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Chapter 1

Introduction

This thesis synthesizes two research projects I participated in, which have the following
common theme: both of them concern with the Hausdorff dimension of level sets and
generic properties in function spaces in the Baire category sense. (In what follows,
genericity is always understood this way.) While these projects do not have an intimate
connection, the utilized techniques certainly enjoy shared features, and they give a fine
exposition of my research interests. Indeed, while the papers laying the foundation of
this thesis do not exhaust my publication list, the omitted ones also recurringly deal
with the question of genericity. An exhaustive enumeration of these papers can be
found at the end of this thesis in the Parallel Research section, not to be mistaken with

the References.

1.1 Level sets of Holder functions

1.1.1 Background

In [27], B. Kirchheim proved that for the generic continuous function defined on [0, 1]?,
almost every level set has Hausdorff dimension p — 1. (Some people prefer to use the
term typical in the Baire category sense instead of generic.) It is a very natural question
what happens when the domain is replaced by a more complicated set, for example with

one of a fractal structure. This problem was addressed by R. Balka, Z. Buczolich, and



M. Elekes in [7], where they introduced the concept of topological Hausdorff dimension,
which is the underlying notion of dimension that determines the Hausdorff dimension
of almost every level set of the generic continuous function. (The definition of the
topological Hausdorff dimension and the definition of some other concepts used in this
introduction can be found in Section 2.1}) The topological Hausdorfl dimension is
related to some sort of "conductivity" properties of some fractal "networks" and outside
of Mathematics, papers in Physics are also dealing with this concept, see for example
works of A. Balankin, i.e. [3|, [2], [5], [4], and [6]. It is a natural question to ask
what happens if the level regions of our functions are not "infinitely compressible”
and hence due to thickness of the level regions we cannot use for almost every levels
the parts of our fractal domains where they are the "thinnest". The simplest way to
impose a bound on compressibility is considering Holder functions instead of arbitrary
continuous functions. Motivated by this, it is interesting to consider level sets of 1-
Holder-a functions defined on fractals. Introducing a bound on the Holder-constant is
a customary practice (see e.g. [1], [31], and |36]) as it significantly tames the function
space in question by making it complete and separable.

Level sets of 1-Holder-a functions can get quite complicated. In some very special
cases when either the function is linear, or constant on hyperplanes with a fixed normal
vector, we need to consider intersections of these hyperplanes with our fractal. Inves-
tigating such intersections is a classical topic (see for example Marstrand’s classical
slicing theorem, [30]), which even in the case of the Sierpiriski triangle, or carpet is still

subject of more recent research as well, see |9] and |29).

1.1.2 Our contribution

Chapter [2]summarizes our papers discussing the aforementioned questions, [12] and [11],
co-authored by my advisor, Zoltan Buczolich, and my co-graduate, Gaspar Vértesy. The
outline of our research and the organization of these chapters are summarized below.
In this thesis, we gradually pass from the most general results — theorems being valid
for any measurable set — towards highly specific ones, such as estimates for specific

fractals, for instance the Sierpinski triangle. We note that the mathematical content of



the papers [12] and [11] is slightly reorganized to fit into this logical structure, instead
of simply put after one another.

In Section [2.1) among other things we define D, («, F') which is the essential supre-
mum of the Hausdorff dimension of the level sets of the generic 1-Holder-a function.
If F'is the disjoint union of two fractals F} and F5, with D.(a, F}) < D.(a, F,) then
it is easy to see that it is not necessarily true that for the generic 1-Hd6lder-a function
D,(a, F) equals the Hausdorff dimension of almost every level set in the range of the
function. However, in Subsection we show that for connected self-similar sets such
a result holds if 0 < a < 1. The Lipschitz case, that is « = 1 needs a different approach
and can be the subject of some further research.

In Section we provide an enumeration of the main results of Chapter 2] This is
warmly recommended to the casual reader.

Section is dedicated to the qualitative foundations of the theory. In Subsection
[2.3.1] we establish some density and approximation results we need for proving results
about generic functions.

Next in Subsection we prove Theorem according to which D, (a, F') either
equals zero, or it is always less or equal than the upper box dimension of F' minus one.

In Subsection we prove Theorem [2.2.2] that is we show that there is a dense
G5 subset G of 1-Holder-a functions such that for every f € G the essential supremum
of the Hausdorff dimension of the level sets of f equals D.(«, F). This shows that
the complicated looking definition of D, (a, F) in can be significantly simplified,
and it indeed makes sense to speak about the essential supremum of the Hausdorff
dimension of the level sets of the generic 1-Hélder-a function.

In Subsection [2.3.4] we verify Theorem [2.2.3] that is we show that D, («, F') is mono-
tone increasing in « for any compact set F.

Section contains further robust results about certain families of fractals. In
Subsection we prove Theorem [2.2.4] stating that if F' is a connected self-similar
set, and 0 < o < 1, then one can select a dense G set such that for any f € G for
almost every r € f(F) the Hausdorff dimension of the level set f~!(r) equals D,(«, F).

It means that the Hausdorff dimension of the Lebesgue-typical level set of the generic



1-Holder-a function is a well-defined quantity in this case.

In Subsection we show that if our fractal F is a self-similar set satisfying the
strong separation condition then the Hausdorff dimension of almost every level set of a
generic 1-Holder-a function is constant zero for all a € (0, 1), that is the introduction
of generic 1-Holder-a functions is not giving any new information compared to the case
of continuous functions.

Section contains constructions and explicit calculations of D, («, F) for certain
fractals. In Subsection we give the details of the calculation of D, («, F') for F
defined in Theorem [2.2.6] This is an example fractal F C [0,1/2]?, which is a big
"sponge" of positive Lebesgue measure and its complement is a dense system of very
thin "tubes". In a "rough heuristic language" if we put our fractal sponge into [0,1/2]?
then almost every level set of a typical continuous function can "run" in the complement
of F', hence these level sets have Hausdorff dimension 0. However, using Hélder level
sets one can see that D,(«, F') = 1 for any « € (0, 1], showing that it is criss-crossed by
only very "narrow" tubes and these tubes are too thin to "contain" almost every level
set of a generic 1-Hdélder-a function. For this example the calculation is relatively easy.

A bit more difficult and interesting variant is investigated in Subsection in
which we discuss and illustrate a phenomenon which we call phase transition. We give
an example of a fractal F' for which the Hausdorff dimension of almost every level set
of a generic 1-Holder-a function for small values a equals the Hausdorff dimension of
almost every level set of a generic continuous function defined on F'. This means, at a
heuristic level, that for such fractals the level sets of generic 1-Holder-a functions are as
flexible/compressible as those of a continuous function. On the other hand, for larger
values of a we have D, (a, F') > 0, that is after a critical value of « these level sets are
not as flexible/compressible as those of a continuous function and we experience some
“traffic” jams as we try to push across the fractal the level sets of generic 1-Holder-a
functions. The fractal F' discussed in this subsection will be the Cartesian product of a
fat Cantor set with itself, hence it will be of zero topological dimension. Note that due
to Subsection such a construction requires fat Cantor sets. Indeed, a self-similar

Cantor set cannot have the above properties. This example is also interesting in view of



Subsection and Theorem [2.2.3] stating that D,(«, F') is monotone increasing, as
it demonstrates that D,(a, F) is not necessarily continuous, even restricted to a > 0,
where D, («, F') measures Holder level sets.

Section concerns with estimating D, («a, A) for the Sierpinski triangle A. The
fractals in Section might give us the false impression that D,(«, F') is easy to
determine. However, they are intentionally constructed with the goal to be able to
precisely calculate D,(«, F'). In the case of fractals not fine-tuned for this problem,
one encounters significant difficulties, as demonstrated in this section. In Subsection
and Subsection instead of determining D, (a, A), we give lower and upper
estimates, respectively, displayed in Figure It should be noted that both the lower
and the upper estimates are positive and tend to 0 as a — 0+, hence the Sierpinski

triangle does not admit phase transition.
05 Dy(a,A) estimates
0.4
0.3 A
0.2 1
0.1 A

e

0.2 0.4 0.6 0.8 1.0

Figure 1.1: Lower and upper estimates of D, («, A)

1.2 Level sets of Birkhoff averages

1.2.1 Background

If (X, F,u,T) is a measure-preserving system, x € X, and f is a summable function,
one might be interested in the limit of the time averages % Zgil f(T"z) as N — oc.

