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Chapter 1

Introduction

This thesis synthesizes two research projects I participated in, which have the following

common theme: both of them concern with the Hausdor� dimension of level sets and

generic properties in function spaces in the Baire category sense. (In what follows,

genericity is always understood this way.) While these projects do not have an intimate

connection, the utilized techniques certainly enjoy shared features, and they give a �ne

exposition of my research interests. Indeed, while the papers laying the foundation of

this thesis do not exhaust my publication list, the omitted ones also recurringly deal

with the question of genericity. An exhaustive enumeration of these papers can be

found at the end of this thesis in the Parallel Research section, not to be mistaken with

the References.

1.1 Level sets of Hölder functions

1.1.1 Background

In [27], B. Kirchheim proved that for the generic continuous function de�ned on [0, 1]p,

almost every level set has Hausdor� dimension p − 1. (Some people prefer to use the

term typical in the Baire category sense instead of generic.) It is a very natural question

what happens when the domain is replaced by a more complicated set, for example with

one of a fractal structure. This problem was addressed by R. Balka, Z. Buczolich, and
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M. Elekes in [7], where they introduced the concept of topological Hausdor� dimension,

which is the underlying notion of dimension that determines the Hausdor� dimension

of almost every level set of the generic continuous function. (The de�nition of the

topological Hausdor� dimension and the de�nition of some other concepts used in this

introduction can be found in Section 2.1.) The topological Hausdor� dimension is

related to some sort of "conductivity" properties of some fractal "networks" and outside

of Mathematics, papers in Physics are also dealing with this concept, see for example

works of A. Balankin, i.e. [3], [2], [5], [4], and [6]. It is a natural question to ask

what happens if the level regions of our functions are not "in�nitely compressible"

and hence due to thickness of the level regions we cannot use for almost every levels

the parts of our fractal domains where they are the "thinnest". The simplest way to

impose a bound on compressibility is considering Hölder functions instead of arbitrary

continuous functions. Motivated by this, it is interesting to consider level sets of 1-

Hölder-α functions de�ned on fractals. Introducing a bound on the Hölder-constant is

a customary practice (see e.g. [1], [31], and [36]) as it signi�cantly tames the function

space in question by making it complete and separable.

Level sets of 1-Hölder-α functions can get quite complicated. In some very special

cases when either the function is linear, or constant on hyperplanes with a �xed normal

vector, we need to consider intersections of these hyperplanes with our fractal. Inves-

tigating such intersections is a classical topic (see for example Marstrand's classical

slicing theorem, [30]), which even in the case of the Sierpi«ski triangle, or carpet is still

subject of more recent research as well, see [9] and [29].

1.1.2 Our contribution

Chapter 2 summarizes our papers discussing the aforementioned questions, [12] and [11],

co-authored by my advisor, Zoltán Buczolich, and my co-graduate, Gáspár Vértesy. The

outline of our research and the organization of these chapters are summarized below.

In this thesis, we gradually pass from the most general results � theorems being valid

for any measurable set � towards highly speci�c ones, such as estimates for speci�c

fractals, for instance the Sierpi«ski triangle. We note that the mathematical content of
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the papers [12] and [11] is slightly reorganized to �t into this logical structure, instead

of simply put after one another.

In Section 2.1 among other things we de�ne D∗(α, F ) which is the essential supre-

mum of the Hausdor� dimension of the level sets of the generic 1-Hölder-α function.

If F is the disjoint union of two fractals F1 and F2, with D∗(α, F1) < D∗(α, F2) then

it is easy to see that it is not necessarily true that for the generic 1-Hölder-α function

D∗(α, F ) equals the Hausdor� dimension of almost every level set in the range of the

function. However, in Subsection 2.4.1 we show that for connected self-similar sets such

a result holds if 0 < α < 1. The Lipschitz case, that is α = 1 needs a di�erent approach

and can be the subject of some further research.

In Section 2.2, we provide an enumeration of the main results of Chapter 2. This is

warmly recommended to the casual reader.

Section 2.3 is dedicated to the qualitative foundations of the theory. In Subsection

2.3.1 we establish some density and approximation results we need for proving results

about generic functions.

Next in Subsection 2.3.2 we prove Theorem 2.2.1 according to which D∗(α, F ) either

equals zero, or it is always less or equal than the upper box dimension of F minus one.

In Subsection 2.3.3 we prove Theorem 2.2.2, that is we show that there is a dense

Gδ subset G of 1-Hölder-α functions such that for every f ∈ G the essential supremum

of the Hausdor� dimension of the level sets of f equals D∗(α, F ). This shows that

the complicated looking de�nition of D∗(α, F ) in (2.1.4) can be signi�cantly simpli�ed,

and it indeed makes sense to speak about the essential supremum of the Hausdor�

dimension of the level sets of the generic 1-Hölder-α function.

In Subsection 2.3.4 we verify Theorem 2.2.3, that is we show that D∗(α, F ) is mono-

tone increasing in α for any compact set F .

Section 2.4 contains further robust results about certain families of fractals. In

Subsection 2.4.1 we prove Theorem 2.2.4, stating that if F is a connected self-similar

set, and 0 < α < 1, then one can select a dense Gδ set such that for any f ∈ G for

almost every r ∈ f(F ) the Hausdor� dimension of the level set f−1(r) equals D∗(α, F ).

It means that the Hausdor� dimension of the Lebesgue-typical level set of the generic
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1-Hölder-α function is a well-de�ned quantity in this case.

In Subsection 2.4.2 we show that if our fractal F is a self-similar set satisfying the

strong separation condition then the Hausdor� dimension of almost every level set of a

generic 1-Hölder-α function is constant zero for all α ∈ (0, 1), that is the introduction

of generic 1-Hölder-α functions is not giving any new information compared to the case

of continuous functions.

Section 2.5 contains constructions and explicit calculations of D∗(α, F ) for certain

fractals. In Subsection 2.5.1 we give the details of the calculation of D∗(α, F ) for F

de�ned in Theorem 2.2.6. This is an example fractal F ⊆ [0, 1/2]2, which is a big

"sponge" of positive Lebesgue measure and its complement is a dense system of very

thin "tubes". In a "rough heuristic language" if we put our fractal sponge into [0, 1/2]2

then almost every level set of a typical continuous function can "run" in the complement

of F , hence these level sets have Hausdor� dimension 0. However, using Hölder level

sets one can see that D∗(α, F ) = 1 for any α ∈ (0, 1], showing that it is criss-crossed by

only very "narrow" tubes and these tubes are too thin to "contain" almost every level

set of a generic 1-Hölder-α function. For this example the calculation is relatively easy.

A bit more di�cult and interesting variant is investigated in Subsection 2.5.2, in

which we discuss and illustrate a phenomenon which we call phase transition. We give

an example of a fractal F for which the Hausdor� dimension of almost every level set

of a generic 1-Hölder-α function for small values α equals the Hausdor� dimension of

almost every level set of a generic continuous function de�ned on F . This means, at a

heuristic level, that for such fractals the level sets of generic 1-Hölder-α functions are as

�exible/compressible as those of a continuous function. On the other hand, for larger

values of α we have D∗(α, F ) > 0, that is after a critical value of α these level sets are

not as �exible/compressible as those of a continuous function and we experience some

�tra�c� jams as we try to push across the fractal the level sets of generic 1-Hölder-α

functions. The fractal F discussed in this subsection will be the Cartesian product of a

fat Cantor set with itself, hence it will be of zero topological dimension. Note that due

to Subsection 2.4.2, such a construction requires fat Cantor sets. Indeed, a self-similar

Cantor set cannot have the above properties. This example is also interesting in view of
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Subsection 2.3.4 and Theorem 2.2.3, stating that D∗(α, F ) is monotone increasing, as

it demonstrates that D∗(α, F ) is not necessarily continuous, even restricted to α > 0,

where D∗(α, F ) measures Hölder level sets.

Section 2.6 concerns with estimating D∗(α,∆) for the Sierpi«ski triangle ∆. The

fractals in Section 2.5 might give us the false impression that D∗(α, F ) is easy to

determine. However, they are intentionally constructed with the goal to be able to

precisely calculate D∗(α, F ). In the case of fractals not �ne-tuned for this problem,

one encounters signi�cant di�culties, as demonstrated in this section. In Subsection

2.6.1 and Subsection 2.6.2, instead of determining D∗(α,∆), we give lower and upper

estimates, respectively, displayed in Figure 1.1. It should be noted that both the lower

and the upper estimates are positive and tend to 0 as α → 0+, hence the Sierpi«ski

triangle does not admit phase transition.

Figure 1.1: Lower and upper estimates of D∗(α,∆)

1.2 Level sets of Birkho� averages

1.2.1 Background

If (X,F , µ, T ) is a measure-preserving system, x ∈ X, and f is a summable function,

one might be interested in the limit of the time averages 1
N

∑N
n=1 f(T

nx) as N → ∞.

Due to the celebrated ergodic theorem of Birkho�, if T is ergodic, this time average
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converges to the space average
∫
f dµ almost everywhere. In other words, if we introduce

the notation Ef (α) := {x ∈ X : limN→∞
1
N

∑N
n=1 f(T

nx) = α} then µ(Ef (α)) = 1 if

α =
∫
f dµ, and 0 otherwise.

Thus the level sets of the time average behave trivially from the measure theo-

retic point of view. However, from the geometric point of view, one encounters a

highly nontrivial and beautiful behaviour. Notably, we get rather interesting val-

ues by considering the Hausdor� dimension of the sets Ef (α) (including the irreg-

ular set E ′
f := {x ∈ X : limN→∞

1
N

∑N
n=1 f(T

nx) does not exist.}). The function

Sf (α) := dimH(Ef (α)) is called the Birkho� spectrum of f .

Investigating the Birko� spectrum belongs to the broader topic of multifractal anal-

ysis. Such investigation has been initiated in [35] by Y. Pesin and H. Weiss for Hölder

functions in the context of thermodynamic formalism. While we have no inherent

reason to believe that this spectrum should be anything else than pathological, quite

surprisingly, imposing the Hölder assumption on f yields that Sf is a concave, ana-

lytic function, a phenomenon which is deservedly called "multifractal miracle" in the

literature. Birkho� spectrum of continuous functions was studied in [19] by A. Fan,

D. Feng, and J. Wu. In their study, they have shown a variational formula between

the dimension of the level set and the metric entropy, which we will recall precisely in

Theorem 3.1.5. They have also shown that Sf (α) is concave and upper semicontinuous

(hence continuous by the nature of concave functions; see [38, �10]) on the interior of

the set {α ∈ Rd : Ef (α) ̸= ∅}. The question regarding the behavior of the spectrum at

the boundary of its support remained open. It is mentioned in the introduction of [19]

that even for Hölder regular functions discussions of Sf (α) at this boundary are scarce,

which is actually a subtle problem.

In case of one-dimensional range the support of the spectrum of f ∈ C(Ω) is always a

(possibly degenerate) closed interval Lf and concave and upper semiconinuous functions

are always continuous on such intervals. However, it may happen that Sf , as a function

de�ned on R has a jump discontinuity at the endpoints of Lf . Such functions were

called degenerate by J. Schmeling in [39], in which the continuity of the spectrum for

the generic Hölder function was proved. In fact, this combined with results in [32] and

6



[19] imply the continuity of the spectrum for the generic continuous function in our

setting.

Due to concavity, we know that the Birkho� spectrum has one-sided derivatives. In

[41], F. Takens and E. Verbitskiy determines the Birkho� spectrum of the Manneville�

Pomeau map, and they show that it has a �nite one-sided derivative at one of the

endpoints.

For other studies of the Birkho� spectrum, we refer to, for instance, [10], [41], [15],

[20], [25], [34], and [23]. For more information on multifractal analysis (especially with

its relationship to thermodynamic formalism), we refer to [14], [37] and to the survey

paper [16] of V. Climenhaga.

1.2.2 Our contribution

Chapter 3 summarizes our contribution to the topic, presented originally in [13], a joint

paper with my advisor, Zoltán Buczolich, and Ryo Moore. We focus our attention to

Ω = {0, 1}N with the 1
2
Bernoulli product measure, the shift map σ being the ergodic

transformation. The outline of our research and the organization of these chapters is

summarized below.

In Section 3.1 after introducing some notation we give some simple examples and

recall one of the main results of [19]. Nevertheless we introduce some basic notation

here, to make this subsection more readable. For f ∈ C(Ω), that is for f continuous

on Ω, we denote by αf,max (resp. αf,min) the maximum (resp. minimum) value of

f ∈ C(Ω), We also introduce the notation α∗
f,max := sup{α ∈ R : Ef (α) ̸= ∅}, and

α∗
f,min := inf{α ∈ R : Ef (α) ̸= ∅}, and put Lf = [α∗

f,min, α
∗
f,max].

In Section 3.2, we provide an enumeration of the main results of Chapter 3 in a

similar manner to the preceding chapter. This is warmly recommended to the casual

reader.

Next, in Section 3.3 we discuss some tools used later. First, in Subsection 3.3.1 we

show that given a continuous function f , any continuous function that is su�ciently

close to f would have its Birkho� spectrum also close to Sf on Lf except for a neigh-

borhood of the endpoints of the spectrum. This will be proven in Theorem 3.2.1.
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In Subsection 3.3.2 we prove some results about piecewise constant continuous (or

simply PCC) functions, that is about functions which depend on �nitely many coordi-

nates. Among other results we show that for such functions f there is always a periodic

ω in Ef (α∗
f,max).

Section 3.4 will concern with the continuity of a Birkho� spectrum. Given f ∈ C(Ω),

we say that the spectrum Sf is continuous if it is continuous on R, and discontinuous

otherwise. Equivalently, Sf is continuous when Sf (α∗
f,min) = Sf (α

∗
f,max) = 0. We will

�rst show that continuous, in fact PCC functions with discontinuous spectrum are dense

in C(Ω) (Theorem 3.2.3). On the other hand, we give a direct proof of the fact that

generic continuous functions have continuous spectrum (Theorem 3.2.5).

In Subsection 3.4.3 we show that for a dense open subset of C(Ω) the support of

the spectrum is in the interior of [αf,min, αf,max].

Section 3.5 concerns with one-sided derivatives of a Birkho� spectrum at the end-

points/boundary points of the spectrum. Given φ : R → R, we denote by ∂−φ(α)

the left-hand derivative of φ at α (if the value exists). Similarly, ∂+φ(α) denotes the

right-hand derivative. We will show that the spectrum of a generic continuous function

f has in�nite one-sided derivatives at the endpoints of Lf , i.e. ∂+f(α∗
f,min) = ∞, and

∂−f(α∗
f,max) = −∞ (Theorem 3.2.8). We construct a continuous function with contin-

uous spectrum for which the one-sided derivatives at the endpoints are �nite (Theorem

3.2.9). This function will also have a very small spectrum. By concavity of the spec-

trum on its support there is always a triangle which should be under the graph of the

spectrum. Our example will provide an example when the spectrum is very close to

this lower estimate.

It is not that obvious that functions with �nite one-sided derivatives at the endpoints

of the spectrum exist since for some well-known examples of functions with continuous

spectrum, like the one discussed in Example 3.1.1 we have ∂+f(α∗
f,min) = ∞, and

∂−f(α∗
f,max) = −∞, however this function does not have a �generic spectrum" since

α∗
f,min equals αf,min and α∗

f,max equals αf,max. As we mentioned earlier for the generic

continuous functions we always have αf,min < α∗
f,min < α∗

f,max < αf,max, see Theorem

3.2.7. In Theorem 3.2.10 we prove that for PCC functions f with continuous spectrum

8



we always have ∂+f(α∗
f,min) = ∞, and ∂−f(α∗

f,max) = −∞. This illustrates that for

the proof of Theorem 3.2.9 one needs to use a more involved construction than a PCC

function.
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Chapter 2

Generic Hölder level sets

2.1 Notation and preliminaries

The distance of x, y ∈ Rp is denoted by |x − y|. If A ⊆ Rp then the diameter of A is

denoted by |A| = sup{|x − y| : x, y ∈ A}. The open ball of radius ϱ centered at x is

denoted by B(x, ϱ). For a set E ⊆ Rp its ϱ-neighborhood {x : inf{|x− y| : y ∈ E} < ϱ}
is denoted by Uϱ(E).

Assume that F ⊆ Rp for some p > 0. In what follows, F will be some fractal set,

usually we suppose that it is compact.

We say that a function f : F → R is c-Hölder-α for c > 0 and 0 < α ≤ 1 if

|f(x) − f(y)| ≤ c|x − y|α. The space of such functions will be denoted by Cα
c (F ),

or if F is �xed then by Cα
c . The space of Hölder-α functions will be denoted by Cα,

that is Cα =
⋃
cC

α
c . We say that f is c−-Hölder-α if there exists c′ < c such that f is

c′-Hölder-α. The set of such functions is denoted by Cα
c− , that is C

α
c− =

⋃
c′<cC

α
c′ .

In the space of Hölder-α functions often the norm

∥f∥C0,α = ∥f∥∞ + sup
x,y∈F, x ̸=y

|f(x)− f(y)|
|x− y|α

is considered. This is a Banach space and one can consider typical properties in these

spaces as well. However, these spaces are usually non-separable and often it is more

convenient to consider Hölder functions as subsets of continuous functions equipped
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with the supremum norm ∥f∥∞ = supx∈F |f(x)|. To obtain a closed subset of Cα(F )

we will consider 1-Hölder-α functions, Cα
1 (F ) and use the metric coming from the

supremum norm. One could use Cα
c (F ) with any �xed positive constant c instead of

1. The results would be the same. In Lipschitz and Hölder spaces it is not unusual

to consider these spaces. For example in [36] and [31] the one Lipschitz cases, in our

notation C1
1([0, 1]) and C

1
1([0, 1]

n) were used. In Theorem 2.13 of [1] generic results in

the spaces Cα
1 ([0, 1]), 0 < α < 1 were considered, even our notation is identical to the

one used there.

For ρ > 0 and f ∈ C(F ) we denote by B(f, ρ) the open ball of radius ρ centered

at f , the ball taken in the supremum norm. If f ∈ Cα
1 (F ) then B(f, ρ) ∩ Cα

1 (F ) will

denote the corresponding open ball in the subspace Cα
1 (F ).

Since similarities are not changing the geometry of a fractal set to avoid some un-

necessary technical di�culties we suppose that we work with fractal sets F of diameter

not exceeding one, unless stated otherwise in a speci�c construction. This way

Cα
1 (F ) ⊆ Cα′

1 (F ) if α > α′. (2.1.1)

Suppose A ⊆ Rp. Given δ > 0 we say that the sets Uj form a δ-cover of A if |Uj| < δ

for all j and A ⊆ ⋃j Uj.

The s-dimensional Hausdor� measure (see its de�nition for example in [18]) is de-

noted by Hs. Recall that the Hausdor� dimension of A ⊆ Rp is given by

dimH A = inf{s : Hs(A) = 0} = (2.1.2)

inf{s : ∃Cs > 0, ∀δ > 0, ∃{Uj} a δ-cover of A s.t.
∑
j

|Uj|s < Cs}.

One can observe that in the above de�nition instead of arbitrary δ-covers of A one

can use open δ-covers, that is we can assume that the sets Uj are open.

Since the topological Hausdor� dimension is a less known concept here we quickly

mention some de�nitions and results from [7]. First we recall the de�nition of the (small

inductive) topological dimension.
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De�nition 2.1.1. Set dimt ∅ = −1. The topological dimension of a non-empty metric

space X is de�ned by induction as

dimtX = inf{d : X has a basis U such that dimt ∂U ≤ d− 1 for every U ∈ U}.

The topological Hausdor� dimension is de�ned analogously to the topological di-

mension.

In the next de�nition we adopt the convention that dimH ∅ = −1.

De�nition 2.1.2. Set dimtH ∅ = −1. The topological Hausdor� dimension of a non-

empty metric space X is de�ned as

dimtH X = inf{d : X has a basis U such that dimH ∂U ≤ d− 1 for every U ∈ U}.

Both notions of dimension can attain the value ∞ as well.

If K is a compact metric space and dimtK = 0 then the generic f ∈ C(K) is well-

known to be one-to-one, so every non-empty level set is a singleton. We do not know

where this folklore fact was �rst proved but its simple proof can be found for example

in [8].

Assume dimtK > 0. The following results from [7] show the connection between

the topological Hausdor� dimension and the level sets of the generic f ∈ C(K).

Theorem 2.1.3. If K is a compact metric space with dimtK > 0 then for the generic

f ∈ C(K)

1. dimH f
−1(y) ≤ dimtH K − 1 for every y ∈ R,

2. for every ε > 0 there exists an interval If,ε such that dimH f
−1(y) ≥ dimtH K −

1− ε for every y ∈ If,ε.

Corollary 2.1.4. If K is a compact metric space with dimtK > 0 then sup{dimH f
−1(y) :

y ∈ R} = dimtH K − 1 for the generic f ∈ C(K).

There are many equivalent de�nitions of the box or Minkowski dimension. We will

use the following one:
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De�nition 2.1.5. Given a non-empty set F ⊆ Rp let aN(F ) denote the number of

closed 2−N grid hypercubes intersected by F . The lower and upper box dimensions

of F equal dimBF = lim infN→∞
log aN (F )
N log 2

, dimBF = lim supN→∞
log aN (F )
N log 2

. If dimBF =

dimBF then this common value is the box dimension of F , denoted by dimB F . For an

empty set F we put dimBF = dimBF = dimB F = 0.

The above de�nition makes sense for an arbitrary set of F ⊆ Rp, but in this paper

we will mainly work with measurable sets.

We need approximations by smooth functions. We will use the bump function

η(x) =

exp
(
− 1

1−|x|2

)
if |x|<1,

0 otherwise,

(2.1.3)

and the corresponding molli�er

ηr(x) = crη
(x
r

)
,

where cr is de�ned such that
∫
Rp ηr(x)dx = 1.

We want to study the Hausdor� dimension of the level sets of arbitrary 1-Hölder-α

functions and also of the generic 1-Hölder-α functions.

To make it more precise, we introduce the following notation: let Df (r, F ) =

Df (r) = dimH(f
−1(r)) for any function f : F → R, that is Df (r) denotes the Hausdor�

dimension of the function f at level r.

We are interested in those values for which the level set is of large Hausdor� dimen-

sion for many level sets in the sense of Lebesgue measure. This motivates the following

de�nition.

Df
∗ (F ) = Df

∗ = sup{d : λ{r : Df (r, F ) ≥ d} > 0},

where λ denotes the one-dimensional Lebesgue measure. Later we will assume that our

fractal F is compact, but the above de�nition makes sense for more general measurable

sets as well.

The de�nition of Df
∗ (F ) depends on f . In case we want a de�nition depending only
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on the fractal F we can �rst take

D∗(α, F ) = inf{Df
∗ : f : F → R is locally non-constant and 1-Hölder-α},

where the locally non-constant property is understood as f is non-constant on U ∩ F
where U is any neighborhood of any accumulation point of F . As we are only concerned

with nonnegative numbers, by convention the in�mum of the empty set is 0. The value

D∗(α, F ) concerns those functions for which "most" level sets are smallest possible.

As mentioned earlier we are also interested in level sets of generic 1-Hölder-α func-

tions.

We denote by G1,α(F ), or by simply G1,α the system of dense Gδ sets in Cα
1 (F ).

We put

D∗(α, F ) = sup
G∈G1,α

inf{Df
∗ : f ∈ G}. (2.1.4)

In Theorem 2.2.2 we will show that there is a Gδ subset G of Cα
1 (F ) such that for every

f ∈ G we have Df
∗ (F ) = D∗(α, F ).

As we remarked in the introduction the existence of the above G shows that in the

above de�nition the supremum is maximum, taken at this G ∈ G1,α, and for this special

G there is no need to take the in�mum, since Df
∗ takes this minimum for any f ∈ G,

which at the same time equals the maximum value. Combined with Theorem 2.2.4

for 0 < α < 1 in case of connected self-similar fractals one can think of D∗(α, F ) as

the Hausdor� dimension of almost every level set in the range of the generic Cα
1 (F )

function.

So far we have considered 0 < α ≤ 1. To include generic continuous functions in

our notation we set D∗(0, F ) = max{0, dimtH F − 1}. By Theorem 2.1.3, if f is the

generic continuous function on F , then

D∗(0, F ) = Df
∗ (F ).

For brevity, often we will omit F from our notation.

We will use the Mass Distribution Principle, see for example [18], Chapter 4.
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Theorem 2.1.6. Let µ be a mass distribution (a �nite, non-zero Borel measure) on

F ⊂ Rp. Suppose that for some s ≥ 0 there are numbers c > 0 and δ > 0 such that

µ(U) ≤ c|U |s for all sets U with |U | ≤ δ. Then Hs(F ) ≥ µ(F )/c and s ≤ dimF.

We will use the the following notion of separatedness:

De�nition 2.1.7. For some 0 < ν, ρ < 1, a nonempty set F ⊆ Rp admits a (ν, ρ)

separated structure, if there exists K > 0, and a sequence of �nite families Sk such that

� F ⊂ ⋃Sk for each k,

� for any k and F ′ ∈ Sk we have |F ′| < Kνk,

� for any k and distinct Fi, Fj ∈ Sk we have 1
K
ρk < d(Fi, Fj) = inf{|x − y| : x ∈

Fi, y ∈ Fj}.

This notion will be natural in Subsection 2.4.2. Such sets are fairly common in

fractal geometry, for instance self-similar sets satisfying the strong separation condition

admit such a structure, as we will see in Lemma 2.4.6.

2.2 Main Results

First we give a trivial upper bound for D∗(α, F ). Observe that this upper bound does

not depend on α.

Theorem 2.2.1. For any bounded measurable set F ⊆ Rp, we have

D∗(α, F ) ≤ max{0, dimB(F )− 1}.

The next theorem shows that in the complicated looking de�nition (2.1.4) for a

suitable Gδ set one can skip taking inf and sup.

Theorem 2.2.2. If 0 < α ≤ 1 and F ⊂ Rp is compact, then there is a dense Gδ subset

G of Cα
1 (F ) such that for every f ∈ G we have Df

∗ (F ) = D∗(α, F ).
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From (2.1.1) it follows thatD∗(α, F ) is monotone increasing in α, that isD∗(α, F ) ≤
D∗(α

′, F ) if α ≤ α′. Next we state the same property for D∗(α, F ).

Theorem 2.2.3. Suppose that F ⊂ Rp is compact. Then the function D∗(α, F ) is

monotone increasing in α on (0, 1].

Our next theorem concerns with self-similar sets. Note that we do not assume the

Open Set Condition.

Theorem 2.2.4. Suppose that F is a connected self-similar set and 0 < α < 1. Then

there exists a dense Gδ set G in Cα
1 (F ) such that for any f ∈ G

D∗(α, F ) = Df
∗ (F ) = Df (r, F ) for a.e. r ∈ f(F ).

This shows that in case of connected self-similar sets, like the Sierpi«ski triangle or

the Sierpi«ski carpet one can think of D∗(α, F ) as the Hausdor� dimension of almost

every level set in the range of a generic 1-Hölder-α function.

The last main result in Section 2.4 is the following:

Theorem 2.2.5. If F is the attractor of a bi-Lipschitz iterated function system satis-

fying the strong separation condition, then for small enough α > 0 we have D∗(α, F ) =

D∗(α, F ) = 0.

More speci�cally, if F is a self-similar set satisfying the strong separation condition,

then for 0 < α < 1 we have D∗(α, F ) = D∗(α, F ) = 0.

We start Section 2.5 with the following exact calculation:

Theorem 2.2.6. Set Gk :=
⋃
j∈Z

(
j · 2−k2 , j · 2−k2 + 2−k

3
)
for every k ∈ N,

F0 := [0, 1/2] \
∞⋃
k=2

Gk

and F := F0 × F0. For every α ∈ (0, 1] we have D∗(α, F ) = 1, and D∗(0, F ) = 0.

