $(j, k) \in \mathcal{I}$ let

- $a_{I_{j, k}}:=j-(k+1) \cdot 2^{-j}$ (that is $a_{I_{j, k}}$ is the left endpoint of $I_{j, k}$),
- $b_{I_{j, k}}:=j-k \cdot 2^{-j}$ (that is $b_{I_{j, k}}$ is the right endpoint of $I_{j, k}$),
- $E_{j, k}:=2^{-2 j \cdot 2^{j}-k}$,
- $a_{j, k}:=2^{2 j \cdot 2^{j}+k}$,
- $b_{j, k}:=a_{j, k}+E_{j, k}$.

See Figure 1. This and the other figure in this paper are to illustrate concepts and they are not drawn to illustrate a certain step, for example with a fixed j of our construction.

Let

$$
\begin{equation*}
U_{j, k}:=\bigcup_{i=0}^{E_{j, k}^{-1}-1}\left[a_{j, k}+i E_{j, k}^{2}, a_{j, k}+i E_{j, k}^{2}+E_{j, k}^{3}\right] \subset\left[a_{j, k}, b_{j, k}\right] . \tag{6}
\end{equation*}
$$

Next we prove a useful lemma:

Lemma 2.3. For every $(j, k) \in \mathcal{I}$ we have

$$
\begin{equation*}
a_{j, k} \leq \frac{a_{\hat{\jmath}, \hat{k}}}{2} \text { and } E_{j, k} \geq 2 E_{\hat{\jmath}, \hat{k}}, \tag{7}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
E_{j, k} / 2 \text { is an integer multiple of } E_{\hat{\jmath}, \hat{k}} \text {. } \tag{8}
\end{equation*}
$$

Proof. It is enough to prove (7) for $a_{j, k}$ as $E_{j, k}=a_{j, k}^{-1}$.
First suppose that $k<2 j \cdot 2^{j}-1$, then $\hat{\jmath}=j, \hat{k}=k+1$ and

$$
\begin{equation*}
a_{j, k}=2^{2 j \cdot 2^{j}+k}=\frac{2^{2 j \cdot 2^{j}+(k+1)}}{2}=\frac{a_{\hat{\jmath}, \hat{k}}}{2} . \tag{9}
\end{equation*}
$$

If $k=2 j \cdot 2^{j}-1$ then $\hat{\jmath}=j+1, \hat{k}=0$ and

$$
\begin{equation*}
a_{j, k}=2^{2 j \cdot 2^{j}+k}=2^{2 j \cdot 2^{j}+2 j \cdot 2^{j}-1}=2^{4 j 2^{j}-1}=\frac{2^{2(j+1) \cdot 2^{(j+1)}}}{2^{2 \cdot 2^{j+1}+1}}=\frac{a_{\hat{\jmath}, \hat{k}}}{2^{2 \cdot 2^{j+1}+1}} . \tag{10}
\end{equation*}
$$

Using $E_{j, k}=a_{j, k}^{-1}$ from (9) and (10) it follows that (8) holds.
Next we turn to the definition of Λ.
During the definition of Λ we will use the notation $d_{n}:=\lambda_{n}-\lambda_{n-1}$, in fact, often we will define d_{n} and that will provide the value of λ_{n} given the already defined λ_{n-1}. Let $\lambda_{0}:=a_{1,0}-b_{I_{1,0}}$ and $n_{0,1,0}=0$.

Suppose that for a $(j, k) \in \mathcal{I}$ we have already defined $n_{0, j, k}$ and λ_{n} for $n \leq n_{0, j, k}$, $\lambda_{n_{0, j, k}}=a_{j, k}-b_{I_{j, k}}$ and $d_{n_{0, j, k}} / E_{j, k}^{2}$ is a positive integer (or $n_{0, j, k}=0$). Now we need to do our next step to define these objects for $(\hat{\jmath}, \hat{k})$.

Step $(\hat{\jmath}, \hat{k})$. Let $n_{1, j, k}:=n_{0, j, k}+2^{-j} E_{j, k}^{-2}+2 E_{j, k}^{-1}$. For every integer $n \in$ $\left[n_{0, j, k}+1, n_{1, j, k}\right]$ let $d_{n}:=E_{j, k}^{2}-E_{j, k}^{3}$. Thus we have

$$
\begin{align*}
\lambda_{n_{1, j, k}} & =\lambda_{n_{0, j, k}}+\left(2^{-j} E_{j, k}^{-2}+2 E_{j, k}^{-1}\right)\left(E_{j, k}^{2}-E_{j, k}^{3}\right) \\
& =a_{j, k}-b_{I_{j, k}}+2^{-j}-2^{-j} E_{j, k}+2 E_{j, k}-2 E_{j, k}^{2} \\
& =a_{j, k}-a_{I_{j, k}}+2 E_{j, k}-2^{-j} E_{j, k}-2 E_{j, k}^{2} \tag{11}\\
& =b_{j, k}-a_{I_{j, k}}+E_{j, k}-2^{-j} E_{j, k}-2 E_{j, k}^{2} \geq b_{j, k}-a_{I_{j, k}}
\end{align*}
$$

and (from the second row of (11))

$$
\begin{equation*}
\lambda_{n_{1, j, k}}=a_{j, k}-b_{I_{j, k}}+2^{-j}-2^{-j} E_{j, k}+2 E_{j, k}-2 E_{j, k}^{2}<a_{j, k}-b_{I_{j, k}}+1 \tag{12}
\end{equation*}
$$

Since $a_{j, k}-a_{I_{j, k}}=2^{2 j \cdot 2^{j}+k}-\left(j-k \cdot 2^{-j}\right)$ and $2^{-j} E_{j, k}$ are both integer multiples of $E_{j, k}^{2}=\left(2^{-2 j \cdot 2^{j}-k}\right)^{2}$ from the third row of (11) we obtain that

$$
\begin{equation*}
\lambda_{n_{1, j, k}} \text { is an integer multiple of } E_{j, k}^{2} . \tag{13}
\end{equation*}
$$

By Lemma 2.3 and (12) we have

$$
a_{\hat{\jmath}, \hat{k}}-b_{I_{\hat{j}, \hat{k}}} \geq 2 a_{j, k}-(j+1) \geq a_{j, k}+j+1>a_{j, k}-b_{I_{j, k}}+1>\lambda_{n_{1, j, k}} .
$$

