On series of translates of positive functions III

Zoltán Buczolich, Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: buczo@cs.elte.hu

www.cs.elte.hu/~buczo ORCID Id: 0000-0001-5481-8797

Balázs Maga[†], Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: magab@cs.elte.hu

www.cs.elte.hu/ \sim magab

and

Gáspár Vértesy; Department of Analysis, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: vertesy.gaspar@gmail.com

January 30, 2018

^{*}Research supported by the Hungarian National Research, Development and Innovation Office-NKFIH, Grant 124003.

[†]This author was supported by the ÚNKP-17-2 New National Excellence of the Hungarian Ministry of Human Capacities, and by the Hungarian National Research, Development and Innovation Office–NKFIH, Grant 124003.

[‡]This author was supported by the Hungarian National Research, Development and Innovation Office–NKFIH, Grant 124749.

Mathematics Subject Classification: Primary: 28A20, Secondary: 40A05.

 $^{{\}it Keywords:}\ {\it almost}\ {\it everywhere}\ {\it convergence},\ {\it asymptotically}\ {\it dense},\ {\it Borel-Cantelli}\ {\it lemma.}$

Abstract

Suppose Λ is a discrete infinite set of nonnegative real numbers. We say that Λ is of type 1 if the series $s(x) = \sum_{\lambda \in \Lambda} f(x+\lambda)$ satisfies a zero-one law. This means that for any non-negative measurable $f: \mathbb{R} \to [0, +\infty)$ either the convergence set $C(f, \Lambda) = \{x: s(x) < +\infty\} = \mathbb{R}$ modulo sets of Lebesgue zero, or its complement the divergence set $D(f, \Lambda) = \{x: s(x) = +\infty\} = \mathbb{R}$ modulo sets of measure zero. If Λ is not of type 1 we say that Λ is of type 2.

In this paper we show that there is a universal Λ with gaps monotone decreasingly converging to zero such that for any open subset $G \subset \mathbb{R}$ one can find a characteristic function f_G such that $G \subset D(f_G, \Lambda)$ and $C(f_G, \Lambda) = \mathbb{R} \setminus G$ modulo sets of measure zero.

We also consider the question whether $C(f, \Lambda)$ can contain non-degenerate intervals for continuous functions when $D(f, \Lambda)$ is of positive measure.

The above results answer some questions raised in a paper of Z. Buczolich, J-P. Kahane, and D. Mauldin.

1 Introduction

This paper was written for the Kahane memorial volume of Analysis Mathematica. We selected a topic related to Jean-Pierre Kahane's work and decided to answer some questions raised in paper [1] by Z. Buczolich, J-P. Kahane, and D. Mauldin.

This line of research was started in another joint paper with Dan Mauldin [3]. In that paper we considered a problem from 1970, originating from the Diplomarbeit of Heinrich von Weizsäker [8].

Suppose $f:(0,+\infty)\to\mathbb{R}$ is a measurable function. Is it true that $\sum_{n=1}^{\infty}f(nx)$ either converges (Lebesgue) almost everywhere or diverges almost everywhere, i.e. is there a zero-one law for $\sum f(nx)$?

This question also appeared in a paper of J. A. Haight [5].

In [5] it was proved that there exists a set $H \subset (0, \infty)$ of infinite measure, for which for all $x, y \in H$, $x \neq y$ the ratio x/y is not an integer, and furthermore

(†) for all x > 0 $nx \notin H$ if n is sufficiently large.

This implies that if $f(x) = \chi_H(x)$, the characteristic function of H then $\int_0^\infty f(x)dx = \infty$ and $\sum_{n=1}^\infty f(nx) < \infty$ everywhere.

Lekkerkerker in [7] started to study sets with property (†).

In [3] we answered the Haight–Weizsäker problem.

Theorem 1.1. There exists a measurable function $f:(0,+\infty)\to\{0,1\}$ and two nonempty intervals I_F , $I_\infty\subset[\frac{1}{2},1)$ such that for every $x\in I_\infty$ we have $\sum_{n=1}^\infty f(nx)=$

 $+\infty$ and for almost every $x \in I_F$ we have $\sum_{n=1}^{\infty} f(nx) < +\infty$. The function f is the characteristic function of an open set E.

Jean-Pierre Kahane was interested in this problem and soon after our paper had become available we started to receive faxes and emails from him. This cooperation lead to papers [1] and [2].

We considered a more general, additive version of the Haight–Weizsäker problem. Since $\sum_{n=1}^{\infty} f(nx) = \sum_{n=1}^{\infty} f(e^{\log x + \log n})$, that is using the function $h = f \circ \exp$ defined on \mathbb{R} and $\Lambda = \{\log n : n = 1, 2, ...\}$ we were interested in almost everywhere convergence questions of the series $\sum_{\lambda \in \Lambda} h(x + \lambda)$.

Taking more general sets than $\Lambda = \{\log n : n = 1, 2, ...\}$ was also motivated by a paper, [6] of Haight. He proved, using the original multiplicative notation of our problem that if $\Lambda \subset [0, +\infty)$ is an arbitrary countable set such that its only accumulation point is $+\infty$ then there exists a measurable set $E \subset (0, +\infty)$ of infinite measure such that for all $x, y \in E, x \neq y, x/y \notin \Lambda$, and for a fixed x there exist only finitely many $\lambda \in \Lambda$ for which $\lambda x \in E$. This implies that choosing $f = \chi_E$ we have $\sum_{\lambda \in \Lambda} f(\lambda x) < \infty$, but $\int_{\mathbb{R}^+} f(x) dx = \infty$.

Next we recall from [1] the definition of type 1 and type 2 sets. Given Λ an unbounded, infinite discrete set of nonnegative numbers, and a measurable $f: \mathbb{R} \to [0, +\infty)$, we consider the sum

$$s(x) = \sum_{\lambda \in \Lambda} f(x + \lambda),$$

and the complementary subsets of \mathbb{R} :

$$C = C(f, \Lambda) = \{x : s(x) < \infty\}, \qquad D = D(f, \Lambda) = \{x : s(x) = \infty\}.$$

Definition 1.2. The set Λ is of type 1 if, for every f, either $C(f,\Lambda) = \mathbb{R}$ a.e. or $C(f,\Lambda) = \emptyset$ a.e. (or equivalently $D(f,\Lambda) = \emptyset$ a.e. or $D(f,\Lambda) = \mathbb{R}$ a.e.). Otherwise, Λ has type 2.

That is for type 1 sets we have a "zero-one" law for the almost everywhere convergence properties of the series $\sum_{\lambda \in \Lambda} f(x+\lambda)$, while for type 2 sets the situation is more complicated.

Definition 1.3. The unbounded, infinite discrete set $\Lambda = \{\lambda_1, \lambda_2, ...\}$, $\lambda_1 < \lambda_2 < ...$ is asymptotically dense if $d_n = \lambda_n - \lambda_{n-1} \to 0$, or equivalently:

$$\forall a > 0, \quad \lim_{x \to \infty} \#(\Lambda \cap [x, x + a]) = \infty.$$

If d_n tends to zero monotone decreasingly, we speak about decreasing gap asymptotically dense sets.

If Λ is not asymptotically dense we say that it is asymptotically lacunary.

We denote the non-negative continuous functions on \mathbb{R} by $C^+(\mathbb{R})$, and if, in addition these functions tend to zero in $+\infty$ they belong to $C_0^+(\mathbb{R})$.

In [1] we gave some necessary and some sufficient conditions for a set Λ being of type 2. A complete characterization of type 2 sets is still unknown. We recall here from [1] the theorem concerning the Haight–Weizsäker problem. This contains the additive version of the result of Theorem 1.1 with some additional information.