We also investigate the phenomenon of phase transition, i.e. when D∗(α, F ) equals

D∗(0, F ) for small αs, but exceeds it for larger αs.
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Theorem 2.2.7. There exists a compact subset of R2 which admits phase transition.

We prove the following lower bound concerning the level sets of any 1-Hölder-α

function de�ned on the Sierpi«ski triangle ∆.

Theorem 2.2.8. Assume that f : ∆ → R is a 1-Hölder-α function for some 0 < α ≤ 1.

Then for Lebesgue almost every r ∈ f(∆) we have

dimH(f
−1(r)) ≥

α
2

1 +
1+log 3

α

log 2
+ 2

α

> 0. (2.2.1)

Finally, an upper bound is veri�ed only generically:

Theorem 2.2.9. For any 0 < α < 1, we have D∗(α,∆) ≤ 1− 2−α.

For α < 1 from Theorem 2.2.1 one can obtain thatD∗(α,∆) ≤ log 3
log 2

−1 ≈ 0.584962500721.

Since limα→1−0 1− 2α = 1/2 this upper estimate is better for any α.

Of course, it would be interesting to exactly determine D∗(α,∆), but this seems to

be quite di�cult.

Before proving these theorems, we would like to provide some intuition concerning

these fractals. The closed set F de�ned in Theorem 2.2.6 almost "�lls out" [0, 1/2]2.

We have selected [0, 1/2]2, since we wanted to have a set of diameter not exceeding

1. It is looking like a "sponge" there is a dense system of narrow tubes in it and it

is of zero topological dimension. If one considers the function f0(x, y) = y then its

level sets are horizontal, running West-East. Taking a �generic continuous function"

f ∈ C0(F ) close to f0|F almost all of its level sets are empty. We can also interpret it

in the following way. Take a continuous extension of f onto [0, 1/2]2, still denoted by

f . Then its level sets are still "running almost West-East" but they are "�exible and

compressible enough" to stay in the complement of F . This means that the topological

Hausdor� dimension is not "sensing" the fact that F is a "large sponge". On the other

hand, the theorem tells us that the level sets of generic Hölder-α functions cannot be

squeezed into the thin tubes in the complement of F , this is re�ected by the fact that

D∗(α, F ) = 1 when 0 < α ≤ 1. For this fractal it is easy to carry out the calculations.
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In case of connected fractals like the Sierpi«ski triangle or the Sierpi«ski carpet

there are no tubes/holes in the complement in the fractal, but there are parts where

it is thinner and there are parts where it is thicker. Level sets of generic 1-Hölder-α

functions "try to run" at parts of the fractal where "it is thin". They give more precise

information about these properties of the fractal than topological Hausdor� dimension.

2.3 Theoretical foundations

2.3.1 Some approximation and density results

We recall an extension theorem which is a consequence of Theorem 1 of [21].

Theorem 2.3.1. Suppose that F ⊆ Rp and f : F → R is a c-Hölder-α function. Then

there exists a c-Hölder-α function g : Rp → R such that g(x) = f(x) for x ∈ F .

Next we prove the following general lemma, which will turn out to be rather useful

in the study of generic properties of Hölder functions:

Lemma 2.3.2. Assume that F is compact and c > 0 is �xed. Then the Lipschitz

c-Hölder-α functions de�ned on F form a dense subset of the c-Hölder-α functions.

Proof. Consider an arbitrary c-Hölder-α function f : F → R and �x ε > 0. By using

Theorem 2.3.1 we extend f to Rp. The c-Hölder-α function obtained this way will

be still denoted by f . It is known by the theory of molli�ers that if we consider the

convolution fr = f ∗ ηr, it is a C∞ function and fr → f in the supremum norm on any

compact subset of Rp as r → 0+. Moreover, fr restricted to F is c-Hölder-α as well.

Indeed, for x, y ∈ F , due to the triangle inequality and the fact that the support of ηr
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is {|z| < r},

|fr(x)− fr(y)| =
∣∣∣∣∫

Rp

ηr(z)f(x− z)dz −
∫
Rp

ηr(z)f(y − z)dz

∣∣∣∣
≤
∫
Rp

ηr(z)|f(x− z)− f(y − z)|dz

=

∫
{|z|<r}

ηr(z)|f(x− z)− f(y − z)|dz

≤ c|x− y|α
∫
{|z|<r}

ηr(z)dz

= c|x− y|α.

(2.3.1)

Consequently, we can �x r such that the restriction of fr to F is a c-Hölder-α function

in the ε-neighborhood of the restriction f to F in the supremum norm. Suppose that F ′

is a compact convex set containing F . As fr is smooth, its derivative on F ′ is bounded.

Consequently, fr is K-Lipschitz on F ′ ⊃ F for some K > 0.

Approximations by piecewise a�ne functions in the space Cα
1 (F ) are important as

well. We will prove a lemma of this nature, but in order to avoid ambiguity, we �rst

provide a precise de�nition:

De�nition 2.3.3. A function f : F → R is piecewise a�ne on F ⊆ Rp, if we can

�nd a system S of non-overlapping (means disjoint interiors), non-degenerate closed

p-simplices such that F ⊆ ⋃
S∈S S, the set {S ∈ S : S ∩ B ̸= ∅} is �nite for every

bounded B ⊂ Rp, and for any S ∈ S the restriction of f to any S ∩ F coincides with

the restriction of an a�ne function to S ∩ F .

Lemma 2.3.4. Assume that F is compact, 0 < α < 1, and 0 < c are �xed. Then the

locally non-constant piecewise a�ne c−-Hölder-α functions de�ned on F form a dense

subset of the c-Hölder-α functions.

Before proving this lemma, we state and prove an auxiliary proposition which is

surely known in some form:

Proposition 2.3.5. Assume that S ⊆ Rp is a non-degenerate p-simplex with vertices

x0, ..., xp, and f̃ : {x0, ..., xp} → R is K-Lipschitz for some K > 0. Let a > 0 be the
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length of the longest edge of S, and let b = min0≤i≤p bi, where bi > 0 is the distance

between xi and the hyperplane determined by the remaining vertices. Then the function

f : S → R de�ned by

f(x) =

p∑
i=0

γif̃(xi)

for any convex combination x =
∑p

i=0 γixi is M-Lipschitz, where

M = (p+ 1) ·K · a
b
,

that is M depends on S only through a
b
. In particular, it is invariant with respect to

similarities.

Proof. As S is the convex hull of its vertices and any two vertices are connected by

an edge, its diameter equals a. Moreover, adding a constant to f̃ does not change the

assumption, nor the implication of the proposition. Consequently, we can assume that

min f̃ = 0, and hence by the K-Lipschitz property we have max f̃ ≤ Ka.

Consider now arbitrary points x, x′ in S with

x =

p∑
i=0

γixi, x′ =

p∑
i=0

γ′ixi.

Without loss of generality, we can assume that |γ0 − γ′0| is the maximal amongst the

di�erences |γi − γ′i|, as i = 0, 1, ..., p. Then

|f(x)− f(x′)| ≤
p∑
i=0

|γi − γ′i|f̃(xi) ≤ (p+ 1) · |γ0 − γ′0| ·Ka (2.3.2)

where we use the bound on f̃ in the last inequality. This quantity should be compared

to the distance |x − x′| to check the Lipschitz property of f . However, one can easily

see that the distance of x from the hyperplane determined by x1, ..., xp is γ0b0, while

the distance of x′ from the same hyperplane is γ′0b0. Consequently,

|x− x′| ≥ |γ0 − γ′0|b0 ≥ |γ0 − γ′0|b. (2.3.3)
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Comparing estimates (2.3.2) and (2.3.3), we obtain

|f(x)− f(x′)| ≤ (p+ 1) ·K · a
b
|x− x′| =M |x− x′|.

Proof of Lemma 2.3.4. Consider an arbitrary c-Hölder-α function f : F → R and �x

ε > 0. Since F is compact we can choose 0 < γ < 1 such that ∥f − γf∥∞ < ε/4. Then

γf is c′-Hölder-α on F with c′ = cγ < c. The proof starts similarly to the proof of

Lemma 2.3.2: using Theorem 2.3.1 we extend γf to Rp such that it is still c′-Hölder-α.

We select a closed hypercube F ′ containg F in its interior. By Lemma 2.3.2 we can

�nd a K-Lipschitz, c′-Hölder-α function f̃ for some K > 0 with domain F ′ such that

on F ′ we have ∥∥∥f̃ − γf
∥∥∥
∞
<
ε

4
, which implies

∥∥∥f̃ − f
∥∥∥
∞
<
ε

2
.

By introducing a further perturbation to f̃ we will obtain a piecewise a�ne c-Hölder-α

function f satisfying ∥∥f − f
∥∥
∞ < ε on F. (2.3.4)

To this end, �x any �nite subdivision U of the unit hypercube into non-overlapping,

non-degenerate p-simplices. (The existence of such a simplicial subdivision is simple to

see.) Now divide F ′ into uniform, non-overlapping hypercubes such that their diameter

is below some constant δ > 0 to be �xed later. Let us divide these hypercubes further

according to U , that is denoting by ΦQ a similarity from the unit hypercube onto a

hypercube Q take the subdivision {ΦQ(S) : S ∈ U}. Now if a simplex arising from this

decomposition of F ′ has vertices x0, ..., xp, for any convex combination x =
∑p

i=0 γixi

let

f(x) =

p∑
i=0

γif̃(xi).

Observe that

|f(x)− f(x)| ≤
p∑
i=0

γi|f̃(xi)− f̃(x)|+ |f̃(x)− f(x)| ≤ Kδ +
ε

2
<

3ε

4
, (2.3.5)
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if δ < ε
4K

. According to Proposition 2.3.5, the resulting function f is Lipschitz restricted

to any of the small simplices, where the Lipschitz constant is invariant to similarities.

However any of these small simplices is similar to a simplex S ∈ U , and as U is �nite,

there are �nitely many such Ss. Consequently, we can choose some M independently

from δ, such that f is M -Lipschitz restricted to any of the small simplices. Hence f

is clearly M -Lipschitz on F ′ as well, since any line segment in F ′ is the �nite union of

line segments contained by small simplices.

Choose and �x c′′ ∈ (c′, c). Consider now arbitrary x, y ∈ F ′. Due to the Lipschitz

property of f ,

|f(x)− f(y)| ≤M |x− y| =M |x− y|1−α|x− y|α ≤ c′′|x− y|α

if |x− y| ≤
(
c′′

M

) 1
1−α . That is, if x, y are close enough, the desired Hölder bound holds.

Hence in what follows we can restrict our arguments to x, y with |x − y| >
(
c′′

M

) 1
1−α ,

bounded away from 0.

We can �nd vertices x′, y′ of the small simplices which are at most δ apart from x, y,

respectively. We have that

|f(x)− f(y)| ≤ |f(x)− f(x′)|+ |f(x′)− f(y′)|+ |f(y′)− f(y)|.

By estimating the �rst and the third term using the Lipschitz bound, and the second

term using the Hölder bound (as f(x′) = f̃(x′) and f(y′) = f̃(y′)), we obtain

|f(x)− f(y)| ≤ 2Mδ + c′|x′ − y′|α ≤ 2Mδ + c′(|x− y|+ 2δ)α.

As δ → 0+, the expression on the right hand side tends to c′|x− y|α. Consequently, as
|x− y| is bounded away from 0, for small enough δ it is always smaller than c′′|x− y|α.

By using (2.3.5), the piecewise a�ne function f can be perturbed a bit to obtain

a locally non-constant, piecewise a�ne c−-Hölder-α function, still denoted by f , for

which (2.3.4) holds.
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2.3.2 Upper bound for D∗(α, F )

Our goal now is to prove Theorem 2.2.1 which gives an upper bound for D∗(α, F ) for

an arbitrary F ⊆ Rp. The next simple lemma is probably known. Since we were unable

to �nd a reference to it we provide its short and simple proof.

Lemma 2.3.6. For any bounded measurable set F ⊆ Rp and (p − 1)-dimensional hy-

perplane L with unit normal vector v, we have that

dimB ((L+ tv) ∩ F ) ≤ max{0, dimB(F )− 1}

for Lebesgue almost every t ∈ R.

Proof. As non-degenerate a�ne transformations do not change the dimension of sets

we can assume that L equals the hyperplane spanned by the �rst p− 1 basis vectors of

the standard basis (ei)
p
i=1, and v = ep.

Recall De�nition 2.1.5 and let aN(F ) denote the number of 2−N grid hypercubes

intersected by F , and set s = max{1, dimB(F )}. Due to the de�nition of the upper box

dimension, for every ε > 0 there exists N0 ∈ N such that for N > N0 we have

aN(F ) ≤ 2(s+ε)N . (2.3.6)

For N > N0, de�ne EN ⊆ R such that t ∈ EN if

aN((L+ tv) ∩ F ) > 2(s−1+2ε)N . (2.3.7)

We claim that

λ(EN) ≤ 2−εN . (2.3.8)

Indeed, if the reversed inequality holds, then EN intersects the interior of at least 2(1−ε)N

grid intervals of length 2−N , and then by (2.3.7), we can deduce

aN(F ) > 2(s+ε)N ,
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contradicting (2.3.6). Hence (2.3.8) is justi�ed, which enables us to apply the Borel�

Cantelli lemma to the sequence (En)
∞
n=N0+1. It yields that apart from a set of zero

measure, for any t ∈ R we have

aN((L+ tv) ∩ F ) ≤ 2(s−1+2ε)N

for large enough N , yielding

dimB ((L+ tv) ∩ F ) ≤ max{0, dimB(F )− 1}+ 2ε

for almost every t. It clearly gives the statement of the lemma.

Proof of Theorem 2.2.1. Every f ∈ Cα(F ) is uniformly continuous on F , hence it has

a unique continuous extension f ∗ to F (where F is the closure of F ). The function f ∗

is in Cα(F ). Moreover, it is easy to see that ϕ : f 7→ f ∗ is an isomorphism between

Cα(F ) and Cα(F ). As dimB(F ) = dimB(F ) and f−1(r) ⊂ (f ∗)−1(r), we can assume

that F is closed.

We will prove a stronger statement, notably that for the generic 1-Hölder-α function

f : F → R and for almost every r ∈ R we have

dimH f
−1(r) ≤ dimBf

−1(r) ≤ max{0, dimB(F )− 1}.

Since the �rst inequality above is always true we need to verify the second one. We will

calculate these box dimensions by estimating the number of 2−N grid cubes intersected

by f−1(r), which we denote by aN(f, r). Following this notation, we have

dimBf
−1(r) = lim

log aN(f, r)

N log 2
.

(Unless aN(f, r) is identically zero: in that case, this dimension is simply 0.)

Now for arbitrary N ∈ N, ε > 0, δ > 0 denote by HN(ε, δ) the set of 1-Hölder-α

functions, f for which there exists E ⊆ R with measure δ, such that for any r ∈ E and
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for any m ≥ N we have

am(f, r) > (s+ ε)m ,

where

s = max{1, exp(log 2 · (dimB(F )− 1))}.

For the time being, assume that HN(ε, δ) is nowhere dense for any N, ε, δ. Taking

countable union for δ = 1
k
shows that for f not belonging to a meager set of 1-Hölder-α

functions

am(f, r) > (s+ ε)m

holds for any m ≥ N only in a Lebesgue null-set of rs. Similarly, taking a countable

union for N ∈ N shows that for f not belonging to a meager set of 1-Hölder-α functions

we have that

am(f, r) ≤ (s+ ε)m

for in�nitely many m, except for a null-set of rs, and hence

log am(f, r)

m log 2
≤ log(s+ ε)

log 2
.

However, it immediately yields that for any ε > 0, in a residual set of functions, f

dimBf
−1(r) ≤ log(s+ ε)

log 2
,

except for a null-set of rs. Taking intersection for ε = 1
l
, l ∈ N then yields

dimBf
−1(r) ≤ log s

log 2
= max{0, dimB(F )− 1}

in a residual set of 1-Hölder-α functions f for almost every r, which is the desired

conclusion.

Consequently, to complete the proof of this theorem we need to show that H =

HN(ε, δ) is nowhere dense for any N, ε, δ.

To this end, using Lemma 2.3.4 �x a family F of locally non-constant piecewise
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a�ne 1-Hölder-α functions such that they form a dense subset of 1-Hölder-α functions,

and �x N, ε, δ. Now it su�ces to prove that any f0 ∈ F has a neighborhood B(f0, R0)

such that for any f ∈ B(f0, R0), we have f /∈ HN(ε, δ).

Assume that f0 has k a�ne pieces. It yields that any level set f−1
0 (r) consists of the

intersection of F with pieces of at most k hyperplanes. These hyperplanes admit only

a �nite number of di�erent directions, that is they arise as the translation of �nitely

many �xed (p− 1)-dimensional hyperplanes. Consequently, according to Lemma 2.3.6,

the upper box dimension of f−1
0 (r) is at most max{0, dimB(F )− 1} for almost every r.

It yields that there exists a set E ⊆ R with

λ(E) <
δ

2
(2.3.9)

and n0 ∈ N such that for any r /∈ E and m > n0 we have

am(f0, r) ≤ (s+ ε)m .

Fix such an m > N .

Now let H be the family of 2−N grid cubes intersected by F . For any R > 0, we

can de�ne

E1(R) =
⋃
T∈H

UR(f0(T ∩ F )) \ f0(T ∩ F ).

Since F is compact f0(T ∩ F ) is also compact. We can �x a su�ciently small R > 0

such that for E1 = E1(R) we have

λ(E1) <
δ

2
. (2.3.10)

However, if r /∈ E1, for any f ∈ B(f0, R) we have that am(f0, r) ≥ am(f, r), as f−1(r)∩
T ̸= ∅ implies f−1

0 (r)∩ T ̸= ∅. Putting together (2.3.9) and (2.3.10) we obtain that for

any f ∈ B(f0, R), apart from the set

E ′ = E ∪ E1,
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for any r and f ∈ B(f0, R) we have

am(f, r) ≤ (s+ ε)m .

Since λ(E ′) < δ

it veri�es that HN(ε, δ) is nowhere dense. It concludes the proof.

2.3.3 Dense Gδ sets in which Df
∗ (F ) = D∗(α, F ) for any f

Lemma 2.3.7. Suppose that 0 < α ≤ 1, F ⊂ Rp is compact, E ⊂ Rp is open or closed,

and U ⊂ Cα
1 (F ) is open. If {f1, f2, . . .} is a countable dense subset of U , then there is

a dense Gδ subset G of U such that

sup
f∈G

Df
∗ (F ∩ E) ≤ sup

k∈N
Dfk

∗ (F ∩ E). (2.3.11)

Proof. First we assume that E is closed. We can suppose that E ⊂ F .

Since countable union of sets of measure zero is still of measure zero we can choose

a set R0 ⊆ R such that λ(R \R0) = 0 and for any k

Dfk(r, E) ≤ sup
k′∈N

D
fk′
∗ (E) for any r ∈ R0. (2.3.12)

Suppose that D1 > supk∈ND
fk
∗ (E), and �x k ∈ N and r ∈ R0. Recall (2.1.2). For

every δ > 0 there exists {Uj,k,r}∞j=1, a δ-cover of f
−1
k (r)∩E such that

∑
j |Uj,k,r|D1 < 1.

As we remarked after (2.1.2) we can assume that the sets Uj,k,r are open.

Next we suppose that k, n ∈ N are �xed and for r ∈ R0 we consider δ = 1
n
-covers,

{Uj,k,r,n} of f−1
k (r)∩E. Of course, if f−1

k (r)∩E is empty then it may happen that these

covers are also empty. As E \⋃j Uj,k,r,n is compact, fk is continuous and fk(x) ̸= r for

every x ∈ E \⋃j Uj,k,r,n, we have

0 < ρk,n,r := min
{
1, inf{|fk(x)− r| : x ∈ E \

⋃
j

Uj,k,r,n}
}
for any r ∈ R0 (2.3.13)

(where the in�mum of the empty set is +∞ by convention). Since fk is continuous,
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fk(F ) is bounded. Hence we can choose Mk such that

f−1
k (r) ∩ E = ∅, if r ̸∈ (−Mk + 1,Mk − 1). (2.3.14)

Choose a compact subset

Rk,n ⊆ R0 ∩ (−Mk,Mk) such that λ(Rk,n) > 2Mk − 2−n. (2.3.15)

Then we can choose a �nite subset (R)k,n ⊆ Rk,n, such that Rk,n ⊆ ⋃
r∈(R)k,n

(r −
ρk,n,r, r + ρk,n,r). Moreover, the compactness of Rk,n also yields that we can choose

ρk,n ∈ (0, 1) such that for any r ∈ Rk,n we can �nd rk,n(r) ∈ (R)k,n such that

(r − ρk,n, r + ρk,n) ⊆ (rk,n(r)− ρk,n,rk,n(r), rk,n(r) + ρk,n,rk,n(r)). (2.3.16)

Let Gn =
⋃
k B(fk, ρk,n) ∩ U and G =

⋂
n Gn.

Suppose f ∈ G. Then there exists a sequence kn such that f ∈ B(fkn , ρkn,n) for

every n.

Set R∞ :=
⋂
m

⋃
n≥m(Rkn,n ∪ (R \ (−Mkn ,Mkn))). By (2.3.14), (2.3.15) and the

Borel�Cantelli lemma, λ(R \ R∞) = 0, and for every r ∈ R∞ either f−1(r) ∩ E = ∅ or

for in�nitely many n

f−1(r) ⊂ f−1
kn

(
(r − ρkn,n, r + ρkn,n)

)
∩ E

⊂
(2.3.16)

f−1
kn

(
(rkn,n(r)− ρkn,n,rkn,n(r), rkn,n(r) + ρkn,n,rkn,n(r))

)
∩ E ⊂

(2.3.13)

⋃
j

Uj,kn,rkn,n(r),n,

that is, the system {Uj,kn,rkn,n(r),n} is a 1
n
-cover of f−1(r)∩E. Thus, using the inequality∑

j |Uj,kn,rkn,n(r),n|D1 < 1, we obtain dimH(f
−1(r) ∩ E) ≤ D1 for a.e. r ∈ R, and hence

Df (r, F ) ≤ D1. As D1 > supk∈ND
fk
∗ (E ∩F ) was chosen arbitrarily (2.3.11) is satis�ed.

Now suppose that E is open. For every n ∈ N set

En :=
{
x ∈ E ∩ F : inf{|x− y| : y ∈ F \ E} ≥ 1

n

}
.
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Observe that En ⊆ F is closed. We can apply the previously proved case to En. We

obtain a dense Gδ subset G ′
n of U such that supf∈G′

n
Df

∗ (En) ≤ supk∈ND
fk
∗ (En). Let

G :=
⋂∞
n=1 G ′

n. If f ∈ G then

Df
∗ (F ∩ E) = sup

n∈N
Df

∗ (En) ≤ sup
n∈N

sup
k∈N

Dfk
∗ (En) ≤ sup

k∈N
Dfk

∗ (F ∩ E).

Proof of Theorem 2.2.2. Let D0 := D∗(α, F ).

For every k ∈ N choose a Gk ∈ G1,α(F ) for which D0 − 1
k
≤ inff∈Gk Df

∗ (F ). Set

G0 =
⋂∞
k=1 Gk. We have that G0 ∈ G1,α(F ) and D0 ≤ inff∈G D

f
∗ (F ). It is enough to

prove that for every k ∈ N there is a Gk ∈ G1,α such that

sup
f∈Gk

Df
∗ (F ) ≤ Dk := D0 +

1

k
, (2.3.17)

since then G :=
⋂∞
k=0 Gk is a proper choice.

Fix k ∈ N.

The set Hk := {f ∈ G0 : Df
∗ (F ) ≤ Dk} cannot be nowhere dense in Cα

1 (F ), since

otherwise G ′ := G0 \ cl(Hk) would be in G1,α(F ) and it would hold that

inf
f∈G′

Df
∗ (F ) ≥ Dk > D0 = D∗(α, F ),

which contradicts the de�nition of D∗(α, F ). Hence we can take f1 ∈ Cα
1 (F ) and δ1 > 0

such that Hk is dense in B(f1, δ1) ∩ Cα
1 (F ). Choose a δ2 > 0 to satisfy δα2 ≤ δ1/64. As

F is compact, we can take a �nite set A ⊂ F such that
⋃
a∈AB(a, δ2) covers F .

Suppose that a is �xed, ε > 0 and g0 ∈ Cα
1 (F ) is an arbitrary function. Let

E := B(a, δ2) ∩ F . By the Hölder property, for every f ∈ Cα
1 (F )

diam
(
f(E)

)
≤ (2δ2)

α ≤ δ1
32
.
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Thus setting

g1(x) := min
{
max{g0(x)− g0(a) + f1(a), f1(x)− δ1/2}, f1(x) + δ1/2

}
.

we obtain

g1|E = g0|E − g0(a) + f1(a) (2.3.18)

(since g1(a) = f1(a) and diam
(
g0(E)

)
+ diam

(
f1(E)

)
≤ δ1/16). As g1 ∈ B(f1, δ1), we

can take g2 ∈ Hk such that
∣∣∣∣g1|E − g2|E

∣∣∣∣ < ε/100. Set

g3(x) := min
{
max{g2(x)− g2(a) + g0(a), g0(x)− ε}, g0(x) + ε

}
.

Obviously
∣∣∣∣g3 − g0

∣∣∣∣ ≤ ε. By (2.3.18) and by the de�nition of g2, for every x ∈ E

∣∣g2(x)− g2(a) + g0(a)− g0(x)
∣∣

≤
∣∣g2(x)− g1(x))

∣∣+ ∣∣g1(a)− g2(a))
∣∣+ ∣∣g0(a)− g1(a) + g1(x)− g0(x)

∣∣
≤ ε/100 + ε/100 + 0 < ε,

(2.3.19)

hence g3(x) = g2(x) − g2(a) + g0(a) for every x ∈ E. Thus Dg3
∗ (E) = Dg2

∗ (E) ≤ Dk

since g2 ∈ Hk.

To sum up, for every g0 ∈ Cα
1 (F ), a ∈ A and ε > 0 we can �nd a g3 ∈ Cα

1 (F ) such

that ∥g0 − g3∥ ≤ ε and Dg3
∗
(
B(a, δ2) ∩ F

)
≤ Dk. Consequently, by Lemma 2.3.7 for

every a ∈ A there is a Gka ∈ G1,α satisfying

sup
f∈Gk

a

Df
∗ (B(a, δ2) ∩ F ) ≤ Dk.

Then (2.3.17) is true for Gk := ⋂a∈A Gka , which completes the proof.

2.3.4 Monotonicity of D∗(α, F ) in α

Proof of Theorem 2.2.3. Suppose that α′ > α > 0. If Cα′
1 (F ) was dense in Cα

1 (F ), we

could rely on the generic function in Cα′
1 (F ) determiningD∗(α

′, F ) to obtain conclusions
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about D∗(α, F ) in a rather standard way. However, it is not the case, which raises

certain technical di�culties in connecting these function spaces. We handle it as follows.

The set Cα′
(F )∩Cα

1−(F ) is dense in the separable space Cα
1 (F ). Hence we can select

a sequence

(fk,1)
∞
k=1 ⊆ Cα′

(F ) ∩ Cα
1−(F )

dense in Cα
1 (F ). Due to the two parts of this containment, we can �nd some Mk,1 > 0

and 0 < ck,1 < 1, k = 1, 2, ... such that

fk,1 ∈ Cα′

Mk,1
(F ) ∩ Cα

ck,1
(F ) holds for k = 1, 2, ....