We set

$$
\begin{equation*}
n_{0, \hat{j}, \hat{k}}=n_{1, j, k}+\frac{a_{\hat{\jmath}, \hat{k}}-b_{I_{\hat{\jmath}, \hat{k}}}-\lambda_{n_{1, j, k}}}{2^{-1} E_{j, k}^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}=E_{j, k}^{2} / 2 \text { for every integer } n \in\left(n_{1, j, k}, n_{0, \hat{j}, \hat{k}}\right] . \tag{15}
\end{equation*}
$$

We obtain by (14)

$$
\lambda_{n_{0, \hat{j}, \hat{k}}}=\lambda_{n_{1, j, k}}+\frac{\left(n_{0, \hat{j}, \hat{k}}-n_{1, j, k}\right) E_{j, k}^{2}}{2}=\lambda_{n_{1, j, k}}+a_{\hat{\jmath}, \hat{k}}-b_{I_{\hat{\jmath}, \hat{k}}}-\lambda_{n_{1, j, k}}=a_{\hat{\jmath}, \hat{k}}-b_{I_{\hat{\jmath}, \hat{k}}},
$$

and by (8) $), d_{n_{0, \hat{j}, \hat{k}}}=E_{j, k}^{2} / 2$ is an integer multiple of $E_{\hat{\jmath}, \hat{k}}^{2}$, hence (13) implies that

$$
\begin{equation*}
\lambda_{n} \text { is an integer multiple of } E_{\hat{\jmath}, \hat{k}}^{2} \text { for } n \in\left(n_{1, j, k}, n_{0, \hat{j}, \hat{k}}\right] . \tag{16}
\end{equation*}
$$

Thus we can proceed to the next step. By repeating this procedure we can carry out the above steps for all $(j, k) \in \mathcal{I}$ and hence we can define Λ.

Now we prove (3). We fix (j, k) and choose an arbitrary point x from $I_{j, k}$. Let n_{x} denote the smallest integer for which

$$
\begin{equation*}
x+\lambda_{n_{x}}>a_{j, k} . \tag{17}
\end{equation*}
$$

Put $n_{x}^{\prime}:=n_{x}+\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor$.
We have $x \in I_{j, k} \subset[-j, j]$. From $x+\lambda_{n_{0, j, k}}=x+a_{j, k}-b_{I_{j, k}}$ it follows that

$$
\begin{equation*}
x+\lambda_{n_{0, j, k}}-a_{j, k}=x-b_{I_{j, k}} \leq 0 . \tag{18}
\end{equation*}
$$

Therefore, $n_{x}>n_{0, j, k}$ and hence

$$
\begin{equation*}
d_{n} \leq d_{n_{0, j, k}+1}=E_{j, k}^{2}-E_{j, k}^{3} \text { for every } n \in\left[n_{x}, \infty\right) \tag{19}
\end{equation*}
$$

By minimality of n_{x} we have

$$
\begin{equation*}
x+\lambda_{n_{x}}-a_{j, k} \leq d_{n_{x}} \leq E_{j, k}^{2}-E_{j, k}^{3} . \tag{20}
\end{equation*}
$$

Next we will show that $x+\lambda_{n_{x}^{\prime}} \in U_{j, k}$. Using (19)

$$
\begin{equation*}
0 \leq\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor \leq \frac{d_{n_{x}}}{E_{j, k}^{3}} \leq \frac{E_{j, k}^{2}-E_{j, k}^{3}}{E_{j, k}^{3}}=E_{j, k}^{-1}-1 . \tag{21}
\end{equation*}
$$

We also infer

$$
\begin{align*}
x+\lambda_{n_{x}^{\prime}} & =x+\lambda_{n_{x}}+\sum_{n \in\left(n_{x}, n_{x}^{\prime}\right]} d_{n} \leq x+\lambda_{n_{x}}+\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor\left(E_{j, k}^{2}-E_{j, k}^{3}\right) \\
& =a_{j, k}+\left(x+\lambda_{n_{x}}-a_{j, k}\right)+\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor\left(E_{j, k}^{2}-E_{j, k}^{3}\right) \tag{22}\\
& =a_{j, k}+\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor E_{j, k}^{2}+E_{j, k}^{3}\left\{\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\}
\end{align*}
$$

using (21)

$$
\leq a_{j, k}+\left(E_{j, k}^{-1}-1\right) E_{j, k}^{2}+E_{j, k}^{3} \leq a_{j, k}+E_{j, k}=b_{j, k} .
$$

From (11) and (22) we obtain

$$
\lambda_{n_{x}^{\prime}} \leq b_{j, k}-x \leq b_{j, k}-a_{I_{j, k}} \leq \lambda_{n_{1, j, k}},
$$

hence $n_{x}, n_{x}^{\prime} \leq n_{1, j, k}$, which means that $d_{n}=E_{j, k}^{2}-E_{j, k}^{3}$ for every $n \in\left(n_{x}, n_{x}^{\prime}\right]$. This implies that the first inequality in (22) is, in fact an equality, that is

$$
\begin{equation*}
x+\lambda_{n_{x}^{\prime}}=a_{j, k}+\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor E_{j, k}^{2}+E_{j, k}^{3}\left\{\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\} . \tag{23}
\end{equation*}
$$

Using (21) and (23) we can see that there exists an integer $i=\left\lfloor\frac{x+\lambda_{n_{x}}-a_{j, k}}{E_{j, k}^{3}}\right\rfloor \in$ $\left[0, E_{j, k}^{-1}-1\right]$ such that

$$
a_{j, k}+i E_{j, k}^{2} \leq x+\lambda_{n_{x}^{\prime}} \leq a_{j, k}+i E_{j, k}^{2}+E_{j, k}^{3}
$$

that is $x+\lambda_{n_{x}^{\prime}} \in U_{j, k}$, which implies (3).
We continue with the proof of (4). Suppose $(\check{\jmath}, \check{k}),(j, k),(\hat{\jmath}, \hat{k}) \in \mathcal{I}$. Then they are strictly monotone increasing in this order and are adjacent in the lexicographical ordering of \mathcal{I}. We have by Lemma 2.3 and the third row of (11)

$$
\begin{align*}
j+\lambda_{n_{1, j, \check{k}}} & =j+a_{\jmath, \check{k}}-a_{I_{\breve{\jmath}, \check{k}}}+2 E_{\check{j}, \check{k}}-2^{-\check{\jmath}} E_{\check{j, \check{k}}}-2 E_{j, \check{k}}^{2} \tag{24}\\
& <a_{\check{\jmath}, \check{k}}+2 j+1 \leq 2 a_{\check{j}, \bar{k}} \leq a_{j, k},
\end{align*}
$$