Theorem 1.4. The set $\Lambda = \{\log n : n = 1, 2, ...\}$ has type 2. Moreover, for some $f \in C_0^+(\mathbb{R}), C(f, \Lambda)$ has full measure on the half-line $(0, \infty)$ and $D(f, \Lambda)$ contains the half-line $(-\infty, 0)$. If for each $c, \int_c^{+\infty} e^y g(y) dy < +\infty$, then $C(g, \Lambda) = \mathbb{R}$ a.e. If $g \in C_0^+(\mathbb{R})$ and $C(g, \Lambda)$ is not of the first (Baire) category, then $C(g, \Lambda) = \mathbb{R}$ a.e. Finally, there is some $g \in C_0^+(\mathbb{R})$ such that $C(g, \Lambda) = \mathbb{R}$ a.e. and $\int_0^{+\infty} e^y g(y) dy = +\infty$.

As Λ used in the above theorem is a decreasing gap asymptotically dense set and quite often it is much easier to construct examples with lacunary Λ s, in our paper we try to give examples with a decreasing gap asymptotically dense Λ .

One might believe that for type 2 Λ s $C(f,\Lambda)$, or $D(f,\Lambda)$ are always half-lines if they differ from \mathbb{R} . Indeed in [1] we obtained results in this direction. A number t>0 is called a translator of Λ if $(\Lambda+t)\backslash\Lambda$ is finite. Condition (*) is said to be satisfied if $T(\Lambda)$, the countable additive semigroup of translators of Λ , is dense in \mathbb{R}^+ . We showed that condition (*) implies that $C(f,\Lambda)$ is either \emptyset , \mathbb{R} , or a right half-line modulo sets of measure zero.

In [4] we showed that this is not always the case. For a given $\alpha \in (0,1)$ and a sequence of natural numbers $n_1 < n_2 < ...$ we put $\Lambda^{\alpha^k} := \bigcup_{k=1}^{\infty} \Lambda_k^{\alpha^k}$, $\Lambda_k^{\alpha^k} = \alpha^k \mathbb{Z} \cap [n_k, n_{k+1})$.

If $\alpha = \frac{1}{q}$ for some $q \in \{2, 3, ...\}$, then a slight modification of the proof of Theorem 1 of [1] shows that $\Lambda^{(\frac{1}{q})^k}$ is of type 1 and condition (*) is satisfied.

If $\alpha \notin \mathbb{Q}$, then one can apply Theorem 5 of [1] to show that Λ^{α^k} is of type 2. The difficult case is when $\alpha = \frac{p}{q}$ with (p,q) = 1, p,q > 1, p < q. In this case

we showed that $\Lambda^{(\frac{p}{q})^k}$ is of type 2. In the cases $\Lambda^{(\frac{p}{q})^k}$, (p > 1) condition (*) is not satisfied and we also showed in [4] that there exists a characteristic function f such that $C(f,\Lambda)$ does not equal \emptyset , \mathbb{R} , or a right half-line modulo sets of measure zero. This structure of $C(f,\Lambda)$ had not been seen before our paper [4].

From the point of view of our current paper the following question (QUESTION 2 in [1]) is the most relevant:

Question 1.5. Given open sets G_1 and G_2 when is it possible to find Λ and f such that $C(f,\Lambda)$ contains G_1 and $D(f,\Lambda)$ contains G_2 ?

It was remarked in [1] that if the counting function of Λ , $n(x) = \#\{\Lambda \cap [0, x]\}$

satisfies a condition of the type

$$\forall \ell < 0 \ \forall a \in \mathbb{R} \quad \limsup_{x \to \infty} \frac{n(x + \ell + a) - n(x + a)}{n(x + \ell) - n(x)} < +\infty$$

(as is the case for $\Lambda = \{\log n\}$) then either $C(f, \Lambda)$ has full measure on \mathbb{R} or $C(f, \Lambda)$ does not contain any interval.

It was also mentioned in [1] that if Λ is asymptotically lacunary then it is possible to construct $f \in C_0^+(\mathbb{R})$ such that both $C(f,\Lambda)$ and $D(f,\Lambda)$ have interior points.

In this paper we give an almost complete answer to Question 1.5. In Section 2 we prove Theorem 2.1. This theorem states that there is a universal decreasing gap asymptotically dense Λ such that for any open subset $G \subset \mathbb{R}$ one can find a characteristic function f_G such that $G \subset D(f_G, \Lambda)$ and $C(f_G, \Lambda) = \mathbb{R} \setminus G$ modulo sets of measure zero. We also show that one can also select a $g_G \in C_0^+(\mathbb{R})$ with similar properties.

In Section 3 we consider the question of subintervals in $C(f,\Lambda)$ when $f \in C_0^+(\mathbb{R})$. In Theorem 3.1 we prove that there exists a universal asymptotically dense infinite discrete set Λ such that for any open set $G \subset \mathbb{R}$ one can select an $f_G \in C_0^+(\mathbb{R})$ such that $D(f_G,\Lambda) = G$. In this case there is no exceptional set of measure zero, $D(f_G,\Lambda)$ equals G exactly. On the other hand, Λ is not of decreasing gap. As Theorem 3.4 shows it is impossible to find such a universal Λ with decreasing gaps. In Theorem 3.4 we prove that if Λ is a decreasing gap asymptotically dense set, $f \in C^+(\mathbb{R})$ and x is an interior point of $C(f,\Lambda)$ then $[x,+\infty) \cap D(f,\Lambda)$ is of zero Lebesgue measure.

The example provided in Theorem 3.3 demonstrates that there is a decreasing gap asymptotically dense Λ and an $f \in C_0^+(\mathbb{R})$ such that $D(f,\Lambda)$ and $C(f,\Lambda)$ both contain interior points. Of course, as Theorem 3.4 shows the interior points of $D(f,\Lambda)$ are to the left of those of $C(f,\Lambda)$.

2 A universal decreasing gap asymptotically dense Λ set

Let μ denote the one-dimensional Lebesgue measure.

We denote by $\mathbb{N} := \{n \in \mathbb{Z} : n \geq 1\}$ the set of natural numbers. For every $A, B \subset \mathbb{R}$ we put $A + B := \{a + b : a \in A \text{ and } b \in B\}$ and $A - B := \{a - b : a \in A \text{ and } b \in B\}$.

The integer, and fractional parts of $x \in \mathbb{R}$ are denoted by $\lfloor x \rfloor$ and $\{x\}$, respectively.

Theorem 2.1. There is a strictly monotone increasing unbounded sequence $(\lambda_0, \lambda_1, \ldots) = \Lambda$ in \mathbb{R} such that $\lambda_n - \lambda_{n-1}$ tends to 0 monotone decreasingly, that is Λ is a decreasing gap asymptotically dense set, such that for every open set $G \subset \mathbb{R}$ there is a function $f_G : \mathbb{R} \to [0, +\infty)$ for which

$$\mu\left(\left\{x \notin G : \sum_{n=0}^{\infty} f_G(x+\lambda_n) = \infty\right\}\right) = 0, \text{ and}$$
(1)

$$\sum_{n=0}^{\infty} f_G(x + \lambda_n) = \infty \text{ for every } x \in G,$$
(2)

moreover $f_G = \chi_{U_G}$ for a closed set $U_G \subset \mathbb{R}$. By (1) and (2) we have $D(f_G, \Lambda) \supset G$, and $C(f_G, \Lambda) = \mathbb{R} \backslash G$ modulo sets of measure zero.

One can also select a $g_G \in C_0^+(\mathbb{R})$ satisfying (1) and (2) instead of f_G .

Remark 2.2. Observe that in the above theorem we construct a universal Λ and for this set, depending on our choice of G we can select a suitable f_G such that $D(f_G, \Lambda) = G$ modulo sets of measure zero.