Consequently, 1
Mk,1

fk,1 ∈ Cα′
1 (F ). Now due to Theorem 2.2.2, there exists a dense Gδ

set G0 ⊆ Cα′
1 (F ) such that for any f ∈ G0 we have Df

∗ (F ) = D∗(α
′, F ). This observation

immediately yields the existence of a sequence (fk,2)
∞
k=1 ∈ G0 such that∥∥∥∥ 1

Mk,1

fk,1 − fk,2

∥∥∥∥ < δk (2.3.20)

for some δk to be �xed later. By applying a simple rescaling, let

fk,3 :=Mk,1fk,2 ∈ Cα′

Mk,1
(F ).

For any k from fk,2 ∈ G0 it follows that D
fk,3
∗ (F ) = D∗(α

′, F ).

Now let us set ck,2 =
1+ck,1

2
∈ (ck,1, 1). Our claim is that for some well-chosen δk,

we have fk,3 ∈ Cα
ck,2

(F ) as well. Momentarily assume that this claim holds. Then the

proof can be concluded swiftly: by (2.3.20), we have

∥fk,1 − fk,3∥ < δkMk,1 <
1

k
, (2.3.21)

where the second inequality can be guaranteed by the choice of δk. This implies that the

sequence (fk,3)∞k=1 is dense in C
α
1 (F ) as well. Now to this sequence we can apply Lemma

2.3.7 with the roles E = Rp and G = Cα
1 (F ) to obtain a dense Gδ set G ⊆ Cα

1 (F ) such
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that for any f ∈ G we have

D∗(α, F ) ≤ sup
f∈G

Df
∗ (F ) ≤ sup

k∈N
D
fk,3
∗ (F ) = D∗(α

′, F ),

where the second inequality follows from the lemma, while the equality follows from

the construction of the sequence (fk,3)
∞
k=1. Altogether we obtain the statement of the

theorem indeed.

It only remains to prove the above claim, that is for any x, y ∈ F and f = fk,3 we

have

|f(x)− f(y)| ≤ ck,2|x− y|α.

We use the standard technique of separating two cases based on the distance |x − y|.
Notably, assume �rst that

|x− y| ≤
(
ck,2
Mk,1

) 1
α′−α

. (2.3.22)

Then due to f = fk,3 ∈ Cα′
Mk,1

(F ) we have

|f(x)− f(y)| ≤Mk,1|x− y|α′
=Mk,1|x− y|α′−α|x− y|α ≤ ck,2|x− y|α,

where the last inequality directly follows from (2.3.22).

Now assume the opposite inequality concerning the distance |x− y|, that is

|x− y| >
(
ck,2
Mk,1

) 1
α′−α

. (2.3.23)

In this case, we appropriately substitute f = fk,3 by g = fk,1 and rely on g ∈ Cα
ck,1

(F ).

Notably,

|f(x)− f(y)| ≤ |f(x)− g(x)|+ |g(x)− g(y)|+ |f(y)− g(y)| < ck,1|x− y|α + 2δkMk,1

≤ ck,2|x− y|α,
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where due to (2.3.23), the last inequality follows from

2δkMk,1 ≤ (ck,2 − ck,1)

(
ck,2
Mk,1

) α
α′−α

,

which simply poses another restriction on the choice of δk. Consequently, if δk satis�es

this, then f ∈ Cα
ck,2

(F ) indeed, and if the assumption (2.3.20) holds as well, then the

concluding step of the proof is also valid.

2.4 D∗(α, F ) for various set families

2.4.1 Self-similar sets and D∗(α, F )

In this subsection we prove Theorem 2.2.4.

Since generic continuous functions are non-constant on sets consisting of more than

two points, for connected F s containing at least two points the range of the generic

continuous function contains an interval and hence is of positive Lebesgue measure.

As we mentioned in the introduction if F is the disjoint union of two fractals F1 and

F2, with D∗(α, F1) < D∗(α, F2) then it is easy to see that it is not necessarily true that

for the generic 1-Hölder-α function D∗(α, F ) equals the Hausdor� dimension of almost

every level set in the range of the function.

Indeed, suppose that we put a scaled copy S of the Sierpi«ski triangle into [0, 1/4]×
[0, 1/4], and T denotes [1/2, 3/4] × {0}. Put F = S ∪ T . Suppose that f(x, y) is a

function which is constant 0 on S and equals 1/8 + x on T . Results of [11] imply that

D∗(1/2, S) > 0 and D∗(1/2, T ) = 0 by Theorem 2.2.1. Then for some generic 1-Hölder-

1/2 function g in the ball B(f, 1/16) for almost every r < 1/16 with r ∈ g(S) we have

dimH g
−1(r) = D∗(1/2, S) > 0 and for almost every r > 1/16 we have dimH g

−1(r) = 0.

As g(S) ⊂ (−∞, 1/16) and g(T ) ⊂ (1/16,∞), and λ(g(S)) > 0 and λ(g(T )) > 0 for a

generic g, this counterexample is valid.

We put ∆ := D∗(α, F ) and

κ(f, δ) :=
λ{r ∈ f(F ) : dimH f

−1(r) > ∆− δ}
λ(f(F ))

. (2.4.1)
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The strategy of the proof of Theorem 2.2.4 is the following. First we reduce it to

Proposition 2.4.1. In Lemma 2.4.2 we show that if we have a dense set of functions with

relatively small portion of level sets with Hausdor� dimension close to ∆ then there is a

dense Gδ set of functions with the same property. Based on this lemma in Proposition

2.4.3 we show that for any δ0 > 0 we can �nd a κ0 > 0 and an open ball in Cα
1 (F )

such that for any function f from this ball at least κ0 portion of the range corresponds

to level sets with Hausdor� dimension larger than ∆− δ0. In the proof of Proposition

2.4.1 we use rescaled (both in range and domain) a�ne versions of the functions from

the ball in Proposition 2.4.3. This way we obtain functions for which uniformly in any

su�ciently large interval in the range of the function a portion of the range corresponds

to level sets with Hausdor� dimension larger than ∆− δ0. Finally, Lebesgue's density

theorem will yield that almost every level set is of Hausdor� dimension larger than

∆ − δ0 for functions in a dense Gδ set. This will complete the proof of Proposition

2.4.1.

In the remainder of this subsection, we will assume that the self-similar set F is

determined by the contractive similarities φ1, ..., φm, m ≥ 2 with ratios 0 < q1, ...,qm <

1, that is, F =
⋃
i φi(F ). We put qmin = min{q1, ...,qm}.

Proposition 2.4.1. Suppose that F is a connected self-similar set and 0 < α < 1.

Then for every δ0 > 0 there exists a dense Gδ set G in Cα
1 (F ) such that for every

f ∈ G,
dimH f

−1(r) ≥ ∆− δ0 for a.e. r ∈ f(F ). (2.4.2)

We prove this later. Using this proposition it is very easy to prove Theorem 2.2.4.

Proof of Theorem 2.2.4 based on Proposition 2.4.1. Using Theorem 2.2.2 choose a dense

Gδ set G0 such that Df
∗ (F ) = D∗(α, F ) = ∆ for any f ∈ G0. This implies that if f ∈ G0

then dimH f
−1(r) ≤ ∆ for a.e. r ∈ f(F ).

For δ0 = 1/n, n ∈ N select Gn by using Proposition 2.4.1 and set G =
⋂∞
n=0 Gn.

Then for every f ∈ G we have dimH f
−1(r) = ∆ for a.e. r ∈ f(F ).

Before proving Proposition 2.4.1 we need the next lemma which is followed by

Proposition 2.4.3.
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Lemma 2.4.2. Suppose that 0 < κ0 < 1 and there exists δ0 > 0 such that one can

select a dense set fn ∈ Cα
1 (F ) for which κ(fn, δ0) < κ0. Then there exists a dense Gδ

set Gκ0 such that κ(f, δ0) ≤ κ0 for every f ∈ Gκ0.

Proof. Given k ∈ N using our dense set we will select radii δn,k. We will de�ne Gk =⋃
nB(fn, δn,k) and Gκ0 = ⋂k Gk.
Suppose that n and k are given. Set

Hn = {r ∈ fn(F ) : dimH f
−1
n (r) ≤ ∆− δ0}.

By assumption κ(fn, δ0) < κ0 and hence

λ(Hn) > (1− κ0)λ(fn(F )).

Select a compact set Γn ⊆ Hn such that

λ(Γn) > (1− κ0)λ(fn(F )). (2.4.3)

Using the de�nition of the Hausdor� dimension for every r ∈ Γn we select open sets

Un,k,r,j such that f−1
n (r) ⊆ ⋃j Un,k,r,j, |Un,k,r,j| < 1/k and

∑
j

|Un,k,r,j|∆−δ0+ 1
k < 1. (2.4.4)

Put

ρ(n, k, r) := min{|fn(x)− r| : x ∈ F \
⋃
j

Un,k,r,j} > 0,

where the last inequality holds due to the compactness of F . Since Γn is also compact

we can select �nitely many rl ∈ Γn such that

Γn ⊆
⋃
l

(
rl −

ρ(n, k, rl)

2
, rl +

ρ(n, k, rl)

2

)
.
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Let

δn,k = min
{ 1

n+ k
,min

l

{ρ(n, k, rl)
2

}}
> 0.

Suppose that f ∈ B(fn, δn,k) and r ∈ Γn. Then there exists an l such that r ∈
(rl − ρ(n,k,rl)

2
, rl +

ρ(n,k,rl)
2

). Suppose that x ∈ f−1(r). Then

fn(x) ∈ (r − δn,k, r + δn,k) ⊆ (rl − ρ(n, k, rl), rl + ρ(n, k, rl)).

Therefore x ∈ ⋃j Un,k,rl,j and

f−1(r) ⊆
⋃
j

Un,k,rl,j. (2.4.5)

Suppose that f ∈ Gκ0 . Then there exists a sequence n(k) such that f ∈ ⋂k B(fn(k), δn(k),k).

It is also clear that limk→∞ λ
(
fn(k)(F )△f(F )

)
= 0. We have

λ(Γn(k)) > (1− κ0)λ(fn(k)(F )).

Let Γf :=
⋂∞
j=1

⋃∞
k=j Γn(k). Then λ(Γf ) ≥ (1− κ0)λ(f(F )). Suppose that r ∈ Γf .

From (2.4.4) and (2.4.5) we infer that

dimH f
−1(r) ≤ ∆− δ0.

This implies that

λ{r ∈ f(F ) : dimH f
−1(r) > ∆− δ0} ≤ κ0λ(f(F )),

that is κ(f, δ0) ≤ κ0.

In the sequel we will take balls in Cα
1 (F ) and hence, for ease of notation we will

consider balls in this space, that is for example we will write B(f0, ρ0) instead of

B(f0, ρ0) ∩ Cα
1 (F ).

Proposition 2.4.3. For every δ0 > 0 there exist 0 < κ0 ≤ 1, f0 ∈ Cα
1 (F ), and ρ0 > 0
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such that

κ(f, δ0) ≥ κ0 for every f ∈ B(f0, ρ0). (2.4.6)

Proof. Proceeding towards a contradiction suppose that the statement of the proposi-

tion is not true. Then there exists δ0 such that for every 0 < κ0 ≤ 1 one can select a

dense set fn ∈ Cα
1 (F ) such that κ(fn, δ0) < κ0. For κ0,n = 1/n use Lemma 2.4.2 and

take the dense Gδ sets, Gκ0,n such that κ(f, δ0) < κ0,n for every f ∈ Gκ0,n .
Let G0 =

⋂∞
n=1 Gκ0,n . It is also dense Gδ. Suppose that f ∈ G0. Then

λ{r ∈ f(F ) : dimH f
−1(r) > ∆− δ0} ≤ κ0,nλ(f(F )) for all n.

This implies λ{r ∈ f(F ) : dimH f
−1(r) ≥ ∆ − δ0} = 0, but ∆ − δ0 < ∆ = D∗(α, F )

and this contradicts the de�nition of D∗(α, F ).

Now we are ready to prove Proposition 2.4.1.

Proof of Proposition 2.4.1. Without limiting generality we can suppose that |F | = 1.

By using Lemma 2.3.4 select a dense set {fn} in Cα
1 (F ) consisting of locally non-constant

piecewise a�ne 1−-Hölder-α functions. Since F is connected fn(F ) = [mn,Mn] with

mn < Mn. Since fn is piecewise a�ne, it is Lipschitz-Kn. Without limiting generality

we assume that Kn ≥ 1. Since it is 1−-Hölder-α it is cn-Hölder-α with a cn < 1. We

will select a su�ciently large Ln,k > (n+ k)(Mn −mn + 1). Set

pn,k(t) = mn + t · Mn −mn

Ln,k
, t = 0, ..., Ln,k − 1.

For each t choose x(t) ∈ F such that fn(x(t)) = pn,k(t). If t ̸= t′ then

Kn ≥ Kn|x(t)− x(t′)| ≥ |fn(x(t))− fn(x(t
′))| ≥ Mn −mn

Ln,k

implies

|x(t)− x(t′)| ≥ Mn −mn

Ln,kKn

. (2.4.7)

By using self-similarity of F and 1/α > 1 select a su�ciently large Ln,k and a
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similarity Φt such that x(t) ∈ Φt(F ) and

Mn −mn

3Ln,kKn

>
(Mn −mn

3Ln,k

)1/α
≥ |Φt(F )| > qmin

(Mn −mn

3Ln,k

)1/α
. (2.4.8)

Observe that the sets Φt(F ), t = 1, ..., Ln,k − 1 are pairwise disjoint due to (2.4.7) and

(2.4.8). We denote by q(t) the similarity ratio of Φt. Since we supposed that |F | = 1,

we also have (Mn −mn

3Ln,k

)1/α
≥ q(t) > qmin

(Mn −mn

3Ln,k

)1/α
. (2.4.9)

Given δ0 > 0, we select κ0 > 0, ρ0 > 0 and f ∗
0 according to Proposition 2.4.3 such

that (2.4.6) holds for f ∗
0 . Without limiting generality we can suppose that ρ0 < 1 and

0 ∈ F and f ∗
0 (0) = 0, where 0 denotes the origin in Rp.

Put f0 = (1/2)f ∗
0 . From |F | = 1 and f ∗

0 ∈ Cα
1 (F ) it follows that f0 ∈ Cα

1/2(F ) and

|f0(x)| ≤ 1/2 for all x ∈ F .

For x ∈ Φt(F ) put

fn,k(x) := fn(x(t)) + qα(t)
(
f0(Φ

−1
t (x))− f0(Φ

−1
t (x(t)))

)
, t = 1, ..., Ln,k − 1. (2.4.10)

This way fn,k is well-de�ned on F ∗
n,k =

⋃Ln,k−1
t=1 Φt(F ), since as we noted, the sets Φt(F )

are disjoint.

Claim 2.4.4. If Ln,k is su�ciently large then

|fn,k(x)− fn(x)| <
1

n+ k
for all x ∈ F ∗

n,k. (2.4.11)

Proof of Claim 2.4.4. Take x ∈ F ∗
n,k. Then there exists t such that x ∈ Φt(F ). To

obtain (2.4.11) we have the following chain of estimates

|fn,k(x)− fn(x)| ≤ |fn,k(x)− fn,k(x(t))|+ |fn,k(x(t))− fn(x(t))|+ |fn(x(t))− fn(x)|

≤ qα(t)|f0(Φ−1
t (x))− f0(Φ

−1
t (x(t)))|+ 0 + cn|x(t)− x|α

≤ qα(t)
1

2

( 1

q(t)
|x− x(t)|

)α
+ cn|x(t)− x|α ≤

(1
2
+ cn

)
|x(t)− x|α
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(using (2.4.8) and choosing a su�ciently large Ln,k)

≤ Mn −mn

3Ln,k

(1
2
+ cn

)
<

1

n+ k
. (2.4.12)

This proves Claim 2.4.4.

Claim 2.4.5. If Ln,k is su�ciently large then

|fn,k(x)− fn,k(y)| <
1 + cn

2
|x− y|α for all x, y ∈ F ∗

n,k. (2.4.13)

Proof of Claim 2.4.5. Suppose that x, y ∈ F ∗
n,k. If there exists t such that x, y ∈ Φt(F )

then

|fn,k(x)− fn,k(y)| = qα(t)|f0(Φ−1
t (x))− f0(Φ

−1
t (y))|

≤ qα(t)
1

2

1

qα(t)
|x− y|α ≤ 1

2
|x− y|α.

(2.4.14)

Next suppose that x ∈ Φt(F ) and y ∈ Φt′(F ) with t ̸= t′. We separate two subcases.

First we suppose that x and y are not too far away. We mean by this that

|x− y|1−α ≤ 1− cn
2

. (2.4.15)

We also need a lower estimate of the distance of x and y. We capitalize on (2.4.7)

and (2.4.8)

|x− y| ≥ |x(t)− x(t′)| − |x− x(t)| − |x(t′)− y| (2.4.16)

≥ |x(t)− x(t′)|
(
1−

(Mn −mn

Ln,k

) 1
α |x(t)− x(t′)|−1

)
≥ |x(t)− x(t′)|

(
1−

(Mn −mn

Ln,k

) 1
α
−1

Kn

)
≥ Mn −mn

Ln,kKn

(
1−

(Mn −mn

Ln,k

) 1
α
−1

Kn

)
(supposing that Ln,k is su�ciently large)

≥ 1

2

Mn −mn

Ln,kKn

.
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For x and x(t), and for y and x(t′) we use (2.4.14) to obtain

|fn,k(x)− fn,k(y)|

≤ |fn,k(x)− fn,k(x(t))|+ |fn,k(x(t))− fn,k(x(t
′))|+ |fn,k(x(t′))− fn,k(y)|

≤ 1

2
|x− x(t)|α + |fn(x(t))− fn(x(t

′))|+ 1

2
|y − x(t′)|α

≤ Mn −mn

3Ln,kKn

+ cn|x(t)− x(t′)|α (2.4.17)

(using (2.4.16))

≤ 2

3
|x− y|+ cn|x− y|α

(
1−

(Mn −mn

Ln,k

) 1
α
−1

Kn

)−α
(2.4.18)

≤ |x− y|α
(2
3
|x− y|1−α + cn

(
1−

(Mn −mn

Ln,k

) 1
α
−1

Kn

)−α)
(using (2.4.15))

≤ |x− y|α
(1− cn

3
+ cn

(
1−

(Mn −mn

Ln,k

) 1
α
−1

Kn

)−α)
(2.4.19)

(if Ln,k is su�ciently large)

<
(1 + cn

2

)
|x− y|α.

This took care of the case when (2.4.15) holds.

Next we suppose that

|x− y| >
(1− cn

2

) 1
1−α

. (2.4.20)

We argue until (2.4.17) as before. At this point we can estimate the second term in

(2.4.17) as we did it when we obtained (2.4.18). To estimate the �rst term using (2.4.20)

we can choose Ln,k su�ciently large such that

Mn −mn

3Ln,kKn

<
1− cn

3

(1− cn
2

) α
1−α

<
1− cn

3
|x− y|α.

Then we can directly jump from (2.4.17) to (2.4.19) and then �nish the estimate as
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before. This completes the proof of Claim 2.4.5.

In Claim 2.4.5 we have proved that fn,k is 1+cn
2

-Hölder-α on F ∗
n,k. Now, by using

Theorem 2.3.1 we extend the de�nition of fn,k onto Rp such that its extension, still

denoted by fn,k is still a 1+cn
2

-Hölder-α function. Put

f ∗
n,k(x) = min

{
fn(x) +

1

n+ k
,max

{
fn,k(x), fn(x)−

1

n+ k

}}
. (2.4.21)

Since fn is a cn-Hölder-α function and fn,k is a 1+cn
2

-Hölder-α function f ∗
n,k is also a

1+cn
2

-Hölder-α function. Moreover by Claim 2.4.4 f ∗
n,k = fn,k on F ∗

n,k. Hence

f ∗
n,k(x(t)) = fn,k(x(t)) = fn(x(t)) = p(t). (2.4.22)

By Proposition 2.4.3 and by the choice of f ∗
0 and ρ0 for any f ∈ B(f ∗

0 , ρ0)

λ{r ∈ f(F ) : dimH f
−1(r) > ∆− δ0} ≥ κ0λ(f(F )). (2.4.23)

By (2.4.10) the graph of f ∗
n,k|Φt(F ) is an a�ne copy of the graph of f ∗

0 . In other words,

f ∗
n,k|Φt(F ) is a rescaled version of f ∗

0 = 2f0 with scaling ratio q(t) along domain direc-

tions and with scaling ratio 1
2
qα(t) along the range axis. This a�ne transformation

also gives a correspondence between B(f ∗
0 , ρ0) and {f |Φt(F ) : f ∈ B(f ∗

n,k,
1
2
qα(t)ρ0)}.

Consequently, by (2.4.23) for any f ∈ B(f ∗
n,k,

1
2
qα(t)ρ0)

λ{r ∈ f(Φt(F )) : dimH f
−1(r) > ∆− δ0} ≥ κ0λ(f(Φt(F ))). (2.4.24)

Set ℓ0 = λ(f ∗
0 (F )) > 0. Then using (2.4.9)

λ(f ∗
n,k(Φt(F ))) =

1

2
qα(t) · ℓ0 ≥

1

2
· Mn −mn

3Ln,k
qαminℓ0. (2.4.25)

Thus using (2.4.9) and ℓ0 ≤ 1 · |F |α ≤ 1,

f ∗
n,k(Φt(F )) ⊆

[
pn,k(t)−

1

2
· Mn −mn

3Ln,k
,pn,k(t) +

1

2
· Mn −mn

3Ln,k

]
.
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We will select a su�ciently small

0 < ρn,k < ρ0
1

2
· Mn −mn

3Ln,k
qαmin < ρ0

1

2
· qαt (2.4.26)

(the last inequality holds by (2.4.9)).

Suppose that f ∈ B(f ∗
n,k, ρn,k) ⊆ B(f ∗

n,k, ρ0q
α(t)/2). Then

f(Φt(F )) ⊆ In,k(t) :=
[
pn,k(t)−

Mn −mn

3Ln,k
,pn,k(t) +

Mn −mn

3Ln,k

]
.

By (2.4.24) we also obtain

λ{r ∈ f(F ) ∩ In,k(t) : dimH f
−1(r) > ∆− δ0} ≥ κ0λ(f(Φt(F ))) (2.4.27)

≥ κ0(λ(f
∗
n,k(Φt(F )))− 2ρn,k)

(by choosing a su�ciently small ρn,k and using (2.4.25))

≥ κ0
2
λ(f ∗

n,k(Φt(F ))) ≥
κ0
2

· 1
2
· Mn −mn

3Ln,k
qαminℓ0.

For t = 1, ..., Ln,k − 1 the intervals In,k(t) are disjoint and equally spaced.

Set Gk =
⋃
nB(f ∗

n,k, ρn,k). Since {fn} was dense in Cα
1 (F ) by (2.4.21) it is clear that

the sets Gk are dense open in Cα
1 (F ) and hence G =

⋂
k Gk is dense Gδ.

Suppose that f ∈ G. Then for any k = 1, 2, ... there exists n(k) such that f ∈
B(f ∗

n(k),k, ρn(k),k).

Put

H := {r ∈ f(F ) : dimH f
−1(r) < ∆− δ0}.

Proceeding towards a contradiction suppose that λ(H) > 0.

By (2.4.22) we have

f(F ) ⊃
[
mn(k) + ρn(k),k,Mn(k) −

Mn(k) −mn(k)

Ln(k),k
− ρn(k),k

]
,
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and (2.4.26) implies

ρn(k),k <
1

2
· Mn(k) −mn(k)

Ln(k),k
.

Then pn(k),k(t) ∈ f(F ) for t = 1, ..., Ln(k),k − 2.

By Lebesgue's Density Theorem for every 0 < γ < 1 for large k there exists t ∈
{2, ..., Ln(k),k − 3} such that letting I∗ = [pn(k),k(t− 1),pn(k),k(t+ 1)] we have

λ(I∗ ∩H) ≥ γλ(I∗). (2.4.28)

On the other hand, In(k),k(t) ⊆ I∗. Set

H∗ := {r ∈ f(F ) ∩ I∗ : dimH f
−1(r) ≥ ∆− δ0}.

Using this notation from (2.4.27) it follows that

λ(H∗ ∩ I∗) = λ(H∗) ≥ κ0
12

Mn(k) −mn(k)

Ln(k),k
qαminℓ0 =

κ0
12

qαminℓ0
λ(I∗)

2
. (2.4.29)

Since H ∩H∗ = ∅, adding (2.4.28) to (2.4.29) we obtain

λ(I∗) ≥ γλ(I∗) +
κ0
12

qαminℓ0
λ(I∗)

2

1 ≥ γ +
κ0
12

qαminℓ0
1

2

1− γ ≥ κ0
12

qαminℓ0
1

2
.

This yields a contradiction, as γ can be chosen arbitrarily close to 1.

2.4.2 Strongly separated fractals

In this subsection, our goal is to prove that D∗(α, F ) vanishes for small α in the case

when F admits a (ν, ρ) separated structure, to eventually yield Theorem 2.2.5.

Our �rst lemma shows how this separation condition is related to bi-Lipschitz iter-

ated function systems.

Lemma 2.4.6. Assume that f1, ..., fm is an iterated function system satisfying the
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strong separation condition. Moreover, assume that each fi is bi-Lipschitz, that is for

1 ≤ i ≤ m there exists 0 < ρi, νi < 1 with

νi|x− y| ≤ |fi(x)− fi(y)| ≤ ρi|x− y|.

Then the attractor F of the system admits a (ν, ρ) separated structure for some ν, ρ > 0.

More speci�cally, if each fi is a similarity, that is F is a self-similar set, then F

admits a (ν, ν) separated structure for some ν > 0.

Proof. For any j1, ..., jk ∈ {1, 2, ...,m} we say that fjk(...(fj1(F ))...) = Fj1j2...jk is a kth

level cylinder of F .

First we show that ν = min1≤i≤m νi is a valid choice. To establish this, we will de�ne

the required families for any k by considering smartly chosen cylinder sets. Notably,

Sk will consist of cylinders C1, ..., Cl such that for the diameter |Cj| of any of them,

νk+1|F | ≤ |Cj| ≤ νk|F |. (2.4.30)

This condition is clearly satis�able by iteratively splitting the cylinders we consider.

In particular, start this procedure with the 0-level cylinder F , split it into m many

�rst level cylinders. Later on, in each step split precisely those cylinders which have

diameter larger than νk|F |, and leave the others unchanged. Due to the bi-Lipschitz

property of each fi, this algorithm produces a �nite system of cylinders in �nitely many

steps, such that each cylinder satis�es (2.4.30). It yields that the above choice of ν is

valid indeed for large enough K.

Assume now that the minimal distance between any two of the sets F1, F2, ..., Fm

is r, and consider arbitrary cylinders Cj, Cl ∈ Sk. Now let C be the smallest cylinder

set containing both Cj and Cl. In this case, C = g(F ), where g is the composition

of a �nite sequence of functions fi1 , ..., fiL for some 1 ≤ i1, ..., iL ≤ m. Consequently,

Cj ⊆ g(Fj′) and Cl ⊆ g(Fl′) for some 1 ≤ j′, l′ ≤ m. It yields that the distance between

Cj and Cl is at least as large as the distance between g(Fj′) and g(Fl′). Moreover,

C has diameter at least νk|F |: otherwise it would not have been splitted during the
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procedure creating Sk. Hence if ρ∗ = max1≤i≤m ρi, we can deduce that for the number

L of functions determining g we have

ρL∗ |F | ≥ |g(F )| ≥ νk|F |

L log ρ∗ ≥ k log ν

L ≤ k log ν

log ρ∗
.

That is L ≤ kL∗ for

L∗ =
log ν

log ρ∗
.

Altogether it yields that as the distance between Fj′ and Fl′ is at least r, the distance

between g(Fj′) and g(Fl′) is at least

rνkL∗ = r
(
νL∗
)k
,

which implies that νL∗ is a valid choice for ρ with a large enough K, concluding the

proof of the �rst part.