that is $U_{j, k}-\lambda_{n_{1, j, \bar{k}}}$ is to the right of j. By (16), $\lambda_{n} / E_{j, k}^{2}$ is an integer for every $n \in\left(n_{1, \check{j}, \check{k}}, n_{0, j, k}\right]$. Therefore, (24) implies that

$$
\begin{align*}
B_{j, k}: & =\left[b_{j, k}-\lambda_{n_{0, j, k}}, j\right] \cap\left(U_{j, k}-\Lambda\right) \\
& =\left[b_{j, k}-\lambda_{n_{0, j, k}}, j\right] \cap\left(U_{j, k}-\left\{\lambda_{n}: n \in\left(n_{1, \check{j}, \check{k}}, n_{0, j, k}\right]\right\}\right) \tag{25}\\
& \subset\left[b_{j, k}-\lambda_{n_{0, j, k}}, j\right] \cap \bigcup_{i \in \mathbb{Z}}\left[i E_{j, k}^{2}, i E_{j, k}^{2}+E_{j, k}^{3}\right] .
\end{align*}
$$

Similarly, by using (7)

$$
\begin{align*}
-j+\lambda_{n_{0, \hat{j}, \hat{k}}} & =-j+a_{\hat{\jmath}, \hat{k}}-b_{I_{\hat{\jmath}, \hat{k}}}>a_{\hat{\jmath}, \hat{k}}-(2 j+1) \\
& \geq 2 a_{j, k}-(2 j+1) \geq a_{j, k}+E_{j, k}=b_{j, k} \tag{26}
\end{align*}
$$

that is $U_{j, k}-\lambda_{n_{0, j, \hat{k}}}$ is to the left of $-j$. Since by (13) and (15) $\lambda_{n} /\left(E_{j, k}^{2} / 2\right)$ is an integer for every $n \in\left[n_{1, j, k}, n_{0, \hat{j}, \hat{k}}\right]$, (26) implies that

$$
\begin{align*}
A_{j, k}: & =\left[-j, a_{j, k}-\lambda_{n_{1, j, k}}\right] \cap\left(U_{j, k}-\Lambda\right) \\
& =\left[-j, a_{j, k}-\lambda_{n_{1, j, k}}\right] \cap\left(U_{j, k}-\left\{\lambda_{n}: n \in\left[n_{1, j, k}, n_{0, \hat{\jmath}, \hat{k}}\right]\right\}\right) \tag{27}\\
& \subset\left[-j, a_{j, k}-\lambda_{n_{1, j, k}}\right] \cap \bigcup_{i \in \mathbb{Z}}\left[i E_{j, k}^{2} / 2, i E_{j, k}^{2} / 2+E_{j, k}^{3}\right] .
\end{align*}
$$

We want to estimate the following expression from above:

$$
\begin{gather*}
\mu\left([-j, j] \cap\left(U_{j, k}-\Lambda\right) \backslash I_{j, k}\right) \\
\leq \mu\left(A_{j, k} \cup\left[a_{j, k}-\lambda_{n_{1, j, k}}, a_{I_{j, k}}\right] \cup\left[b_{I_{j, k}}, b_{j, k}-\lambda_{n_{0, j, k}}\right] \cup B_{j, k}\right) . \tag{28}
\end{gather*}
$$

By (25) and (27) we have

$$
\begin{align*}
& \mu\left(A_{j, k} \cup B_{j, k}\right) \\
& \leq \mu\left([-j, j] \cap\left(\bigcup_{i \in \mathbb{Z}}\left[i E_{j, k}^{2} / 2, i E_{j, k}^{2} / 2+E_{j, k}^{3}\right]\right)\right) \tag{29}\\
& =E_{j, k}^{3} \frac{2 j}{E_{j, k}^{2} / 2}=4 j \cdot E_{j, k},
\end{align*}
$$

and using the third row of (11)

$$
\begin{align*}
\mu\left(\left[a_{j, k}-\lambda_{n_{1, j, k}}, a_{I_{j, k}}\right]\right) & =a_{I_{j, k}}-\left(a_{j, k}-\left(a_{j, k}-a_{I_{j, k}}+2 E_{j, k}-2^{-j} E_{j, k}-2 E_{j, k}^{2}\right)\right) \\
& =2 E_{j, k}-2^{-j} E_{j, k}-2 E_{j, k}^{2} \leq 2 E_{j, k} . \tag{30}
\end{align*}
$$

Moreover,

$$
\begin{equation*}
\mu\left[b_{I_{j, k}}, b_{j, k}-\lambda_{n_{0, j, k}}\right]=b_{j, k}-\left(a_{j, k}-b_{I_{j, k}}\right)-b_{I_{j, k}}=b_{j, k}-a_{j, k}=E_{j, k} . \tag{31}
\end{equation*}
$$

Writing (29), (301) and (31) into (28) yields

$$
\begin{equation*}
\mu\left([-j, j] \cap\left(U_{j, k}-\Lambda\right) \backslash I_{j, k}\right) \leq(4 j+3) \cdot E_{j, k} \tag{32}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{\left(j^{*}, k^{*}\right) \in \mathcal{I}} \mu\left([-j, j] \cap\left(U_{j^{*}, k^{*}}-\Lambda\right) \backslash I_{j^{*}, k^{*}}\right) \tag{33}
\end{equation*}
$$

$$
\begin{gathered}
\leq \sum_{\substack{\left(j^{*}, k^{*}\right) \in \mathcal{I} \\
j^{*}<j}} \mu\left([-j, j] \cap\left(U_{j^{*}, k^{*}}-\Lambda\right) \backslash I_{j^{*}, k^{*}}\right) \\
+\sum_{\left(j^{*}, k^{*}\right) \in \mathcal{I}} \mu\left(\left[-j^{*}, j^{*}\right] \cap\left(U_{j^{*}, k^{*}}-\Lambda\right) \backslash I_{j^{*}, k^{*}}\right) \\
\leq \sum_{\substack{\left(j^{*}, k^{*}\right) \in \mathcal{I} \\
j^{*}<j}} 2 j+\sum_{\left(j^{*}, k^{*}\right) \in \mathcal{I}}\left(4 j^{*}+3\right) \cdot E_{j^{*}, k^{*}} \\
\leq 2 j \cdot 2 j\left(2^{j-1}+\ldots+1\right)+\sum_{j^{*}=1}^{\infty} \sum_{k^{*}=0}^{2 j^{*} \cdot 2^{*}-1}\left(4 j^{*}+3\right) E_{j^{*}, k^{*}} \\
\leq 4 j^{2} \cdot 2^{j}+\sum_{j^{*}=1}^{\infty} 2 j^{*} \cdot 2^{j^{*}}\left(4 j^{*}+3\right) 2^{-2 j^{*} \cdot 2 j^{*}} \\
\leq 4 j^{2} \cdot 2^{j}+\sum_{j^{*}=1}^{\infty}\left(8\left(j^{*}\right)^{2}+6 j^{*}\right) 2^{-2 j^{*} \cdot 2^{j^{*}}+j^{*}}<\infty,
\end{gathered}
$$