Proof. Let

$$\mathcal{I} := \{(j,k) : j \in \mathbb{N} \text{ and } k \in \mathbb{Z} \cap [0,2j \cdot 2^j)\}$$

with the following lexicographical ordering: if $(j,k), (\widetilde{j},\widetilde{k}) \in \mathcal{I}$ then

$$(j,k) <_{\mathcal{I}} (\widetilde{j},\widetilde{k}) \Leftrightarrow (j < \widetilde{j} \text{ or } (j = \widetilde{j} \text{ and } k < \widetilde{k})).$$

Given $(j,k) \in \mathcal{I}$ we define its immediate successor (\hat{j},\hat{k}) the following way: let $\hat{j} := j$ and $\hat{k} := k+1$ if $k < 2j \cdot 2^j - 1$, and let $\hat{j} := j+1$ and $\hat{k} := 0$ if $k = 2j \cdot 2^j - 1$. It is clear that starting with (1,0) by repeated application of taking the immediate successor we can enumerate \mathcal{I} and hence we will be able to do induction on \mathcal{I} . We will also introduce the operation of taking the predecessor of $(j,k) \neq (1,0)$ which will be denoted by (\check{j},\check{k}) and which is defined by the property $(\hat{j},\hat{k}) = (j,k)$.

For every $(j, k) \in \mathcal{I}$ let

$$I_{j,k} := [j - (k+1)2^{-j}, j - k2^{-j}] = [a_{I_{j,k}}, b_{I_{j,k}}].$$

In (6) a set $U_{j,k}$ will be defined such that with a properly selected Λ we have

$$I_{j,k} \subset U_{j,k} - \Lambda = \{x \in \mathbb{R} : \exists n \in \mathbb{N} \cup \{0\} \text{ such that } x + \lambda_n \in U_{j,k}\} \text{ and}$$
 (3)

$$\mu(\lbrace x \in [-j, j] : \exists \text{ infinitely many } (j^*, k^*) \in \mathcal{I}$$
for which $x \in (U_{i^* k^*} - \Lambda) \setminus I_{j^* k^*} \rbrace) = 0.$

$$(4)$$

Figure 1: Definition of $I_{j,k}$ and $U_{j,k}$

Let G be an arbitrary open subset of \mathbb{R} and let

$$U_G := \bigcup \{U_{j^*,k^*} : (j^*,k^*) \in \mathcal{I} \text{ and } I_{j^*,k^*} \subset G\}.$$

Put

$$f_G(x) := \begin{cases} 1 & \text{if } x \in U_G \\ 0 & \text{else} \end{cases}$$
 (5)

We will prove that Λ and f_G satisfy the conditions of the theorem.

Now we define the sets $U_{j,k}$. Before doing this we recall and introduce some notation. For every $(j,k) \in \mathcal{I}$ let

- $a_{I_{j,k}} := j (k+1) \cdot 2^{-j}$ (that is $a_{I_{j,k}}$ is the left endpoint of $I_{j,k}$),
- ullet $b_{I_{j,k}}:=j-k\cdot 2^{-j}$ (that is $b_{I_{j,k}}$ is the right endpoint of $I_{j,k}$),
- $E_{j,k} := 2^{-2j \cdot 2^j k}$,
- $\bullet \ a_{j,k} := 2^{2j \cdot 2^j + k},$
- $\bullet \ b_{j,k} := a_{j,k} + E_{j,k}.$

See Figure 1. This and the other figure in this paper are to illustrate concepts and they are not drawn to illustrate a certain step, for example with a fixed j of our construction.

Let

$$U_{j,k} := \bigcup_{i=0}^{E_{j,k}^{-1}-1} [a_{j,k} + iE_{j,k}^2, a_{j,k} + iE_{j,k}^2 + E_{j,k}^3] \subset [a_{j,k}, b_{j,k}].$$
 (6)

Next we prove a useful lemma:

Lemma 2.3. For every $(j,k) \in \mathcal{I}$ we have

$$a_{j,k} \le \frac{a_{\hat{j},\hat{k}}}{2} \text{ and } E_{j,k} \ge 2E_{\hat{j},\hat{k}},$$
 (7)

moreover,

$$E_{j,k}/2$$
 is an integer multiple of $E_{\hat{j},\hat{k}}$. (8)

Proof. It is enough to prove (7) for $a_{j,k}$ as $E_{j,k} = a_{j,k}^{-1}$.

First suppose that $k < 2j \cdot 2^j - 1$, then $\hat{j} = j$, $\hat{k} = k + 1$ and

$$a_{j,k} = 2^{2j \cdot 2^j + k} = \frac{2^{2j \cdot 2^j + (k+1)}}{2} = \frac{a_{\hat{j},\hat{k}}}{2}.$$
 (9)

If $k = 2j \cdot 2^{j} - 1$ then $\hat{j} = j + 1$, $\hat{k} = 0$ and

$$a_{j,k} = 2^{2j \cdot 2^j + k} = 2^{2j \cdot 2^j + 2j \cdot 2^j - 1} = 2^{4j2^j - 1} = \frac{2^{2(j+1) \cdot 2^{(j+1)}}}{2^{2 \cdot 2^{j+1} + 1}} = \frac{a_{\hat{j},\hat{k}}}{2^{2 \cdot 2^{j+1} + 1}}.$$
 (10)

Using
$$E_{j,k} = a_{j,k}^{-1}$$
 from (9) and (10) it follows that (8) holds.

Next we turn to the definition of Λ .

During the definition of Λ we will use the notation $d_n := \lambda_n - \lambda_{n-1}$, in fact, often we will define d_n and that will provide the value of λ_n given the already defined λ_{n-1} . Let $\lambda_0 := a_{1,0} - b_{I_{1,0}}$ and $n_{0,1,0} = 0$.

Suppose that for a $(j, k) \in \mathcal{I}$ we have already defined $n_{0,j,k}$ and λ_n for $n \leq n_{0,j,k}$, $\lambda_{n_{0,j,k}} = a_{j,k} - b_{I_{j,k}}$ and $d_{n_{0,j,k}}/E_{j,k}^2$ is a positive integer (or $n_{0,j,k} = 0$). Now we need to do our next step to define these objects for (\hat{j}, \hat{k}) .

Step (\hat{j}, \hat{k}) . Let $n_{1,j,k} := n_{0,j,k} + 2^{-j} E_{j,k}^{-2} + 2 E_{j,k}^{-1}$. For every integer $n \in [n_{0,j,k} + 1, n_{1,j,k}]$ let $d_n := E_{j,k}^2 - E_{j,k}^3$. Thus we have

$$\lambda_{n_{1,j,k}} = \lambda_{n_{0,j,k}} + (2^{-j}E_{j,k}^{-2} + 2E_{j,k}^{-1})(E_{j,k}^{2} - E_{j,k}^{3})$$

$$= a_{j,k} - b_{I_{j,k}} + 2^{-j} - 2^{-j}E_{j,k} + 2E_{j,k} - 2E_{j,k}^{2}$$

$$= a_{j,k} - a_{I_{j,k}} + 2E_{j,k} - 2^{-j}E_{j,k} - 2E_{j,k}^{2}$$

$$= b_{j,k} - a_{I_{j,k}} + E_{j,k} - 2^{-j}E_{j,k} - 2E_{j,k}^{2} \ge b_{j,k} - a_{I_{j,k}}$$
(11)

and (from the second row of (11))

$$\lambda_{n_{1,j,k}} = a_{j,k} - b_{I_{j,k}} + 2^{-j} - 2^{-j} E_{j,k} + 2E_{j,k} - 2E_{j,k}^2 < a_{j,k} - b_{I_{j,k}} + 1.$$
 (12)

Since $a_{j,k} - a_{I_{j,k}} = 2^{2j \cdot 2^j + k} - (j - k \cdot 2^{-j})$ and $2^{-j}E_{j,k}$ are both integer multiples of $E_{j,k}^2 = (2^{-2j \cdot 2^j - k})^2$ from the third row of (11) we obtain that

$$\lambda_{n_{1,j,k}}$$
 is an integer multiple of $E_{j,k}^2$. (13)