Due to the celebrated ergodic theorem of Birkhoff, if T is ergodic, this time average



converges to the space average [ f dp almost everywhere. In other words, if we introduce
the notation Ey(e) := {z € X : limy_ 00 % SN f(Tx) = o} then u(Ef(a)) = 1 if
a = [ fdpu, and 0 otherwise.

Thus the level sets of the time average behave trivially from the measure theo-
retic point of view. However, from the geometric point of view, one encounters a
highly nontrivial and beautiful behaviour. Notably, we get rather interesting val-
ues by considering the Hausdorff dimension of the sets E;(«) (including the irreg-
ular set E} = {z € X : limy o %22;1 f(T"x) does not exist.}). The function
Si(a) == dimy(Ef(a)) is called the Birkhoff spectrum of f.

Investigating the Birkoff spectrum belongs to the broader topic of multifractal anal-
ysis. Such investigation has been initiated in [35] by Y. Pesin and H. Weiss for Holder
functions in the context of thermodynamic formalism. While we have no inherent
reason to believe that this spectrum should be anything else than pathological, quite
surprisingly, imposing the Holder assumption on f yields that Sy is a concave, ana-
lytic function, a phenomenon which is deservedly called "multifractal miracle” in the
literature. Birkhoff spectrum of continuous functions was studied in [19] by A. Fan,
D. Feng, and J. Wu. In their study, they have shown a variational formula between
the dimension of the level set and the metric entropy, which we will recall precisely in
Theorem They have also shown that Sy(«a) is concave and upper semicontinuous
(hence continuous by the nature of concave functions; see [38, §10]) on the interior of
the set {a € R?: E¢(a) # 0}. The question regarding the behavior of the spectrum at
the boundary of its support remained open. It is mentioned in the introduction of |19]
that even for Holder regular functions discussions of Sy(«) at this boundary are scarce,
which is actually a subtle problem.

In case of one-dimensional range the support of the spectrum of f € C'(2) is always a
(possibly degenerate) closed interval L and concave and upper semiconinuous functions
are always continuous on such intervals. However, it may happen that Sy, as a function
defined on R has a jump discontinuity at the endpoints of L;. Such functions were
called degenerate by J. Schmeling in 39|, in which the continuity of the spectrum for

the generic Holder function was proved. In fact, this combined with results in [32] and



[19] imply the continuity of the spectrum for the generic continuous function in our
setting.

Due to concavity, we know that the Birkhoff spectrum has one-sided derivatives. In
[41], F. Takens and E. Verbitskiy determines the Birkhoff spectrum of the Manneville—
Pomeau map, and they show that it has a finite one-sided derivative at one of the
endpoints.

For other studies of the Birkhoff spectrum, we refer to, for instance, |10], [41], [15],
[20], [25], |34], and [23]. For more information on multifractal analysis (especially with
its relationship to thermodynamic formalism), we refer to [14], [37] and to the survey

paper [16] of V. Climenhaga.

1.2.2 Our contribution

Chapter [3|summarizes our contribution to the topic, presented originally in [13], a joint
paper with my advisor, Zoltdn Buczolich, and Ryo Moore. We focus our attention to
Q = {0, 1} with the % Bernoulli product measure, the shift map o being the ergodic
transformation. The outline of our research and the organization of these chapters is
summarized below.

In Section after introducing some notation we give some simple examples and
recall one of the main results of [19]. Nevertheless we introduce some basic notation
here, to make this subsection more readable. For f € C(€2), that is for f continuous
on Q, we denote by &fmax (resp. ajmin) the maximum (resp. minimum) value of
f € C(2), We also introduce the notation a} .. = sup{a € R : Ey(a) # 0}, and
O in = Inf{a € R: Ey(a) # 0}, and put Ly = [0 im0 OF masd-

In Section we provide an enumeration of the main results of Chapter [3]in a
similar manner to the preceding chapter. This is warmly recommended to the casual
reader.

Next, in Section [3.3] we discuss some tools used later. First, in Subsection we
show that given a continuous function f, any continuous function that is sufficiently
close to f would have its Birkhoff spectrum also close to Sy on Ly except for a neigh-

borhood of the endpoints of the spectrum. This will be proven in Theorem [3.2.1]



In Subsection we prove some results about piecewise constant continuous (or
simply PCC) functions, that is about functions which depend on finitely many coordi-
nates. Among other results we show that for such functions f there is always a periodic
win Ep(a} pax)-

Section [3.4] will concern with the continuity of a Birkhoff spectrum. Given f € C(Q),
we say that the spectrum Sy is continuous if it is continuous on R, and discontinuous
otherwise. Equivalently, Sy is continuous when Sy(a} ;) = Sp(a} .) = 0. We will
first show that continuous, in fact PCC functions with discontinuous spectrum are dense
in C(€2) (Theorem [3.2.3). On the other hand, we give a direct proof of the fact that
generic continuous functions have continuous spectrum (Theorem [3.2.5).

In Subsection we show that for a dense open subset of C'(Q2) the support of
the spectrum is in the interior of [f min, Of max]-

Section concerns with one-sided derivatives of a Birkhoff spectrum at the end-
points/boundary points of the spectrum. Given ¢ : R — R, we denote by 9~ ¢(«)
the left-hand derivative of ¢ at « (if the value exists). Similarly, 0" p(«) denotes the
right-hand derivative. We will show that the spectrum of a generic continuous function
f has infinite one-sided derivatives at the endpoints of Ly, i.e. 9% f(a} ;) = 0o, and
O f(@} pax) = —00 (Theorem (3.2.8). We construct a continuous function with contin-
uous spectrum for which the one-sided derivatives at the endpoints are finite (Theorem
3.2.9). This function will also have a very small spectrum. By concavity of the spec-
trum on its support there is always a triangle which should be under the graph of the
spectrum. Our example will provide an example when the spectrum is very close to
this lower estimate.

It is not that obvious that functions with finite one-sided derivatives at the endpoints
of the spectrum exist since for some well-known examples of functions with continuous
spectrum, like the one discussed in Example we have O f (&}mm) = o0, and
O™ f(0f max) = —00, however this function does not have a “generic spectrum" since
Qf in €quals aymin and o equals afmax. As we mentioned earlier for the generic

continuous functions we always have afmin < @ iy < OF pax < Ofmax; see Theorem

3.2.7. In Theorem [3.2.10] we prove that for PCC functions f with continuous spectrum



we always have 07 f(a} ,) = 00, and 07 f(} ,,,) = —oc. This illustrates that for
the proof of Theorem [3.2.9] one needs to use a more involved construction than a PCC

function.



Chapter 2

Generic Holder level sets

2.1 Notation and preliminaries

The distance of x,y € RP? is denoted by |z — y|. If A C RP then the diameter of A is
denoted by |A| = sup{|x — y| : z,y € A}. The open ball of radius o centered at z is
denoted by B(z, o). For a set E C RP its p-neighborhood {z : inf{|x —y|: y € E} < o}
is denoted by U,(E).

Assume that FF C RP for some p > 0. In what follows, F' will be some fractal set,
usually we suppose that it is compact.

We say that a function f : FF — R is c-Hoélder-a for ¢ > 0 and 0 < o < 1 if
|f(x) — f(y)| < ¢z —y|*. The space of such functions will be denoted by C%(F),
or if F'is fixed then by C¢. The space of Holder-a functions will be denoted by C?,
that is C* = |J, C¢. We say that f is ¢ -Holder-a if there exists ¢ < ¢ such that f is
c-Hélder-ae. The set of such functions is denoted by C2, that is C* = J,._.C¢.

In the space of Holder-a functions often the norm

Iflloe = Ifle+ sup & =IWI

z,yeF, z#y |z —yl*

is considered. This is a Banach space and one can consider typical properties in these
spaces as well. However, these spaces are usually non-separable and often it is more

convenient to consider Holder functions as subsets of continuous functions equipped
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with the supremum norm ||f||cc = sup,cp |f(x)|. To obtain a closed subset of C*(F)
we will consider 1-Holder-a functions, C¢(F) and use the metric coming from the
supremum norm. One could use C®(F) with any fixed positive constant ¢ instead of
1. The results would be the same. In Lipschitz and Holder spaces it is not unusual
to consider these spaces. For example in [36] and [31] the one Lipschitz cases, in our
notation C}([0,1]) and C}([0,1]") were used. In Theorem 2.13 of |1] generic results in
the spaces C¢([0,1]), 0 < a < 1 were considered, even our notation is identical to the
one used there.