which by the Borel-Cantelli lemma implies (4).
Let G be a fixed open subset of \mathbb{R}. If $x \in G$, then $\left\{(j, k) \in \mathcal{I}: x \in I_{j, k} \subset G\right\}$ is an infinite set, hence according to (3) and (5)

$$
\sum_{n=0}^{\infty} f_{G}\left(x+\lambda_{n}\right)=\infty
$$

If $x \in \mathbb{R} \backslash G$ and $\sum_{n=0}^{\infty} f_{G}\left(x+\lambda_{n}\right)=\infty$, then $\left\{n \in \mathbb{N}: x+\lambda_{n} \in U_{G}\right\}$ is an infinite set, which implies that $\left\{\left(j^{*}, k^{*}\right) \in \mathcal{I}: I_{j^{*}, k^{*}} \subset G\right.$ and $\left.x \in\left(U_{j^{*}, k^{*}}-\Lambda\right)\right\}$ is also infinite, thus (4) implies (1).

Next we see how one can modify f_{G} to obtain a $g_{G} \in C_{0}^{+}(\mathbb{R})$ still satisfying (1) and (2). In [1] there is Proposition 1 , which says that one can modify f_{G} to obtain a $g_{G} \in C_{0}^{+}(\mathbb{R})$ such that $C\left(f_{G}, \lambda\right)=C\left(g_{G}, \lambda\right)$ a.e. and $D\left(f_{G}, \lambda\right)=D\left(g_{G}, \lambda\right)$ a.e. Since we want to preserve (2) we cannot change $D\left(f_{G}, \lambda\right)$ by an arbitrary set of measure zero. Hence in the next construction a little extra care is needed.

$$
\begin{equation*}
\operatorname{Put} \Lambda_{N}=\{\lambda \in \Lambda: \lambda \leq 10 N\} \text { and } L_{N}=\# \Lambda_{N} . \tag{34}
\end{equation*}
$$

Observe that $U_{G} \cap(-\infty, 0]=\emptyset, U_{G}$ does not contain a half-line, and $U_{G} \cap[0, N]$ is the union of finitely many disjoint closed intervals for any $N \in \mathbb{N}$.

Choose an open $\widetilde{U}_{G} \supset U_{G}$ such that it does not contain a half-line, and

$$
\begin{equation*}
\mu\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right)<\frac{2^{-N}}{L_{N}} \text { for any } N \in \mathbb{N} . \tag{35}
\end{equation*}
$$

Select a continuous function \widetilde{g}_{G} such that $\widetilde{g}_{G}(x)=f_{G}(x)$ for $x \in U_{G}, \widetilde{g}_{G}(x)=0$ if $x \notin \widetilde{U}_{G}$ and $\left|\widetilde{g}_{G}\right| \leq 1$. Hence $\widetilde{g}_{G} \geq f_{G}$ on \mathbb{R}, and $D\left(\widetilde{g}_{G}, \Lambda\right) \supset D\left(f_{G}, \Lambda\right) \supset G$.

It is also clear that $0 \leq \widetilde{g}_{G}-f_{G} \leq \chi_{\tilde{U}_{G} \backslash U_{G}}=: h_{G}$, and

$$
\begin{equation*}
\sum_{\lambda \in \Lambda}\left(\widetilde{g}_{G}(x+\lambda)-f_{G}(x+\lambda)\right) \leq \sum_{\lambda \in \Lambda} h_{G}(x+\lambda) . \tag{36}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda} h_{G}(x+\lambda) \text { is finite almost everywhere, } \tag{37}
\end{equation*}
$$

yielding that $C\left(\widetilde{g}_{G}, \Lambda\right)$ equals $C\left(f_{G}, \Lambda\right)$ modulo a set of measure zero.
Put $H_{G, K, \infty}=\left\{x \in[-K, K]: \sum_{\lambda \in \Lambda} h_{G}(x+\lambda)=\infty\right\}$. We will show that

$$
\begin{equation*}
\text { for any } K>1 \text { we have } \mu\left(H_{G, K, \infty}\right)=0 . \tag{38}
\end{equation*}
$$

This clearly implies (37).
Observe that if $x \in H_{G, K, \infty}$, then there are infinitely many λ s such that $x+\lambda \in$ $\widetilde{U}_{G} \backslash U_{G}$, that is, $x \in\left(\left(\widetilde{U}_{G} \backslash U_{G}\right)-\lambda\right) \cap[-K, K]$. Thus, by the Borel-Cantelli lemma to prove (38) it is sufficient to show that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right)-\lambda\right) \cap[-K, K]\right)<\infty \tag{39}
\end{equation*}
$$

This is shown by the following estimate

$$
\begin{aligned}
& \sum_{\lambda \in \Lambda} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right)-\lambda\right) \cap[-K, K]\right)=\sum_{\lambda \in \Lambda} \sum_{N=1}^{\infty} \mu\left(\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right)-\lambda\right) \cap[-K, K]\right) \\
&= \sum_{N=1}^{\infty} \sum_{\lambda \in \Lambda} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right) \cap[\lambda-K, \lambda+K]\right) \\
&= \sum_{N=1}^{K} \sum_{\lambda \in \Lambda} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right) \cap[\lambda-K, \lambda+K]\right) \\
& \quad+\sum_{N=K+1}^{\infty} \sum_{\lambda \in \Lambda} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right) \cap[\lambda-K, \lambda+K]\right)
\end{aligned}
$$

(with a finite S_{1})

$$
=S_{1}+\sum_{N=K+1}^{\infty} \sum_{\lambda \in \Lambda, \lambda \leq 10 N} \mu\left(\left(\left(\widetilde{U}_{G} \backslash U_{G}\right) \cap[N-1, N]\right) \cap[\lambda-K, \lambda+K]\right)
$$

(now using (340) and (35))

$$
\leq S_{1}+\sum_{N=K+1}^{\infty} L_{N} \cdot \frac{2^{-N}}{L_{N}}<\infty
$$

So far we have shown that \widetilde{g}_{G} satisfies (1) and (2). Since $\widetilde{g}_{G} \in C^{+}(\mathbb{R})$, but not in $C_{0}^{+}(\mathbb{R})$. We need to adjust it a little further.