Concerning the statement for self-similar sets, capitalizing on the fact that g is a

similarity, we are able to take a more comfortable route to conclude the proof from the

observation that C has diameter at least νk|F |. Notably, this implies that the similarity

ratio of g is at least νk, and consequently, the distance between Cj and Cl cannot be

smaller than rνk. It veri�es that in this case ρ = ν can be chosen.

The essence of this subsection is the following lemma:

Lemma 2.4.7. Assume that F admits a (ν, ρ) separated structure, and 0 < α < log ν
log ρ

.

Then piecewise constant functions with �nitely many pieces form a dense subset of the

1-Hölder-α functions.

Proof. Taking union over 0 < c < 1, c-Hölder-α functions clearly form a dense subset

of 1-Hölder-α functions. Consequently, it is su�cient to prove that for any c-Hölder-α

function f we can �nd a piecewise constant 1-Hölder-α function f̃ in the ε neighborhood

of f in the supremum norm for �xed ε > 0. To this end, choose fr according to Lemma
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2.3.2 such that it is in the ε
2
neighborhood of f , M -Lipschitz and c-Hölder-α. Our aim

is to introduce some further perturbation to obtain the 1-Hölder-α function f̃ , which

is piecewise constant on F . We will achieve this goal by using the covers granted by

the separated structure of F . Notably, we will consider the covering Sk = {F1, ..., Fl}
guaranteed by De�nition 2.1.7 for large enough k, and de�ne f̃ separately on F1, ..., Fl

by f̃
∣∣∣
Fi

= fr(xi), using some reference points xi ∈ Fi. Now we would like to prove

that the function f̃ is 1-Hölder-α for large enough k. Choose points y, y′ from distinct

elements of the covering Sk, where the reference points are x, x′. (If y, y′ are in the

same element of covering, we have nothing to prove.) We have

|f̃(y)− f̃(y′)| = |fr(x)− fr(x
′)|.

Then by the triangle inequality, and the Hölder and Lipschitz properties of f

|f̃(y)− f̃(y′)| ≤ |fr(y)− fr(y
′)|+ |fr(y)− fr(x)|+ |fr(y′)− fr(x

′)|

≤ c|y − y′|α +M |y − x|+M |y′ − x′|.

Hence it is su�cient to prove

c|y − y′|α +M |y − x|+M |y′ − x′| ≤ |y − y′|α,

that is

M |y − x|+M |y′ − x′| ≤ (1− c)|y − y′|α.

Now on the right hand side |y − y′| ≥ 1
K
ρk, while on the left hand side both distances

are at most Kνk, where K comes from De�nition 2.1.7. Thus it su�ces to prove that

for large enough k we have

2K ·Mνk ≤ 1− c

Kα
(ρk)α.

However, it immediately follows from the choice of α, as that guarantees ρα > ν. That
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is, f̃ is 1-Hölder-α if k is chosen su�ciently large. Moreover, by increasing k, fr and f̃

can be arbitrarily close to each other. Consequently, f̃ can be in the ε neighborhood of

f , which yields the statement of the lemma.

The following theorem is a straightforward consequence of Lemma 2.4.7:

Theorem 2.4.8. Assume that F admits a (ν, ρ) separated structure, and 0 < α < log ν
log ρ

.

Then for the generic 1-Hölder-α function we have that λ(f(F )) = 0, and consequently,

D∗(α, F ) = D∗(α, F ) = 0.

Proof. Due to Lemma 2.4.7, the piecewise constant 1-Hölder-α functions form a dense

subset of the 1-Hölder-α functions. Such a function f0 has a �nite range, hence for every

l ∈ N, in a small enough neighborhood of it, for any function f we have λ(f(F )) < 1
l
.

By taking the union of all such neighborhoods we �nd an open, dense subset of the

1-Hölder-α functions, in which λ(f(F )) < 1
l
. Taking intersection of these open sets for

l = 1, 2, ... we obtain that generically, λ(f(F )) = 0.

Proof of Theorem 2.2.5. The statement directly follows from coupling Lemma 2.4.6 and

Theorem 2.4.8.

Taking into consideration Theorem 2.2.8, we can see that in contrast with certain

results of fractal geometry, this corollary does not extend to self-similar sets satisfying

the open set condition instead of the strong separation condition.

2.5 Constructions and exact calculations

2.5.1 Computation of D∗(α, F ) for an example

In this subsection we prove Theorem 2.2.6.

Lemma 2.5.1. If F ⊂ R2 is closed, f : R2 → R and λ×λ({(x, f(x, y)) : (x, y) ∈ F}) >
0, then Df

∗ (F ) ≥ 1.
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Proof. By Fubini's theorem, there exists a set H ⊂ R of positive measure such that for

every r ∈ H we have

λ{x ∈ R : there exists a y ∈ R such that (x, y) ∈ f−1(r)} > 0.

That is the projection of f−1(r) onto the x axis is of positive measure, and hence

dimH (f−1(r)) ≥ 1. This implies Df
∗ (F ) ≥ 1.

Proof of Theorem 2.2.6. As F is totally disconnected, its topological dimension is 0,

hence every level set of the typical continuous function de�ned on it is a singleton,

hence D∗(0, F ) = 0 indeed.

Now �x an α ∈ (0, 1]. The upper estimate D∗(α, F ) ≤ 1 is obvious by Theorem

2.2.1.

Using Lemma 2.3.4 we can select a countable dense subset {fm : m ∈ N} of

Cα
1−([0, 1/2]

2) which consists of locally piecewise a�ne functions. As every f ∈ Cα
1 (F )

have an extension in Cα
1 ([0, 1/2]

2), {fm|F : m ∈ N} is dense in Cα
1 (F ).

Next we suppose that m ∈ N is �xed. Since ∂yfm(x, y) takes �nitely many di�erent

values, we can perturb fm by adding a function τ · y with a suitably small τ to it such

that 0 < |∂yfm(x, y)| wherever ∂yfm(x, y) exists. Thus we can assume that there is a

pm > 0 such that pm < |∂yfm(x, y)| (wherever ∂yfm(x, y) exists).
Fix k ≥ 2 such that

∑
l≥k

2l
2 ·
(
2−l

3
)α

≤ pm · 2−k2

1000
=
pm,k
1000

, (2.5.1)

where pm,k := pm · 2−k2 .
Since fm is piecewise a�ne on [0, 1/2]2, we can suppose that k is so large that we

can take j, j′ ∈ Z such that letting Ii :=
(
(i− 1) · 2−k2 , (i+ 1) · 2−k2

)
for i ∈ Z the

function fm is a�ne on Qj,j′ := Ij × Ij′ and λ(F ∩Qj,j′) > 0.

Select a density point x0 of Ij ∩F0. By our assumptions, ∂yfm(x0, y) takes the same

non-zero value for every y ∈ Ij′ , and without limiting generality we can assume that it

48



is positive. Set y0 := (j′ − 1)2−k
2
and y1 := (j′ + 1)2−k

2
, that is Ij′ = [y0, y1]. Then

fm(x0, y1)− fm(x0, y0) > 2pm,k. (2.5.2)

Let δm := pm,k/10. Suppose that f ∈ B(fm|F , δm) ∩ Cα
1 (F ). Denote still by f its

1-Hölder-α extension to [0, 1/2]2. By (2.5.2),

f(x0, y1)− f(x0, y0) > pm,k.

Since x0 is a density point of F0 and f ∈ Cα
1 ([0, 1/2]

2) we can choose δ0 > 0 such that

λ(F0∩ [x0, x0+ δ0]) > 0.99δ0 and |f(x0, yi)−f(x, yi)| ≤ 0.01pm,k for x ∈ [x0, x0+ δ] and

i = 0, 1. This implies

[f(x0, y0) + 0.01pm,k, f(x0, y1)− 0.01pm,k] ⊂ {f(x, t) : t ∈ [y0, y1]} for x ∈ [x0, x0 + δ],

and by (2.5.2) we have f(x, y1)− f(x, y0) > 0.98pm,k. Thus,

λ
(
{f(x, y) : y ∈ [y0, y1] ∩ F0}

)
≥ λ

(
{f(x, y) : y ∈ [y0, y1]}

)
− λ
(
{f(x, y) : y ∈ [y0, y1] \ F0}

)
(using the de�nition of F0 and f ∈ Cα

1 ([0, 1/2]
2) we can estimate the jumps on the

intervals contiguous to F0)

≥ 0.98pm,k − 2
∞∑
l=k

2l
2
(
2−l

3
)α

≥
by (2.5.1)

0.98pm,k −
pm,k
500

> 0.9pm,k.

By Fubini's theorem

0 < λ× λ
({

(x, f(x, y)) : (x, y) ∈
(
[x0, x0 + δ0] ∩ F0

)
×
(
[y0, y1] ∩ F0

)
}
)

≤ λ× λ
({

(x, f(x, y)) : (x, y) ∈ F
})
.

According to Lemma 2.5.1, this implies Df
∗ (F ) ≥ 1. Put G =

⋃∞
m=1B(fm, δm)∩Cα

1 (F ).

Then G is an dense open subset of Cα
1 (F ) and for every f ∈ G we have Df

∗ (F ) ≥ 1.

49



Therefore D∗(α, F ) ≥ 1. Since we also know that D∗(α, F ) ≤ 1, this completes the

proof.

2.5.2 Phase transition

In this subsection, our goal is to provide an example which veri�es Theorem 2.2.7.

Looking at the example with the Sierpi«ski triangle our lower estimate for D∗(α,∆)

guaranteed by Theorem 2.2.8 is positive for positive αs, and henceD∗(α,∆) > D∗(0,∆) =

0. On the other hand, according to Theorem 2.2.5, if F is a self-similar set satisfying

the strong separation condition, then D∗(α, F ) = 0 for 0 < α < 1. This phenomenon

re�ects the intuitive di�erence between these cases: informally speaking, while the Sier-

pi«ski triangle is a fairly �thick� fractal, self-similar sets satisfying the strong separation

condition are quite loose. It raises the natural question whether there are fractals ad-

hering to an intermediate behaviour in the following sense: for small values of α even

the level sets of Hölder-α functions are su�ciently �exible and �compressible� and there

exists 1 > αϕ > 0 such that D∗(α, F ) = D∗(0, F ), holds for all α ∈ [0, αϕ) while

D∗(α, F ) > D∗(0,∆) holds for α > αϕ. If this happens we say that there is a phase

transition for D∗(α, F ). In a very rough heuristic way we could say that if there is a

phase transition then for small values of α the �tra�c� corresponding to the level sets is

not heavy enough to generate �tra�c jams� and can go through the �narrowest� places,

while for larger αs �tra�c jams� show up and �thicker� parts of the fractal should be

used to �accommodate� the level sets.

Next we construct a fractal F for which D∗(α, F ) = D∗(0, F ) = 0 for some small

values of α, while D∗(α, F ) > 0 for large values of α. Theorem 2.2.5 hints us that

we can hope for simple examples displaying this phenomenon, however, probably not

self-similar ones.

To this end, we construct a fat Cantor set C =
⋂∞
n=0Cn, where (Cn) is a decreasing

sequence of sets, such that Cn is the union of 2n disjoint, closed intervals of the same

length. Let C0 = [0, 1], and for n > 0 we obtain Cn by removing an open interval from

the middle of each maximal subinterval of Cn−1. We make the construction explicit by

specifying the length of the maximal subintervals at each level: let it be ln = 1
2n+1−1

.
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Then 2ln < ln−1, hence such a system can be constructed indeed by successive interval

removals. Moreover, the Cantor set C in the limit is indeed a fat Cantor set in terms

of Lebesgue measure, as λ(Cn) = 2n

2n+1−1
, thus

λ(C) = lim
n→∞

λ(Cn) =
1

2
.

Theorem 2.5.2. F = C×C ⊆ R2 admits phase transition. Notably, for 0 < α < 1
2
we

have D∗(α, F ) = 0, while for 1
2
< α ≤ 1 we have D∗(α, F ) = 1. In particular, Theorem

2.2.7 holds.

Figure 2.1: Step 3 of construction of F

While the statement concerning small exponents will easily follow from Theorem

2.4.8, the other part is more technical. It requires a lemma, for which we will need the

notion of Hausdor� capacity:

De�nition 2.5.3. The α dimensional Hausdor� capacity of a set E ⊆ Rp is

Λα(E) = inf

{
∞∑
i=1

|Ui|α : E ⊆
∞⋃
i=1

Ui for some (Ui)
∞
i=1

}
.
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The Hausdor� capacity is closely related to the problem we consider: it gives an

upper estimate for the measure λ(f(E)) if f is a 1-Hölder-α function.

Lemma 2.5.4. Let Ik be a maximal subinterval of Ck and
1
2
< α ≤ 1. Then

Λα(Ik \ C)
|Ik|

→ 0,

as k → ∞.

Proof. Let k ≥ 1. By construction, |Ik| = 1
2k+1−1

> 1
2k+1 . We also know that the length

rm of an interval removed from Cm−1 to obtain Cm can be estimated from above by

rm = lm−1 − 2lm =
1

2m − 1
− 2

2m+1 − 1
=

1

(2m − 1)(2m+1 − 1)
<

1

22m
(2.5.3)

for m > 2. Now cover the set Ik \C by intervals contiguous to C in Ik. It is easy to see

that this covering consists of intervals of length rm for some m > k, and the number of

intervals with length rm is 2m−k−1. Consequently,

Λα(Ik \ C) ≤
∞∑

m=k+1

2m−k−1rαm ≤
∞∑

m=k+1

2m−k−1−2mα, (2.5.4)

where we use (2.5.3) for the second estimate. The geometric series is summable for

1
2
< α ≤ 1, and it yields

Λα(Ik \ C) ≤ 2−k−12
(k+1)(1−2α)

1− 21−2α
=

2−2α(k+1)

1− 21−2α
. (2.5.5)

Consequently, for 1
2
< α ≤ 1

Λα(Ik \ C)
|Ik|

≤ 2(k+1)(1−2α)

1− 21−2α
→ 0, as k → ∞, (2.5.6)

which concludes the proof.

Proof of Theorem 2.5.2. The �rst statement about 0 < α < 1
2
simply follows from

Theorem 2.4.8, as F has a
(
1
2
, 1
4

)
separated structure. This observation follows easily
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from calculations carried out in the proof of Lemma 2.5.4: notably, if Sk consists of the
sets of the form F ∩ (Ij × Ij′), where Ij and Ij′ are (not necessarily di�erent) maximal

subintervals of Ck then each element of Sk has diameter

√
2 · 1

2k+1 − 1
≤

√
2 · 2−k.

Moreover, for k ≥ 2 one can easily deduce that the distance between di�erent elements

of Sk is at least
1

(2k − 1)(2k+1 − 1)
≥ 1

4
4−k,

using the �rst part of (2.5.3) and the fact that as the elements of Sk are product sets,
they di�er in one of their factors. It veri�es that F has a

(
1
2
, 1
4

)
separated structure,

and yields the �rst part of the theorem due to Theorem 2.4.8 and

log 1
2

log 1
4

=
1

2
.

For the second statement, by Theorem 2.2.1 we have D∗(α, F ) ≤ 2 − 1 = 1 and

hence it is su�cient to show that D∗(α, F ) ≥ 1 holds for 1
2
< α ≤ 1.

Recall that the union of all the c-Hölder-α functions for 0 < c < 1 de�ned on F is

a dense subset of 1-Hölder-α functions in the supremum norm. Consequently it would

be su�cient to verify that for a �xed c-Hölder-α function f and ε > 0 we can �nd

a 1-Hölder-α function f̃ ∈ B(f, ε) and ε′ > 0 such that for any 1-Hölder-α function

g ∈ B(f̃ , ε′) we have dimH(g
−1(r)) ≥ 1 in a set of positive measure of rs. In fact, it

would verify that Dg
∗(F ) = 1 on a dense open set, which clearly yields that it is the

generic behaviour.

As f is c-Hölder-α, f + h is a 1-Hölder-α function if h is (1 − c)-Hölder-α. We

will use this property to introduce the perturbed function f̃ , for which some kth level

cylinder of C × C (which is a square) has adjacent vertices v1 = (x1, y1), v2 = (x2, y1)

such that

|f̃(v1)− f̃(v2)| ≥ (1− c)|v1 − v2| = (1− c)|x1 − x2|. (2.5.7)

More explicitly, choose k large enough such that for a maximal subinterval I = [x1, x2] ⊆
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Ck we have
Λα(I \ C)
|x1 − x2|

< δ, (2.5.8)

where δ is to be �xed later. By Lemma 2.5.4, this estimate holds for large enough

k. We can assume without loss of generality that f(v1) ≤ f(v2) for the vertices v1 =

(x1, y1), v2 = (x2, y1) of some kth level cylinder of C × C , as the other case is similar.

We can also assume that these vertices are top vertices of that kth level cylinder see

Figure 2.1. Hence if we de�ne

h(x, y) =


0, if x < x1,

(1− c)(x− x1), if x1 ≤ x ≤ x2,

(1− c)(x2 − x1) otherwise,

(2.5.9)

then f̃ = f + h satis�es (2.5.7).

We take a δ′ > 0 which will be speci�ed later. By continuity, we can choose r such

that for any y ∈ [y1 − r, y1] ∩ C we have

|f̃(x1, y1)− f̃(x1, y)| < δ′ and |f̃(x2, y1)− f̃(x2, y)| < δ′.

Consequently, if g ∈ B(f̃ , δ′), then

|g(x1, y1)− g(x1, y)| < 3δ′ and |g(x2, y1)− g(x2, y)| < 3δ′.

Besides that, as (x1, y1), (x2, y1) were chosen as top vertices of cylinders of C × C,

λ(C ∩ [y1 − r, y1]) =: η > 0.

Now by Theorem 1 of [21] we can extend g to a 1-Hölder-α function de�ned on [0, 1]2.

Denote the extended function by g as well. Due to the choice of r, the continuity of the

extended function, and the intermediate value theorem, we have that the g-image of

the planar line segment [(x1, y), (x2, y)] for any y ∈ [y1 − r, y1]∩C contains the interval

[f̃(v1) + 3δ′, f̃(v2) − 3δ′]. This interval has measure at least (1 − c)(x2 − x1) − 6δ′.

54



Moreover, as [(x1, y), (x2, y)] \ F ⊆ [(x1, y), (x2, y)] is congruent to I \ C ⊆ I, due to

(2.5.8) and the fact that g is 1-Hölder-α, we have

λ(g([(x1, y), (x2, y)] \ F )) ≤ δ(x2 − x1).

Consequently, the remainder measure of values is taken on [(x1, y), (x2, y)]∩F , yielding
that g([(x1, y), (x2, y)] ∩ F ) ∩ [f̃(v1) + 3δ′, f̃(v2) − 3δ′] has measure at least (1 − c −
δ)(x2 − x1)− 6δ′. Fix now the values of δ and δ′ such that this quantity is positive.

By the above calculations, we can conclude that we have

λ2

{
(g(x, y), y) : g(x, y) ∈ [f̃(v1) + 3δ′, f̃(v2)− 3δ′], y ∈ [y1 − r, y1] ∩ C, x ∈ [x1, x2] ∩ C

}
≥ η · ((1− c− δ)(x2 − x1)− 6δ′) > 0,

(2.5.10)

where λ2 denotes the two-dimensional Lebesgue measure. Note that this set is measur-

able indeed as it is the image of the compact set

([x1, x2] ∩ C)× ([y1 − r, y1] ∩ C),

under the continuous mapping (x, y) → (g(x, y), y). However, by Fubini's theorem, we

can rewrite the measure in (2.5.10) as

∫ f̃(v2)−4δ′

t=f̃(v1)+4δ′
λ {y : y ∈ [y1 − r, y1] ∩ C and g(x, y) = t for an x ∈ [x1, x2] ∩ C} dt.

(2.5.11)

As this integral is positive, the integrand is positive on a set A of positive measure.

That is, for any t ∈ A we have that

λ {y : y ∈ [y1 − r, y1] ∩ C and g(x, y) = t for an x ∈ [x1, x2] ∩ C} > 0.

which is equivalent to that the projection of

g−1(t) ∩ ([x1, x2]× [y1 − r, y1]) ∩ F
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to the second coordinate has positive measure. That is, the projection has Hausdor�

dimension 1, which obviously yields that g−1(t)∩([x1, x2]×[y1−r, y1])∩F has Hausdor�

dimension at least 1 as well for a set of ts with positive measure. It concludes the

proof.

2.6 Estimates for the Sierpi«ski triangle

2.6.1 Lower estimate for arbitrary functions

In this section, our aim is to prove Theorem 2.2.8. As ∆ is a connected self-similar set,

hence by Theorem 2.2.4 D∗(α,∆) equals the Hausdor� dimension of almost every level

set of a generic 1-Hölder-α function.

Some people prefer to work with di�erent versions of the Sierpi«ski triangle. We

work with the one which is obtained by starting with an equilateral triangle of side

length one. Hence it satis�es our earlier assumptions about the fractals considered

since its diameter equals one. Its topological Hausdor� dimension equals one and this

implies that for a generic continuous function every level set is zero-dimensional, see

[7]. The level sets of continuous functions are very �exible, and very �compressible�,

hence during the proof of this theorem one can capitalize on the fact that the Sierpi«ski

triangle is very �thin� near the vertices of the small triangles appearing during its

construction. As Hölder-α functions do not have this �exibility, one can expect that

their level sets generically exhibit a di�erent behaviour.

By its de�nition the Sierpi«ski triangle is expressible as ∆ =
⋂∞
n=0 ∆n where ∆n is

the union of the triangles appearing at the nth step of the construction. The set of

triangles on the nth level is τn. For T ∈ τn we denote by V (T ) the set of its vertices.

Moreover, let Vn be the set of the points which are vertices of some T ∈ τn, and their

union is V =
⋃∞
n=0Vn. We are interested in the Hausdor� dimension of the level sets

of a 1-Hölder-α function f : ∆ → R for 0 < α ≤ 1.

Suppose l ∈ N. It will be useful for us to de�ne the self-similar set ∆l ⊆ ∆ as well.

It is induced by the similarities which map ∆0 to any triangle T ∈ τl on the boundary

of ∆0. For example, ∆1 = ∆, while the case l = 3 is shown by Figure 2.2 where the
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Figure 2.2: Sierpi«ski triangle and a crossing level set, shaded blue triangles are used
during the de�nition of ∆3, the lighter shaded triangles correspond to the �rst level
approximation G3

1(r) of the red level set at level r

shaded triangles on the sides of ∆0 are used in the de�nition of ∆3. (The lighter shaded

triangles will have importance later.)

One can easily check that the number of triangles used in the construction of ∆l is

3(2l − 1), and the nth level of ∆l consists of certain triangles of τnl. Let us denote the

family of these triangles by τ ln, the union of their vertices for �xed n by Vl
n, and the

union of vertices for all the triangles in some τ ln by Vl =
⋃∞
n=1V

l
n. It is clear that a

1-Hölder-α function f : ∆ → R restricted to ∆l is still a 1-Hölder-α function.

Suppose that f : ∆l → R is a 1-Hölder-α function and r ̸∈ f(V). We can de�ne the

nth approximation of f−1(r) denoted by Gl
n(r) for any n and r ∈ f(∆l) as the union

of some triangles in τ ln. More explicitly, T ∈ τ ln is taken into Gl
n(r) if and only if T has

vertices v and v′ such that f(v) < r < f(v′), that is, r is in the interior of the convex

hull conv(f(V (T ))). The idea is that in this case f−1(r) necessarily intersects T . On

Figure 2.2 the level set corresponding to f−1(r) is the intersection of the red curve with

∆. The set G3
1(r) consists of the light shaded triangles. Now it is easy to check that,
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using the notation conv for the convex hull,

conv(f(V (T ))) ⊆
⋃

T ′∈τ ln+1, T
′⊆T

conv(f(V (T ′))), (2.6.1)

hence if Gl
n(r) contains a triangle T ∈ τ ln then Gl

n+1(r) contains a triangle T ′ ∈ τ ln+1

such that T ′ ⊆ T . We introduce the following terminology: we say that T ′ ∈ τ ln+k is

the l, r-descendant of T ⊆ Gl
n(r) if there exists a sequence T0 = T ⊇ T1 ⊇ ... ⊇ Tk = T ′

of triangles such that Ti ∈ τ ln+i and Ti ⊆ Gl
n+i(r) for i = 0, 1, ..., k. We denote the set

of l, r-descendants of T by Dl
r(T ).

Observe the obvious property that for any T we can label the vertices in V (T ) such

that f(v0) ≤ f(v2) ≤ f(v1). We refer to v0, v1 as the extreme vertices of T . Since we

supposed that r ∈ intconv(f(V (T ))) we have f(v1) > f(v0). If f(v0) = f(v2) then we

call only one vertex v0 as an extreme vertex, the other vertex denoted by v2 will not

regarded to be an extreme vertex. We proceed analogously if f(v1) = f(v2).

We de�ne the conductivity κln(T ) = κln(T, f) of any triangle T ∈ τ ln inductively (as

f is �xed during most of our arguments, it will be omitted from the notation unless it

might cause ambiguity). If n = 0, we de�ne κl0(T ) = 1. On the other hand, if n ≥ 1,

there is a unique triangle T ′ ∈ τ ln−1 such that T ⊆ T ′. Now if T is one of the two

triangles at an extreme vertex of T ′, then let κln(T ) = κln−1(T
′) (in this case we say

that T is an extreme triangle of T ′), while in any other case we let κln(T ) =
1
2
κln−1(T

′).

The following lemma can be thought of as the weak conservation of conductivity:

Lemma 2.6.1. Assume that T ∈ Gl
n(r) and k ≥ 1. Then we have

∑
T ′∈τ ln+k∩Dl

r(T )

κln+k(T
′) ≥ κln(T ).

Proof. By induction, it su�ces to work with k = 1. Consider the vertices ν0 and

ν1 on which f is minimal and maximal respectively in V (T ). Since r ̸∈ f(V) and

f(ν0) < r < f(ν1) there are at least two edges of T containing points of f−1(r). One of

them is the one connecting ν0 and ν1.

If there is a T ′ ∈ τ ln+1 which contains all the intersection points of the edges of T
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and f−1(r) then it should contain ν0, or ν1. Hence, it is an extreme triangle of T and

the conductivity of T ′ equals that of T .

Otherwise we have at least two triangles of Gl
n+1(r) which are in T and the sum of

their conductivity is at least the conductivity of T .

Now we have enough tools to prove Theorem 2.2.8.

Proof of Theorem 2.2.8. Since ∆ is compact and connected f(∆) is a closed interval.

Moreover as V is a countable and dense subset of ∆ the set f(V) is countable and

dense in f(∆). Suppose that r ∈ int(f(∆)) \ f(V). Then we can �nd T ∈ ⋃n τn such

that r ∈ intconv(f(V (T ))). Due to self-similarity properties, we can assume T = ∆0.

Restrict f to some ∆l. The number l will be �xed later, it is useful to think of

it as something large. Roughly speaking, in order to bound the dimension, we would

like to obtain that for Lebesgue almost every r ∈ f(∆) we have that f−1(r) does not

intersect triangles with high conductivity on the nth level for large n. Consequently,

by Lemma 2.6.1 we could deduce that f−1(r) intersects �many� triangles, which yields

�high� Hausdor� dimension due to the Mass Distribution Principle (Theorem 2.1.6).

In order to formalize this idea, we would like to estimate the number of triangles with

high conductivity.

For any T ∈ τ ln we can consider the chain of triangles T1, T2, . . . , Tn such that Ti ⊇ T

and Ti ∈ τ li . We bound from above the number of triangles in τ ln, whose conductivity is

at least 2−nd1 , where 0 < d1 ≤ 1
2
is chosen to be a small rational number, hence nd1 is an

integer for in�nitely many n. From this point on we restrict our arguments to such ns,

that is we suppose that n = n′q for some n′ = 1, 2, ... where q = min{m ∈ N : md1 ∈ N}.
The conductivity is at least 2−nd1 if Ti is an extreme triangle for at least n−nd1 of the

indices i = 1, 2, ..., n.