For p > 0 and f € C(F) we denote by B(f,p) the open ball of radius p centered
at f, the ball taken in the supremum norm. If f € C¢(F) then B(f, p) N CY(F) will
denote the corresponding open ball in the subspace C{(F).

Since similarities are not changing the geometry of a fractal set to avoid some un-
necessary technical difficulties we suppose that we work with fractal sets F' of diameter

not exceeding one, unless stated otherwise in a specific construction. This way
COF) CCY(F)ifa>d. (2.1.1)

Suppose A C RP. Given § > 0 we say that the sets U; form a d-cover of A if |U;| < ¢
for all j and A C U, Uj.
The s-dimensional Hausdorff measure (see its definition for example in [18]) is de-

noted by H*. Recall that the Hausdorff dimension of A C RP” is given by
dimy A = inf{s: H*(A) =0} = (2.1.2)

inf{s : 3C, > 0, V6 > 0, I{U;} a d-cover of Ast. > |Uj]* < C,}.

J
One can observe that in the above definition instead of arbitrary d-covers of A one
can use open d-covers, that is we can assume that the sets U; are open.
Since the topological Hausdorff dimension is a less known concept here we quickly
mention some definitions and results from [7]. First we recall the definition of the (small

inductive) topological dimension.

11



Definition 2.1.1. Set dim; ) = —1. The topological dimension of a non-empty metric

space X is defined by induction as

dim; X = inf{d : X has a basis U such that dim,0U < d — 1 for every U € U}.

The topological Hausdorff dimension is defined analogously to the topological di-
mension.

In the next definition we adopt the convention that dimyg ) = —1.

Definition 2.1.2. Set dim;y () = —1. The topological Hausdor[f dimension of a non-

empty metric space X is defined as

dim;y X = inf{d : X has a basis U such that dimy U < d — 1 for every U € U}.

Both notions of dimension can attain the value oo as well.

If K is a compact metric space and dim; K = 0 then the generic f € C(K) is well-
known to be one-to-one, so every non-empty level set is a singleton. We do not know
where this folklore fact was first proved but its simple proof can be found for example
in [8].

Assume dim; K > 0. The following results from [7] show the connection between

the topological Hausdorff dimension and the level sets of the generic f € C(K).

Theorem 2.1.3. If K is a compact metric space with dim; K > 0 then for the generic
feC(K)

1. dimg f~H(y) < dimyg K — 1 for every y € R,

2. for every € > 0 there exists an interval I;. such that dimpy f~'(y) > dimy K —

1 —¢ for every y € Iy..

Corollary 2.1.4. If K is a compact metric space with dim; K > 0 then sup{dimg f~*(y) :
y € R} = dimyy K — 1 for the generic f € C(K).

There are many equivalent definitions of the box or Minkowski dimension. We will

use the following one:
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Definition 2.1.5. Given a non-empty set /' C RP let ay(F') denote the number of

closed 2= grid hypercubes intersected by F. The lower and upper box dimensions

logan (F)
N log2

, dimpF = limsupy_,. 2225 Jf dimpF =

of F' equal dimgF = liminfy_, Nlog2

dimpF' then this common value is the box dimension of F', denoted by dimg F'. For an

empty set F' we put dimgF = dimgF = dimpg F' = 0.

The above definition makes sense for an arbitrary set of F© C RP, but in this paper
we will mainly work with measurable sets.

We need approximations by smooth functions. We will use the bump function

n(z) = eXp<_ﬁ> I (2.1.3)

0 otherwise,

and the corresponding mollifier
x
me(z) = ¢m (;) 5

where ¢, is defined such that [, 7, (z)dz = 1.

We want to study the Hausdorff dimension of the level sets of arbitrary 1-Holder-a
functions and also of the generic 1-Hélder-a functions.

To make it more precise, we introduce the following notation: let D/(r,F) =
DY (r) = dimy(f~1(r)) for any function f : F' — R, that is D/(r) denotes the Hausdorff
dimension of the function f at level r.

We are interested in those values for which the level set is of large Hausdorff dimen-
sion for many level sets in the sense of Lebesgue measure. This motivates the following

definition.

DI(F) = D! =sup{d: Mr: D/(r, F) > d} > 0},

where A denotes the one-dimensional Lebesgue measure. Later we will assume that our
fractal F'is compact, but the above definition makes sense for more general measurable
sets as well.

The definition of D{(F) depends on f. In case we want a definition depending only
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on the fractal F' we can first take
D.(a,F) =inf{D! : f: F — R is locally non-constant and 1-Holder-a},

where the locally non-constant property is understood as f is non-constant on U N F’
where U is any neighborhood of any accumulation point of F'. As we are only concerned
with nonnegative numbers, by convention the infimum of the empty set is 0. The value
D, (a, F') concerns those functions for which "most" level sets are smallest possible.
As mentioned earlier we are also interested in level sets of generic 1-Holder-a func-
tions.
We denote by &; ,(F), or by simply &, , the system of dense G sets in C7(F).
We put

D.(a, F) = sup inf{D!: f € G}. (2.1.4)
ge@l,a

In Theorem we will show that there is a G subset G of C{*(F) such that for every
f € G we have DI(F) = D.(a, F).

As we remarked in the introduction the existence of the above G shows that in the
above definition the supremum is maximum, taken at this G € &, ,, and for this special
G there is no need to take the infimum, since D{ takes this minimum for any f € G,
which at the same time equals the maximum value. Combined with Theorem
for 0 < o < 1 in case of connected self-similar fractals one can think of D,(«, F) as
the Hausdorff dimension of almost every level set in the range of the generic C{(F)
function.

So far we have considered 0 < a < 1. To include generic continuous functions in
our notation we set D, (0, F) = max{0,dim;y F' — 1}. By Theorem if f is the

generic continuous function on F', then
D.(0,F) = DI(F).

For brevity, often we will omit F' from our notation.

We will use the Mass Distribution Principle, see for example [18], Chapter 4.
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Theorem 2.1.6. Let p be a mass distribution (a finite, non-zero Borel measure) on
F C RP. Suppose that for some s > 0 there are numbers ¢ > 0 and 6 > 0 such that
w(U) < c|U|* for all sets U with |[U| < 0. Then H*(F) > u(F)/c and s < dim F.

We will use the the following notion of separatedness:

Definition 2.1.7. For some 0 < v,p < 1, a nonempty set F© C RP admits a (v, p)

separated structure, if there exists K > 0, and a sequence of finite families Sy, such that
e ' C|JS for each k,
e for any k and I’ € S, we have |F'| < Kv*,

e for any k and distinct Fj, F; € S, we have p* < d(F}, Fj) = inf{|lz —y| : z €

This notion will be natural in Subsection Such sets are fairly common in
fractal geometry, for instance self-similar sets satisfying the strong separation condition

admit such a structure, as we will see in Lemma [2.4.6

2.2 Main Results

First we give a trivial upper bound for D, («, F'). Observe that this upper bound does

not depend on a.

Theorem 2.2.1. For any bounded measurable set F' C RP, we have
D.(a, F) < max{0,dimp(F) — 1}.

The next theorem shows that in the complicated looking definition (2.1.4) for a

suitable G set one can skip taking inf and sup.

Theorem 2.2.2. [f0 < a <1 and F C RP is compact, then there is a dense Gs subset
G of C2(F) such that for every f € G we have D{(F) = D.(a, F).
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From ([2.1.1)) it follows that D, («, F') is monotone increasing in «, that is D, (a, F) <
D, (/) F)if a < . Next we state the same property for D,(«, F).

Theorem 2.2.3. Suppose that F' C RP is compact. Then the function D.(a, F) is

monotone increasing in o on (0, 1].

Our next theorem concerns with self-similar sets. Note that we do not assume the

Open Set Condition.

Theorem 2.2.4. Suppose that F is a connected self-similar set and 0 < o < 1. Then
there exists a dense Gs set G in C{(F') such that for any f € G

D,(a, F) = DI(F) = D!(r, F) for a.e. v € f(F).