Since G is open choose an increasing sequence of compact sets $G_{K} \subset G \cap[-K, K]$ such that $\bigcup_{K=1}^{\infty} G_{K}=G$.

Put $M_{0}=0$. Choose $M_{1} \in \mathbb{R}$ such that for any $x \in G_{1}$ we have

$$
\sum_{\lambda \in \Lambda, M_{0}+10<\lambda<M_{1}} \widetilde{g}_{G}(x+\lambda)>1
$$

and $\widetilde{g}_{G}\left(M_{1}+5\right)=0$. This latter property can be satisfied since by assumption \widetilde{U}_{G} does not contain a half-line.

In general, if we already have selected M_{K-1} such that $\widetilde{g}_{G}\left(M_{K-1}+5(K-1)\right)=0$ then choose $M_{K} \in \mathbb{R}$ such that for any $x \in G_{K}$ we have

$$
\begin{equation*}
\sum_{\lambda \in \Lambda, M_{K-1}+10 K<\lambda<M_{K}} \widetilde{g}_{G}(x+\lambda)>K, \tag{40}
\end{equation*}
$$

and $\widetilde{g}_{G}\left(M_{K}+5 K\right)=0$.
For $x \leq M_{1}+5$ we put $g_{G}(x)=\widetilde{g}_{G}(x)$. For $K>1$ and $x \in\left(M_{K-1}+5(K-\right.$ 1), $\left.M_{K}+5 K\right]$ we put $g_{G}(x)=\frac{1}{K} \widetilde{g}_{G}(x)$.

It is clear that $g_{G} \in C_{0}^{+}(\mathbb{R})$.
Since $g_{G} \leq \widetilde{g}_{G}$ we have $C\left(g_{G}, \Lambda\right) \supset C\left(\widetilde{g}_{G}, \Lambda\right)$. If we can show that $G \subset D\left(g_{G}, \Lambda\right)$ then we are done. Suppose $x \in G$. Then there is a K_{x} such that $x \in G_{K}$ for any $K \geq K_{x}$. Therefore, for these K we have $x \in\left[-K_{x}, K_{x}\right] \subset[-K, K]$ and by using (40)

$$
\sum_{\lambda \in \Lambda, M_{K-1}+6 K<\lambda<M_{K}+4 K} g_{G}(x+\lambda)=\sum_{\lambda \in \Lambda, M_{K-1}+6 K<\lambda<M_{K}+4 K} \frac{1}{K} \widetilde{g}_{G}(x+\lambda)>1,
$$

for any $K \geq K_{x}$ and hence $x \in D\left(g_{G}, \Lambda\right)$.

3 Subintervals in $C(f, \Lambda)$

Theorem 3.1. There exists an asymptotically dense infinite discrete set Λ such that for any open set $G \subset \mathbb{R}$ one can select an $f_{G} \in C_{0}^{+}(\mathbb{R})$ such that $D(f, \Lambda)=G$.

Remark 3.2. As Theorem 3.4 shows in the above theorem we cannot assume that Λ is a decreasing gap set. On the other hand, in our claim we have $D(f, \Lambda)=G$, that is, there is no exceptional set of measure zero where we do not know what happens. This also implies that if the interior of $\mathbb{R} \backslash G$ is non-empty then $C(f, \Lambda)$ contains intervals.

Figure 2: Definition of I_{j}, U_{j} and related sets

Proof. Denote by $\mathcal{I}_{D}=\left\{\left[(k-1) / 2^{l}, k / 2^{l}\right]: k, l \in \mathbb{Z}, l \geq 0\right\}$ the system of dyadic intervals. It is clear that one can enumerate the elements of \mathcal{I}_{D} in a sequence $\left\{I_{j}\right\}_{j=1}^{\infty}$ which satisfies the following properties

$$
\begin{equation*}
I_{j}=\left[a_{I_{j}}, b_{I_{j}}\right]=\left[\frac{k_{j}-1}{2^{l_{j}}}, \frac{k_{j}}{2^{l_{j}}}\right] \subset[-j, j] \text { and } \mu\left(I_{j}\right)=2^{-l_{j}} \geq \frac{1}{j} . \tag{41}
\end{equation*}
$$

We denote by \bar{I}_{j} the closed interval which is concentric with I_{j} but is of length three times the length of I_{j}.

We put

$$
U_{j}=\left[a_{j}, b_{j}\right]=\left[2^{j}, 2^{j}+2^{-2^{j}}\right] \text { and } \bar{U}_{j}=\left[a_{j}-2^{-2^{j}-j-1}, b_{j}+2^{-2^{j}-j-1}\right]=\left[\bar{a}_{j}, \bar{b}_{j}\right] .
$$

See Figure 2.
We suppose that $f_{j}(x)=0$ if $x \notin \bar{U}_{j}, f_{j}(x)=2^{-j}$ if $x \in U_{j}$, the function f_{j} is continuous on \mathbb{R} and is linear on the connected components of $\bar{U}_{j} \backslash U_{j}$. We define

$$
\begin{gather*}
\Lambda_{1, j}=\left\{k \cdot 2^{-2^{j}-j}: k \in \mathbb{Z}\right\} \cap\left[2^{j}-k_{j} 2^{-l_{j}}, 2^{j}+2^{-2^{j}}-\left(k_{j}-1\right) 2^{-l_{j}}\right] \tag{42}\\
=\left\{k \cdot 2^{-2^{j}-j}: k \in \mathbb{Z}\right\} \cap\left[a_{j}-b_{I_{j}}, b_{j}-a_{I_{j}}\right]
\end{gather*}
$$

and put $\Lambda_{1}=\bigcup_{j=1}^{\infty} \Lambda_{1, j}$.
Observe that if $x \in I_{j}$ then

$$
x+\min \Lambda_{1, j} \leq b_{I_{j}}+\min \Lambda_{1, j}=b_{I_{j}}+a_{j}-b_{I_{j}}=a_{j}
$$

and

$$
x+\max \Lambda_{1, j} \geq a_{I_{j}}+\max \Lambda_{1, j}=a_{I_{j}}+b_{j}-a_{I_{j}}=b_{j}
$$

hence

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1, j}} f_{j}(x+\lambda) \geq \frac{\operatorname{diam} U_{j}}{2^{-2^{j}-j}} 2^{-j}=\frac{2^{-2^{j}}}{2^{-2^{j}-j}} 2^{-j}=1 \tag{43}
\end{equation*}
$$