By Lemma 2.3 and (12) we have

$$a_{\hat{j},\hat{k}} - b_{I_{\hat{j},\hat{k}}} \ge 2a_{j,k} - (j+1) \ge a_{j,k} + j + 1 > a_{j,k} - b_{I_{j,k}} + 1 > \lambda_{n_{1,j,k}}.$$

We set

$$n_{0,\hat{j},\hat{k}} = n_{1,j,k} + \frac{a_{\hat{j},\hat{k}} - b_{I_{\hat{j},\hat{k}}} - \lambda_{n_{1,j,k}}}{2^{-1}E_{j,k}^2}$$
(14)

and

$$d_n = E_{i,k}^2/2$$
 for every integer $n \in (n_{1,j,k}, n_{0,\hat{i},\hat{k}}].$ (15)

We obtain by (14)

$$\lambda_{n_{0,\hat{\jmath},\hat{k}}} = \lambda_{n_{1,j,k}} + \frac{(n_{0,\hat{\jmath},\hat{k}} - n_{1,j,k})E_{j,k}^2}{2} = \lambda_{n_{1,j,k}} + a_{\hat{\jmath},\hat{k}} - b_{I_{\hat{\jmath},\hat{k}}} - \lambda_{n_{1,j,k}} = a_{\hat{\jmath},\hat{k}} - b_{I_{\hat{\jmath},\hat{k}}},$$

and by (8), $d_{n_{0,\hat{j},\hat{k}}}=E_{j,k}^2/2$ is an integer multiple of $E_{\hat{j},\hat{k}}^2$, hence (13) implies that

$$\lambda_n$$
 is an integer multiple of $E_{\hat{j},\hat{k}}^2$ for $n \in (n_{1,j,k}, n_{0,\hat{j},\hat{k}}].$ (16)

Thus we can proceed to the next step. By repeating this procedure we can carry out the above steps for all $(j,k) \in \mathcal{I}$ and hence we can define Λ .

Now we prove (3). We fix (j,k) and choose an arbitrary point x from $I_{j,k}$. Let n_x denote the smallest integer for which

$$x + \lambda_{n_x} > a_{j,k}. \tag{17}$$

Put $n'_x := n_x + \left\lfloor \frac{x + \lambda_{n_x} - a_{j,k}}{E_{j,k}^3} \right\rfloor$. We have $x \in I_{j,k} \subset [-j,j]$. From $x + \lambda_{n_{0,j,k}} = x + a_{j,k} - b_{I_{j,k}}$ it follows that

$$x + \lambda_{n_{0,j,k}} - a_{j,k} = x - b_{I_{j,k}} \le 0.$$
(18)

Therefore, $n_x > n_{0,j,k}$ and hence

$$d_n \le d_{n_{0,j,k}+1} = E_{j,k}^2 - E_{j,k}^3 \text{ for every } n \in [n_x, \infty).$$
 (19)

By minimality of n_x we have

$$x + \lambda_{n_x} - a_{j,k} \le d_{n_x} \le E_{j,k}^2 - E_{j,k}^3.$$
 (20)

Next we will show that $x + \lambda_{n'_x} \in U_{j,k}$. Using (19)

$$0 \le \left| \frac{x + \lambda_{n_x} - a_{j,k}}{E_{j,k}^3} \right| \le \frac{d_{n_x}}{E_{j,k}^3} \le \frac{E_{j,k}^2 - E_{j,k}^3}{E_{j,k}^3} = E_{j,k}^{-1} - 1.$$
 (21)

We also infer

$$x + \lambda_{n'_{x}} = x + \lambda_{n_{x}} + \sum_{n \in (n_{x}, n'_{x}]} d_{n} \leq x + \lambda_{n_{x}} + \left[\frac{x + \lambda_{n_{x}} - a_{j,k}}{E_{j,k}^{3}} \right] (E_{j,k}^{2} - E_{j,k}^{3})$$

$$= a_{j,k} + (x + \lambda_{n_{x}} - a_{j,k}) + \left[\frac{x + \lambda_{n_{x}} - a_{j,k}}{E_{j,k}^{3}} \right] (E_{j,k}^{2} - E_{j,k}^{3})$$

$$= a_{j,k} + \left[\frac{x + \lambda_{n_{x}} - a_{j,k}}{E_{j,k}^{3}} \right] E_{j,k}^{2} + E_{j,k}^{3} \left\{ \frac{x + \lambda_{n_{x}} - a_{j,k}}{E_{j,k}^{3}} \right\}$$

$$\text{using (21)}$$

$$\leq a_{j,k} + (E_{j,k}^{-1} - 1)E_{j,k}^{2} + E_{j,k}^{3} \leq a_{j,k} + E_{j,k} = b_{j,k}.$$

$$(22)$$

From (11) and (22) we obtain

$$\lambda_{n'_x} \le b_{j,k} - x \le b_{j,k} - a_{I_{j,k}} \le \lambda_{n_{1,j,k}},$$

hence $n_x, n'_x \leq n_{1,j,k}$, which means that $d_n = E_{j,k}^2 - E_{j,k}^3$ for every $n \in (n_x, n'_x]$. This implies that the first inequality in (22) is, in fact an equality, that is

$$x + \lambda_{n'_x} = a_{j,k} + \left| \frac{x + \lambda_{n_x} - a_{j,k}}{E_{j,k}^3} \right| E_{j,k}^2 + E_{j,k}^3 \left\{ \frac{x + \lambda_{n_x} - a_{j,k}}{E_{j,k}^3} \right\}.$$
 (23)

Using (21) and (23) we can see that there exists an integer $i = \left\lfloor \frac{x + \lambda_{n_x} - a_{j,k}}{E_{j,k}^3} \right\rfloor \in [0, E_{j,k}^{-1} - 1]$ such that

$$a_{j,k} + iE_{j,k}^2 \le x + \lambda_{n'_x} \le a_{j,k} + iE_{j,k}^2 + E_{j,k}^3$$

that is $x + \lambda_{n'_x} \in U_{j,k}$, which implies (3).

We continue with the proof of (4). Suppose $(\check{j}, \check{k}), (j, k), (\hat{j}, \hat{k}) \in \mathcal{I}$. Then they are strictly monotone increasing in this order and are adjacent in the lexicographical ordering of \mathcal{I} . We have by Lemma 2.3 and the third row of (11)

$$j + \lambda_{n_{1,j,\check{k}}} = j + a_{\check{j},\check{k}} - a_{I_{\check{j},\check{k}}} + 2E_{\check{j},\check{k}} - 2^{-\check{j}}E_{\check{j},\check{k}} - 2E_{\check{j},\check{k}}^{2}$$

$$< a_{\check{j},\check{k}} + 2j + 1 \le 2a_{\check{j},\check{k}} \le a_{j,k},$$
(24)

that is $U_{j,k} - \lambda_{n_{1,j,k}}$ is to the right of j. By (16), $\lambda_n/E_{j,k}^2$ is an integer for every $n \in (n_{1,j,k}, n_{0,j,k}]$. Therefore, (24) implies that

$$B_{j,k} := [b_{j,k} - \lambda_{n_{0,j,k}}, j] \cap (U_{j,k} - \Lambda)$$

$$= [b_{j,k} - \lambda_{n_{0,j,k}}, j] \cap (U_{j,k} - \{\lambda_n : n \in (n_{1,\check{j},\check{k}}, n_{0,j,k}]\})$$

$$\subset [b_{j,k} - \lambda_{n_{0,j,k}}, j] \cap \bigcup_{i \in \mathbb{Z}} [iE_{j,k}^2, iE_{j,k}^2 + E_{j,k}^3].$$
(25)