This shows that in case of connected self-similar sets, like the Sierpinski triangle or
the Sierpiniski carpet one can think of D,(«, F') as the Hausdorff dimension of almost
every level set in the range of a generic 1-Ho6lder-a function.

The last main result in Section [2.4]is the following:

Theorem 2.2.5. If F is the attractor of a bi-Lipschitz iterated function system satis-
fying the strong separation condition, then for small enough o > 0 we have D, (o, F) =
D.(a, F) =0.

More specifically, if F' is a self-similar set satisfying the strong separation condition,

then for 0 < a < 1 we have D, (o, F) = D,(a, F') = 0.
We start Section with the following exact calculation:
Theorem 2.2.6. Set Gy, := UjeZ (j SR ) B e 2*’f3> for every k € N,
Fy:=10,1/2]\ G G,
k=2
and F := Fy x Fy. For every a € (0,1] we have Dy(a, F) = 1, and D.(0, F) = 0.

We also investigate the phenomenon of phase transition, i.e. when D,(«, F') equals

D, (0, F) for small as, but exceeds it for larger as.
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Theorem 2.2.7. There exists a compact subset of R? which admits phase transition.

We prove the following lower bound concerning the level sets of any 1-Holder-a

function defined on the Sierpinski triangle A.

Theorem 2.2.8. Assume that f : A — R is a 1-Hélder-a function for some 0 < a < 1.

Then for Lebesgue almost every r € f(A) we have

&7

dimg (f~'(r)) > Hljgé - > 0. (2.2.1)
L+ log2a + o

Finally, an upper bound is verified only generically:

Theorem 2.2.9. For any 0 < o < 1, we have D,(a, A) <1 —27°.

For o < 1 from Theorem|2.2.1jone can obtain that D, (o, A) < %—1 ~ 0.584962500721.

Since lim, ;o1 — 2% = 1/2 this upper estimate is better for any «.

Of course, it would be interesting to exactly determine D,(a, A), but this seems to
be quite difficult.

Before proving these theorems, we would like to provide some intuition concerning
these fractals. The closed set F' defined in Theorem almost "fills out" [0,1/2]>.
We have selected [0,1/2]%, since we wanted to have a set of diameter not exceeding
1. Tt is looking like a "sponge" there is a dense system of narrow tubes in it and it
is of zero topological dimension. If one considers the function fo(x,y) = y then its
level sets are horizontal, running West-East. Taking a “generic continuous function"
f € C°%F) close to fo|r almost all of its level sets are empty. We can also interpret it
in the following way. Take a continuous extension of f onto [0,1/2]?, still denoted by
f. Then its level sets are still "running almost West-East" but they are "flexible and
compressible enough" to stay in the complement of F. This means that the topological
Hausdorff dimension is not "sensing" the fact that F' is a "large sponge". On the other
hand, the theorem tells us that the level sets of generic Holder-a functions cannot be
squeezed into the thin tubes in the complement of F', this is reflected by the fact that

D,(a, F) =1 when 0 < a < 1. For this fractal it is easy to carry out the calculations.
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In case of connected fractals like the Sierpinski triangle or the Sierpinski carpet
there are no tubes/holes in the complement in the fractal, but there are parts where
it is thinner and there are parts where it is thicker. Level sets of generic 1-Holder-a
functions "try to run" at parts of the fractal where "it is thin". They give more precise

information about these properties of the fractal than topological Hausdorff dimension.

2.3 Theoretical foundations

2.3.1 Some approximation and density results

We recall an extension theorem which is a consequence of Theorem 1 of [21].

Theorem 2.3.1. Suppose that FF C RP and f: F' — R is a c-Hélder-a function. Then
there exists a c-Hélder-a function g : RP — R such that g(x) = f(z) for x € F.

Next we prove the following general lemma, which will turn out to be rather useful

in the study of generic properties of Hélder functions:

Lemma 2.3.2. Assume that F is compact and ¢ > 0 s fized. Then the Lipschitz

c-Hélder-a functions defined on F' form a dense subset of the c-Hélder-a functions.

Proof. Consider an arbitrary c-Holder-a function f : FF — R and fix ¢ > 0. By using
Theorem we extend f to RP. The c-Hoélder-a function obtained this way will
be still denoted by f. It is known by the theory of mollifiers that if we consider the
convolution f. = fxmn,, it is a C*° function and f, — f in the supremum norm on any
compact subset of R? as r — 0+. Moreover, f, restricted to F' is c-Holder-a as well.

Indeed, for x,y € F, due to the triangle inequality and the fact that the support of 7,
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is {|z| <1},

(@) = fr(y)] =

/Rp n(2)f(x — 2)dz —/ e (2) fy — 2)dz

RP

< [ w@lfa=2) - o=
=A}<;Mde—w%—ﬂy—dwz (2:3.1)

<coyl [ w(es
{lzl<r}

= clx —y|~.

Consequently, we can fix r such that the restriction of f, to F'is a c-Holder-a function
in the e-neighborhood of the restriction f to F' in the supremum norm. Suppose that F”
is a compact convex set containing F'. As f, is smooth, its derivative on F’ is bounded.

Consequently, f, is K-Lipschitz on I’ D F for some K > 0. O

Approximations by piecewise affine functions in the space C{(F') are important as
well. We will prove a lemma of this nature, but in order to avoid ambiguity, we first

provide a precise definition:

Definition 2.3.3. A function f : F' — R is piecewise affine on F' C RP, if we can
find a system & of non-overlapping (means disjoint interiors), non-degenerate closed
p-simplices such that F' C |Jg.g S, the set {S € & : SN B # 0} is finite for every
bounded B C RP, and for any S € & the restriction of f to any S N F' coincides with

the restriction of an affine function to S N F.

Lemma 2.3.4. Assume that F' is compact, 0 < a < 1, and 0 < ¢ are fired. Then the
locally non-constant piecewise affine ¢~ -Hélder-a functions defined on F form a dense

subset of the c-Hélder-a functions.

Before proving this lemma, we state and prove an auxiliary proposition which is

surely known in some form:

Proposition 2.3.5. Assume that S C RP is a non-degenerate p-simplex with vertices

Lo, ..., Tp, and f: {zo,....,z,} — R is K-Lipschitz for some K > 0. Let a > 0 be the
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length of the longest edge of S, and let b = ming<;<, b;, where b; > 0 is the distance
between x; and the hyperplane determined by the remaining vertices. Then the function

f:S = R defined by
flz) = Z%f@i)
i=0

for any convexr combination x =Y_"_ ~v;x; is M-Lipschitz, where

M=(p+1)- K-

)

SIS

that 1s M depends on S only through ¢. In particular, it is invariant with respect to

similarities.

Proof. As S is the convex hull of its vertices and any two vertices are connected by
an edge, its diameter equals a. Moreover, adding a constant to fdoes not change the
assumption, nor the implication of the proposition. Consequently, we can assume that
min f: 0, and hence by the K-Lipschitz property we have maxfg Ka.

Consider now arbitrary points z, 2’ in S with

hS]

p
_ / !
Tr = Yi%i, T = YTy
i=0 '

Without loss of generality, we can assume that |y — 7(| is the maximal amongst the

differences |y; —7/|, as ¢ =0, 1,...,p. Then
p— — p ~
[F(2) = F@ <D i —7ilf@) < (p+1) - | — vl Ka (23.2)
i=0

where we use the bound on fin the last inequality. This quantity should be compared
to the distance |z — 2’| to check the Lipschitz property of f. However, one can easily
see that the distance of x from the hyperplane determined by z4,...,x, is yoby, while

the distance of 2’ from the same hyperplane is 7by. Consequently,

|z — 2] > |70 = Yolbo > |70 — 70l (2.3.3)
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Comparing estimates (2.3.2) and ([2.3.3)), we obtain

@) = F@)| < (p+1)- K- 2o —a'| = Mlz — /|

[]

Proof of Lemma [2.3.4 Consider an arbitrary c¢-Holder-a function f : F' — R and fix
e > 0. Since F' is compact we can choose 0 < v < 1 such that || f — vf||., < &/4. Then
~vf is ¢-Holder-a on F' with ¢ = ¢y < ¢. The proof starts similarly to the proof of
Lemma [2.3.2} using Theorem we extend vf to RP such that it is still ¢-Hélder-a.
We select a closed hypercube F’ containg F' in its interior. By Lemma we can
find a K-Lipschitz, ¢-Holder-a function ffor some K > 0 with domain F’ such that

on I’ we have
Hf—nyoo < Z which implies H}“— fHoo < g

By introducing a further perturbation to fwe will obtain a piecewise affine c-Holder-«
function f satisfying