On the other hand, by (41)

$$
\begin{aligned}
& \bar{U}_{j}-\Lambda_{1, j} \\
&=\left[\min \bar{U}_{j}-\max \Lambda_{1, j}, \max \bar{U}_{j}-\min \Lambda_{1, j}\right] \\
&=\left[\bar{a}_{j}-b_{j}+a_{I_{j}}, \bar{b}_{j}-a_{j}+b_{I_{j}}\right]=\left[a_{I_{j}}-2^{-2 j}-2^{-2^{j}-j-1}, b_{I_{j}}+2^{-2 j}+2^{-2^{j}-j-1}\right] \\
& \subset\left[a_{I_{j}}-\frac{1}{j}, b_{I_{j}}+\frac{1}{j}\right] \subset\left[a_{I_{j}}-2^{-l_{j}}, b_{I_{j}}+2^{-l_{j}}\right]=\bar{I}_{j}
\end{aligned}
$$

thus

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1, j}} f_{j}(x+\lambda)=0 \text { if } x \in[-j, j], x \notin \bar{I}_{j} . \tag{44}
\end{equation*}
$$

Suppose $G \subset \mathbb{R}$ is a given open set and put $\mathcal{J}_{G}=\left\{j: \bar{I}_{j} \subset G\right\}$. Let $f_{G}(x)=$ $\sum_{j \in \mathcal{J}_{G}} f_{j}(x)$. Then f_{G} is continuous and non-negative on \mathbb{R} and clearly $\lim _{x \rightarrow \infty} f(x)=$ 0 .

We claim that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1}} f_{G}(x+\lambda)=+\infty \tag{45}
\end{equation*}
$$

exactly on G.
Indeed, if $x \in G$ then there are infinitely many j s such that $x \in I_{j} \subset \bar{I}_{j} \subset G$. This means that (43) holds for infinitely many $j \in \mathcal{J}_{G}$ and hence (45) is true when $x \in G$.

Next we need to verify that (45) does not hold for $x \notin G$. Suppose that $j_{0} \geq 10$, $j_{0} \in \mathcal{J}_{G}, x \notin G$ and $x \in\left[-j_{0}, j_{0}\right]$. Then $x \notin \bar{I}_{j_{0}}$ and by (44) we have

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1, j_{0}}} f_{j_{0}}(x+\lambda)=0 \tag{46}
\end{equation*}
$$

Next assume that $j<j_{0}$. Then by using (41) and (42)

$$
\begin{gathered}
\max \left\{x+\lambda: \lambda \in \Lambda_{1, j}\right\} \leq j_{0}+2^{j}+2^{-2^{j}}-\left(k_{j}-1\right) 2^{-l_{j}} \leq j_{0}+2^{j}+2^{-2^{j}}+j \\
<2 j_{0}+2^{j_{0}-1}+1<2^{j_{0}}-1<2^{j_{0}}-2^{-2^{j_{0}-j_{0}-1}}=\bar{a}_{j_{0}} .
\end{gathered}
$$

Hence,

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1, j}} f_{j_{0}}(x+\lambda)=0 \tag{47}
\end{equation*}
$$

If $j_{0}<j$ then

$$
\min \left\{x+\lambda: \lambda \in \Lambda_{1, j}\right\} \geq-j_{0}+2^{j}-j>2^{j-1}-2 j-1+2^{j-1}+1>2^{j_{0}}+1>\bar{b}_{j_{0}},
$$

and hence in this case we also have (47).
Therefore, from (46) and (47) it follows that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{1}} f_{j_{0}}(x+\lambda)=0 \text { for } j_{0} \in \mathcal{J}_{G}, j_{0} \geq 10,|x| \leq j_{0} \tag{48}
\end{equation*}
$$

This implies

$$
\sum_{\lambda \in \Lambda_{1}} f_{G}(x+\lambda) \leq \sum_{\substack{\left.\lambda \in \Lambda_{1, j}, \mid x\right\} \\ j \leq \max \{10,|x|\}}} f_{j}(x+\lambda)<+\infty .
$$

Since Λ_{1} is not asymptotically dense we need to choose an asymptotically dense Λ_{2} such that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{2}} \sum_{j=1}^{\infty} f_{j}(x+\lambda)<+\infty \text { holds for any } x \in \mathbb{R} . \tag{49}
\end{equation*}
$$

Then for any open $G \subset \mathbb{R}$

$$
\sum_{\lambda \in \Lambda_{2}} f_{G}(x+\lambda) \leq \sum_{\lambda \in \Lambda_{2}} \sum_{j=1}^{\infty} f_{j}(x+\lambda)<+\infty
$$

holds and if we let $\Lambda=\Lambda_{1} \cup \Lambda_{2}$ then Λ is asymptotically dense and $D\left(f_{G}, \Lambda\right)=G$.
To complete the proof of this theorem we need to verify (49) for a suitable Λ_{2}. For $j \geq 10$ put

$$
\Lambda_{2, j}=\left\{k \cdot 2^{-j}: k \in \mathbb{Z}\right\} \cap\left(2^{j-1}+2(j-1), 2^{j}+2 j\right], \text { and } \Lambda_{2}=\bigcup_{j=10}^{\infty} \Lambda_{2, j}
$$

Suppose $x \in\left[-j_{0}, j_{0}\right]$ and $j_{0} \geq 10$. Then for $j \geq j_{0}$ from $x+\lambda \in \bar{U}_{j}$ it follows that $2^{j}-1<x+\lambda \leq j+\lambda$, and hence

$$
\lambda>2^{j}-j-1>2^{j-1}+2(j-1) .
$$

Similarly, $x+\lambda \in \bar{U}_{j}$ implies $2^{j}+1>x+\lambda \geq-j+\lambda$, and hence

$$
\lambda<2^{j}+j+1<2^{j}+2 j .
$$

Thus from $x+\lambda \in \bar{U}_{j}$ it follows that $\lambda \in \Lambda_{2, j}$. Since the length of \bar{U}_{j} is less than $2 \cdot 2^{-2^{j}}<2^{-j}$ there is at most one $\lambda \in \Lambda_{2, j}$ for which $f_{j}(x+\lambda) \neq 0$ and for this λ we have $f_{j}(x+\lambda)=2^{-j}$.