The number of such triangles is estimated from above by

(
n

n− nd1

)(
3
(
2l − 1

))nd1
2n−d1n =

(
n

nd1

)(
3
(
2l − 1

))nd1
2n−d1n,

as we can choose the n−nd1 places where we use one of the two extreme triangles, and in

the remaining places we allow the usage of any of the 3
(
2l − 1

)
triangles, hence giving
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an upper bound. By standard bounds on binomial coe�cients, this can be estimated

from above by (
en

nd1

)nd1 (
3
(
2l − 1

))nd1
2n−d1n. (2.6.2)

The diameter of the triangles in τ ln is 2−ln. Consequently, due to f being 1-Hölder-α

and by (2.6.2), we know that the f -image of the union of the well conducting triangles

has Lebesgue measure at most

(
e

d1

)nd1 (
3
(
2l − 1

))nd1
2n−d1n2−lnα =

((
e

d1

)d1 (
3
(
2l − 1

))d1
21−d1−lα

)n

=: cn.

(2.6.3)

Assume that c < 1. Then the corresponding series is convergent, hence we can apply

the Borel�Cantelli lemma to deduce that almost every r ∈ conv(f(V (T )) appears in

the image of well conducting triangles only on �nitely many levels. Consequently, for

almost every r, if n is large enough, f−1(r) must intersect at least 2nd1 triangles of τ ln,

as the sum of the conductivities of triangles in T ∈ τ ln for which r ∈ conv(f(V (T ))),

is at least 1. We will use this observation paired with the Mass Distribution Principle,

Theorem 2.1.6 to give a lower bound on the dimension of almost every level set, but

�rst, let us consider the question how to choose l, d1 in order to guarantee that c < 1.

Elaborating (2.6.3), we would like to assure

(
e

d1

)d1 (
3
(
2l − 1

))d1
21−d12−lα < 1. (2.6.4)

If this inequality holds for 2l instead of 2l−1, that is still �ne for our purposes. Rewriting

our powers in base e, it leads to

exp (d1 − d1 log d1 + d1 log 3 + d1l log 2 + log 2− d1 log 2− αl log 2) < 1,

that is after taking logarithm

d1(1− log d1 + log 3− log 2) + log 2 + l(d1 − α) log 2 < 0.
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We clearly need d1 < α to satisfy this inequality, as only the third term can be negative.

Fixing this assumption, after rearrangement we obtain that it holds if and only if

d1(1− log d1 + log 3− log 2) + log 2

(α− d1) log 2
=
d1(1 + log 3

2d1
) + log 2

(α− d1) log 2
< l. (2.6.5)

No matter how we �x the rational number 0 < d1 < α, such an l implies c < 1. We

notice that d1 can be chosen arbitrarily close to α
2
, and due to the continuity of the left

hand side of (2.6.5), if they are su�ciently close to each other, then we can choose l so

that
α
2
(1 + log 3

α
) + log 2

α
2
log 2

< l ≤ 1 +
α
2
(1 + log 3

α
) + log 2

α
2
log 2

. (2.6.6)

We recall that for such l, d1 we have that for almost every r, if n is large enough,

f−1(r) can only intersect triangles of τ ln with conductivity smaller than 2−nd1 . Fix such

an r and consider only such large enough ns. We de�ne a probability measure µ on ∆l.

Due to Kolmogorov's extension theorem (see for example [33], [42] or [28]) it su�ces

to de�ne consistently µ(T ∩ ∆l) for any triangle T in τ ln. First, if T is not an l, r-

descendant of∆0, let µ(T∩∆l) = 0. For descendants, we proceed by recursion. Notably,

if T is an l, r-descendant in τ ln, and µ(T ∩ ∆) is already de�ned, then we divide its

measure among its l, r-descendants in τ ln+1 proportionally to their conductivity. More

explicitly, for an l, r-descendant T ∗ ∈ τ ln+1 of T we de�ne

µ(T ∗ ∩∆l) = µ(T ∩∆l)
κln+1(T

∗)∑
T ′∈τ ln+1, T

′ is an l, r-descendant of T κ
l
n+1(T

′)
.

Then using Lemma 2.6.1 by induction it is clear that

µ(T ∩∆l) ≤ κln(T ) for any l, r-descendant ∆0.

Hence,

µ(T ∩∆l) ≤ 2−nd1 . (2.6.7)

Next we want to use the Mass Distribution Principle. Recall that we assumed that we

work with ns of the form n′q. Now assume that we have a Borel set U ∈ ∆l such that
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for its diameter we have 2−n
′ql ≤ |U | ≤ 2−(n′−1)ql. By a simple geometric argument one

can show that U might intersect at most C triangles in τ ln′q for some constant C not

depending on n′. (One can consider the triangular lattice formed by triangles with side

length 2−ln
′q and it is easy to see that a Borel set with diameter 2−(n′−1)ql can intersect

only a limited number of the triangles.) Consequently, the number of l, r-descendants

of ∆0 in τ ln′q intersected by U is also bounded by C. For such an l, r-descendant T we

can apply (2.6.7), hence

µ(U) ≤ 2−n
′qd1C.

As |U | ≥ 2−n
′ql, the mass distribution principle tells us that if there exists C ′, s > 0

independent of n′ with

2−n
′qd1C ≤

(
2−n

′ql
)s
C ′,

then s ≤ dimH(f
−1(r)). Such a C ′ exists if and only if

s ≤ d1
l
.

Hence the expression on the right hand side of this inequality is a good choice for s

in the mass distribution principle, thus it is a lower estimate for dimH(f
−1(r)) for any

valid pair l, d1. Using (2.6.6) and the argument leading to it, we can approximate α
2
by

possible d1s and for su�ciently good approximations we can use

l ≤ 1 +
α
2
(1 + log 3

α
) + log 2

α
2
log 2

= 1 +
1 + log 3

α

log 2
+

2

α
.

Consequently,

dimH(f
−1(r)) ≥

α
2

1 +
1+log 3

α

log 2
+ 2

α

> 0.

2.6.2 Upper estimate for the generic function

This subsection is dedicated to the proof of Theorem 2.2.9. We will need the following

de�nition, speci�c to the Sierpi«ski triangle.

62



De�nition 2.6.2. We say that f : ∆ → R is a piecewise a�ne function at level n ∈ N

on the Sierpi«ski triangle if it is a�ne on any T ∈ τn.

If a piecewise a�ne function at level n ∈ N on the Sierpi«ski triangle satis�es the

property that for any T ∈ τn one can always �nd two vertices of T where f takes the

same value, then we say that f is a standard piecewise a�ne function at level n ∈ N

on the Sierpi«ski triangle.

A function f : ∆ → R is a strongly piecewise a�ne function on the Sierpi«ski

triangle if there is an n ∈ N such that it is a piecewise a�ne function at level n.

Here we state a specialized version of Lemma 2.3.4 valid for the Sierpi«ski triangle.

Lemma 2.6.3. Assume that 0 < α < 1, and 0 < c are �xed. Then the locally non-

constant standard strongly piecewise a�ne c−-Hölder-α functions de�ned on ∆ form a

dense subset of the c-Hölder-α functions.

Before proving this lemma we need to state and prove another one.

Recall that Vn =
⋃
T∈τn V (T ).

Lemma 2.6.4. Suppose, 0 < ε, 0 < α < 1, 0 < c, f : ∆ → R is Lipschitz-M and

c−-Hölder-α on ∆. Then there exists N ∈ N such that for any �xed n ≥ N if for any

T ∈ τn g is c/8-Hölder-α on T ∩∆ and g(x) = f(x) for all x ∈ Vn then

∥g − f∥∞ < ε and g is c−-Hölder-α in ∆. (2.6.8)

Proof. Since f is c−-Hölder-α on ∆ we can choose 0 < c′ < c such that f is c′-Hölder-α

on ∆.

If

|x− y| <
( c

16M

) 1
1−α

=:M

then

|f(x)− f(y)| ≤M |x− y|1−α|x− y|α < c

16
|x− y|α.

Choose c′′ ∈ (c′, c).

First we prove that g is c−-Hölder-α.
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Suppose that |x− y| ≥M/4, x ∈ Tx ∈ τn, and y ∈ Ty ∈ τn and select vertices

νx ∈ V (Tx) and νy ∈ V (Ty). (2.6.9)

Then by our assumption f(νx) = g(νx) and f(νy) = g(νy). Since the diameter of Tx

and Ty equals 2−n we obtain

|g(x)− g(y)| ≤ |g(x)− g(νx)|+ |g(νx)− g(νy)|+ |g(νy)− g(y)|

≤ 2c2−nα + |f(νx)− f(νy)| ≤ 2c2−nα + c′|νx − νy|α

≤ 2c2−nα + c′
(
|x− y|+ 2 · 2−n

)α −−−→
n→∞

c′|x− y|α,

where the convergence is uniform due to |x − y| being separated from zero. Thus, we

can choose N large enough (independently of x and y) such that

|g(x)− g(y)| ≤ c′′|x− y|α. (2.6.10)

Suppose |x− y| < M/4. If Tx = Ty then by our assumption

|g(x)− g(y)| < c

8
|x− y|α. (2.6.11)

If Tx ̸= Ty, but Tx and Ty has a common vertex v then by geometric properties of

the Sierpi«ski triangle xvy∢ ≥ π/6, hence by the Law of sines

|x− v| = |x− y| sin(vyx∢)
sin(xvy∢)

≤ |x− y| 2√
3

and similarly |y − v| ≤ |x− y| 2√
3
. Hence,

|g(x)− g(y)| ≤ |g(x)− g(v)|+ |g(v)− g(y)| ≤ c

8
|x− v|α + c

8
|v − y|α

≤ 2
c

8

( 2√
3

)α
|x− y|α < c

2
|x− y|α.

(2.6.12)

If Tx and Ty does not have a common vertex then |x − y| ≥ 2−n
√
3
2
. Choose vx ∈

64



V (Tx) and vy ∈ V (Ty). Then

|vx − vy| ≤ |x− y|+ 2 · 2−n ≤ |x− y|
(
1 + 2 · 2√

3

)
< 4|x− y|.

Thus

|g(x)− g(y)| ≤ |g(x)− g(vx)|+ |g(vx)− g(vy)|+ |g(vy)− g(y)|

≤ 2
c

8
2−nα + |f(vx)− f(vy)| < 2

c

8

( 2√
3

)α
|x− y|α + c

16
|vx − vy|α

< 2
c

8

( 2√
3

)α
|x− y|α + c

16
4α|x− y|α ≤ c

( 1

2
√
3
+

1

4

)
|x− y|α < c√

3
|x− y|α.

(2.6.13)

From (2.6.10), (2.6.11), (2.6.12) and (2.6.13) it follows that g is c−-Hölder-α on ∆.

To see the inequality in (2.6.8) select vx ∈ V (Tx). Then

|f(x)− g(x)| ≤ |f(x)− f(vx)|+ |f(vx)− g(vx)|+ |g(x)− g(vx)| < M |x− vx|+ 0

+
c

8
|x− vx|α ≤M · 2−n + c

8
2−nα ≤M · 2−N +

c

8
2−Nα < ε,

if N is chosen su�ciently large.

Proof of Lemma 2.6.3 . With a rather straightforward modi�cation of the proof of

Lemma 2.3.4 one can verify the following weaker form of Lemma 2.6.3: locally non-

constant strongly piecewise a�ne c−-Hölder-α functions de�ned on ∆ form a dense

subset of the c-Hölder-α functions.

Hence suppose that f ∈ Cα
c (∆) and ε > 0 are given. By the previous remark choose

a locally non-constant f1 ∈ Cα
c−(∆) and n ∈ N such that

∥f − f1∥∞ < ε/2 and f1 is piecewise a�ne on any T ∈ τn. (2.6.14)

By our assumption about the diameter of ∆, the triangles in τn are of side length 2−n.

Since f1 is piecewise a�ne on any T ∈ τn it is Lipschitz-M for a suitable M and

c−-Hölder-α on ∆. By Lemma 2.6.4 used with f1 and ε/2 instead of f and ε choose N .

We want to obtain a locally non-constant standard strongly piecewise a�ne c−-
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Hölder-α function f2 which is ε-close to f . Since f1 is a locally non-constant strongly

piecewise a�ne c−-Hölder-α function which is ε/2-close to f we will modify f1 to obtain

f2, ε-close to f .

Select a su�ciently large n′ ≥ max{N, n} which satis�es

4√
3
M(2−n

′
)1−α <

c

8
. (2.6.15)

To obtain f2 we will modify f1 on the triangles T ∈ τn′ . On Vn′ the functions f2 and

f1 will coincide.

Suppose that T ∈ τn′ is arbitrary. Denote its vertices by v1, v2 and v3. Suppose

that v4, v5 and v6 are the midpoints of the segments v1v2, v2v3 and v1v3, respectively.

We denote by T1, T2 and T3 the triangles v1v4v6, v4v2v5 and v5v3v6, respectively. The

triangles Tj, j = 1, 2, 3 belong to τn′+1.

We de�ne f2(v1) = f2(v4) = f1(v1), f2(v2) = f2(v5) = f1(v2) and f2(v3) = f2(v6) =

f1(v3). We also assume that f2 is a�ne on any triangle T ′ ∈ τn′+1.

By our choice of M we have

|f1(vi)− f1(vj)| ≤M · 2−n′
for any i, j ∈ {1, 2, 3}.

Suppose that x, y ∈ T1 ∩ ∆ (a similar argument works for the triangles T2 and T3).

Denote by π the orthogonal projection onto the second coordinate �y�-axis then

|f2(x)− f2(y)| ≤
|f1(v3)− f1(v1)|

√
3
2
· 2−n′−1

|π(x)− π(y)| ≤ 4√
3
M |x− y|

=
( 4√

3
M |x− y|1−α

)
|x− y|α ≤ 4√

3
M(2−n

′
)1−α|x− y|α < c

8
|x− y|α,

where at the last step we used (2.6.15). Hence if Lemma 2.6.4 is applied with the

constants �xed above to the function f2 as g, we obtain a standard strongly piecewise

a�ne c−-Hölder-α function which is ε-close to f .

We denote by ∆∗ the rescaled and translated copy of ∆ in a way that the vertices

of ∆∗ are v∗1 = (0, 0), v∗2 = (2/
√
3, 0) and v∗3 = (1/

√
3, 1).
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It is clear that R2 can be tiled by translated copies of the triangle v∗1v
∗
2v

∗
3 and its

mirror image about the x-axis. We denote the system of these triangles by T∗
0. For

n ∈ N we also use the scaled copies of this triangular tiling consisting of triangles of the

form 2−nT , T ∈ T∗
0. The system of triangles belonging to this tiling is denoted by T∗

n.

During the de�nition of box dimension many di�erent concepts can be used, see for

example [18]. Given a set F ⊆ R2 we denote by N∗
n(F ) the number of those triangles

T ∈ T∗
n which intersect F . It is an easy exercise to see that

dimBF = lim sup
n→∞

logN∗
n(F )

n log 2
and dimBF = lim inf

n→∞

logN∗
n(F )

n log 2
. (2.6.16)

Lemma 2.6.5. Suppose 0 < α < 1. There exists ϕ : ∆∗ → [0, 1], ϕ ∈ Cα
3 (∆

∗) such

that ϕ(v∗1) = ϕ(v∗2) = 0, ϕ(v∗3) = 1 and there exists an exceptional set E∗ such that

λ(E∗) = 0 and for any y ∈ R \ E∗

dimBϕ
−1(y) ≤ 1− 2−α, that is lim sup

n→∞

logN∗
n(ϕ

−1(y))

n log 2
≤ 1− 2−α. (2.6.17)

Since the lower, and hence the upper box dimension is never less than the Hausdor�

dimension we also have

dimH ϕ
−1(y) ≤ 1− 2−α. (2.6.18)

Figure 2.3: the rescaled and translated Sierpi«ski triangle ∆∗, the function f(x) =
λp([0, x)) and its inverse f−1
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Proof. The basic concepts and results of ergodic theory we use in the sequel can be

found for example in [26]. Suppose that 1/2 < p < 1. Denote by σ the doubling map

on [0, 1), that is σ(x) = {2x}, where {.}, denotes the fractional part. Denote by λp, the
σ invariant ergodic measure for which

λp

( n∑
k=1

ek2
−k + 2−n[0, 1)

)
= p

∑n
k=1 ek(1− p)

∑n
k=1(1−ek), where ek ∈ {0, 1}, k = 1, 2, ....

(2.6.19)

Set f(x) = λp([0, x)). Suppose that x, y ∈ [0, 1], x < y and 2−n ≤ y − x < 2−n+1,

k ∈ N. By (2.6.19) any interval of the form
∑n

k=1 ek2
−k + 2−n[0, 1) is of λp measure at

most pn. Since [x, y] can be covered by no more than three such intervals we have

|f(x)− f(y)| ≤ 3 · pn = 3 · 2n log2 p ≤ 3|x− y|− log2 p. (2.6.20)

Since σ is ergodic with respect to λp by the Birkho� Ergodic Theorem (see for

example Chapter 4 of [26]) we have for λp almost every x

∑n
k=1 ek(x)

n
=

∑n
k=1 χ[1/2,1)(σ

kx)

n
→ λp([1/2, 1)) = p (2.6.21)

(where ek(x) denotes the kth digit after the binary point in the binary representation

of x). We denote by Xp the set of xs satisfying (2.6.21). Since for any x, y ∈ [0, 1],

x < y we have λ(f([x, y))) = λp([0, y))− λp([0, x)) = λp([x, y)) and the intervals [x, y)

generate the Borel sigma algebra we have λp(A) = λ(f(A)) for any Borel set A ⊆ [0, 1).

Hence λ(f(Xp)) = 1 and for λ almost every y ∈ [0, 1] we have f−1(y) ∈ Xp.

For (x, y) ∈ ∆∗ set ϕ(x, y) = f(y) and select p such that − log2 p = α. From (2.6.20)

it follows that ϕ is a 3-Hölder-α function.

The de�nition of the Sierpi«ski triangle implies that if y =
∑∞

k=1 ek2
−k is not a

dyadic rational then the horizontal line

{(x, y) : x ∈ R} intersects 2
∑n

k=1(1−ek) many triangles of T∗
n. (2.6.22)

If needed, by removing a countable set we can assume that f(Xp) does not contain
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dyadic rational numbers. Set E∗ = [0, 1] \ f(Xp). If y ̸∈ [0, 1] then ϕ−1(y) = ∅ and

(2.6.17) is obvious. If y ∈ [0, 1] \ E∗ then by (2.6.21) and (2.6.22) we have

lim sup
n→∞

logN∗
n(ϕ

−1(y))

n log 2
= lim sup

n→∞

log 2
∑n

k=1(1−ek)

− log 2−n
(2.6.23)

= lim
n→∞

1−
∑n

k=1 ek(x)

n
= 1− p = 1− 2−α.

Now we can prove Theorem 2.2.9

Proof of Theorem 2.2.9. Suppose that {gk : k ∈ N} consists of locally non-constant

standard strongly piecewise a�ne 1−-Hölder-α functions de�ned on ∆, and this set is

dense in the space of 1-Hölder-α functions de�ned on ∆. It is also clear that each gk is

Lipschitz with a constant which we denote by Mk.

We suppose that nk is selected in a way that gk is piecewise a�ne on each T ∈ τnk

and there exist v1(T ), v2(T ) ∈ V (T ) such that

gk(v1(T )) = gk(v2(T )) and if v3(T ) denotes the third vertex of T (2.6.24)

then gk(v3(T )) ̸= gk(v1(T )).

Observe that if we take subdivisions, that is we take an n′
k ≥ nk then (2.6.24) holds

for suitably chosen vertices of triangles T ∈ τn′
k
. Later in the proof we will select a

su�ciently large n′
k.

Next we de�ne a function fk satisfying

∥fk − gk∥∞ < 2−k. (2.6.25)

First using Lemma 2.6.4 with α = α, c = 1, f = gk, M = Mk and ε = 2−k, select

Nk ≥ nk.
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We de�ne fk such that with n′
k > Nk

fk(x) = gk(x) for any x ∈
⋃

T∈τn′
k

V (T ). (2.6.26)

Since gk is Mk-Lipschitz if T ∈ τn′
k
, x, y ∈ V (T ) are di�erent then |x − y| = 2−n

′
k

and

|gk(x)− gk(y)| ≤Mk|x− y| =Mk · 2−n
′
k(1−α)|x− y|α < 1

100
|x− y|α, (2.6.27)

if we suppose that n′
k is chosen large enough to satisfy

Mk · 2−n
′
k(1−α) <

1

100
. (2.6.28)

Suppose that T ∈ τn′
k
. For ease of notation we will write vi instead of vi(T ) for

i = 1, 2, 3. Using notation from the second paragraph before Lemma 2.6.5, denote by

ΨT the similarity for which ΨT (T ∩∆) = ∆∗ and the vertices of T for which we have

(2.6.24) satis�ed are mapped in a way that

ΨT (vi) = v∗i for i = 1, 2, 3. (2.6.29)

Then for every x, y ∈ ∆∗

|ΨT (x)−ΨT (y)| = 2n
′
k
2√
3
|x− y|. (2.6.30)

Let ϕ ∈ Cα
3 (∆

∗) be given by Lemma 2.6.5. For x ∈ T ∩∆ we put

fk(x) = ϕ(ΨT (x))(gk(v3)− gk(v1)) + gk(v1). (2.6.31)

Suppose x, y ∈ T ∩∆ then

|fk(x)− fk(y)| ≤ |gk(v3)− gk(v1)| · 3|ΨT (x)−ΨT (y)|α (2.6.32)
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≤Mk2
−n′

k · 3 · 2n′
kα ·

( 2√
3

)α
|x− y|α =Mk2

−n′
k(1−α) · 3 ·

( 2√
3

)α
|x− y|α < 1

8
|x− y|α,

where at the last step we used (2.6.28).

Now by (2.6.26), (2.6.32) and n′
k ≥ Nk we can apply Lemma 2.6.4. Thus fk is a

1−-Hölder-α function satisfying (2.6.25).

Since τn′
k
consists of �nitely many triangles T , �nite union of exceptional sets of

measure zero is still of measure zero, and a�ne transformations are not changing the

Hausdor� dimension we obtain from (2.6.18) and (2.6.31) that dimH f
−1
k (y) ≤ 1− 2−α

for almost every y ∈ R and for every k. Therefore Dfk
∗ (∆) ≤ 1 − 2−α for every k

and by the density of the functions gk and (2.6.25) the functions fk are also dense in

Cα
1 (∆). Hence we can apply Lemma 2.3.7 with the compact set ∆ and the dense set

of functions fk to obtain a dense Gδ set G1 such that Df
∗ (∆) ≤ 1− 2−α for any f ∈ G1.

Since in (2.1.4) there is also a supremum a little extra care is needed. Using Theorem

2.2.2 select and denote by G2 a dense Gδ subset of Cα
1 (∆) such that for every f ∈ G2 we

have Df
∗ (∆) = D∗(α,∆). Since G1 ∩ G2 is non-empty we can select a function f from

it. For this function Df
∗ (∆) = D∗(α,∆) ≤ 1 − 2−α. This completes the proof of the

theorem.
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Chapter 3

Generic Birkho� spectra

3.1 Preliminaries

3.1.1 Notation and terminology

Let Ω = {0, 1}N, and σ be the shift map.

We introduce the usual metric d on Ω de�ned by

d(ω, ω′) =
∞∑
k=1

|ωk − ω′
k|

2k
,

where ωk (resp. ω′
k) denotes the coordinates/entries of ω (resp. ω′). If k ∈ N ∪ {∞}

and A is a �nite string of 0s and 1s then Ak denotes the k-fold concatenation of A and

[A] denotes the cylinder set {ω : Aω′, ω′ ∈ Ω}. Given k, l ∈ N and ω = (ω1ω2...) ∈ Ω

we put ω|k = ω1...ωk and (ω)lk := ωkωk+1 . . . ωl−1ωl, if k ≤ 0 then ω|k is the empty

string and analogously if k > l then (ω)lk is also the empty string. The "conjugate" ω

is the string which we obtain from ω by swapping 0s and 1s, that is ωk = 1− ωk for all

k.

We recall the de�nition of the s-dimensional Hausdor� measure Hs and the Haus-

dor� dimension dimH . Notably, for A ⊆ Ω, Hs(A) = limδ→0+ Hs
δ(A) where Hs

δ(A) =

inf{∑i(diam Ui)
s : where A ⊆ ⋃

i Ui and diam Ui < δ}. The Hausdor� dimension of

A ⊆ Ω is dimH A = inf{s : Hs(A) = 0}. From this de�nition, it is a standard exercise
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to show that dimH Ω = 1.

The complement of a set A is denoted by Ac.

Let PCCk(Ω) be the set of those piecewise constant continuous functions in C(Ω),

which depend only on cylinders of length/depth k. While the set of piecewise con-

stant continuous functions in C(Ω), is denoted by PCC(Ω). Obviously PCC(Ω) =⋃
k PCC

k(Ω).

The (1/2, 1/2)-Bernoulli measure, the �Lebesgue measure" on Ω is denoted by λ. In

case we write
∫
f for an f : Ω → R we always mean

∫
Ω
fdλ.

We denote by C0(Ω) the set of continuous functions for which
∫
f = 0, and PCCk

0(Ω) =

PCCk(Ω) ∩ C0(Ω).

Given f ∈ C(Ω), we denote ∥f∥ = supω∈Ω |f(ω)|, and for any δ > 0, B(f, δ) = {g ∈
C(Ω) : ∥f − g∥ < δ}.

Recall

Ef (α) :=
{
ω ∈ Ω : lim

N→∞

1

N

N∑
n=1

f(σnω) = α
}
, (3.1.1)

and Sf (α) := dimH Ef (α) We remark that our de�nition of Sf (α) is a bit di�erent from

the usual notation in multifractal analysis, since quite often Sf (α) is de�ned to be −∞
when Ef (α) is empty.

As previously de�ned, we set α∗
f,max = sup{α ∈ R : Ef (α) ̸= ∅}, where α∗

f,min =

inf{α ∈ R : Ef (α) ̸= ∅}. In general we have αf,min ≤ α∗
f,min ≤ α∗

f,max ≤ αf,max, and it is

possible for the strict inequalities to hold (including the �rst and the third inequality),

as we will see in an example (cf. Example 3.1.4). In fact, as Theorem 3.2.7 shows this

property is true for the generic continuous functions as well.

The σ-invariant Borel probability measures are denoted by Mσ. By Birkho�'s

Ergodic Theorem, we know that λ(Ef (
∫
f)) = 1. Furthermore, if {Ci}∞i=1 are cylinders

in Ω of length at least k ∈ N and Ef (
∫
f) ⊂ ⋃∞

i=1Ci then

1 = λ

(
Ef

(∫
f

))
≤

∞∑
i=1

λ(Ci) =
∞∑
i=1

diam(Ci),

which implies that 1 ≤ H1
2−k(Ef (

∫
f)) ≤ H1

2−k(Ω) for any k ∈ N, and thus Sf (
∫
fdλ) =
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1. Given f ∈ C(Ω) and α ∈ R we will also use the following subsets of Mσ

Ff (α) :=
{
µ ∈ Mσ :

∫
f dµ = α

}
. (3.1.2)

3.1.2 Examples

We present a few examples of Birkho� spectra of certain PCC(Ω) functions. We will

�rst provide an example for a function with continuous spectrum.

Example 3.1.1. Let f ∈ C(Ω) be the function given by f(ω) = 1 if ω1 = 1 and

f(ω) = 0 if ω1 = 0. Then for any α ∈ (0, 1) we have

Sf (α) = −α log(α) + (1− α) log(1− α)

log 2
,

if α ̸∈ (0, 1) then Sf (α) = 0. In particular, f has continuous spectrum, as α∗
f,min = 0,

α∗
f,max = 1, and furthermore, ∂+Sf (α

∗
f,min) = +∞ and ∂−Sf (α

∗
f,max) = −∞.