/- fHOO <eon F. (2.3.4)

To this end, fix any finite subdivision U of the unit hypercube into non-overlapping,
non-degenerate p-simplices. (The existence of such a simplicial subdivision is simple to
see.) Now divide F” into uniform, non-overlapping hypercubes such that their diameter
is below some constant > 0 to be fixed later. Let us divide these hypercubes further
according to U, that is denoting by ®¢ a similarity from the unit hypercube onto a
hypercube () take the subdivision {®¢(S) : S € U}. Now if a simplex arising from this
decomposition of F’ has vertices zy, ..., z,, for any convex combination = = Y ¢_, v;z;

let

T(Jf) = Z%’f(l“z’)-

Observe that

) = f@) £ Sl Fw) = Fo)l +|f0) ~ f@) < Ko+ 5 <5, 25)

2 4’
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if o < ;%. According to Proposition the resulting function f is Lipschitz restricted
to any of the small simplices, where the Lipschitz constant is invariant to similarities.
However any of these small simplices is similar to a simplex S € U, and as U is finite,
there are finitely many such Ss. Consequently, we can choose some M independently
from &, such that f is M-Lipschitz restricted to any of the small simplices. Hence f
is clearly M-Lipschitz on F” as well, since any line segment in F” is the finite union of
line segments contained by small simplices.

Choose and fix ¢’ € (¢, ¢). Consider now arbitrary x,y € F’. Due to the Lipschitz

property of f,
[f(2) = F(y)| < M|z —y| = Mlz — y[' "z — y|* < "x —y[*

if |z —y| < (CMN)ﬁ That is, if x,y are close enough, the desired Holder bound holds.
Hence in what follows we can restrict our arguments to z,y with |z — y| > (CMH)ﬁ :
bounded away from 0.

We can find vertices 2/, 9" of the small simplices which are at most § apart from =z, y,

respectively. We have that

(@) = F)l < [F@@) = F@)+ [F @) = FOO+ ) = F)l-

By estimating the first and the third term using the Lipschitz bound, and the second

term using the Hélder bound (as f(z') = f(z) and f(y') = f(y)), we obtain
[F(2) = F(y)] < 2M6 + |2’ —of|* < 2M6 + ¢ (o — y| + 20)".

As § — 0+, the expression on the right hand side tends to ¢’|z — y|*. Consequently, as
|x — y| is bounded away from 0, for small enough § it is always smaller than ¢”|z — y|*.
By using (2.3.5), the piecewise affine function f can be perturbed a bit to obtain

a locally non-constant, piecewise affine ¢~-Hélder-a function, still denoted by f, for

which (2.3.4]) holds. O
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2.3.2 Upper bound for D,(«, F)

Our goal now is to prove Theorem which gives an upper bound for D,(«a, F') for
an arbitrary /' C RP. The next simple lemma is probably known. Since we were unable

to find a reference to it we provide its short and simple proof.
Lemma 2.3.6. For any bounded measurable set F C RP and (p — 1)-dimensional hy-
perplane L with unit normal vector v, we have that

dimp ((L + tv) N F) < max{0, dimp(F) — 1}

for Lebesgue almost every t € R.

Proof. As non-degenerate affine transformations do not change the dimension of sets
we can assume that L equals the hyperplane spanned by the first p — 1 basis vectors of
the standard basis (e;)?_;, and v = e,,.

Recall Definition and let ay(F) denote the number of 27V grid hypercubes
intersected by F, and set s = max{1,dimg(F)}. Due to the definition of the upper box

dimension, for every € > 0 there exists Ny € N such that for N > N, we have

ay(F) < 26+N, (2.3.6)

For N > Ny, define Ey C R such that t € Ey if
an((L +tv) N F) > 26~ 12N, (2.3.7)

We claim that
MEy) <27V, (2.3.8)

Indeed, if the reversed inequality holds, then Ey intersects the interior of at least 2(1=9)V

grid intervals of length 27 and then by (2.3.7), we can deduce

CLN(F) > 2(5+5)N,
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contradicting ([2.3.6). Hence (2.3.8)) is justified, which enables us to apply the Borel-
Cantelli lemma to the sequence (E,);2y ;. It yields that apart from a set of zero

measure, for any ¢t € R we have
an((L +tv) N F) < 26-1+2N
for large enough N, yielding
dimp ((L +tv) N F) < max{0,dimp(F) — 1} + 2¢

for almost every t. It clearly gives the statement of the lemma. O]

Proof of Theorem[2.2.1] Every f € C*(F') is uniformly continuous on F, hence it has
a unique continuous extension f* to F' (where F is the closure of F'). The function f*
is in C*(F). Moreover, it is easy to see that ¢: f + f* is an isomorphism between
C*(F) and C*(F). As dimp(F) = dimg(F) and f~'(r) C (f*)"'(r), we can assume
that F' is closed.

We will prove a stronger statement, notably that for the generic 1-Hoélder-a function

f: F — R and for almost every » € R we have
dimg f~'(r) < dimgf~'(r) < max{0,dimp(F) — 1}.

Since the first inequality above is always true we need to verify the second one. We will
calculate these box dimensions by estimating the number of 2=V grid cubes intersected

by f~1(r), which we denote by ay(f,r). Following this notation, we have

logan(f, r)‘

dim f~(r) = lim Nlog2

(Unless an(f,r) is identically zero: in that case, this dimension is simply 0.)
Now for arbitrary N € N, ¢ > 0, § > 0 denote by Hy(e,6) the set of 1-Holder-«

functions, f for which there exists £ C R with measure ¢, such that for any » € E and
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for any m > N we have

an(f,r) > (s+e)™,

where

s = max{1,exp(log 2 - (dimp(F) — 1))}.

For the time being, assume that Hy(e,0) is nowhere dense for any N,e,d. Taking
countable union for § = % shows that for f not belonging to a meager set of 1-Holder-«
functions

A (f,r) > (s+e)™

holds for any m > N only in a Lebesgue null-set of rs. Similarly, taking a countable
union for N € N shows that for f not belonging to a meager set of 1-Holder-a functions
we have that

am(f,r) < (s+&)"
for infinitely many m, except for a null-set of rs, and hence

log an(f,r) < log(s +¢)
mlog2 — log2

However, it immediately yields that for any € > 0, in a residual set of functions, f

) _ log(s + ¢)
1
< = 7
dimg f7'(r) < log 2

Y

except for a null-set of rs. Taking intersection for ¢ = %, [ € N then yields

log s

dim,f(r) < 50 = max{0, Ty (F) - 1}

log

in a residual set of 1-Holder-a functions f for almost every r, which is the desired
conclusion.

Consequently, to complete the proof of this theorem we need to show that H =
Hy(g,0) is nowhere dense for any N, e, 0.

To this end, using Lemma fix a family F of locally non-constant piecewise
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affine 1-Holder-a functions such that they form a dense subset of 1-Holder-a functions,
and fix N,e,0. Now it suffices to prove that any f, € F has a neighborhood B(fy, Ro)
such that for any f € B(fo, Ro), we have f ¢ Hy(e,d).

Assume that fy has k affine pieces. It yields that any level set f;'(r) consists of the
intersection of F' with pieces of at most k& hyperplanes. These hyperplanes admit only
a finite number of different directions, that is they arise as the translation of finitely
many fixed (p — 1)-dimensional hyperplanes. Consequently, according to Lemma
the upper box dimension of f;!(r) is at most max{0, dimp(F) — 1} for almost every r.

It yields that there exists a set £ C R with
)
AME) < 3 (2.3.9)
and ng € N such that for any r ¢ E and m > ng we have

am(fo,7) < (5 +€)".

Fix such an m > N.
Now let H be the family of 2= grid cubes intersected by F. For any R > 0, we

can define

Ei(R) = U Ur(fo(TNE)\ fo(T N F).