Similarly, by using (7)

$$-j + \lambda_{n_{0,\hat{j},\hat{k}}} = -j + a_{\hat{j},\hat{k}} - b_{I_{\hat{j},\hat{k}}} > a_{\hat{j},\hat{k}} - (2j+1)$$

$$\geq 2a_{j,k} - (2j+1) \geq a_{j,k} + E_{j,k} = b_{j,k},$$
(26)

that is $U_{j,k} - \lambda_{n_{0,\hat{j},\hat{k}}}$ is to the left of -j. Since by (13) and (15) $\lambda_n / (E_{j,k}^2/2)$ is an integer for every $n \in [n_{1,j,k}, n_{0,\hat{j},\hat{k}}]$, (26) implies that

$$A_{j,k} := [-j, a_{j,k} - \lambda_{n_{1,j,k}}] \cap (U_{j,k} - \Lambda)$$

$$= [-j, a_{j,k} - \lambda_{n_{1,j,k}}] \cap \left(U_{j,k} - \{\lambda_n : n \in [n_{1,j,k}, n_{0,\hat{j},\hat{k}}]\}\right)$$

$$\subset [-j, a_{j,k} - \lambda_{n_{1,j,k}}] \cap \bigcup_{i \in \mathbb{Z}} [iE_{j,k}^2/2, iE_{j,k}^2/2 + E_{j,k}^3].$$
(27)

We want to estimate the following expression from above:

$$\mu\left(\left[-j,j\right] \cap (U_{j,k} - \Lambda) \setminus I_{j,k}\right) \\ \leq \mu\left(A_{j,k} \cup \left[a_{j,k} - \lambda_{n_{1,j,k}}, a_{I_{j,k}}\right] \cup \left[b_{I_{j,k}}, b_{j,k} - \lambda_{n_{0,j,k}}\right] \cup B_{j,k}\right).$$
(28)

By (25) and (27) we have

$$\mu (A_{j,k} \cup B_{j,k})$$

$$\leq \mu \left([-j,j] \cap \left(\bigcup_{i \in \mathbb{Z}} [iE_{j,k}^2/2, iE_{j,k}^2/2 + E_{j,k}^3] \right) \right)$$

$$= E_{j,k}^3 \frac{2j}{E_{j,k}^2/2} = 4j \cdot E_{j,k},$$
(29)

and using the third row of (11)

$$\mu\left(\left[a_{j,k} - \lambda_{n_{1,j,k}}, a_{I_{j,k}}\right]\right) = a_{I_{j,k}} - \left(a_{j,k} - \left(a_{j,k} - a_{I_{j,k}} + 2E_{j,k} - 2^{-j}E_{j,k} - 2E_{j,k}^{2}\right)\right)$$

$$= 2E_{j,k} - 2^{-j}E_{j,k} - 2E_{j,k}^{2} \le 2E_{j,k}.$$
(30)

Moreover,

$$\mu[b_{I_{j,k}}, b_{j,k} - \lambda_{n_{0,j,k}}] = b_{j,k} - (a_{j,k} - b_{I_{j,k}}) - b_{I_{j,k}} = b_{j,k} - a_{j,k} = E_{j,k}.$$
(31)

Writing (29), (30) and (31) into (28) yields

$$\mu\left(\left[-j,j\right]\cap\left(U_{j,k}-\Lambda\right)\setminus I_{j,k}\right)\leq\left(4j+3\right)\cdot E_{j,k}.\tag{32}$$

Thus

$$\sum_{(j^*,k^*)\in\mathcal{I}}\mu\left([-j,j]\cap(U_{j^*,k^*}-\Lambda)\setminus I_{j^*,k^*}\right) \tag{33}$$

$$\leq \sum_{\substack{(j^*,k^*)\in\mathcal{I}\\j^*$$

which by the Borel–Cantelli lemma implies (4).

Let G be a fixed open subset of \mathbb{R} . If $x \in G$, then $\{(j,k) \in \mathcal{I} : x \in I_{j,k} \subset G\}$ is an infinite set, hence according to (3) and (5)

$$\sum_{n=0}^{\infty} f_G(x + \lambda_n) = \infty.$$

If $x \in \mathbb{R} \setminus G$ and $\sum_{n=0}^{\infty} f_G(x + \lambda_n) = \infty$, then $\{n \in \mathbb{N} : x + \lambda_n \in U_G\}$ is an infinite set, which implies that $\{(j^*, k^*) \in \mathcal{I} : I_{j^*, k^*} \subset G \text{ and } x \in (U_{j^*, k^*} - \Lambda)\}$ is also infinite, thus (4) implies (1).

Next we see how one can modify f_G to obtain a $g_G \in C_0^+(\mathbb{R})$ still satisfying (1) and (2). In [1] there is Proposition 1, which says that one can modify f_G to obtain a $g_G \in C_0^+(\mathbb{R})$ such that $C(f_G, \lambda) = C(g_G, \lambda)$ a.e. and $D(f_G, \lambda) = D(g_G, \lambda)$ a.e. Since we want to preserve (2) we cannot change $D(f_G, \lambda)$ by an arbitrary set of measure zero. Hence in the next construction a little extra care is needed.

Put
$$\Lambda_N = \{ \lambda \in \Lambda : \lambda \le 10N \}$$
 and $L_N = \# \Lambda_N$. (34)

Observe that $U_G \cap (-\infty, 0] = \emptyset$, U_G does not contain a half-line, and $U_G \cap [0, N]$ is the union of finitely many disjoint closed intervals for any $N \in \mathbb{N}$.

Choose an open $U_G \supset U_G$ such that it does not contain a half-line, and

$$\mu((\widetilde{U}_G \backslash U_G) \cap [N-1, N]) < \frac{2^{-N}}{L_N} \text{ for any } N \in \mathbb{N}.$$
 (35)

Select a continuous function \widetilde{g}_G such that $\widetilde{g}_G(x) = f_G(x)$ for $x \in U_G$, $\widetilde{g}_G(x) = 0$ if $x \notin U_G$ and $|\widetilde{g}_G| \leq 1$. Hence $\widetilde{g}_G \geq f_G$ on \mathbb{R} , and $D(\widetilde{g}_G, \Lambda) \supset D(f_G, \Lambda) \supset G$. It is also clear that $0 \leq \tilde{g}_G - f_G \leq \chi_{\tilde{U}_G \setminus U_G} =: h_G$, and

$$\sum_{\lambda \in \Lambda} \left(\widetilde{g}_G(x+\lambda) - f_G(x+\lambda) \right) \le \sum_{\lambda \in \Lambda} h_G(x+\lambda). \tag{36}$$

Next we prove that

$$\sum_{\lambda \in \Lambda} h_G(x + \lambda) \text{ is finite almost everywhere,}$$
 (37)

yielding that $C(\widetilde{g}_G, \Lambda)$ equals $C(f_G, \Lambda)$ modulo a set of measure zero. Put $H_{G,K,\infty} = \{x \in [-K,K] : \sum_{\lambda \in \Lambda} h_G(x+\lambda) = \infty\}$. We will show that

for any
$$K > 1$$
 we have $\mu(H_{G,K,\infty}) = 0$. (38)

This clearly implies (37).