Veri�cation of the properties of Example 3.1.1. We will prove two inequalities using

suitably de�ned Hölder functions and Eggleston's formula on dimension of real subsets

determined by their digit density ([17]). First, let us consider the function h1 : Ω → [0, 1]

de�ned by

h1(ω) =
∞∑
i=1

ωi
2i
.

That is, h1 takes a 0-1 sequence to the number with the corresponding binary expansion.

We claim that h1 is a Lipschitz function in fact. Indeed, if ω′ di�ers from ω in its nth

coordinate, but not before that point, then d(ω, ω′) ≥ 2−n, while |h1(ω) − h1(ω
′)| ≤

2−n+1, hence h1 has Lipschitz constant 2. Moreover, h1(Ef (α)) equals the set of numbers

in [0, 1] having a binary expansion in which the density of 1s equals α. Thus due to

[17], the dimension of h1(Ef (α)) is given by the formula in the statement of the lemma,

yielding

Sf (α) ≥ −α log(α) + (1− α) log(1− α)

log 2
,

as h1 is Lipschitz.
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Concerning the other inequality, de�ne h2 : C → Ω for the triadic Cantor set

C ⊂ [0, 1]: if the triadic expansion of x ∈ C is

x =
∞∑
i=1

xi
3i
,

then let ω = h2(x) have coordinates x1
2
, x2

2
, .... That is, h2 is a one-to-one mapping

between Ω and C. Now if x di�ers from x′ in its nth coordinate, but not before that

point, then |x − x′| ≥ 3−n. On the other hand, d(h2(ω), h2(ω′)) ≤ 2−n+1. It quickly

yields that h2 is a Hölder function with exponent log 2
log 3

. Moreover, h−1
2 (Ef (α)) is the set

of numbers in [0, 1] having a ternary expansion with no 1s, in which the density of 2s is

α and the density of 0s is 1− α. Hence h−1
2 (Ef (α)) is contained by the set of numbers

in [0, 1] having a ternary expansion in which the density of 2s is α and the density of

0s is 1− α. Thus due to [17], the dimension of h−1
2 (Ef (α)) is at most

−α log(α) + (1− α) log(1− α)

log 3
.

Hence as h2 is
log 2
log 3

-Hölder, we obtain an upper estimate for Sf (α), that is the dimension

of Ef (α), notably

Sf (α) ≤ −α log(α) + (1− α) log(1− α)

log 2
.

This shows that the desired equality holds, and the remaining claims clearly follow.

Remark 3.1.2. One can use the fact that Sf is the Legendre transform of the topolog-

ical pressure function P (tf) to obtain a less direct argument that veri�es the formula

in Example 3.1.1.

Next, we will see examples of continuous functions with discontinuous spectra.

Example 3.1.3. If f is a constant function, i.e. f ≡ C ∈ R, then Sf (C) = 1 and

Sf (α) = 0 otherwise. The same is true if f is cohomologous to a constant, i.e. there

exists g ∈ C(Ω) for which f = C + g − g ◦ σ (we recall that if C is zero, f is called a

coboundary).

Finally, we give an example where αf,min < α∗
f,min < α∗

f,max < αf,max (that is, strict
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inequalities are satis�ed), and the Birkho� spectrum is discontinuous.

Example 3.1.4. There exists f ∈ PCC3
0(Ω) satisfying αf,min < α∗

f,min < α∗
f,max < αf,max

and Sf (α
∗
f,min), Sf (α

∗
f,max) > 0.

Proof. As f ∈ PCC3
0(Ω) we can de�ne it by giving its values on 3-cylinders by abusing

a bit the notation for f . We de�ne f by f([000]) = f([010]) = −2, f([001]) = −3,

f([100]) = −1, and f(ω) = −f(ω). Then we clearly have αf,min = −3 while αf,max = 3.

Now we claim α∗
f,min = −2, while α∗

f,max = 2, which would yield the inequalities

αf,min < α∗
f,min < α∗

f,max < αf,max. Due to symmetry reasons, it su�ces to verify

α∗
f,min = −2. To this end, consider an arbitrary ω ∈ Ω. Now we are interested in the

averages 1
N

∑N
n=1 f(σ

nω). In the sequence f(σnω) each value is at least -2, except for

the cases when the �rst three coordinates of σnω are 001. However, in this case the

�rst three coordinates of σn+2ω contain at least two 1s, or they are 100. In either case,

f(σn+2ω) ≥ −1. This argument shows that in the sum
∑N

n=1 f(σ
nω) the summands

with value -3 can be paired with summands with value at least -1, except for possibly the

last one, whose pair does not appear in the sum. Besides that, all the other summands

have value at least -2. Consequently, the average 1
N

∑N
n=1 f(σ

nω) ≥ −2 − 3
N
, hence

the limit is at least -2, verifying α∗
f,min ≥ −2. For the other inequality, we may simply

consider the identically 0 sequence, hence α∗
f,min = −2. It proves the claim of this

paragraph.

It remains to show that Sf (α∗
f,min), Sf (α

∗
f,max) > 0. Due to symmetry reasons, these

quantities are clearly equal, hence Sf (α∗
f,min) > 0 would be su�cient. Consider the

following subset of Ω:

B = {ω ∈ Ω : ωk = 0 for k ≡ 1, 2 mod 3}.

Then for any ω ∈ B and n we have that at least two of the �rst three coordinates of

σnω equals 0. Consequently, f(σnω) < 0. Moreover, similarly to the previous argument

we �nd that the in the sum
∑N

n=1 f(σ
nω) the summands with value -3 can be paired

with summands with value -1, except for possibly the last one. All the other summands
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have value -2. Hence we �nd

−2− 1

N
≤ 1

N

N∑
n=1

f(σnω) ≤ −2.

It proves that B ⊂ Ef (−2), hence dimH B > 0 would conclude the proof. However,

this dimension can be calculated explicitly as B is a self-similar set, which equals

the disjoint union of its 2 similar images, where the similarities have ratio 1
8
. Thus

dimH B = log 2
log 8

= 1
3
by Hutchinson's Theorem [22].

3.1.3 Variational formula

The following result was obtained by Fan, Feng, and Wu. We present this result in the

context of the full-shift on an alphabet of two symbols (Ω, σ) (in [19], they proved the

result for a topologically mixing subshift of �nite type).

Theorem 3.1.5 ([19, Theorem A]). Suppose that f : Ω → Rd is a continuous function.

We denote Lf := {α ∈ Rd : α = limN→∞
1
N

∑N
n=1 f(σ

nω) for some ω ∈ Ω}. There

exists a concave and upper semi-continuous function Λf such that for any α ∈ Lf

Sf (α) := dimH(Ef (α)) = Λf (α),

and

Λf (α) = max
µ∈Ff (α)

hµ
log 2

where hµ is the metric entropy of µ, and Ff (α) can be de�ned analogously to (3.1.2).

The function Λf (α) is de�ned in the same paper [19, Proposition 5] using the car-

dinality of the cylinders of large length that contain at least one point ω for which the

Birkho� average of f of that length is close to α. It was later shown that the quantity

Λf (α) indeed agrees with Sf (α) for all α ∈ Lf [19, Proposition 6].
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3.2 Main results

We �rst prove that two Birkho� spectra of two continuous functions are close (except

near the endpoints) if those two functions are close in the supremum norm.

Theorem 3.2.1. Let f ∈ C(Ω) for which α∗
f,min < α∗

f,max, and ε ∈
(
0,

α∗
f,max−α

∗
f,min

2

)
be

given. Then there exists δ > 0 such that for any g ∈ B(f, δ), we have |Sf (α)−Sg(α)| < ε

for all α ∈ (α∗
f,min + ε, α∗

f,max − ε).

Remark 3.2.2. We will later learn that the generic continuous function satis�es the

hypothesis of this theorem; see Theorem 3.2.7.

Recall an example of a PCC3(Ω) function with discontinuous spectrum from Exam-

ple 3.1.4. Our next theorem tells that functions in PCC(Ω) with discontinuous spectrum

form a dense subset of C(Ω).

Theorem 3.2.3. Functions h ∈ PCC(Ω) with Sh(α
∗
h,max) > 0 are dense in C(Ω).

Remark 3.2.4. Of course, a similar theorem is valid with Sh(α∗
h,min) > 0 in the con-

clusion and with a little extra technical e�ort one can show density in C(Ω) of those

f ∈ PCC(Ω) for which Sh(α
∗
h,max) > 0 and Sh(α

∗
h,min) > 0 hold simultaneously. As

Theorem 3.2.5 shows functions satisfying the conclusion of Theorem 3.2.3, or any of its

above mentioned variants form a �rst category set in C(Ω).

Next we will show that the set of functions with discontinuous spectrum is of �rst

category.

Theorem 3.2.5. For the generic continuous function f ∈ C(Ω), we have that Sf is

continuous on R.

Remark 3.2.6. This theorem implies that the set of continuous functions with discon-

tinuous Birkho� spectrum is a set of �rst category. This set includes functions which are

cohomologous to a constant, as we observed in Example 3.1.3, hence this is a possible

way to see that these functions form a set of �rst category.
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In Example 3.1.1 we saw a very simple PCC function for which the range of the

function [αf,min, αf,max] coincides with the support of the spectrum [α∗
f,min, α

∗
f,max]. Our

next theorem states that generically, this coincidence does not hold. In fact, we prove a

little more; we show that the set of functions for which [α∗
f,min, α

∗
f,max] ⊂ (αf,min, αf,max)

is open and dense.

Theorem 3.2.7. For a dense open set G ⊆ C(Ω) we have

αf,min < α∗
f,min < α∗

f,max < αf,max (3.2.1)

hence the generic f ∈ C(Ω) satis�es (3.2.1).

For the generic continuous function we have already seen in Theorem 3.2.5 that the

spectrum is continuous at these endpoints, and as in the direction of the exterior of Lf

the spectrum is constant zero, the one-sided derivative is also zero. On the other hand,

towards the interior of the support it is of in�nite absolute value as we see in the next

theorem.

Theorem 3.2.8. For the generic continuous function f ∈ C(Ω), we have ∂−Sf (α
∗
f,max) =

−∞, while ∂+Sf (α
∗
f,min) = ∞.

Our next theorem tells that there exist functions which are exceptional in Theorem

3.2.8.

Theorem 3.2.9. There exists f ∈ C0(Ω) such that Sf is continuous, α∗
f,min = −1

and α∗
f,max = 1, and ∂−Sf (α

∗
f,max) > −∞, while ∂+Sf (α

∗
f,min) < ∞. Moreover, these

derivatives can be arbitrarily close to −1 and 1, respectively.

It is natural to ask whether Theorem 3.2.9 holds if we restrict our attention to the

class of Hölder functions, or PCC functions. While we do not know whether there is

a PCC function with �nite one-sided derivatives at the endpoints of the spectrum, our

�nal theorem might make one believe that the answer to this question is negative:

Theorem 3.2.10. If f ∈ PCC(Ω) and Sf is continuous, then ∂−Sf (α
∗
f,max) = −∞,

while ∂+Sf (α
∗
f,min) = ∞.

79



3.3 Tools

3.3.1 Norm Continuity Theorem

The goal of this subsection is to prove Theorem 3.2.1.

If one considers f, g ∈ C(Ω) with continuous spectrum then the above theorem

can be used to show that for given ε > 0 one can �nd δ > 0 such that ∥f − g∥ < δ

implies that ∥Sf − Sg∥ < ε. On the other hand, if f has discontinuous spectrum, say

Sf (α
∗
f,max) > 0 then the density of functions with continuous spectrum (Theorem 3.2.5)

and Remark 3.3.2 imply that arbitrary close to f one can �nd functions g such that

∥Sf − Sg∥ > Sf (α
∗
f,max)/2.

To proceed, we �rst prove the following lemma.

Lemma 3.3.1. Let ε > 0 be given. Suppose that f ∈ C(Ω), and α ∈ [α∗
f,min, α

∗
f,max].

Then for any g ∈ C(Ω) such that ∥f − g∥ < ε, there exists α′ ∈ (α− ε, α+ ε) for which

Sg(α
′) ≥ Sf (α). If Sf (α) = 0, but Ef (α) ̸= ∅ then Eg(α

′) ̸= ∅.

Remark 3.3.2. This implies that if ∥f − g∥ < ε then |α∗
f,max − α∗

g,max| < ε and

|α∗
f,min − α∗

g,min| < ε.

Proof. Recall the de�nition of Ff (α) from (3.1.2). By Theorem 3.1.5 there exists µ0 ∈
Ff (α) for which

Sf (α) =
hµ0
log 2

=
maxµ∈Ff (α) hµ

log 2
.

De�ning α′ =
∫
g dµ0, the bound ∥f − g∥ < ε yields α′ ∈ (α − ε, α + ε), and from

Theorem 3.1.5 we can quickly conclude Sg(α′) ≥ Sf (α), as

Sg(α
′) =

maxµ∈Fg(α′) hµ

log 2
≥ hµ0

log 2
= Sf (α).

If Sf (α) = 0, but Ef (α) ̸= ∅, we will obtain the desired conclusion by integrating

g with respect to another measure to get α′. First, consider the map f∗ : Mσ → Lf

for which f∗(µ) =
∫
f dµ. Since this map is a�ne and continuous, and f∗(µ0) = α

is an extremal point of its range, we can conclude the existence of an extremal point
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µ̃0 of the convex set Mσ, that is an ergodic measure, for which f∗(µ̃0) = α. Thus for

α′ =
∫
g dµ̃0, by Birkho�'s Ergodic Theorem we have µ̃0-a.e.

lim
N→∞

1

N

N∑
n=1

g(σnω) = α′,

and hence Eg(α′) ̸= ∅.

Using this lemma, we will prove the theorem by using concavity of the spectrum.

Proof of Theorem 3.2.1. For some L ∈ N, we consider a partition

α∗
f,min = α1 < α2 < · · · < αL = α∗

f,max

for which for every i = 1, 2, . . . , L − 1, |αi+1 − αi| < ε/4 is small enough such that for

every t ∈ [0, 1], we have

(1− t)S(αi) + tS(αi+1) > S((1− t)αi + tαi+1)− ε/2.

For each αi, we choose a positive number δ(αi) < ε/8 as follows: For any α′
i ∈ (αi −

δ(αi), αi+ δ(αi)), and β′
i ≥ Sf (αi), the line segments connecting the points (α′

i, β
′
i) and

(α′
i+1, β

′
i+1) are above the graph of Sf (α)− ε for i = 2, ..., L− 2. We can also suppose

that the intervals (αi − δ(αi), αi + δ(αi)) are disjoint. Then we set

δ = min{ε/8, δ(α1), δ(α2), . . . , δ(αL)}.

We apply Lemma 3.3.1 with ε = δ to show that there exists α′
i ∈ (αi − δ, αi + δ) ⊆

(αi−δ(αi), αi+δ(αi)) such that Sg(α′
i) ≥ Sf (αi) for i = 1, ..., L−1. Since |α′

1−α∗
f,min| =

|α′
1 − α1| < ε/8 and |α′

L − α∗
f,max| = |α′

L − αL| < ε/8 by using the concavity of Sg one

can show that Sg(α) > Sf (α)−ε for all α ∈ (α∗
f,min+ε/2, α

∗
f,max−ε/2). By reversing the

roles of f and g, by an analogous argument we can conclude that Sf (α) > Sg(α)− ε for

all α ∈ (α∗
g,min + ε/2, α∗

g,max − ε/2). Using Remark 3.3.2 we can conclude the proof.
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3.3.2 Piecewise constant (PCC) functions

We start with a lemma in which we show that α∗
f,max is a uniform upper bound of the

limit of the Birkho� averages of any f ∈ PCCk.

Lemma 3.3.3. Assume f ∈ PCCk(Ω) and ε > 0. Then there exists N0 such that for

any N ≥ N0, for any ω ∈ Ω, we have

1

N

N∑
n=1

f(σnω) ≤ α∗
f,max + ε, (3.3.1)

which implies that

lim sup
N→∞

1

N

N∑
n=1

f(σnω) ≤ α∗
f,max uniformly for any ω ∈ Ω. (3.3.2)

Proof. Choose N0 such that for any N > N0

−k ∥f∥+N(α∗
f,max + ε)

N + k
> α∗

f,max +
ε

2
. (3.3.3)

We claim that this N0 satis�es the statement of the lemma. Proceeding towards a

contradiction, assume the existence of a con�guration ω and N > N0 which refutes this

claim, that is

1

N

N∑
n=1

f(σnω) > α∗
f,max + ε. (3.3.4)

Our goal is to construct ω′ ∈ Ω, periodic by N + k which will satisfy

N∑
n=1

f(σnω′) =
N∑
n=1

f(σnω) > N(α∗
f,max + ε), (3.3.5)

and this will contradict the de�nition of α∗
f,max as we will see in (3.3.7). In the ergodic

sums we consider, the �rst coordinate has no importance, thus it is su�cient to construct

σω′. Let it be periodic with period N + k (that is σN+k+1ω′ = σω′), and de�ne its �rst

N + k coordinates to be ω2, ω3, ..., ωN+k+1. Now if N ′ is arbitrary, express it modulo

N + k as N ′ = p(N + k) + q, where p is a nonnegative integer, while 0 ≤ q < N + k.
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Then the corresponding ergodic sum can be written as

1

N ′

N ′∑
n=1

f(σnω′) =
1

N ′

p(N+k)∑
n=1

f(σnω′) +
1

N ′

q∑
n=1

f(σp(N+k)+nω′)

=
p(N + k)

N ′

 1

p(N + k)

p(N+k)∑
n=1

f(σnω′)

+
1

N ′

q∑
n=1

f(σp(N+k)+nω′) = ⊛

(3.3.6)

Using the periodicity of σω′ in the �rst sum, and the boundedness of f in the second

one we infer

⊛ =
p(N + k)

N ′

(
1

N + k

N+k∑
n=1

f(σnω′)

)
+ o(N ′).

Hence if N ′ → ∞, the ergodic sum 1
N ′

∑N ′

n=1 f(σ
nω′) converges to 1

N+k

∑N+k
n=1 f(σ

nω′).

Now by (3.3.4) and f ∈ PCCk(Ω), we have (3.3.5). Thus by (3.3.3), we deduce

1

N + k

N+k∑
n=1

f(σnω′) >
−k ∥f∥+N(α∗

f,max + ε)

N + k
> α∗

f,max +
ε

2
, (3.3.7)

Hence Ef (α) ̸= ∅ for some α > α∗
f,max + ε

2
, which is obviously a contradiction. It

concludes the proof.

Remark 3.3.4. More general version of Lemma 3.3.3 can be found in [40, Theorem

1.9]. In particular, the result would hold for continuous functions, rather than PCC

functions. We will not, however, require such general result in our subsequent argument.

Next, we will show that if f ∈ PCC(Ω), then there exists a periodic point in Ω for

which the limit of the Birkho� averages of f equals α∗
f,max.

Lemma 3.3.5. Let f ∈ PCCk(Ω). Then there exists a periodic con�guration ω such

that limN→∞
1
N

∑N
n=1 f(σ

nω) = α∗
f,max.

Proof. We de�ne a directed graph G = (V,E) as follows: V = {0, 1}k, and there is an

edge from u ∈ V to v ∈ V if roughly speaking v is one of the possible shifted images of

u, that is vi = ui+1 for i = 1, ..., k − 1. Now we can think of the values of f as weights

on the vertices of G, while an arbitrary ω ∈ Ω corresponds to an in�nite walk Γω in G.
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Moreover, the ergodic averages are simply the averages of weights along the vertices of

�nite subwalks of Γω.

For technical reasons, it is advantageous to put the weights on the edges and work

with those ones: one of the convenient ways to do so is putting weight f(u) on all the

edges leaving the vertex u. Denote the function E → R obtained this way by f , too.

Now the ergodic averages can be considered as the averages of weights along the edges

of �nite subwalks of ω.

Consider now ω ∈ Ω such that 1
N

∑N
i=1 f(σ

iω) → α∗
f,max. Take the corresponding

path Γω. As V is �nite, there exists a vertex which appears in�nitely many times in

Γω. By erasing the �rst few entries of ω, or equivalently, erasing the �rst few edges of

Γω, we might assume by abuse of notation that the �rst vertex v of Γω recurs in�nitely

many times. Now based on the recurrences of v, we can partition the in�nite walk Γω

into closed, �nite walks Γ(1)
ω ,Γ

(2)
ω , ... such that each such walk starts and ends with v,

and in the meantime it does not hit v. Now it is simple to verify that the edge set

(counted with multiplicities from now on) of each Γ
(i)
ω is the union of graph cycles, or

in other words, it is the union of closed walks containing each of their edges precisely

once. (One cycle might also appear multiple times in this decomposition.) Indeed, we

can �nd a subpath e1e2...er such that e1 = er, and there is no other repetition of edges

in this subpath. Then e1e2...er−1 is a cycle, and its removal from Γ
(i)
ω results in a shorter

closed walk starting and ending with v. Thus we can repeat the previous reasoning to

�nd another cycle, if such exists and this procedure ends in �nitely many steps.

Let us note now that there are only �nitely many cycles in G as it is a �nite graph.

Denote their set by C. By the previous paragraph, up to the last edge of any Γ
(i)
ω , the

edge set of Γω can be written as the union of these cycles, such that C ∈ C is used ρC,i

times. Thus the ergodic average corresponding to the subpath of the Γω up to the last

edge of Γ(i)
ω is the following:

∑
C∈C ρC,i

∑
e∈C f(e)∑

C∈C ρC,i|C|
=

∑
C∈C ρC,i|C|

∑
e∈C

f(e)
|C|∑

C∈C ρC,i|C|
. (3.3.8)

Notice that it is simply a convex combination of the cycle averages
∑

e∈C
f(e)
|C| . Hence
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the ergodic average in (3.3.8) can be bounded from above by maxC∈C
∑

e∈C
f(e)
|C| . Now

by the choice of ω we also know that this ergodic average tends to α∗
f,max as i → ∞,

hence

α∗
f,max ≤ max

C∈C

∑
e∈C

f(e)

|C| (3.3.9)

also holds.

Now consider the in�nite walk which goes along a cycle C0 over and over again,

where C0 is chosen so that the above maximum is attained. Then C0 together with

a starting point uniquely determines a periodic con�guration ω∗ ∈ Ω for which σiω∗

always equals the respective vertex of C0. Moreover, it is simple to check that the

ergodic averages tend to
∑

e∈C0

f(e)
|C0| . Hence this limit must be α∗

f,max by (3.3.9), as it is

an upper estimate for all ergodic limits.

3.4 Continuity, discontinuity and support of the spec-

trum

By [19], we know that Sf is necessarily upper semi-continuous for any continuous func-

tion. Moreover, it is continuous on [α∗
f,min, α

∗
f,max], while it vanishes outside of this

interval. However it is not necessarily continuous at the endpoints of this interval.

3.4.1 Denseness of PCC functions with discontinuous spectra

The goal of this subsection is to prove Theorem 3.2.3. The main idea of the proof of

Theorem 3.2.3 is to show that given any continuous function, we can approximate it by

a PCC function, and we further "perturb" that PCC function in an appropriate way

so that its spectrum will be discontinuous.

Proof of Theorem 3.2.3. Suppose ε > 0 and f0 ∈ C(Ω) are arbitrary. We need to �nd

an h ∈ PCC(Ω) such that

∥f0 − h∥ < ε and Sh(α
∗
h,max) > 0. (3.4.1)
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We will achieve this by the following. We �rst �nd f ∈ PCCk(Ω) for suitably large k

that approximates f0. By Remark 3.3.2, α∗
f0,max ≈ α∗

f,max. Next we will "perturb" the

function f by adding another PCC function g. This function g will be small in a sense

that it does nothing to perturb f for many points, but it will perturb just slightly near

the points where the limit of Birkho� averages of f attains the maximum (i.e. α∗
f,max)

to the point where Sf+g discontinuous at the boundary of Lf+g. The sum f + g will be

our candidate for h.

By using a suitably large k choose f ∈ PCCk(Ω) such that ∥f − f0∥ < ε/2. By

Lemma 3.3.5 select a periodic ω′ such that

lim
N→∞

1

N

N−1∑
n=0

f(σnω′) = α∗
f,max. (3.4.2)

In this proof, as in (3.4.2) we prefer to take Birkho� sums with indices between 0 and

N − 1, when taking limits it makes no di�erence. We can assume that there is a �nite

string of 0s and 1s, denoted by A such that ω′ = A∞, by not necessarily using the prime

period we can also suppose that kA = |A|, the length of A is a multiple of k.

Now we select a string B of length kA. If A ̸= 0kA then we let B = 0kA , if A = 0kA

then we let B = 1kA . Without limiting generality in the sequel we assume that B = 0kA .

By using a suitably large number ℓ, to be �xed later, we consider strings X =

(A2ℓ)AABAA and Y = (A2ℓ)ABAAA.

Set H = {X, Y }∞. We will later show that this set will be contained in Eh(α∗
h,max)

(where h will be de�ned by perturbing f slightly). We note that it is easy to see that

dimH H > 0, since by Hutchinson's theorem, 2 · (2−(2ℓ+5)kA)dimH H = 1, which gives

dimH H = 1
(2ℓ+5)kA

. This would imply Eh(α∗
h,max) > 0.

Claim 3.4.1. There exists αℓ ∈ R such that

lim
N→∞

1

N

N−1∑
n=0

f(σnω) = αℓ ≤ α∗
f,max for any ω ∈ H. (3.4.3)

Proof. First we consider the sum
∑2(ℓ+5)kA−1

n=0 f(σnω) for any ω ∈ H. We select ωA ∈
[AA], ωAB ∈ [ABA]. Since f ∈ PCCk, and k divides kA, the values of f(σnωA); n =

86



0, ..., kA−1 and f(σnωAB); n = 0, ..., 2kA−1 are independent of our choice of ωA ∈ [AA]

and ωAB ∈ [ABA]. Hence, there exists a constant Σℓ such that for any ω ∈ H, we have

Σℓ =

(2ℓ+5)kA−1∑
n=0

f(σnω) = (2ℓ+ 3)

kA−1∑
n=0

f(σnωA) +

2kA−1∑
n=0

f(σnωAB).

De�ne αℓ so that it satis�es 2(ℓ+ 5)kAαℓ = Σℓ. Let N be greater than 2(ℓ+ 5)kA, and

write N = 2(ℓ+5)kAMN +RN for some positive integer MN and RN ∈ {0, 1, . . . , 2(ℓ+
5)kA − 1}. Thus

N−1∑
n=0

f(σnω) = 2(ℓ+ 5)kAMNαℓ +
N∑

n=N−RN

f(σnω)

for any ω ∈ H. Thus, we obtain (3.4.3) by dividing both sides of the equation by N

and letting N → ∞.

Now we return to the proof of Theorem 3.2.3. Next we construct the perturbation

function g. Put m = ℓ+ 7 and

Cm = {U1U2...Umω0ω1... : Ui ∈ {X, Y }, i = 1, ...,m, ωj ∈ {0, 1}, j = 0, 1, ...}. (3.4.4)

We take the following �nite union of cylinder sets in Ω

P =
ℓ−1⋃
i=0

σikACm.

Next we de�ne our perturbation function g ∈ PCCmkA(Ω). If ω ∈ P then we set

g(ω) = ε/4, otherwise put g(ω) = 0.