Since F' is compact fo(7T' N F') is also compact. We can fix a sufficiently small R > 0
such that for £y = E;(R) we have

A(EY) < . (2.3.10)

|

However, if r ¢ Ey, for any f € B(fy, R) we have that a,,(fo,7) > an(f,7), as f~1(r)N

T # () implies f;'(r) NT # ). Putting together (2.3.9) and (2.3.10) we obtain that for
any f € B(fo, R), apart from the set

E'=EUFE,
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for any r and f € B(fo, R) we have
am(f,7) < (s+2)".

Since A(E') < 0

it verifies that Hy(e,0) is nowhere dense. It concludes the proof. O

2.3.3 Dense G; sets in which D{(F) = D,(a, F) for any f

Lemma 2.3.7. Suppose that 0 < a < 1, FF C R? s compact, E C RP is open or closed,
and U C C¢(F) is open. If {f1, fa,...} is a countable dense subset of U, then there is
a dense Gs subset G of U such that

sup DI (F N E) <sup D/*(FNE). (2.3.11)
feg kEN

Proof. First we assume that E is closed. We can suppose that £ C F.
Since countable union of sets of measure zero is still of measure zero we can choose

a set Ry C R such that A(R\ Ry) = 0 and for any k

D’¥(r, E) < sup DI¥ (E) for any r € Ry. (2.3.12)
K eN

Suppose that D; > sup,ey D{*(E), and fix k € N and r € Ry. Recall (2.1.2)). For
every ¢ > 0 there exists {U;x,}32,, a d-cover of fo *(r) N E such that > \Ujpr| Pt < 1.
As we remarked after (2.1.2)) we can assume that the sets U, are open.

Next we suppose that k,n € N are fixed and for r € Ry we consider § = %—COV@I‘S,
{Ujkrn} of fi ' (r)NE. Of course, if f,'(r)NE is empty then it may happen that these
covers are also empty. As E'\ Uj U, krn is compact, fi is continuous and fi(z) # r for

every © € B\ U, Ujgrn, we have
0 < Pgpr i= min {1,inf{|fk(a:) —rl:xe B\ UUj,k,r,n}} for any r € Ry (2.3.13)
J

(where the infimum of the empty set is 400 by convention). Since fj is continuous,
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frx(F) is bounded. Hence we can choose My such that
flr)NE=0,if r & (—My +1,M; —1). (2.3.14)
Choose a compact subset
Ry, C Ry N (—My, M) such that A(Ry,,) > 2M; —27". (2.3.15)

Then we can choose a finite subset (R)rn C Rin, such that Ry, © Ucr), , (1 —
Pk, T + Penyr). Moreover, the compactness of Ry, also yields that we can choose

prn € (0,1) such that for any r € Ry, we can find ry,,(r) € (R)g, such that
(7’ — Pkn,T + pk,n) - (rk,n(r> = Pknrg . (r)s rk,n(r) + pk,n,rk’n(r))‘ (2316)

Let G, = U, B(fx, pen) NU and G =), G-

Suppose f € G. Then there exists a sequence k, such that f € B(f,, pk,.n) for
every n.

Set Roo == (N, Upsm (Riun U (R\ (=My,,, My, ))). By (2.3.14), (2.3.15) and the
Borel-Cantelli lemma, A(R \ Ry) = 0, and for every r € Ry, either f~'(r)NE =0 or

for infinitely many n

F7H) o (= P T+ Prn)) N E

2.3?16 fk;l ((rkn,n(r> - pkn,n,rkmn(’r)a rkn,n(r) + pkn,n,rknyn(r))) NnE " LjJUj’k”’rkn’”(T)’n’

that is, the system {Uj 4, v, ()} is @ 2-cover of f~'(r)NE. Thus, using the inequality
> U i, n()n| Pt < 1, we obtain dimg (f~'(r) N E) < Dy for a.e. 7 € R, and hence
DY (r,F) < Dy. As Dy > sup,cy DI*(E N F) was chosen arbitrarily (2.3.11)) is satisfied.

Now suppose that E is open. For every n € N set

1
E,:{ermF;mqm—yyyeF\E}z—}
n
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Observe that F,, C F'is closed. We can apply the previously proved case to E,. We
obtain a dense G5 subset G, of U such that sup,.g DI(E,) < supyey DI*(Ey). Let
G:=(.2,G,. If feg then

DI (FNE) =supD!(E,) < supsup D/*(E,) <sup DI*(FNE).
neN neN keN keN

Proof of Theorem[2.2.4. Let Dy := D.(a, F).

For every k € N choose a GF € &, ,(F) for which Dy — ¢ < inf;cge DI (F). Set
Go = N, G¥. We have that Gy € &, ,(F) and Dy < infseg D{(F). It is enough to
prove that for every k € N there is a G, € &, such that

sup DI (F) < Dy, := Dy + l, (2.3.17)
fegk k
since then G := (,—, G is a proper choice.
Fix £ e N.
The set Hy, := {f € Gy : D/(F) < D;} cannot be nowhere dense in C%(F), since
otherwise G’ := Gy \ cl(Hj) would be in &, ,(F') and it would hold that

}ngf DI(F) > Dy > Dy = D.(a, F),
e !

which contradicts the definition of D,(«, F'). Hence we can take f; € C¢(F) and §; > 0
such that Hy is dense in B(f1,01) N C¢(F). Choose a d; > 0 to satisfy 65 < 6,/64. As
F'is compact, we can take a finite set A C F' such that (J,., B(a, d2) covers F'.

Suppose that a is fixed, ¢ > 0 and go € C{(F) is an arbitrary function. Let
E := B(a,dy) N F. By the Holder property, for every f € C¢(F)

diam (£(E)) < (25,)" < 3L
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Thus setting

g1(z) == min { max{go(z) — go(a) + fi(a), fr(x) — &:1/2}, fi(x) + 01/2}.
we obtain
91le = gole — gola) + fi(a) (2.3.18)

(since g1(a) = fi(a) and diam(go(E)) + diam(f1(E)) < 6/16). As g1 € B(f1,61), we
can take go € Hy such that Hgl\E — gglEH < £/100. Set

gs(x) == min { max{ga(x) — ga(a) + go(a), go(x) — &}, go(x) + €}
Obviously Hg3 — gOH < e. By (2.3.18) and by the definition of g, for every z € FE

|92(%) — g2(a) + go(a) — go(z)|
< |g2(2) = g1(2))| + [91(a) = g2(a))| + [g0(a) — g1(a) + g1(2) — go(x)| ~ (2:3.19)

<¢e/100 + /10040 < &,

hence g3(z) = ga(x) — g2(a) + go(a) for every x € E. Thus D%(E) = D%?(E) < Dy
since gy € Hy.

To sum up, for every go € C¢(F), a € A and € > 0 we can find a g3 € C¢(F) such
that [lgo — gs|| < € and D% (B(a,d,) N F) < Dy. Consequently, by Lemma for

every a € A there is a GF € &, , satisfying

sup DI (B(a,d,) N F) < Dy,
fegy

Then (2.3.17) is true for G* := ", , G~, which completes the proof. O

2.3.4 Monotonicity of D,(«a, F) in «

Proof of Theorem[2.2.3, Suppose that o/ > a > 0. If C¢(F) was dense in C&(F), we

could rely on the generic function in C{(F) determining D, (o, F') to obtain conclusions
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about D,(a, F') in a rather standard way. However, it is not the case, which raises
certain technical difficulties in connecting these function spaces. We handle it as follows.

The set C*(F)NC¢ (F) is dense in the separable space C{(F). Hence we can select
a sequence

(fea)ia © C¥(F) N CP_(F)

dense in Cf'(F). Due to the two parts of this containment, we can find some My ; > 0

and 0 < c¢py <1, k=1,2,... such that

fra € Ciy (F)NC2 (F) holds for k =1,2, ....

Consequently, ﬁfk,l € C(F). Now due to Theorem [2.2.2] there exists a dense G
set Go C O (F) such that for any f € Gy we have D{(F) = D,(«/, F). This observation

immediately yields the existence of a sequence (f;2)32; € Gy such that

< b (2.3.20)

1
R

M. 1

for some 0, to be fixed later. By applying a simple rescaling, let

Jraz = Mp1fro € C]?Z/hl(F)-

For any k from f; 5 € G it follows that DI**(F) = D,(d/, F).