Observe that if $x \in H_{G,K,\infty}$, then there are infinitely many λ s such that $x + \lambda \in$ $U_G \setminus U_G$, that is, $x \in ((U_G \setminus U_G) - \lambda) \cap [-K, K]$. Thus, by the Borel-Cantelli lemma to prove (38) it is sufficient to show that

$$\sum_{\lambda \in \Lambda} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) - \lambda \Big) \cap [-K, K] \Big) < \infty.$$
 (39)

This is shown by the following estimate

$$\sum_{\lambda \in \Lambda} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) - \lambda \Big) \cap [-K, K] \Big) = \sum_{\lambda \in \Lambda} \sum_{N=1}^{\infty} \mu \Big(\Big(((\widetilde{U}_G \backslash U_G) \cap [N-1, N]) - \lambda \Big) \cap [-K, K] \Big)$$

$$= \sum_{N=1}^{\infty} \sum_{\lambda \in \Lambda} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) \cap [N-1, N] \Big) \cap [\lambda - K, \lambda + K] \Big)$$

$$= \sum_{N=1}^{K} \sum_{\lambda \in \Lambda} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) \cap [N-1, N] \Big) \cap [\lambda - K, \lambda + K] \Big)$$

$$+ \sum_{N=K+1}^{\infty} \sum_{\lambda \in \Lambda} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) \cap [N-1, N] \Big) \cap [\lambda - K, \lambda + K] \Big)$$

(with a finite S_1)

$$= S_1 + \sum_{N=K+1}^{\infty} \sum_{\lambda \in \Lambda, \lambda \le 10N} \mu \Big(\Big((\widetilde{U}_G \backslash U_G) \cap [N-1, N] \Big) \cap [\lambda - K, \lambda + K] \Big)$$

(now using (34) and (35))

$$\leq S_1 + \sum_{N=K+1}^{\infty} L_N \cdot \frac{2^{-N}}{L_N} < \infty.$$

So far we have shown that \widetilde{g}_G satisfies (1) and (2). Since $\widetilde{g}_G \in C^+(\mathbb{R})$, but not in $C_0^+(\mathbb{R})$. We need to adjust it a little further.

Since G is open choose an increasing sequence of compact sets $G_K \subset G \cap [-K, K]$ such that $\bigcup_{K=1}^{\infty} G_K = G$.

Put $M_0 = 0$. Choose $M_1 \in \mathbb{R}$ such that for any $x \in G_1$ we have

$$\sum_{\lambda \in \Lambda, \ M_0 + 10 < \lambda < M_1} \widetilde{g}_G(x + \lambda) > 1,$$

and $\widetilde{g}_G(M_1+5)=0$. This latter property can be satisfied since by assumption \widetilde{U}_G does not contain a half-line.

In general, if we already have selected M_{K-1} such that $\widetilde{g}_G(M_{K-1}+5(K-1))=0$ then choose $M_K \in \mathbb{R}$ such that for any $x \in G_K$ we have

$$\sum_{\lambda \in \Lambda, \ M_{K-1} + 10K < \lambda < M_K} \widetilde{g}_G(x + \lambda) > K, \tag{40}$$

and $\widetilde{g}_G(M_K + 5K) = 0$.

For $x \leq M_1 + 5$ we put $g_G(x) = \widetilde{g}_G(x)$. For K > 1 and $x \in (M_{K-1} + 5(K - 1), M_K + 5K]$ we put $g_G(x) = \frac{1}{K}\widetilde{g}_G(x)$.

It is clear that $g_G \in C_0^+(\mathbb{R})$.

Since $g_G \leq \widetilde{g}_G$ we have $C(g_G, \Lambda) \supset C(\widetilde{g}_G, \Lambda)$. If we can show that $G \subset D(g_G, \Lambda)$ then we are done. Suppose $x \in G$. Then there is a K_x such that $x \in G_K$ for any $K \geq K_x$. Therefore, for these K we have $x \in [-K_x, K_x] \subset [-K, K]$ and by using (40)

$$\sum_{\lambda \in \Lambda, \ M_{K-1}+6K < \lambda < M_K+4K} g_G(x+\lambda) = \sum_{\lambda \in \Lambda, \ M_{K-1}+6K < \lambda < M_K+4K} \frac{1}{K} \widetilde{g}_G(x+\lambda) > 1,$$

for any $K \geq K_x$ and hence $x \in D(g_G, \Lambda)$.

3 Subintervals in $C(f, \Lambda)$

Theorem 3.1. There exists an asymptotically dense infinite discrete set Λ such that for any open set $G \subset \mathbb{R}$ one can select an $f_G \in C_0^+(\mathbb{R})$ such that $D(f,\Lambda) = G$.

Remark 3.2. As Theorem 3.4 shows in the above theorem we cannot assume that Λ is a decreasing gap set. On the other hand, in our claim we have $D(f,\Lambda)=G$, that is, there is no exceptional set of measure zero where we do not know what happens. This also implies that if the interior of $\mathbb{R}\backslash G$ is non-empty then $C(f,\Lambda)$ contains intervals.

Figure 2: Definition of I_j , U_j and related sets

Proof. Denote by $\mathcal{I}_D = \{[(k-1)/2^l, k/2^l]: k, l \in \mathbb{Z}, l \geq 0\}$ the system of dyadic intervals. It is clear that one can enumerate the elements of \mathcal{I}_D in a sequence $\{I_j\}_{j=1}^{\infty}$ which satisfies the following properties

$$I_j = [a_{I_j}, b_{I_j}] = \left[\frac{k_j - 1}{2^{l_j}}, \frac{k_j}{2^{l_j}}\right] \subset [-j, j] \text{ and } \mu(I_j) = 2^{-l_j} \ge \frac{1}{j}.$$
 (41)

We denote by \overline{I}_j the closed interval which is concentric with I_j but is of length three times the length of I_i .

We put

$$U_j = [a_j, b_j] = [2^j, 2^j + 2^{-2^j}]$$
 and $\overline{U}_j = [a_j - 2^{-2^j - j - 1}, b_j + 2^{-2^j - j - 1}] = [\overline{a}_j, \overline{b}_j].$

See Figure 2.

We suppose that $f_j(x) = 0$ if $x \notin \overline{U}_j$, $f_j(x) = 2^{-j}$ if $x \in U_j$, the function f_j is continuous on \mathbb{R} and is linear on the connected components of $\overline{U}_i \backslash U_i$. We define

$$\Lambda_{1,j} = \{k \cdot 2^{-2^{j}-j} : k \in \mathbb{Z}\} \cap [2^{j} - k_{j}2^{-l_{j}}, 2^{j} + 2^{-2^{j}} - (k_{j} - 1)2^{-l_{j}}]$$

$$= \{k \cdot 2^{-2^{j}-j} : k \in \mathbb{Z}\} \cap [a_{j} - b_{I_{j}}, b_{j} - a_{I_{j}}]$$

$$(42)$$

and put $\Lambda_1 = \bigcup_{j=1}^{\infty} \Lambda_{1,j}$. Observe that if $x \in I_j$ then

$$x + \min \Lambda_{1,j} \le b_{I_j} + \min \Lambda_{1,j} = b_{I_j} + a_j - b_{I_j} = a_j$$

and

$$x + \max \Lambda_{1,j} \ge a_{I_j} + \max \Lambda_{1,j} = a_{I_j} + b_j - a_{I_j} = b_j,$$

hence

$$\sum_{\lambda \in \Lambda_{1,j}} f_j(x+\lambda) \ge \frac{\operatorname{diam} U_j}{2^{-2^j - j}} 2^{-j} = \frac{2^{-2^j}}{2^{-2^j - j}} 2^{-j} = 1.$$
(43)

On the other hand, by (41)

$$\begin{split} \overline{U}_j - \Lambda_{1,j} &= \left[\min \overline{U}_j - \max \Lambda_{1,j}, \max \overline{U}_j - \min \Lambda_{1,j}\right] \\ &= \left[\overline{a}_j - b_j + a_{I_j}, \overline{b}_j - a_j + b_{I_j}\right] = \left[a_{I_j} - 2^{-2j} - 2^{-2^j - j - 1}, b_{I_j} + 2^{-2j} + 2^{-2^j - j - 1}\right] \\ &\subset \left[a_{I_j} - \frac{1}{j}, b_{I_j} + \frac{1}{j}\right] \subset \left[a_{I_j} - 2^{-l_j}, b_{I_j} + 2^{-l_j}\right] = \overline{I}_j \end{split}$$

thus

$$\sum_{\lambda \in \Lambda_{1,j}} f_j(x+\lambda) = 0 \text{ if } x \in [-j,j], \ x \notin \overline{I}_j.$$
(44)

Suppose $G \subset \mathbb{R}$ is a given open set and put $\mathcal{J}_G = \{j : \overline{I}_j \subset G\}$. Let $f_G(x) = \sum_{j \in \mathcal{J}_G} f_j(x)$. Then f_G is continuous and non-negative on \mathbb{R} and clearly $\lim_{x \to \infty} f(x) = 0$.