Claim 3.4.2. If ℓ is su�ciently large then for h = f + g and for any ω ∈ H we have

b∗ :=
1

(2ℓ+ 5)kA

(2ℓ+5)kA−1∑
j=0

h(σj+t(2ℓ+5)kAω) > α∗
f,max +

ε

32kA
for t = 0, 1, ... . (3.4.5)

Proof. Take and �x an arbitrary ω ∈ H. Recall that |X| = |Y | = (2ℓ + 5)kA. By our
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de�nition of X and Y we have

1

(2ℓ+ 5)kA

(2ℓ+5)kA−1∑
j=0

f(σj+t(2ℓ+5)kAω) = αℓ for any t ∈ {0, 1, ...}. (3.4.6)

From the choice of ω and A it is also clear that

1

2ℓkA

2ℓkA−1∑
j=0

f(σj+t(2ℓ+5)kAω) = α∗
f,max for any t ∈ {0, 1, ...}. (3.4.7)

Hence,

αℓ ≥
2ℓkA · α∗

f,max + 5kAαf,min

(2ℓ+ 5)kA
→ α∗

f,max as ℓ→ ∞. (3.4.8)

Next we look at the averages of g. Observe that if Ui ∈ {X, Y } then there is a

maximal substring of Ui which consists of consecutive zeros. This is the one which

contains B, and of course might contain some zeros from the end/beginning of the As

before/after B in Ui. This and the de�nition of P and g imply that for ω ∈ H

g(σjω) > 0 holds i� j = ikA + t(2ℓ+ 5)kA, i = 0, ..., ℓ− 1, t = 0, 1, ... . (3.4.9)

Therefore,

1

(2ℓ+ 5)kA

(2ℓ+5)kA−1∑
j=0

g(σj+t(2ℓ+5)kAω) =
ℓε

4(2ℓ+ 5)kA
for any t ∈ {0, 1, ...}. (3.4.10)

Now we determine how large ℓ should be. Indeed, we select an ℓ such that

ℓ · ε
8
> 5kA(α

∗
f,max − αf,min) and

ℓ

8(2ℓ+ 5)
>

1

32
. (3.4.11)

These inequalities will grant us that

2ℓkAα
∗
f,max + 5kAαf,min + ℓ ε

4

(2ℓ+ 5)kA
>

2ℓkAα
∗
f,max + 5kAα

∗
f,max + ℓ ε

8

(2ℓ+ 5)kA
(3.4.12)

> α∗
f,max +

ε

32kA
.
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From (3.4.7), (3.4.8), (3.4.10) and (3.4.12), it follows that if h = f + g then for

ω ∈ H we have (3.4.5).

Now we return again to the proof of Theorem 3.2.3. Claim 3.4.2 implies that H ⊆
Eh(b

∗) and hence Sh(b∗) = dimH Eh(b
∗) > 0.

If we can verify that b∗ = α∗
h,max then we are done. We need to show that if

lim
N→∞

1

N

N−1∑
n=0

h(σnω) = α then α ≤ b∗. (3.4.13)

Suppose that we have a �xed ω ∈ Ω for which the limit in (3.4.13) exists and equals α.

Now we subdivide ω into �nitely or in�nitely many substrings in the following way

ω = Z0W1Z1W2Z2...

where Z0 might be the empty string, the other strings are non-empty. For any j the

strings Wj ∈ {X, Y }dj , where 1 ≤ dj ≤ +∞. The strings Zj do not contain any

substring of the form X or Y and they can be �nite, or in�nite. In case one of the

Zjs is in�nite then there exists N1 such that for all n ≥ N1, g(σnω) = 0 and hence

α ≤ α∗
f,max < b∗.

Hence from now on we can suppose that the Zjs are �nite.

If one of the Wjs is in�nite then one can �nd N1 such that σN1ω ∈ H and hence

α = b∗ by (3.4.5).

Hence from now on we can suppose that all the Wjs are �nite.

Since for any k ∈ N we have ω ∈ Eh(α) i� σkω ∈ Eh(α) we can suppose that Z0 = ∅
and hence ω = W1Z1W2Z2.... Choose kj, j = 1, 2, ... such that the substring WjZj of

ω starts at ωkj , that is WjZj = ωkjωkj+1...ωkj+1−1. We denote by k′j the place where Zj

starts, that is, Wj = ωkjωkj+1...ωk′j−1 and Zj = ωk′jωk′j+1...ωkj+1−1.

Suppose that we have a j for which

there exists n ∈ {kj, ..., kj+1 − 1} such that g(σnω) > 0. (3.4.14)
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We denote the set of such js by J.

Then g(σnω) = ε/4. We de�ne nj to be the maximal n satisfying the inequality in

(3.4.14). Since Zj does not contain a substring of the form X or Y , σnω /∈ P for any

k′j < n < kj+1. Hence nj < k′j. Moreover, by the de�nition of g and P we have

nj = k′j −m(2ℓ+ 5)kA + (ℓ− 1)kA.

Put

k′′j = nj − (ℓ− 1)kA + (2ℓ+ 5)kA.

Then by the de�nition of g

σk
′′
j ω|(2ℓ+ 5)kA ∈ {X, Y } and σkjω|(k′′j − kj) ∈ {X, Y }

k′′j −kj

(2ℓ+5)kA , (3.4.15)

where
k′′j −kj

(2ℓ+5)kA
is an integer, that is σkjω|(k′′j − kj) starts with a long string of Xs and

Y s. Hence

1

k′′j − kj

k′′j −1∑
n=kj

g(σnω) =
ℓε

4(2ℓ+ 5)kA
. (3.4.16)

It is also clear that
1

kj+1 − k′′j

kj+1−1∑
n=k′′j

g(σnω) = 0. (3.4.17)

Suppose that δ > 0 is given. We want to �nd Nδ such that for N ≥ Nδ we have

1

N

N−1∑
n=0

h(σnω) < b∗ + δ. (3.4.18)

We can suppose that J is in�nite since otherwise there exists N1 such that h(σnω) =

f(σnω) for n ≥ N1 and α ≤ α∗
f,max < b∗ holds.

We will obtain Nδ by splitting ω into two in�nite substrings: The "good part" and

the "bad part." The "good part" can be obtained as the concatenation of the substrings

σkjω|(k′′j −kj), j ∈ J, while the "bad part" of ω is the "rest" of ω, that is what is left of

ω if we delete from it the good part. We denote this bad part ωb. To be more speci�c if
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j ̸∈ J then we take the string σkjω|(kj+1−kj), otherwise if j ∈ J then we take the string

σk
′′
j ω|(kj+1 − k′′j ) and concatenate these strings. To achieve our goals of obtaining Nδ,

we will be observing Birkho� averages along the "good" part Ng :=
⋃
j∈J{kj, ..., k′′j −1}

and the "bad" part Nb = {0, 1, ...} \ Ng. In particular, we will be at some point

evaluating Birkho� sum on the point ωb rather than ω; we will explain why this works,

particularly when we verify equation (3.4.23).

Using (3.4.5), (3.4.16), and the de�nition of the strings X and Y it is clear that if

j ∈ J then

1

k′′j − kj

k′′j −1∑
n=kj

h(σnω) = b∗. (3.4.19)

We also know that if n ∈ Nb then g(σnω) = 0 and hence h(σnω) = f(σnω).

Moreover, whenever t ∈ N satis�es the inequality (t + 1)(2ℓ + 5)kA ≤ k′′j − kj, for

some j ∈ J, then

1

(2ℓ+ 5)kA

kj+(t+1)(2ℓ+5)kA−1∑
n=kj+t(2ℓ+5)kA

h(σnω) = b∗ (3.4.20)

holds as well.

From (3.4.20) and the boundedness of h it follows that we can select N ′
δ such that

for N > N ′
δ

1

#{n ∈ Ng : n < N}
∑

n∈Ng , n<N

h(σnω) < b∗ +
δ

2
. (3.4.21)

Denote #{n ∈ Nb : n < N} by νb(N).

Next we need to estimate

1

νb(N)

∑
n∈Nb, n<N

h(σnω) =
1

νb(N)

∑
n∈Nb, n<N

f(σnω). (3.4.22)

A little later we will show that

1

νb(N)

∑
n∈Nb, n<N

f(σnω) =
1

νb(N)

νb(N)−1∑
n=0

f(σnωb). (3.4.23)

Next we show that if we veri�ed this then we can complete our proof. Indeed by Lemma
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3.3.3

lim sup
N ′→∞

1

N ′

N ′−1∑
n=0

f(σnωb) ≤ α∗
f,max

and hence we can select Nδ ≥ N ′
δ such that if N ≥ Nδ then νb(N) is su�ciently large

to have
1

νb(N)

νb(N)−1∑
n=0

f(σnωb) ≤ α∗
f,max +

δ

2
.

By (3.4.23) this yields that

1

νb(N)

∑
n∈Nb, n<N

f(σnω) < α∗
f,max +

δ

2
< b∗ +

δ

2
.

From this, (3.4.21), and (3.4.22), it follows that for N > Nδ

1

N

N−1∑
n=0

h(σnω) < b∗ +
δ

2
.

Since a suitable Nδ can be chosen for any δ > 0 we proved that α ≤ b∗.

Hence, to complete the proof of the theorem we need to verify (3.4.23). But this

is not di�cult. Since f ∈ PCCk(Ω) we know that f(σnω) depends only on the string

σnω|k. Observe that during the de�nition of ωb we concatenate strings which start with

a string A and A is of length kA > k. Indeed, if j ̸∈ J then during the de�nition we

concatenate the string σkjω|(kj+1 − kj) = WjZj, and Wj starts with X or Y and they

both start with A. If j ∈ J then we take the string σk
′′
j ω|(kj+1 − k′′j ) and by (3.4.15)

this string starts with A.

We can de�ne a function ψ : {0, 1, ...} → Nb the following way. For n ∈ {0, 1, ...} if

we take ωbn then this entry corresponded to exactly one entry ωψ(n) of ω and belonged to

a concatenated string making up ωb. Suppose that kj ≤ ψ(n) < kj+1. If ψ(n) ≤ kj+1−k

then the strings σnωb|k and σψ(n)ω|k are identical and hence f(σnωb) = f(σψ(n)ω). If

ψ(n) > kj+1−k then there is an n′ < n+k such that ψ(n′) = kj+1. By our concatenation

procedure it is clear that the strings σnωb|(n′ − n) and σψ(n)ω|(n′ − n) are identical. It

is also clear that ψ(n′) = kj+1 and σψ(n
′)ω|kA = A, since we take the �rst kA entries of

a string which equals X or Y . Now recall our earlier observation that ωb was obtained
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by the concatenation of strings which start with A. Hence σn
′
ωb starts with the string

A. This implies again that f(σnωb) = f(σψ(n)ω).

3.4.2 A generic continuous function has a continuous Birkho�

spectrum

To prove Theorem 3.2.5, we need the following lemma, which shows that one can

"perturb" a PCC function so that the new function would have a continuous spectrum.

Lemma 3.4.3. Let f ∈ PCCk(Ω) and let ε > 0. Then there exists g ∈ C0(Ω) such that

∥g∥ < ε, Sf+g vanishes at α
∗
f+g,max and α∗

f,min − ε ≤ α∗
f+g,min ≤ α∗

f+g,max ≤ α∗
f,max + ε.

Proof. Let f ∈ PCCk(Ω) and let ε > 0. Let ω∗ be a periodic point with prime period

p for which 1
p

∑p
n=1 f(σ

nω∗) = α∗
f,max (which exists by Lemma 3.3.5). Let g0(ω) =

mini=1,...,p{d(ω, σiω∗)}, and let g = −εg0 + c , where c = ε
∫
g0 dλ, which implies∫

g dλ = 0. Since λ(Ω) = diam(Ω) = 1, it is clear that ∥g∥ < ε.

Given E ⊂ N, we denote by d(E) the density of the set E, that is limN→∞
#(E∩[1,N ])

N

(if it exists). We let

Hω∗ := {ω ∈ Ω : ω|E = ω∗ for some E ⊂ N for which d(Ec) = 0},

where ω|E denotes the concatenation of ωj, j ∈ E. We will show that Ef+g(α∗
f+g,max) ⊂

Hω∗ , and then we observe that dimH Hω∗ = 0.

By using (3.3.2) from Lemma 3.3.3 one can see that α∗
f+g,max ≤ α∗

f,max + c. Since

g0(σ
nω∗) = 0 for any n, we obtain α∗

f+g,max ≥ α∗
f,max+c, and hence α

∗
f+g,max = α∗

f,max+c.

Let ω ∈ Ef+g(α
∗
f+g,max). Then we must have

lim
N→∞

(
1

N

N∑
n=1

f(σnω)− ε

N

N∑
n=1

g0(σ
nω)

)
= α∗

f,max ,

and this is only possible if 1
N

∑N
n=1 f(σ

nω) → α∗
f,max, and, in particular,

1

N

N∑
n=1

g0(σ
nω) → 0 as N → ∞.
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This implies that the set

Jω := {n ∈ N : g0(σ
nω) ≥ 2−p}

has zero density. Observe that if g0(σnω) < 2−p for n = j′, ..., j′ + l then there exists

i ∈ {0, ..., p− 1} such that

(σnω)j
′+l+p
j′ = σiω∗|l + p+ 1. (3.4.24)

The case when Jω is �nite is much easier and is left to the reader, we detail only

the case when Jω is in�nite.

Suppose we enumerate Jω = {j1, j2, j3, . . .} in the increasing order and we set j0 := 1.

Then for each k ∈ N∪{0}, there exists ik ∈ {0, ..., p−1} such that the (possibly empty)

string γ(jk) := (ω)
jk+1−1
jk+1 equals σikω∗|jk+1 − jk − 1. Hence, we have

ω|Jc
ω
= γ(j0)γ(j1)γ(j2) · · · .

Since ω∗ is periodic we can choose mk ∈ {0, ..., p−1} such that if γ∗(jk) = σmkγ(jk),

that is we throw away the �rst mk entries of γ(jk), then

γ∗(j0)γ
∗(j1)γ

∗(j2) · · · = ω∗ .

Put F =
⋃
k{jk, ..., jk +mk}. Then F ⊂ ⋃p−1

i=0 Jω + i (where A + b = {a + b : a ∈ A}
for any A ⊂ N and b ∈ N), which has a zero density. Setting E = F c, we get ω|E = ω∗.

Hence, ω ∈ Hω∗ , which shows that Ef+g(α∗
f+g,max) ⊂ Hω∗ .

We now show that dimH Hω∗ = 0. Consider the set H0 := {ω ∈ Ω : d({i ∈ N : ωi =

1}) = 0}. Due to Example 3.1.1 we see that dimH(H0) = 0 as it equals Sf (0) for f

de�ned in that example. Given ω ∈ Ω and i ∈ N we set ν(i, ω) = #{j : ωj = 0, j ≤ i}.
We de�ne a map h : Ω → Ω as follows: h(ω) = h1h2h3 . . ., where

hi :=

 ω∗
ν(i,ω) if ωi = 0

1− ω∗
ν(i,ω)+1 if ωi = 1.
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It is easy to see that h is Lipschitz. One can also verify easily that h(H0) ⊃ Hω∗ .

Therefore, 0 ≤ dimH(Hω∗) ≤ dimH(h(H0)) = 0.

What remains from the proof of Theorem 3.2.5 is rather standard:

Proof of Theorem 3.2.5. It su�ces to prove that a generic continuous function h has

continuous spectrum at the points α∗
h,min and α∗

h,max, and due to symmetry reasons, it

su�ces to prove the continuity in α∗
h,max (if it holds in a residual set, the other also

does in another residual set, and the intersection of these sets is still residual). We will

prove in fact that the set

Z = {h ∈ C(Ω) : Sh is not continuous at α
∗
h,max}

is meager. Note that we know that Sh is concave and achieves its maximum at
∫
h dλ,

hence

Z =
∞⋃
n=1

Z 1
n
,

where

Zθ =

{
h ∈ C(Ω) : Sh(x) > θ for all x ∈

[∫
h dλ, α∗

h,max

]}
.

Now it su�ces to prove that each Zθ is nowhere dense, and clearly it is enough to

consider small enough θ < 1. To this end, take arbitrary f ∈ PCCk(Ω) for some k,

and ε > 0. By Lemma 3.4.3, we can �nd f + g in the ε-neighborhood of f such that it

has continuous spectrum at α∗
f+g,max. Then α

∗
f+g,max >

∫
(f + g) ≥ α∗

f+g,min necessarily

holds, as Sf+g(
∫
(f+g)dλ) = 1. Now by continuity, we can take x ∈

[∫
h, α∗

f+g,max

]
such

that 0 < Sf+g(x) <
θ
2
. By its concavity Sf+g is monotone decreasing on [

∫
h, α∗

f+g,max]

hence we can assume that

x− α∗
f,min ≥ α∗

f,max − x.

Now apply Theorem 3.2.1 for f + g with

ε′ = min
{θ
2
, α∗

f,max − x
}
. (3.4.25)

It guarantees that 0 < Sh(x) < θ for any h with ∥h− (f + g)∥ < δ′ for some δ′ > 0.
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Moreover, if h and f +g are close enough to each other, we also have that their integral

cannot di�er by much, hence we also have that x ∈
[∫
h, α∗

h,max

]
. Consequently, if h is

in a su�ciently small neighborhood of f + g satisfying both this integral condition and

what is given by (3.4.25), then h is not in Zθ. It yields that Zθ is nowhere dense, as

PCC(Ω) is dense, and in the neighborhood of an arbitrary f belonging to this set we

constructed an open ball which is disjoint from Zθ. It concludes the proof.

3.4.3 Supports of generic spectra are in (αf,min, αf,max)

Proof of Theorem 3.2.7. It su�ces to prove that each inequality in (3.2.1) holds in a

dense open subset of C(Ω), and due to symmetry, it is su�cient to prove that α∗
f,min <

α∗
f,max and α∗

f,max < αf,max hold in dense open subsets, respectively. Given Remark

3.3.2, it immediately follows that each of these inequalities holds in an open subset,

thus we only have to keep an eye on denseness.

Consider �rst α∗
f,min < α∗

f,max. By Theorem 3.2.5 we know that Sf is continuous for

f ∈ G1 with a dense subset G1 ⊂ C(Ω). However, for αλ =
∫
fdλ we have Sf (αλ) = 1,

and Sf (α∗
f,min) = Sf (α

∗
f,max) = 0, hence

α∗
f,min < α∗

f,max. (3.4.26)

It yields that for any f ∈ G1 we have α∗
f,min < α∗

f,max, thus this inequality holds in a

dense subset indeed.

Let us consider now α∗
f,max < αf,max. We know that functions f ∈ PCC(Ω)

are dense in C(Ω). Consider such a function f , we have f ∈ PCCk(Ω) for some

k > 0. By Lemma 3.3.5 we know that there exists a periodic con�guration ωf with

limN→∞
1
N

∑N
n=1 f(σ

nωf ) = α∗
f,max. If α

∗
f,max < αf,max then we are done. Hence we can

suppose that α∗
f,max = αf,max.

Assume �rst that ωf can be chosen such that ωf is neither identically 1∞ nor 0∞.

Then we can choose a substring A of length k such that f is maximal on [A] and A

is neither 11 · · · 1 nor 00 · · · 0 (i.e. blocks of k many 1s or 0s, respectively), actually,

by periodicity of ωf any substring of A, di�erent from 11 · · · 1 and 00 · · · 0 is suitable.
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Now for given ε > 0 de�ne g ∈ PCCk(Ω) such that g = f + ε1[A]. Select a periodic ωg

for which limN→∞
1
N

∑N
n=1 g(σ

nωg) = α∗
g,max, the existence of ωg is again guaranteed by

Lemma 3.3.5. The relative frequency of the substring A in ωg is strictly smaller than 1,

as A contains both 0s and 1s, hence at least 1/k of the substrings start with a binary

digit di�erent from the �rst entry in A. Thus we can conclude

lim
N→∞

1

N

N∑
n=1

g(σnωg)− lim
N→∞

1

N

N∑
n=1

f(σnωf ) < ∥g − f∥ = ε,

hence

α∗
g,max − α∗

f,max < ε.

However,

αg,max − αf,max = ε

by de�nition. Hence we can �nd g arbitrarily close to f with α∗
g,max < αg,max in this

case.

Assume now that the only possible choices for ωf are amongst 1∞ and 0∞. If A can

be chosen as in the �rst case, di�ering from the identically 1 and identically 0 strings

of length k, then the previous argument might be repeated, thus it su�ces to observe

the cases when ωf and A can only be identically 1 or identically 0. Clearly without

loss of generality we can assume that the former one holds. In this case we perturb f

as follows: let A = 11 . . . 10, which is a block consisting of k-many 1's then followed by

a 0. We de�ne g ∈ PCCk+1(Ω) such that g = f + ε1[A]. Then αg,max − αf,max = ε as

previously. Moreover, if ω′ is periodic then we compute that

lim
N→∞

1

N

N∑
n=1

g(σnω′) = lim
N→∞

1

N

N∑
n=1

f(σnω′) + lim
N→∞

ε

N

N∑
n=1

1[A](σ
nω′)

≤ α∗
f,max + ε · lim

N→∞

1

N

N∑
n=1

1[A](σ
nω′).

Note that limN→∞
1
N

∑N
n=1 1[A](σ

nω′), the relative frequency of A in ω′ is at most 1
k+1

(which is obtained when ω′ = A∞). This implies that if ωg is the maximal periodic
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con�guration for g, then

α∗
g,max = lim

N→∞

1

N

N∑
n=1

g(σnωg) ≤ α∗
f,max +

ε

k + 1
< α∗

f,max + ε = αg,max.

Thus in both of these two cases we showed that any f ∈ PCCk(Ω) can be approxi-

mated by functions satisfying α∗
g,max < αg,max. It yields that such functions also form a

dense set, which concludes the proof.

Remark 3.4.4. In ergodic optimization, a function f ∈ C(Ω) for which α∗
f,max = αf,max

is called revealed (cf. [24, �5]). Theorem 3.2.7 tells us that the set of revealed functions

in C(Ω) forms a nowhere dense set.

3.5 One-sided derivatives of the Birkho� spectra at

endpoints

In this section for functions with continuous spectrum we are interested in the one-

sided derivatives of the spectrum at the endpoints of its support in the direction of the

interior of the support.

3.5.1 One-sided derivatives at the endpoints of spectra for generic

functions

The goal of this subsection to verify Theorem 3.2.8.

We start with a lemma which will be the building block for the proof of the above

theorem.

Lemma 3.5.1. Let f0 ∈ C(Ω), ε > 0, and ν ∈ N be given. Then there exists f2 ∈ C(Ω)

and δ > 0 such that ∥f0 − f2∥ < ε/2, δ < ε/2, and for any f ∈ B(f2, δ) ⊆ B(f0, ε)

there exists α′ < α∗
f,max such that

Sf (α
′)− Sf (α

∗
f,max)

α′ − α∗
f,max

< −ν. (3.5.1)
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Remark 3.5.2. As Sf is concave on the interval Lf , the inequality (3.5.1) in the lemma

implies ∂−Sf (α∗
f,max) < −ν.

Proof. Using Theorem 3.2.3 choose f1 ∈ PCC(Ω) with ∥f0 − f1∥ < ε/4 such that

ε1 = Sf1(α
∗
f1,max) > 0.

Set ε2 = min{ε1, ε2 , 1/2}.
Using Theorem 3.2.5 choose f2 ∈ C(Ω) such that

∥f1 − f2∥ <
ε2
10ν

and Sf2(α
∗
f2,max) = 0.

By Lemma 3.3.1 and Remark 3.3.2 applied to f1 and f2 we obtain that α∗
f2,max <

α∗
f1,max +

ε2
10ν

and there exists α′ > α∗
f1,max − ε2

10ν
such that

Sf2(α
′) ≥ Sf1(α

∗
f1,max) = ε1 ≥ ε2. (3.5.2)

Then

α∗
f2,max − α′ < 2 · ε2

10ν
. (3.5.3)

Keep in mind that Sf2(α
∗
f2,max) = 0 and choose δ1 > 0 such that

Sf2(α) <
ε2
20

holds for α ∈ (α∗
f2,max − δ1, α

∗
f2,max]. (3.5.4)

Observe that from (3.5.2) it also follows that α∗
f2,min ≤ α′ < α∗

f2,max − δ1. Now choose

δ2 > 0 such that

δ2 < min
{α∗

f2,max − α′

10
,
δ1
5
,
ε2
20ν

}
. (3.5.5)

Using this δ2 as ε in Theorem 3.2.1 select δ ∈ (0, δ2) such that for f ∈ B(f2, δ) we have

|Sf (α)− Sf2(α)| < δ2 for α ∈ (α∗
f2,min + δ2, α

∗
f2,max − δ2). (3.5.6)

Suppose f ∈ B(f2, δ). Then by Lemma 3.3.1, Remark 3.3.2, (3.5.3) and (3.5.5) we
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obtain

|α∗
f,max − α∗

f2,max| < δ2 and hence |α′ − α∗
f,max| < 1.1(α∗

f2,max − α′) < 1.1 · ε2
5ν
.

By (3.5.4), Sf2(α
∗
f2,max − δ1/2) < ε2/20 and then by (3.5.6), Sf (α∗

f2,max − δ1/2) <

ε2/10 < 1. By concavity of Sf and Sf (
∫
f) = 1 it is clear that Sf is monotone decreasing

on [α∗
f,max − δ1/2, α

∗
f,max] and hence

Sf (α
∗
f,max) <

ε2
10
. (3.5.7)

Using (3.5.2), (3.5.5) and (3.5.6) we infer

Sf (α
′) > Sf2(α

′)− δ2 ≥ 0.9ε2.

By this, (3.5.7) and (3.5.3)

Sf (α
′)− Sf (α

∗
f,max)

α′ − α∗
f,max

< − 0.8ε2
1.1 · ε2

5ν

< −ν.

Remark 3.5.3. We remark that due to symmetry reasons a version of Lemma 3.5.1

also holds at the other endpoint, α∗
f,min of the spectrum yielding that for any f ∈

B(f2, δ) ⊆ B(f0, ε) there exists α′ > α∗
f,min such that

Sf (α
′)− Sf (α

∗
f,min)

α′ − α∗
f,min

> ν. (3.5.8)

As we observed earlier in the one-dimensional case Sf is continuous on [α∗
f,min, α

∗
f,max]

hence even in case of discontinuous spectra one can consider ∂−Sf (α∗
f,max) and ∂

+Sf (α
∗
f,max),

one might have a one-sided discontinuity only in the direction pointing towards the ex-

terior of the support of the spectrum.

Lemma 3.5.1 easily implies Theorem 3.2.8:

Proof of Theorem 3.2.8. Consider an arbitrary f0 ∈ C(Ω) and ε > 0. Fix ν ∈ N. We
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may apply Lemma 3.5.1 and Remark 3.5.2 to see that B(f0, ε) contains a smaller open

set B(f2, δ) of C(Ω) such that for any f ∈ B(f2, δ) we have ∂−Sf (α∗
f,max) < −ν. It

implies that the complement of

Aν = {f ∈ C(Ω) : ∂−Sf (α
∗
f,max) < −ν}

is nowhere dense for any ν. Hence A =
⋃∞
ν=1Aν is a residual set of C(Ω), yielding that

for the generic continuous function f ∈ C(Ω), we have ∂−Sf (α∗
f,max) = −∞.

However, by Remark 3.5.3 we may conclude the same way that for the generic

continuous function f ∈ C(Ω), we have ∂+Sf (α∗
f,min) = ∞. Thus for the generic

continuous function, we have both of these prescribed equalities, which concludes the

proof.

3.5.2 Finite one-sided derivatives at the endpoints of the spec-

trum

In this subsection, we will prove Theorem 3.2.9 and Theorem 3.2.10.

The �rst step towards the proof of Theorem 3.2.9 is the following lemma, in which

we give upper bounds on a value of the spectrum for a suitably de�ned function. Since

Sf (
∫
fdλ) = 1 if we have a function with continuous spectrum then by concavity of the

spectrum ∂−Sf (α
∗
f,max) ≤ − 1

α∗
f,max−

∫
fdλ

and ∂+Sf (α∗
f,min) ≥ 1∫

fdλ−α∗
f,min

.