Now let us set ¢xo = 1+—;’“ € (¢g1,1). Our claim is that for some well-chosen dy,

we have fp3 € C¢ (F) as well. Momentarily assume that this claim holds. Then the

Ck,2

proof can be concluded swiftly: by (2.3.20)), we have

1
| fer = frall < 0xMpa <

- 2.3.21
3 (23.21)

where the second inequality can be guaranteed by the choice of ;. This implies that the
sequence (fi3)72, is dense in Cf'(F) as well. Now to this sequence we can apply Lemma

with the roles E = RP and G = C{(F) to obtain a dense G5 set G C C¢(F') such
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that for any f € G we have

D.(a, F) < sup D!(F) < sup DI**(F) = D.(/, F),
feg keN

where the second inequality follows from the lemma, while the equality follows from
the construction of the sequence (f;3)52,. Altogether we obtain the statement of the
theorem indeed.

It only remains to prove the above claim, that is for any =,y € F' and f = f 3 we

have

[f(2) = f(y)] < crale—y[*

We use the standard technique of separating two cases based on the distance |x — y|.

Notably, assume first that

1

z —y| < (%}i) T (2.3.22)

Then due to f = fi3 € C§; (F) we have

1f(x) = f(y)] < Myalz —y|* = M|z — y|* |z — y|* < ol — yl,

where the last inequality directly follows from ([2.3.22]).

Now assume the opposite inequality concerning the distance |z — y|, that is

Ck.9 o —a
—y| > : . 2.3.23
ool > (122 (23.23)

In this case, we appropriately substitute f = f.3 by g = fx1 and rely on g € C2 (F).
Notably,

|f(@) = f)| < |f(x) — g(x)| +1g9(x) — 9| + 1 f(y) — 9(W)| < cealr — y|* + 26, My,

< cgalr —yl|%,
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where due to (2.3.23), the last inequality follows from

Cr2 \ @
206, M1 < (Cra — cra) (M ) ,
k1

which simply poses another restriction on the choice of .. Consequently, if § satisfies
this, then f € C¢ (F) indeed, and if the assumption (2.3.20)) holds as well, then the

concluding step of the proof is also valid. n

2.4 D,(a, F) for various set families

2.4.1 Self-similar sets and D,(«, F)

In this subsection we prove Theorem [2.2.4]

Since generic continuous functions are non-constant on sets consisting of more than
two points, for connected F's containing at least two points the range of the generic
continuous function contains an interval and hence is of positive Lebesgue measure.

As we mentioned in the introduction if F is the disjoint union of two fractals F} and
Fy, with D, (o, F1) < D.(a, Fy) then it is easy to see that it is not necessarily true that
for the generic 1-Hélder-a function D, («, F') equals the Hausdorff dimension of almost
every level set in the range of the function.

Indeed, suppose that we put a scaled copy S of the Sierpinski triangle into [0, 1/4] x
[0,1/4], and T denotes [1/2,3/4] x {0}. Put F = S UT. Suppose that f(z,y) is a
function which is constant 0 on S and equals 1/8 + x on T'. Results of [L1] imply that
D,(1/2,S) > 0 and D,(1/2,T) = 0 by Theorem Then for some generic 1-Holder-
1/2 function g¢ in the ball B(f,1/16) for almost every r < 1/16 with r € g(S) we have
dimg g7 (r) = D.(1/2,5) > 0 and for almost every r > 1/16 we have dimg g~'(r) = 0.
As g(S) C (—00,1/16) and ¢(T) C (1/16,00), and A(g(S)) > 0 and A(g(T")) > 0 for a
generic g, this counterexample is valid.

We put A := D,(a, F) and

Mr e f(F):dimyg f~Y(r) > A -6}
A(f(F)) '
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The strategy of the proof of Theorem is the following. First we reduce it to
Proposition In Lemma we show that if we have a dense set of functions with
relatively small portion of level sets with Hausdorff dimension close to A then there is a
dense Gy set of functions with the same property. Based on this lemma in Proposition
we show that for any dp > 0 we can find a Ky > 0 and an open ball in C¢(F)
such that for any function f from this ball at least sy portion of the range corresponds
to level sets with Hausdorff dimension larger than A — dy. In the proof of Proposition
2.4.1 we use rescaled (both in range and domain) affine versions of the functions from
the ball in Proposition This way we obtain functions for which uniformly in any
sufficiently large interval in the range of the function a portion of the range corresponds
to level sets with Hausdorff dimension larger than A — §y. Finally, Lebesgue’s density
theorem will yield that almost every level set is of Hausdorff dimension larger than
A — §y for functions in a dense G5 set. This will complete the proof of Proposition
241

In the remainder of this subsection, we will assume that the self-similar set F' is

determined by the contractive similarities 1, ..., o, m > 2 with ratios 0 < qq, ..., Qm <

1, that is, F' =, pi(F). We put qmin = min{qy, ..., qm }

Proposition 2.4.1. Suppose that F' is a connected self-similar set and 0 < o < 1.
Then for every 6y > 0 there ezists a dense G5 set G in C{(F') such that for every
feg,

dimg f'(r) > A~y for a.e. v € f(F). (2.4.2)

We prove this later. Using this proposition it is very easy to prove Theorem [2.2.4]

Proof of Theorem based on Proposition [2.4.1] Using Theorem[2.2.2]choose a dense
G5 set Go such that DI (F) = D,(a, F) = A for any f € Gy. This implies that if f € G,
then dimg f~'(r) < A for a.e. 7 € f(F).

For 09 = 1/n, n € N select G, by using Proposition and set § = ﬂflozo Gn.
Then for every f € G we have dimg f~1(r) = A for a.e. r € f(F). O

Before proving Proposition we need the next lemma which is followed by
Proposition [2.4.3]
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Lemma 2.4.2. Suppose that 0 < kg < 1 and there exists o9 > 0 such that one can
select a dense set f, € CY(F) for which k(fn,d0) < ko. Then there exists a dense Gy

set G such that k(f,00) < ko for every f € G"°.

Proof. Given k € N using our dense set we will select radii d,, 5. We will define G, =

Un B(fna 5n,k) and g"io == nk gk
Suppose that n and £ are given. Set

H, = {r € fu(F) : dimg f;"(r) <A = b}
By assumption x(f,,dy) < ko and hence
A(Hy) > (1= ro)A(fu(F))-
Select a compact set I',, C H,, such that
ATR) > (1 — ko) A(fn(F)). (2.4.3)

Using the definition of the Hausdorff dimension for every r € I',, we select open sets

Unkrj such that f, () € U; Un ks [Ungrjl < 1/k and

Y (U205 < 1, (2.4.4)

J

Put
p(n,k,r) :=min{|f,(z) —r|:x € F\ U Unkrit >0,

J
where the last inequality holds due to the compactness of F'. Since I',, is also compact

we can select finitely many r; € '), such that

k k
Fn C U (7"1 . p(n,2 >Tl>7rl + p(n>2 77”1)).
l
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Let

. 1 . p(nvkﬂnl)
Onje = mm{n—_i_k,mlm {T}} > 0.

Suppose that f € B(f,,dnx) and r € I',. Then there exists an [ such that r €
(r; — p("f’”),rl + p(n’g’”)). Suppose that x € f~!(r). Then

fo(x) € (r — 0ng, 7+ 0nk) C (11— p(n, kyr),m + p(n, kyry)).
Therefore x € J; Uy 1, ; and
F710) € Unikrs- (2.4.5)
J

Suppose that f € G*0. Then there exists a sequence n(k) such that f € (, B(fuwk)s Onti).k)-
It is also clear that limy_ . A (fn(k)(F)Af(F)) = 0. We have

AT nw)) > (1 = ko) A(fa (F)).

Let I'y := (72, Upz; Tngry- Then A(T'y) > (1 — ko) A(f(F)). Suppose that r € T'y.
From (2.4.4) and (2.4.5) we infer that

dimgy f71(r) < A — 6.
This implies that
Mre f(F) : dimg f71(r) > A = 6o} < roA(f(F)),

that is k(f, o) < k. O

In the sequel we will take balls in C{*(F") and hence, for ease of notation we will

consider balls in this space, that is for example we will write B(fo, po) instead of

B(fo, po) N CR(F).

Proposition 2.4.3. For every §y > 0 there exist 0 < ko < 1, fo € CH(F), and py > 0
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such that
K(f,00) > ko  for every f € B(fo, po). (2.4.6)

Proof. Proceeding towards a contradiction suppose that the statement of the proposi-
tion is not true. Then there exists dy such that for every 0 < kg < 1 one can select a
dense set f, € CY(F) such that x(f,,dy) < ko. For kg, = 1/n use Lemma and
take the dense G sets, G"0» such that x(f,dy) < ko, for every f € GFon.