Put $M_{x}=\max \{10,|x|\}$. Then

$$
\sum_{\lambda \in \Lambda_{2}} \sum_{j=1}^{\infty} f_{j}(x+\lambda)=\sum_{\lambda \in \Lambda_{2}} \sum_{j=1}^{M_{x}} f_{j}(x+\lambda)+\sum_{j=M_{x}+1}^{\infty} \sum_{\lambda \in \Lambda_{2}} f_{j}(x+\lambda)
$$

$$
\leq \sum_{\lambda \in \Lambda_{2}} \sum_{j=1}^{M_{x}} f_{j}(x+\lambda)+\sum_{j=M_{x}+1}^{\infty} 2^{-j}<+\infty
$$

In Theorem 2.1 we verified that for decreasing gap asymptotically dense sets $D(f, \Lambda)$ can contain an open set, while $C(f, \Lambda)$ equals the complement of this open set only almost everywhere.

The next example shows that one can define decreasing gap asymptotically dense Λ s for which one can find nonnegative continuous f s such that both $C(f, \Lambda)$ and $D(f, \Lambda)$ have interior points.

Theorem 3.3. There exists a decreasing gap asymptotically dense Λ and an $f \in$ $C_{0}^{+}(\mathbb{R})$ such that $I_{1}=[0,1] \subset D(f, \Lambda)$ and $I_{2}=[4,5] \subset C(f, \Lambda)$.

Proof. Put $f(x)=2^{-2^{j+1}}$ if $x \in[10 j, 10 j+1]$ for a $j \in \mathbb{N}$. Set $f(x)=0$ if $x \in\{10 j-1 / 4,10 j+5 / 4\}$ for a $j \in \mathbb{N}$, and also put $f(x)=0$ for $x \leq 0$. We suppose that f is linear on the intervals where we have not defined it so far. Put $\Lambda_{1, j}=\left\{k \cdot 2^{-2^{j}}: k \in \mathbb{Z}\right\} \cap[10 j-10,10 j-2)$ and $\Lambda_{2, j}=\left\{k \cdot 2^{-2^{j+1}}: k \in\right.$ $\mathbb{Z}\} \cap[10 j-2,10 j)$. Let $\Lambda=\bigcup_{j=1}^{\infty}\left(\Lambda_{1, j} \cup \Lambda_{2, j}\right)$. Observe that Λ is a decreasing gap asymptotically dense set.

One can see that for $x \in I_{1}$ we have

$$
\sum_{\lambda \in \Lambda} f(x+\lambda) \geq \sum_{j=1}^{\infty} 2^{2^{j+1}} \cdot 2^{-2^{j+1}}=+\infty
$$

and for $x \in I_{2}$

$$
\sum_{\lambda \in \Lambda} f(x+\lambda) \leq \sum_{j=1}^{\infty} 2 \cdot 2^{2^{j}} \cdot 2^{-2^{j+1}}<+\infty .
$$

It is also clear from the construction that $\lim _{x \rightarrow \infty} f(x)=0$.
Observe that in the above construction $I_{1} \subset D(f, \Lambda)$ was to the left of $I_{2} \subset C(f, \Lambda)$. The next theorem shows that for decreasing gap asymptotically dense Λ s and continuous functions this situation cannot be improved. If x is an interior point of $C(f, \Lambda)$ then the half-line $[x, \infty)$ intersects $D(f, \Lambda)$ in a set of measure zero. As Theorem 3.1 shows if we do not assume that Λ is of decreasing gap then it is possible that $D(f, \Lambda)$ has a part of positive measure, even to the right of the interior points of $C(f, \Lambda)$.

Theorem 3.4. Let Λ be a decreasing gap and asymptotically dense set, and let $f: \mathbb{R} \rightarrow[0,+\infty)$ be continuous. Then if x is an interior point of $C(f, \Lambda)$ then

$$
\begin{equation*}
\mu([x,+\infty) \cap D(f, \Lambda))=0 \tag{50}
\end{equation*}
$$

Proof. Proceeding towards a contradiction assume the existence of a non-degenerate closed interval $I \subset C(f, \Lambda)$. Suppose that there is a bounded subset $D_{1}(f, \Lambda) \subset D(f, \Lambda)$ with positive measure to the right of I. Choose an interval $J=\left[a_{J}, b_{J}\right]$ to the right of I such that

$$
\begin{equation*}
\mu(J)=\mu(I) / 10, \text { and } \mu(J \cap D(f, \Lambda))=\alpha>0 . \tag{51}
\end{equation*}
$$

We put $D_{1}(f, \Lambda)=J \cap D(f, \Lambda)$. We suppose that $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ is indexed in an increasing order. Select N such that

$$
\begin{equation*}
\lambda_{n}-\lambda_{n-1}<\frac{\mu(I)}{100} \text { for } n \geq N \tag{52}
\end{equation*}
$$

We clearly have that $\sum_{i=N}^{\infty} f\left(x+\lambda_{i}\right)$ diverges on $D_{1}(f, \Lambda)$. Moreover, if $n \in \mathbb{N}$, which is to be fixed later, for large enough M we have $\sum_{i=N}^{M} f\left(x+\lambda_{i}\right)>n$ in a set $D_{2}(f, \Lambda) \subset D_{1}(f, \Lambda)$ of measure larger than $\frac{\alpha}{2}$. Hence we have

$$
\begin{equation*}
\int_{D_{2}(f, \Lambda)} \sum_{i=N}^{M} f\left(x+\lambda_{i}\right) d x \geq \frac{n \alpha}{2} . \tag{53}
\end{equation*}
$$

Assume that $i \in\{N, N+1, \ldots, M\}$. We choose $\gamma(i)$ such that

$$
\begin{equation*}
a_{J}+\lambda_{i}-\lambda_{\gamma(i)} \in I, \text { but } a_{J}+\lambda_{i}-\lambda_{\gamma(i)+1} \notin I . \tag{54}
\end{equation*}
$$

Since a_{J} is to the right of I it is clear that $\lambda_{\gamma(i)}>\lambda_{i}$, therefore $\gamma(i)>i \geq N$ and hence (52) implies that $\gamma(i)$ is well-defined, that is (54) can be satisfied.

It is also clear that there exists \widetilde{M} such that $\gamma(i) \leq \widetilde{M}$ holds for $i \in\{N, N+$ $1, \ldots, M\}$.