In the next Lemma we de�ne a PCC function with "very small" spectrum. This

type of functions serve as building blocks in the proof of Theorem 3.2.9.

Lemma 3.5.4. Let b > a, and let f : Ω → R be such that f(ω) = b if the �rst L

coordinates of ω is 1, otherwise f(ω) = a. Moreover, �x ε > 0 and 0 < β < 1. Then if

L is su�ciently large, then

Sf (t) ≤ β + ε (3.5.9)

for t = βa+ (1− β)b.

Remark 3.5.5. See Figure 3.1 for an illustration of this remark. Observe that in the

above lemma if L is large then
∫
fdλ = b · 2−L + a(1 − 2−L) and hence Sf (b · 2−L +
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a · (1 − 2−L)) = 1. The point b · 2−L + a · (1 − 2−L) is very close to a = αf,min. It is

also clear that Ef (b) ̸= ∅, since 1∞ belongs to it. By also considering 0∞ we see that

[a, b] = [α∗
f,min, α

∗
f,max]. Hence the line segment connecting (b · 2−L + a · (1− 2−L), 1) to

(b, 0) should be under the graph of Sf on [b ·2−L+a · (1−2−L), b]. If β is small then t is

very close to b and by concavity of the spectrum on [b·2−L+a·(1−2−L), t] the graph of Sf

should be under the dashed line on the �gure connecting (t, β+ε) = (βa+(1−β)b, β+ε)
to (b, 0). This implies that for small β and large L apart from a very short interval

near the endpoint a the spectrum Sf is very close to the line segment connecting (a, 1)

to (b, 0) and on [a, b] approximates the upper part of the boundary (shown with dotted

line on the �gure) of the right angled triangle with vertices (a, 0), (a, 1) and (b, 0).

b

bbbb

a
b · 2−L + a · (1− 2−L)

t b

Sf

(a, 1)

(t, β + ε)

Figure 3.1: An illustration of Remark 3.5.5.

Proof. Let t = βa+(1−β)b. Clearly it su�ces to prove the statement of the lemma for

small enough ε, thus we might assume that β∗ = β + ε
2
< 1. We would like to estimate

the dimension of

Ef (t) =
{
ω : lim

N→∞

1

N

N∑
n=1

f(σnω) = t
}
.
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This set contains ω if and only if it contains σ(ω), thus we can shift the sum by one for

technical convenience. Moreover, if we replace the lim by a lim inf, we can deduce that

this set is contained by

{
ω : lim inf

N→∞

1

N

N−1∑
n=0

f(σnω) ≥ t
}
.

If ω is in this set, then for large enough N the corresponding ergodic average exceeds

t∗ = β∗a+ (1− β∗)b < t, that is

Ef (t) ⊂
∞⋃
m=1

∞⋂
N=m

{
ω :

1

N

N−1∑
n=0

f(σnω) ≥ t∗

}
. (3.5.10)

In the sequel we will use
{

1
N

∑N−1
n=0 f(σ

nω) ≥ t∗
}
instead of

{
ω : 1

N

∑N−1
n=0 f(σ

nω) ≥ t∗
}

to ease the notation.

The union in (3.5.10) is the union of a growing sequence of sets, thus the dimension

is simply the limit of dimH Am, where

Am =
∞⋂

N=m

{
1

N

N−1∑
n=0

f(σnω) ≥ t∗

}
.

Now we focus on estimating the dimension of this set. To this end, we would like to

count the cylinder sets of length N +L− 1 which intersect
{

1
N

∑N−1
n=0 f(σ

nω) ≥ t∗
}
for

large N , as they give a cover of Am for any N ≥ m. (We are concerned with cylinders

of length N +L−1 instead of the ones with length N as the �rst N +L−1 coordinates

a�ect
∑N−1

n=0 f(σ
nω).) For our purposes it su�ces to choose N such that L|N + L− 1,

as we can diverge to in�nity with N even under this restriction and we need an upper

estimate of the dimension.

The number of blocks consisting of at least L consecutive 1s is at most N+L−1
L

. If

L ≥ 2, and there are i such blocks, the number of ways to place them among the

N + L − 1 coordinates is at most
(
N+L−1

2i

)
, since the placement of each block can be

uniquely speci�ed by the coordinates for which the �rst and the last coordinates of the

block occupy. (We note that it is indeed an upper estimate: this expression does not
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deal with the length of the blocks, neither with the fact that blocks are separated from

each other with at least one intermediate coordinate.) Moreover, if L ≥ 5, then for the

largest possible value of i, that is for i = N+L−1
L

we still have

2i = 2 · N + L− 1

L
<
N + L− 1

2
.

Thus the number of ways we can arrange the blocks of at least L consecutive 1s is at

most
N+L−1

L∑
i=0

(
N + L− 1

2i

)
≤
(
N + L− 1

L
+ 1

)
·
(
N + L− 1

2 · N+L−1
L

)
(3.5.11)

≤ (N + L− 1) ·
(
N + L− 1

2 · N+L−1
L

)
,

as the binomial coe�cients are increasing until the middle ones.

We should also give a bound on the number of ways we can choose the other co-

ordinates. Since 1
N

∑N−1
n=0 f(σ

nω) ≥ t∗, we know that most of the coordinates belong

to one of the above blocks. More speci�cally, in the �rst N coordinates there are at

most β∗N not covered by them, as otherwise the number of terms in
∑N−1

n=0 f(σ
nω) with

f(σnω) = a exceeds β∗N , which yields that

1

N

N−1∑
n=0

f(σnω) < β∗a+ (1− β∗)b = t∗.

Thus a raw upper estimate for the number of the ways we can choose the remaining

coordinates in order to have an N + L− 1-cylinder intersecting

{
1

N

N−1∑
n=0

f(σnω) ≥ t∗

}

is 2β
∗N ·2L−1, where the last factor is simply the number of ways we can choose the last

L− 1 coordinates.
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Combining the results of the preceding two paragraphs yields that

{
1

N

N−1∑
n=0

f(σnω) ≥ t∗

}

is covered by at most

(N + L− 1) ·
(
N + L− 1

2 · N+L−1
L

)
· 2β∗N+L−1

many cylinders of diameter 2−(N+L−1). By using the standard
(
a
b

)
≤
(
ae
b

)b
bound on

the binomial coe�cients, we can relax this upper bound to

(N + L− 1) ·
(
eL

2

)2·N+L−1
L

· 2β∗N+L−1 = k ·
(
eL

2

) 2k
L

· 2β∗k · 2(1−β∗)(L−1), (3.5.12)

where k = N + L− 1. Notice that for large enough L (and consequently, large enough

k) we have

2
ε
2 >

k
√
k

(
eL

2

) 2
L

,

as both factors on the right tend to 1. Fix L to be su�ciently large in order to guarantee

this. Consequently, (3.5.12) can be estimated from above by

2(β
∗+ ε

2
)k · 2(1−β∗)(L−1). (3.5.13)

Hence {
1

N

N−1∑
n=0

f(σnω) ≥ t∗

}

can be covered by at most 2(β
∗+ ε

2
)k · 2(1−β∗)(L−1) many cylinders of diameter 2−k for any

k with L|k. It immediately yields

Hβ∗+ ε
2

2−k

({
1

N

N−1∑
n=0

f(σnω) ≥ t∗

})
≤ 2(1−β

∗)(L−1)

where N = k − L + 1 as before. However, this set contains Am for large enough k,N ,
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thus

Hβ∗+ ε
2

2−k (Am) ≤ 2(1−β
∗)(L−1).

As k,N can be arbitrarily large, it shows that in fact

Hβ∗+ ε
2 (Am) ≤ 2(1−β

∗)(L−1)

and consequently,

dimH(Am) ≤ β∗ +
ε

2
= β + ε.

Consequently, by our initial observations

Sf (t) ≤ β + ε,

as stated.

Proof of Theorem 3.2.9. We de�ne f to be a more elaborate variant of the function

appearing in Lemma 3.5.4. Set tj = 1 − 2−j. Then tj ∈ (0, 1) and tj → 1. We

will de�ne a strictly increasing sequence (Lj) of positive integers, to be �xed later and

chosen recursively. We can suppose that L1 > 5.

Now we let f(ω) = tj if ω starts with a block of 1s of length at least Lj, but less

than Lj+1. Moreover, f(ω) = −tj if ω starts with a block of 0s of length at least Lj,

but less than Lj+1. Finally, let f(1∞) = 1 and f(0∞) = −1 for the constant sequences,

and let f(ω) = 0 for any remaining ω. Due to symmetry, it is clear that
∫
f = 0, and it

is straightforward to check continuity. It remains to prove that the relevant derivatives

are �nite. By symmetry again, it su�ces to verify ∂−Sf (α∗
f,max) > −∞. To this end,

we will use an argument similar to the one seen in the proof of Lemma 3.5.4.

As in (3.5.10), we can deduce

Ef (tj+1) ⊂
∞⋃
m=1

∞⋂
N=m

{
1

N

N−1∑
n=0

f(σnω) ≥ tj

}
.

This union is the union of a growing sequence of sets, thus the dimension is simply the
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limit of dimH Am, where

Am =
∞⋂

N=m

{
1

N

N−1∑
n=0

f(σnω) ≥ tj

}
.

In order to estimate this dimension, we �rst introduce an auxiliary function, which is

easier to examine. Explicitly, we let fj = 0, if f ≤ 0, and we let fj = 1 if f ≥ tj. In

any other case we let fj = f . Then fj ≥ f , consequently

Am,j =
∞⋂

N=m

{
1

N

N−1∑
n=0

fj(σ
nω) ≥ tj

}

contains Am. Thus it su�ces to estimate the dimension of Am,j. The argument is

similar to the one in the proof of Lemma 3.5.4. We would like to count the cylinder sets

of length N +Lj − 1 which intersect
{

1
N

∑N−1
n=0 fj(σ

nω) ≥ tj

}
for large N , as they give

a cover of Am,j for any N ≥ m. In order to avoid the inconvenience caused by integer

parts, we will only consider Ns with certain divisibility properties, as before.

First of all, the number of blocks consisting of at least Lj consecutive 1s is at most
N+Lj−1

Lj
, which is an integer for in�nitely many N . Thus the number of ways we can

arrange the blocks of at least Lj consecutive 1s is at most

N+Lj−1

Lj∑
i=0

(
N + Lj − 1

2i

)
≤
(
N + Lj − 1

Lj
+ 1

)
·
(
N + Lj − 1

2 · N+Lj−1

Lj

)
(3.5.14)

≤ (N + Lj − 1) ·
(
N + Lj − 1

2 · N+Lj−1

Lj

)
,

using Lj ≥ L1 > 5, as in (3.5.11). We call these blocks j-blocks.

The novelty of cylinder counting in this proof compared to the previous one is that

we have to take into account the blocks responsible for the values of fj between 0 and

tj−1. As 1
N

∑N−1
n=0 fj(σ

nω) ≥ tj, in the �rstN coordinates there are at most 1−tj
1−tj−1

N = N
2

not covered by the j-blocks, as otherwise the number of terms in
∑N−1

n=0 f(σ
nω) with

f(σnω) ≤ tj−1 is too large and we have 1
N

∑N−1
n=0 f(σ

nω) < tj. Thus beside the already
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placed j-blocks, there are at most 1−tj
1−tj−1

N+Lj−1 = N
2
+Lj−1 coordinates remaining,

which might contain some (j − 1)-blocks of at least Lj−1 consecutive 1s. By a similar

estimate to (3.5.14) we �nd that the number of possible arrangements of these (j − 1)-

blocks is at most

N
2 +Lj−1

Lj−1∑
i=0

(
N
2
+ Lj − 1

2i

)
≤
(

N
2
+ Lj − 1

Lj−1

+ 1

)
·
(N

2
+ Lj − 1

2 ·
N
2
+Lj−1

Lj−1

)
(3.5.15)

≤
(N
2

+ Lj − 1
)
·
(N

2
+ Lj − 1

2 ·
N
2
+Lj−1

Lj−1

)
,

using Lj−1 ≥ L1 > 5.

Suppose that j0 ∈ {0, ..., j − 1}. Proceeding recursively, by the same argument we

can conclude that the union of the (j − i)-blocks taken for i = 0, 1, ..., j0 − 1 cover all

but at most 1−tj
1−tj0

N = N
2j0

of the �rst N coordinates. Thus beside these blocks there are

at most N
2j0

+ Lj − 1 coordinates remaining, which yields similarly to (3.5.15) that the

number of possible arrangements of the (j − j0)-blocks is at most

( N
2j0

+ Lj − 1
)
·
( N

2j0
+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)
< (N + Lj − 1) ·

( N
2j0

+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)
. (3.5.16)

We can use this bound for j0 = 0, 1, ..., j − 1. (We note that for in�nitely many values

of N each number appearing in the above binomial coe�cients is an integer.) Finally,

there can be coordinates which are not contained by any such block. At most (1− tj)N
of them in the �rst N coordinates, and arbitrarily many of them in the last Lj − 1

coordinates. Thus they can be chosen at most 2(1−tj)N+Lj−1 di�erent ways. Hence

the number of cylinders which intersect
{

1
N

∑N−1
n=0 fj(σ

nω) ≥ tj

}
can be bounded by

taking the product of the estimates in (3.5.16), and multiplying it by 2(1−tj)N+Lj−1.

Hence
{

1
N

∑N−1
n=0 fj(σ

nω) ≥ tj

}
can be covered by at most

(N + Lj − 1)j · 2(1−tj)N+Lj−1 ·
j−1∏
j0=0

( N
2j0

+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)
(3.5.17)
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many cylinders of diameter 2−(N+Lj−1). Observe that the j0 = 0 case in (3.5.17) includes

the estimate (3.5.14). By the standard estimate of binomial coe�cients we can estimate

it further from above by

(N + Lj − 1)j · 2(1−tj)N+Lj−1

j−1∏
j0=0

(
eLj−j0

2

)2·
N

2j0
+Lj−1

Lj−j0
. (3.5.18)

Introduce the notation k = N + Lj − 1 again. By factoring out constants depending

on L1, ..., Lj into a constant denoted by C(L1, ..., Lj), and rearranging (3.5.18) one can

obtain that it equals

C(L1, ..., Lj) · kj · 2(1−tj)k
j−1∏
j0=0

(
eLj−j0

2

) 2k

2j0Lj−j0 . (3.5.19)

This formulation leads us to a suitable choice of Ln: for an arbitrary �xed τ > 0, de�ne

Ln large enough to guarantee that

(
eLn
2

) 2
Ln

< 2
τ

22n . (3.5.20)

With this choice, (3.5.19) can be estimated by

C(L1, ..., Lj) · kj · 2(1−tj)k
j−1∏
j0=0

2
τk

22j−j0 ≤ C(L1, ..., Lj) · kj · 2(1−tj+
τ

2j
)k (3.5.21)

≤ C(L1, ..., Lj) · 2(1−tj+
2τ

2j
)k,

where the last inequality holds for large enough N, k. It immediately yields

H1−tj+ 2τ

2j

2−k

({
1

N

N−1∑
n=0

fj(σ
nω) ≥ tj

})
≤ C(L1, ..., Lj)

where N = k−Lj +1 as before. However, this set contains Am,j for large enough k,N ,

thus

H1−tj+ 2τ

2j

2−k (Am) ≤ C(L1, ..., Lj).

109



As k,N can be arbitrarily large, it shows that in fact

H1−tj+ 2τ

2j (Am) ≤ C(L1, ..., Lj)

and consequently,

dimH(Am,j) ≤ 1− tj +
2τ

2j
.

Consequently, by our initial observations

Sf (tj) ≤ 1− tj +
2τ

2j
,

that is, using tj = 1− 2−j we have

Sf (1− 2−j) ≤ 1 + 2τ

2j
.

Thus if we calculate the left derivative of Sf at 1 by going along the sequence tj, we

�nd that it is at most −(1 + 2τ) > −∞, which concludes the proof.

Remark 3.5.6. We note that as the spectrum is concave, for any function f ∈ C0(Ω)

such that α∗
f,min = −1 and α∗

f,max = 1 we have that the graph of Sf is above the triangle

graph with vertices (−1, 0), (0, 1), (1, 0). On the other hand, it must be below the

constant 1 function in the interval [−1, 1]. It is natural to ask whether these extremes

can be attained/approximated. We do not give the complete answer for these questions,

but make a few observations.

First of all, Theorem 3.2.9 easily yields that Sf can be arbitrarily close to the triangle

graph: notably for the function f constructed in the previous proof, Sf is contained by

the triangle with vertices (−1, 0), (0, 1+2τ), (1, 0) due to concavity. Thus the theoretic

minimum can be approximated.

On the other hand, if we would like to construct some f such that Sf is considerably

large, we can consider a function similar to the one in Example 3.1.4. More explicitly,

let f ∈ PCC2k+1(Ω) be such that it takes the value -1 on cylinders which contain more

0s than 1s in their �rst 2k + 1 coordinates, and f(ω) = 1 otherwise. As in the proof
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of Example 3.1.4, we can show by Hutchinson's theorem that Sf (−1) = Sf (1) is at

least k
2k+1

. Thus the piecewise linear graph determined by the vertices (-1,1/2), (0,1),

(1,1/2) can be arbitrarily close to a lower estimate of the spectrum, which means that

Sf is considerably large, even though it is far from what we strove for.

We also provide another example, which displays that Sf (α∗
f,max) can be arbitrarily

close to 1 even for nonconstant functions, if we drop the condition that α∗
f,max = 1.

Notably, let f ∈ PCCk(Ω) such that it takes the value −1 if the �rst k coordinates equal

0, while it takes the value 1
2k−1

if these coordinates contain at least one 1. Then similarly

to the previous argument we have that Sf
(

1
2k−1

)
≥ k−1

k
. It would be interesting to see

how large Sf (α∗
f,max) can be if f ∈ C0(Ω) such that α∗

f,min = −1 and α∗
f,max = 1.

Proof of 3.2.10. Choose k such that f ∈ PCCk(Ω). By symmetry, it clearly su�ces

to prove ∂−Sf (α∗
f,max) = −∞. Consider the directed graph G = (V,E) de�ned in the

proof of Lemma 3.3.5, and the set C of its cycles. By that reasoning it is clear that

there exist cycles with distinct weight averages as otherwise for any in�nite path Γ we

would get the same weight average in limit, which means that the ergodic averages have

the same limit for all con�gurations, hence Sf cannot be continuous. Moreover, as G is

connected as a directed graph, the graph of cycles GC is also connected, in which the

vertices are the elements of C, and two of them are connected if they have a common

vertex. This, together with our previous observation implies that we can choose cycles

C and C ′ such that they have a common vertex v, the cycle C has maximal weight

average amongst the elements of C, while C ′ does not. Now consider the set of in�nite

paths in G denoted by Hβ which consists of the paths which start from v, and can be

partitioned into �nite pieces Γ1,Γ2, ... such that each Γi equals either C or C ′, and the

density d ({i : Γi = C}) = β. Then it is obvious to see that the weight average along

any Γ ∈ Hβ tends to

β · 1

|C|
∑
e∈C

f(e) + (1− β) · 1

|C ′|
∑
e∈C′

f(e) = βα∗
f,max + (1− β)α′,

where α′ < α∗
f,max by the choice of C ′. Thus if we take the corresponding con�guration
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ω(Γ), and in the ergodic averages we shift the indexing again by one, we see that

1

N

N−1∑
n=0

f(σnω(Γ)) → βα∗
f,max + (1− β)α′.

That is, if Ωβ denotes the set of ω(Γ)s for which Γ ∈ Hβ, we have

Ωβ ⊆ Ef (βα
∗
f,max + (1− β)α′). (3.5.22)

However, the dimension of Ωβ is easy to estimate from below using the following map-

ping: for ω(Γ) ∈ Ωβ de�ne h(ω(Γ)) = h1h2... by

hi :=

 1 if Γi = C

0 if Γi = C ′.

Now h is a Hölder-mapping. Note that the starting point of Γ determines the �rst k

coordinates of ω(Γ), and then going along C (resp. C ′) determines the next |C| (resp.
|C ′|) coordinates. By reversing this argument, if K = max{|C|, |C ′|}, the �rst k+mK

coordinates of ω(Γ) uniquely determine the cycles Γ1, ...,Γm in the decomposition of

Γ. In other words, the �rst m coordinates of h(ω(Γ)) are uniquely determined by the

�rst k+mK coordinates of ω(Γ). From this, one easily obtains that h is a Hölder-1/K

mapping.

Moreover, by the de�nition of Hβ and Ωβ, it is clear that h(Ωβ) equals the set of

con�gurations in which the density of 1s equals β. Thus by Example 3.1.1, we can

deduce that

dimH(h(Ωβ)) = −β log(β) + (1− β) log(1− β)

log 2
.

Hence as h was Hölder-1/K:

dimH(Ωβ) ≥ −β log(β) + (1− β) log(1− β)

K log 2
.
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Thus by (3.5.22):

Sf (βα
∗
f,max + (1− β)α′) ≥ −β log(β) + (1− β) log(1− β)

K log 2
.

Consequently, also using that by continuity of Sf we have Sf (α∗
f,max) = 0 we infer

Sf (α
∗
f,max)− Sf (βα

∗
f,max + (1− β)α′)

α∗
f,max − (βα∗

f,max + (1− β)α′)
≤ β log(β) + (1− β) log(1− β)

(1− β)(α∗
f,max − α′)K log 2

However, the right hand side can be estimated from above by omitting the negative

�rst term, and after simplifying by 1− β we see that it tends to −∞ as β → 1. Hence

the same holds for the left hand side, showing that ∂−Sf (α∗
f,max) = −∞.

113



Parallel research

The author of this dissertation have produced a number of further papers, most promi-

nently as a member of a research group consisting of Zoltán Buczolich, Bruce Hanson,

Gáspár Vértesy, and himself. Out of these papers three were used in this dissertation:

[12], [11], and [13]. (In the list below, these are items [VIII], [VII], [X], respectively.)

Since G. Vértesy has also been a graduate student during our collaboration, we

had to be careful to avoid any collisions between our dissertations. Thus G. Vértesy

exclusively included other papers produced by our research group, in a topic which does

not overlap with the content of this thesis.

On all of my papers, like it is customary in pure mathematics, author's names are

listed in alphabetical order, �rst/last listed author has no speci�c role in the production

of the paper. Contribution to the papers is considered to be equal by all coauthors.

Although in the dissertations the two Ph.D. students are mutually "giving up" their

share of the articles for the bene�t of the other student.

List of all papers to which the author of this thesis contributed:

[I] Z. Buczolich, B. Hanson, B. Maga and G. Vértesy, Random constructions for translates of

non-negative functions, Journal of Mathematical Analysis and Applications, 468 (2018), no. 1,

491�505.

[II] Z. Buczolich, B. Hanson, B. Maga and G. Vértesy, Type 1 and 2 sets for series of translates of

functions, Acta Mathematica Hungarica, 158 (2019), 271�293.

[III] Z. Buczolich, B. Maga and G. Vértesy, On series of translates of positive functions. III, Analysis

Mathematica, 44 (2018), no. 2, 185�205.

[IV] Z. Buczolich, B. Hanson, B. Maga and G. Vértesy, Big and little Lipschitz one sets, Eur. J.

Math. 7 (2021), no. 2, 464�488.
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Appl., 489 (2020), no. 2.
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zero, Math. Slovaca, 70 (2020), no. 3, 567�584.
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Summary

This thesis synthesizes two research projects.

The �rst of these topics concerns with the Hausdor� dimension of level sets of a

generic Hölder function de�ned on various fractals, while the second one deals with

generic Birkho� spectra, de�ned by the Hausdor� dimension of level sets of Birkho�

averages. The motivation and historical background of these topics are explained in

Chapter 1.

Chapter 2 contains our contribution to the �rst of these topics. The necessary

notation and preliminaries are introduced in Section 2.1, while Section 2.2 enumerates

our main results. The main object of our interest is D∗(α, F ) for F ⊆ Rp, which is the

essential supremum of the Hausdor� dimension of level sets for the generic 1-Hölder-α

function, de�ned on F .

In Sections 2.3-2.4, we verify the existence of this generic value and prove other

qualitative results concerning certain families of fractals, such as the monotonicity and

various estimates of D∗(α, F ). In Section 2.5, we investigate the phenomenon of phase

transition. Section 2.6 concludes the chapter with quantitative results, giving lower and

upper bounds for D∗(α, F ) on the Sierpi«ski triangle.

Chapter 3 is dedicated to the second topic. The necessary notation and preliminaries

are introduced in Section 3.1, while Section 3.2 enumerates our main results. The main

object of our interest is the Birkho� spectrum Sf (α) for continuous f on {0, 1}N, which
is a concave, continuous function on its support interval Lf , and 0 outside of it.

Our contribution deals with the continuity and di�erentiability properties of Sf at

the endpoints of Lf . After introducing some vital tools in Section 3.3, in Section 3.4,

we prove that while the generic Birkho� spectrum is continuous, discontinuous spectra

also occur densely.

In Section 3.5, we discuss the nontrivial one-sided derivatives of Sf at the endpoints

of Lf . First, we prove that generically, these derivatives are in�nite. On the other hand,

we construct an exceptional continuous function f , for which one of these derivatives

is �nite.



Összefoglaló

Tézisemben két kutatásomat mutatom be.

Az el®bbi ezen kutatások közül fraktálokon de�niált generikus Hölder-függvények

szinthalmazainak Hausdor�-dimenziójának vizsgálata, míg az utóbbi a generikus Birkho�

spektrum vizsgálata, mely spektrumot Birkho�-átlagok szinthalmazainak Hausdor�-

dimenziójából eredeztetjük. Ezen témák motivációját és történeti hátterét mutatja be

a 1. fejezet.

A 2. fejezetben mutatom be hozzájárulásunkat az el®bbi témához. A szükséges

jelöléseket és el®ismereteket a 2.1. szekció tartalmazza, míg a 2.2. szekcióban a f®bb

eredmények kerülnek felsorolásra. Vizsgálódásunk els®dleges tárgya F ⊆ Rp mellett

D∗(α, F ), mely az F -en de�niált generikus 1-Hölder-α függvényhez tartozó szinthalma-

zok Hausdor�-dimenziójának lényeges szuprémuma.

A 2.3-2.4. szekciókban igazoljuk, hogy ez a generikus érték valóban létezik, s további

kvalitatív eredményeket igazolunk különböz® fraktálcsaládokon, példáulD∗(α, F )mono-

tonitását, illetve általános érvény¶ becsléseket. A 2.5. szekcióban a fázisátalakulás je-

lenségét vizsgáljuk, míg a fejezetet záró 2.6. szekcióban kvantitatívabb jelleg¶ tételeket

bizonyítunk, ezekkel alsó és fels® becslést adva D∗(α, F )-re a Sierpi«ski-háromszögön.

A 3. fejezetben a második témával foglalkozunk. A szükséges jelöléseket és el®is-

mereteket a 3.1. szekció tartalmazza, míg a 3.2. szekcióban a f®bb eredmények kerülnek

felsorolásra. Vizsgálódásunk els®dleges tárgya {0, 1}N-en de�niált folytonos f függvény

Sf (α) Birkho�-spektruma, ami egy konkáv, folytonos függvény az Lf -fel jelölt tartóin-

tervallumán, s 0 azon kívül.

Hozzájárulásunk Sf folytonossági és di�erenciálhatósági tulajdonságaival kapcso-

latos Lf végpontjaiban. Miután a 3.3. szekcióban bevezetünk több fontos eszközt, a

3.4. szekcióban igazoljuk, hogy míg a generikus Birkho� spektrum folytonos, a nem-

folytonos Birkho� spektrumok is s¶r¶n fordulnak el®.

A 3.5. szekcióban Sf nemtriviális féloldali deriváltjaival foglalkozunk Lf végpont-

jaiban. El®ször belátjuk, hogy generikusan ezek a deriváltak végtelenek, majd példával

igazoljuk, hogy ez a derivált lehet véges is.
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