We claim that

$$\sum_{\lambda \in \Lambda_1} f_G(x+\lambda) = +\infty \tag{45}$$

exactly on G.

Indeed, if $x \in G$ then there are infinitely many js such that $x \in I_j \subset \overline{I}_j \subset G$. This means that (43) holds for infinitely many $j \in \mathcal{J}_G$ and hence (45) is true when $x \in G$.

Next we need to verify that (45) does not hold for $x \notin G$. Suppose that $j_0 \geq 10$, $j_0 \in \mathcal{J}_G$, $x \notin G$ and $x \in [-j_0, j_0]$. Then $x \notin \overline{I}_{j_0}$ and by (44) we have

$$\sum_{\lambda \in \Lambda_{1,j_0}} f_{j_0}(x+\lambda) = 0. \tag{46}$$

Next assume that $j < j_0$. Then by using (41) and (42)

$$\max\{x+\lambda: \lambda \in \Lambda_{1,j}\} \le j_0 + 2^j + 2^{-2^j} - (k_j - 1)2^{-l_j} \le j_0 + 2^j + 2^{-2^j} + j_0 + 2^{-2^j} + j$$

Hence,

$$\sum_{\lambda \in \Lambda_{1,j}} f_{j_0}(x+\lambda) = 0. \tag{47}$$

If $j_0 < j$ then

$$\min\{x+\lambda:\ \lambda\in\Lambda_{1,j}\}\geq -j_0+2^j-j>2^{j-1}-2j-1+2^{j-1}+1>2^{j_0}+1>\overline{b}_{j_0},$$

and hence in this case we also have (47).

Therefore, from (46) and (47) it follows that

$$\sum_{\lambda \in \Lambda_1} f_{j_0}(x+\lambda) = 0 \text{ for } j_0 \in \mathcal{J}_G, \ j_0 \ge 10, \ |x| \le j_0.$$
 (48)

This implies

$$\sum_{\lambda \in \Lambda_1} f_G(x+\lambda) \le \sum_{\substack{\lambda \in \Lambda_{1,j} \\ j < \max\{10,|x|\}}} f_j(x+\lambda) < +\infty.$$

Since Λ_1 is not asymptotically dense we need to choose an asymptotically dense Λ_2 such that

$$\sum_{\lambda \in \Lambda_2} \sum_{j=1}^{\infty} f_j(x+\lambda) < +\infty \text{ holds for any } x \in \mathbb{R}.$$
 (49)

Then for any open $G \subset \mathbb{R}$

$$\sum_{\lambda \in \Lambda_2} f_G(x+\lambda) \le \sum_{\lambda \in \Lambda_2} \sum_{j=1}^{\infty} f_j(x+\lambda) < +\infty$$

holds and if we let $\Lambda = \Lambda_1 \cup \Lambda_2$ then Λ is asymptotically dense and $D(f_G, \Lambda) = G$. To complete the proof of this theorem we need to verify (49) for a suitable Λ_2 . For $j \geq 10$ put

$$\Lambda_{2,j} = \{k \cdot 2^{-j} : k \in \mathbb{Z}\} \cap (2^{j-1} + 2(j-1), 2^j + 2j], \text{ and } \Lambda_2 = \bigcup_{j=10}^{\infty} \Lambda_{2,j}.$$

Suppose $x \in [-j_0, j_0]$ and $j_0 \ge 10$. Then for $j \ge j_0$ from $x + \lambda \in \overline{U}_j$ it follows that $2^j - 1 < x + \lambda \le j + \lambda$, and hence

$$\lambda > 2^{j} - j - 1 > 2^{j-1} + 2(j-1).$$

Similarly, $x + \lambda \in \overline{U}_j$ implies $2^j + 1 > x + \lambda \ge -j + \lambda$, and hence

$$\lambda < 2^j + j + 1 < 2^j + 2j.$$

Thus from $x + \lambda \in \overline{U}_j$ it follows that $\lambda \in \Lambda_{2,j}$. Since the length of \overline{U}_j is less than $2 \cdot 2^{-2^j} < 2^{-j}$ there is at most one $\lambda \in \Lambda_{2,j}$ for which $f_j(x + \lambda) \neq 0$ and for this λ we have $f_j(x + \lambda) = 2^{-j}$.

Put $M_x = \max\{10, |x|\}$. Then

$$\sum_{\lambda \in \Lambda_2} \sum_{j=1}^{\infty} f_j(x+\lambda) = \sum_{\lambda \in \Lambda_2} \sum_{j=1}^{M_x} f_j(x+\lambda) + \sum_{j=M_x+1}^{\infty} \sum_{\lambda \in \Lambda_2} f_j(x+\lambda)$$

$$\leq \sum_{\lambda \in \Lambda_2} \sum_{j=1}^{M_x} f_j(x+\lambda) + \sum_{j=M_x+1}^{\infty} 2^{-j} < +\infty.$$

In Theorem 2.1 we verified that for decreasing gap asymptotically dense sets $D(f, \Lambda)$ can contain an open set, while $C(f, \Lambda)$ equals the complement of this open set only almost everywhere.

The next example shows that one can define decreasing gap asymptotically dense Λ s for which one can find nonnegative continuous fs such that both $C(f, \Lambda)$ and $D(f, \Lambda)$ have interior points.

Theorem 3.3. There exists a decreasing gap asymptotically dense Λ and an $f \in C_0^+(\mathbb{R})$ such that $I_1 = [0,1] \subset D(f,\Lambda)$ and $I_2 = [4,5] \subset C(f,\Lambda)$.

Proof. Put $f(x) = 2^{-2^{j+1}}$ if $x \in [10j, 10j + 1]$ for a $j \in \mathbb{N}$. Set f(x) = 0 if $x \in \{10j - 1/4, 10j + 5/4\}$ for a $j \in \mathbb{N}$, and also put f(x) = 0 for $x \leq 0$. We suppose that f is linear on the intervals where we have not defined it so far. Put $\Lambda_{1,j} = \{k \cdot 2^{-2^j} : k \in \mathbb{Z}\} \cap [10j - 10, 10j - 2)$ and $\Lambda_{2,j} = \{k \cdot 2^{-2^{j+1}} : k \in \mathbb{Z}\} \cap [10j - 2, 10j)$. Let $\Lambda = \bigcup_{j=1}^{\infty} (\Lambda_{1,j} \cup \Lambda_{2,j})$. Observe that Λ is a decreasing gap asymptotically dense set.

One can see that for $x \in I_1$ we have

$$\sum_{\lambda \in \Lambda} f(x+\lambda) \ge \sum_{j=1}^{\infty} 2^{2^{j+1}} \cdot 2^{-2^{j+1}} = +\infty$$

and for $x \in I_2$

$$\sum_{\lambda \in \Lambda} f(x + \lambda) \le \sum_{j=1}^{\infty} 2 \cdot 2^{2^j} \cdot 2^{-2^{j+1}} < +\infty.$$

It is also clear from the construction that $\lim_{x\to\infty} f(x) = 0$.

Observe that in the above construction $I_1 \subset D(f, \Lambda)$ was to the left of $I_2 \subset C(f, \Lambda)$. The next theorem shows that for decreasing gap asymptotically dense Λ s and continuous functions this situation cannot be improved. If x is an interior point of $C(f, \Lambda)$ then the half-line $[x, \infty)$ intersects $D(f, \Lambda)$ in a set of measure zero. As Theorem 3.1 shows if we do not assume that Λ is of decreasing gap then it is possible that $D(f, \Lambda)$ has a part of positive measure, even to the right of the interior points of $C(f, \Lambda)$.