By (51), (52), and (54) we have

$$
\begin{equation*}
J+\lambda_{i}-\lambda_{\gamma(i)} \subset I \text { and hence } D_{2}(f, \Lambda)+\lambda_{i}-\lambda_{\gamma(i)} \subset I . \tag{55}
\end{equation*}
$$

Next we verify that

$$
\begin{equation*}
\text { if } i^{\prime} \neq i \text { then } \gamma\left(i^{\prime}\right) \neq \gamma(i) . \tag{56}
\end{equation*}
$$

Indeed, we can suppose that $i^{\prime}<i$, and proceeding towards a contradiction we also suppose that $\gamma\left(i^{\prime}\right)=\gamma(i)$. We know that $a_{J}+\lambda_{i}-\lambda_{\gamma(i)} \in I$, moreover $a_{J}+\lambda_{i^{\prime}}-\lambda_{\gamma\left(i^{\prime}\right)} \in I$ holds as well. Since $\gamma(i)=\gamma\left(i^{\prime}\right)$ we have

$$
a_{J}+\lambda_{i^{\prime}}-\lambda_{\gamma\left(i^{\prime}\right)}=a_{J}+\lambda_{i}-\lambda_{\gamma(i)}-\lambda_{i}+\lambda_{i^{\prime}} \in I .
$$

Using the first half of (54) and $\lambda_{i^{\prime}} \leq \lambda_{i-1}<\lambda_{i}$ we also obtain

$$
a_{J}+\lambda_{i}-\lambda_{\gamma(i)}-\lambda_{i}+\lambda_{i^{\prime}} \leq a_{J}+\lambda_{i}-\lambda_{\gamma(i)}-\lambda_{i}+\lambda_{i-1} \in I .
$$

Since Λ is of decreasing gap and $\gamma(i)>i$ we have $\lambda_{\gamma(i)+1}-\lambda_{\gamma(i)}<\lambda_{i}-\lambda_{i-1}$, and hence

$$
a_{J}+\lambda_{i}-\lambda_{\gamma(i)}-\lambda_{i}+\lambda_{i-1}<a_{J}+\lambda_{i}-\lambda_{\gamma(i)}-\lambda_{\gamma(i)+1}+\lambda_{\gamma(i)} \in I,
$$

which contradicts (54).
By using (555) and (56) we infer

$$
\begin{gather*}
\int_{D_{2}(f, \Lambda)} \sum_{i=N}^{M} f\left(x+\lambda_{i}\right) d x=\sum_{i=N}^{M} \int_{D_{2}(f, \Lambda)} f\left(x+\lambda_{i}-\lambda_{\gamma(i)}+\lambda_{\gamma(i)}\right) d x \tag{57}\\
=\sum_{i=N}^{M} \int_{D_{2}(f, \Lambda)+\lambda_{i}-\lambda_{\gamma(i)}} f\left(t+\lambda_{\gamma(i)}\right) d t \leq \int_{I} \sum_{j=N}^{\widetilde{M}} f\left(t+\lambda_{j}\right) d t .
\end{gather*}
$$

Thus by (53) we obtain

$$
\int_{I} \sum_{i=N}^{\widetilde{M}} f\left(x+\lambda_{i}\right) d x \geq \frac{n \alpha}{2},
$$

as the left-handside by (57) gives an upper bound for the integral in (53). However, $\sum_{i=N}^{\widetilde{M}} f\left(x+\lambda_{i}\right)$ is continuous, which yields that this integrand is at least $\frac{n \alpha}{4 \mu(I)}$ in a non-degenerate closed subinterval $I_{1} \subset I$. Thus we have $s(x)=\sum_{\lambda \in \Lambda} f(x+\lambda)>$ $\frac{n \alpha}{4 \mu(I)}$ in I_{1}. Hence, if we choose n to be large enough, we find that $s(x)>1$ in I_{1}.

Now by applying the very same argument to I_{1} instead of I, we might obtain that $s(x)>\frac{n_{1} \alpha}{4 \mu\left(I_{1}\right)}$ in a non-degenerate closed subinterval $I_{2} \subset I_{1}$. Thus if we choose n_{1} to be large enough, we find that $s(x)>2$ in I_{2}. Proceeding recursively we obtain a nested sequence of closed intervals I_{1}, I_{2}, \ldots such that $s(x)>k$ for $x \in I_{k}$. As this system of intervals has a nonempty intersection, we find that there is a point in I with $s(x)=\infty$, a contradiction.

4 Acknowledgements

During the Fall semester of 2018, when this paper was prepared all three authors visited the Institut Mittag-Leffler in Djursholm and participated in the semester Fractal Geometry and Dynamics. We thank the hospitality and financial support of the Institut Mittag-Leffler. Z. Buczolich also thanks the Rényi Institute where he was a visiting researcher for the academic year 2017-18.

References

[1] Z. Buczolich, J-P. Kahane and R. D. Mauldin, On series of translates of positive functions, Acta Math. Hungar., 93(3) (2001), 171-188.
[2] Z. Buczolich, J-P. Kahane, and R. D. Mauldin, Sur les séries de translatées de fonctions positives. C. R. Acad. Sci. Paris Sér. I Math., 329(4):261-264, 1999.
[3] Z. Buczolich and R. D. Mauldin, On the convergence of $\sum_{n=1}^{\infty} f(n x)$ for measurable functions. Mathematika, 46(2):337-341, 1999.
[4] Z. Buczolich and R. D. Mauldin, On series of translates of positive functions II., Indag. Mathem., N. S., 12 (3), (2001), 317-327.
[5] J.A. Haight, A linear set of infinite measure with no two points having integral ratio, Mathematika 17(1970), 133-138.
[6] J.A. Haight, A set of infinite measure whose ratio set does not contain a given sequence, Mathematika 22(1975), 195-201.
[7] C. G. Lekkerkerker, Lattice points in unbounded point sets, I. Indag. Math., 20 (1958) 197-205.
[8] H. v. Weizsäcker, Zum Konvergenzverhalten der Reihe $\sum_{n=1}^{\infty} f(n t)$ für λ messbare Funktionen $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, Diplomarbeit, Universität München, 1970.

[^0]: *Research supported by the Hungarian National Research, Development and Innovation Office-NKFIH, Grant 124003.
 ${ }^{\dagger}$ This author was supported by the ÚNKP-17-2 New National Excellence of the Hungarian Ministry of Human Capacities, and by the Hungarian National Research, Development and Innovation Office-NKFIH, Grant 124003.
 ${ }^{\ddagger}$ This author was supported by the Hungarian National Research, Development and Innovation Office-NKFIH, Grant 124749.

 Mathematics Subject Classification: Primary : 28A20, Secondary : 40A05.
 Keywords: almost everywhere convergence, asymptotically dense, Borel-Cantelli lemma.