Theorem 3.4. Let Λ be a decreasing gap and asymptotically dense set, and let $f: \mathbb{R} \to [0, +\infty)$ be continuous. Then if x is an interior point of $C(f, \Lambda)$ then

$$\mu([x, +\infty) \cap D(f, \Lambda)) = 0. \tag{50}$$

Proof. Proceeding towards a contradiction assume the existence of a non-degenerate closed interval $I \subset C(f, \Lambda)$. Suppose that there is a bounded subset $D_1(f, \Lambda) \subset D(f, \Lambda)$ with positive measure to the right of I. Choose an interval $J = [a_J, b_J]$ to the right of I such that

$$\mu(J) = \mu(I)/10$$
, and $\mu(J \cap D(f, \Lambda)) = \alpha > 0$. (51)

We put $D_1(f, \Lambda) = J \cap D(f, \Lambda)$. We suppose that $\Lambda = \{\lambda_1, \lambda_2, ...\}$ is indexed in an increasing order. Select N such that

$$\lambda_n - \lambda_{n-1} < \frac{\mu(I)}{100} \text{ for } n \ge N.$$
 (52)

We clearly have that $\sum_{i=N}^{\infty} f(x+\lambda_i)$ diverges on $D_1(f,\Lambda)$. Moreover, if $n \in \mathbb{N}$, which is to be fixed later, for large enough M we have $\sum_{i=N}^{M} f(x+\lambda_i) > n$ in a set $D_2(f,\Lambda) \subset D_1(f,\Lambda)$ of measure larger than $\frac{\alpha}{2}$. Hence we have

$$\int_{D_2(f,\Lambda)} \sum_{i=N}^M f(x+\lambda_i) dx \ge \frac{n\alpha}{2}.$$
 (53)

Assume that $i \in \{N, N+1, ..., M\}$. We choose $\gamma(i)$ such that

$$a_J + \lambda_i - \lambda_{\gamma(i)} \in I$$
, but $a_J + \lambda_i - \lambda_{\gamma(i)+1} \notin I$. (54)

Since a_J is to the right of I it is clear that $\lambda_{\gamma(i)} > \lambda_i$, therefore $\gamma(i) > i \ge N$ and hence (52) implies that $\gamma(i)$ is well-defined, that is (54) can be satisfied.

It is also clear that there exists M such that $\gamma(i) \leq M$ holds for $i \in \{N, N+1, ..., M\}$.

By (51), (52), and (54) we have

$$J + \lambda_i - \lambda_{\gamma(i)} \subset I$$
 and hence $D_2(f, \Lambda) + \lambda_i - \lambda_{\gamma(i)} \subset I$. (55)

Next we verify that

if
$$i' \neq i$$
 then $\gamma(i') \neq \gamma(i)$. (56)

Indeed, we can suppose that i' < i, and proceeding towards a contradiction we also suppose that $\gamma(i') = \gamma(i)$. We know that $a_J + \lambda_i - \lambda_{\gamma(i)} \in I$, moreover $a_J + \lambda_{i'} - \lambda_{\gamma(i')} \in I$ holds as well. Since $\gamma(i) = \gamma(i')$ we have

$$a_J + \lambda_{i'} - \lambda_{\gamma(i')} = a_J + \lambda_i - \lambda_{\gamma(i)} - \lambda_i + \lambda_{i'} \in I.$$

Using the first half of (54) and $\lambda_{i'} \leq \lambda_{i-1} < \lambda_i$ we also obtain

$$a_J + \lambda_i - \lambda_{\gamma(i)} - \lambda_i + \lambda_{i'} \le a_J + \lambda_i - \lambda_{\gamma(i)} - \lambda_i + \lambda_{i-1} \in I.$$

Since Λ is of decreasing gap and $\gamma(i) > i$ we have $\lambda_{\gamma(i)+1} - \lambda_{\gamma(i)} < \lambda_i - \lambda_{i-1}$, and hence

$$a_J + \lambda_i - \lambda_{\gamma(i)} - \lambda_i + \lambda_{i-1} < a_J + \lambda_i - \lambda_{\gamma(i)} - \lambda_{\gamma(i)+1} + \lambda_{\gamma(i)} \in I$$

which contradicts (54).

By using (55) and (56) we infer

$$\int_{D_2(f,\Lambda)} \sum_{i=N}^M f(x+\lambda_i) dx = \sum_{i=N}^M \int_{D_2(f,\Lambda)} f(x+\lambda_i - \lambda_{\gamma(i)} + \lambda_{\gamma(i)}) dx$$
 (57)

$$= \sum_{i=N}^{M} \int_{D_2(f,\Lambda) + \lambda_i - \lambda_{\gamma(i)}} f(t + \lambda_{\gamma(i)}) dt \le \int_{I} \sum_{j=N}^{\widetilde{M}} f(t + \lambda_j) dt.$$

Thus by (53) we obtain

$$\int_{I} \sum_{i=N}^{\widetilde{M}} f(x + \lambda_i) dx \ge \frac{n\alpha}{2},$$

as the left-handside by (57) gives an upper bound for the integral in (53). However, $\sum_{i=N}^{\widetilde{M}} f(x+\lambda_i)$ is continuous, which yields that this integrand is at least $\frac{n\alpha}{4\mu(I)}$ in a non-degenerate closed subinterval $I_1 \subset I$. Thus we have $s(x) = \sum_{\lambda \in \Lambda} f(x+\lambda) > \frac{n\alpha}{4\mu(I)}$ in I_1 . Hence, if we choose n to be large enough, we find that s(x) > 1 in I_1 . Now by applying the very same argument to I_1 instead of I, we might obtain that $s(x) > \frac{n_1\alpha}{4\mu(I_1)}$ in a non-degenerate closed subinterval $I_2 \subset I_1$. Thus if we choose n_1 to be large enough, we find that s(x) > 2 in I_2 . Proceeding recursively we obtain a nested sequence of closed intervals I_1, I_2, \ldots such that s(x) > k for $x \in I_k$. As this system of intervals has a nonempty intersection, we find that there is a point in I with $s(x) = \infty$, a contradiction.

4 Acknowledgements

During the Fall semester of 2018, when this paper was prepared all three authors visited the Institut Mittag-Leffler in Djursholm and participated in the semester Fractal Geometry and Dynamics. We thank the hospitality and financial support of the Institut Mittag-Leffler. Z. Buczolich also thanks the Rényi Institute where he was a visiting researcher for the academic year 2017-18.

References

- [1] Z. Buczolich, J-P. Kahane and R. D. Mauldin, On series of translates of positive functions, Acta Math. Hungar., **93**(3) (2001), 171-188.
- [2] Z. Buczolich, J-P. Kahane, and R. D. Mauldin, Sur les séries de translatées de fonctions positives. C. R. Acad. Sci. Paris Sér. I Math., 329(4):261–264, 1999.
- [3] Z. Buczolich and R. D. Mauldin, On the convergence of $\sum_{n=1}^{\infty} f(nx)$ for measurable functions. *Mathematika*, **46**(2):337–341, 1999.
- [4] Z. Buczolich and R. D. Mauldin, On series of translates of positive functions II., Indag. Mathem., N. S., **12** (3), (2001), 317-327.
- [5] J.A. Haight, A linear set of infinite measure with no two points having integral ratio, *Mathematika* **17**(1970), 133-138.
- [6] J.A. Haight, A set of infinite measure whose ratio set does not contain a given sequence, *Mathematika* **22**(1975), 195-201.
- [7] C. G. Lekkerkerker, Lattice points in unbounded point sets, I. *Indag. Math.*, **20** (1958) 197-205.
- [8] H. v. Weizsäcker, Zum Konvergenzverhalten der Reihe $\sum_{n=1}^{\infty} f(nt)$ für λ messbare Funktionen $f: \mathbb{R}^+ \to \mathbb{R}^+$, Diplomarbeit, Universität München,
 1970.