Let G° =72, G™n. It is also dense G;. Suppose that f € G°. Then

Mre f(F) :dimg f71(r) > A = 0o} < ko A(f(F)) for all n.

This implies M{r € f(F) : dimyg f~'(r) > A — 6o} = 0, but A —§ < A = D,(a, F)
and this contradicts the definition of D, («, F). O

Now we are ready to prove Proposition [2.4.1]

Proof of Proposition [2.4.1. Without limiting generality we can suppose that |F| = 1.
By using Lemma[2.3.4]select a dense set { f,,} in C{*( F) consisting of locally non-constant
piecewise affine 1--Hoélder-a functions. Since F' is connected f,(F) = [m,, M,] with
m, < M,. Since f, is piecewise affine, it is Lipschitz-K,. Without limiting generality
we assume that K,, > 1. Since it is 17 -Holder-«v it is ¢,-Holder-a with a ¢, < 1. We
will select a sufficiently large L, > (n + k)(M,, —m, + 1). Set

M, —m,

nk(t) = my, t- )
Pni(t) = my + Tor

t= O, ) Ln,k — 1.

For each ¢ choose x(t) € F such that f,(x(t)) = pni(t). If t # ¢’ then

M, —m,
Ko 2 Kalx(0) = ()] 2 |falx(0) = fulx(t)] 2 =5
implies
M, —m,
Ix(t) — x(')] > # (2.4.7)

By using self-similarity of F' and 1/a > 1 select a sufficiently large L, and a
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similarity ®; such that x(t) € ®;(F) and

M, — mn>1/a
3Ly 1 Ky 3Ly j '

1/a
> Z|<Dt(F)|>qm1n< 3L A

(2.4.8)

Observe that the sets ®,(F'), t = 1,..., L, — 1 are pairwise disjoint due to (2.4.7) and
(2.4.8). We denote by q(t) the similarity ratio of ®;. Since we supposed that |F| = 1,

we also have
(Mn — My

M, — mn>1/a
3Ly k '

1/a
) Zq(t)>qmin( T

(2.4.9)

Given 9y > 0, we select kg > 0, po > 0 and f; according to Proposition such
that holds for f;. Without limiting generality we can suppose that py < 1 and
0 € F and f5(0) = 0, where O denotes the origin in R”.

Put fo = (1/2)fg. From |F| =1 and fj € CF(F) it follows that fo € CT),(F) and
|fo(x)] < 1/2for all x € F.

For x € ®,(F) put

Furl@) 1= Fa(x(t) + () (fo(®; (@) = (@7 (x(£)))s ¢ =1, e, L — 1. (24.10)

This way f,x is well-defined on F;, = tL:"’Ik_l O, (F), since as we noted, the sets &,(F)
are disjoint.

Claim 2.4.4. If L, is sufficiently large then

k() = fulz)] <

1
——" for all x € F,. (2.4.11)

Proof of Claim[2.4.4, Take x € Fy,. Then there exists ¢ such that x € ®;(F). To

obtain (2.4.11)) we have the following chain of estimates
[ frw(@) = ful@)| < |fap() = frp(X@))] + | frr(X(E) = fo(x(E)] + [fn(x()) = fulz)]
< q*(t)| fo(®7 ' (2)) — fo(@F (x()] + 0+ ¢ |x(t) — 2|
< a0 (el = xO1) 4 ealx(t) 2" < (5 + ) Ix(t) — 2l

q(t)
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(using (2.4.8)) and choosing a sufficiently large L, ;)

M, —m, 1 1
<n o) < ——. 2.4.12
= " 3Lus (2“) ntk (24.12)

This proves Claim 2.4.4] O
Claim 2.4.5. If L, is sufficiently large then

1+¢,

|fn,k(x) _fn,k(y)| < 9

|z —y|* for all z,y € F, ;. (2.4.13)

Proof of Claim[2.4.5 Suppose that z,y € F);,. If there exists ¢ such that z,y € ®;(F)
then

| fose(@) = fare )] = a*(®)] fo(®; () — fo(@; ' (y))]
- (2.4.14)
< q*(t)

1
- - _ o < - _ Oé.
Next suppose that z € ®,(F) and y € Oy (F) with t # t'. We separate two subcases.
First we suppose that  and y are not too far away. We mean by this that

1—c¢,
5

|z —y|'* < (2.4.15)

We also need a lower estimate of the distance of x and y. We capitalize on ([2.4.7))

and (E15)

v =yl = [x(t) = x(t)| — [z = x(t)] = [x(t') =yl (2.4.16)

1
M, —m, 1

> Ix(t) = x(t)1(1 - (Tk)alx<t> —x(t)™)
2 <l (M) ) 2 S () )

(supposing that L, j is sufficiently large)

39



For x and x(t), and for y and x(¢') we use (2.4.14) to obtain

|fn7k(x) - fn7k(y)|

< fak(@) = fap KO + [far (X)) = frr(X(E))] + [frn(x(E) = for ()]

< Sl =X O + a(x(0) = fulx(E)] + 31y = x(E)

M, —m
< e x(t) — x()|” 2.4.17
< Sp+ ebelt) = x(1) 2417
(using (12.4.16]))
2 M, —mp\a—1 @
<yt el -yl (1- () K, (2.4.18)
3 Ln,k

2 Mn—mn éfl —«
cloi G- (52 ) )

Ln,k
(using ([2.4.15)))
1- n Mn - n é_l @
<z — y|a< ooy cn<1 - (—m) Kn) ) (2.4.19)
3 L,k

(if L, is sufficiently large)

<<1+C">| h
xXr — .
5 Yy

This took care of the case when (2.4.15) holds.
Next we suppose that

N
\x—y\>( 26) . (2.4.20)

We argue until (2.4.17) as before. At this point we can estimate the second term in
(2.4.17) as we did it when we obtained (2.4.18]). To estimate the first term using ([2.4.20))

we can choose L, ;, sufficiently large such that

Mn—mn<1—cn(1—cn)1aa<1—cn| o
r — .
3Lk 3 2 Y

Then we can directly jump from (2.4.17) to (2.4.19) and then finish the estimate as
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before. This completes the proof of Claim [2.4.5] ]

In Claim we have proved that f, is *£-Hélder-a on F . Now, by using

2
Theorem we extend the definition of f,; onto R? such that its extension, still

denoted by f, 1 is still a 1Jr%—Hélder—Oz function. Put

frale) = min { fuo) + ——max {s(o). fu0) - ——} ) @a2)

. . . . . 1+C v . * .
Since f, is a ¢,-Holder-a function and f,  is a ~5=-Holder-a function fn,k is also a

e Holder-ov function. Moreover by Claim Jox = Jnk on F, . Hence
FaxX(8) = frrx(x(1)) = fu(x(t)) = p(?). (2.4.22)
By Proposition and by the choice of f; and po for any f € B(f{, po)
Mre f(F) - dimg f7Hr) > A =80} > koA (f(F)). (2.4.23)

By (2.4.10) the graph of f,|s,(r) is an affine copy of the graph of fg. In other words,
fo kla, () 1s a rescaled version of fi = 2f, with scaling ratio q(t) along domain direc-
tions and with scaling ratio 3q*(¢) along the range axis. This affine transformation

*

also gives a correspondence between B(f§, po) and {flo,r) : f € B(f; 1 39%(t)po)}-
Consequently, by (2.4.23)) for any f € B(f; ,, 29°(t)po)

Mr € f(D(F)) : dimp fH(r) > A — 8} > koA(f(D(F))). (2.4.24)

Set lo = A(f;(F)) > 0. Then using (2.4.9)

1 1 M,—m
* = —q*(t) by > = — “q%. Lo 4.
A fan(@(E)) = 5a%(t) - b = 5 35, o (2.4.25)
Thus using (2.4.9) and ¢y < 1-|F|* <1,
1 M,—m 1 M,—m
* (P (F C[nt——-u,nt _.u]_
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We will select a sufficiently small

0< pr < por - Mn =M (2.4.26)
pn,k p02 3Ln,k qmln PO qt s

(the last inequality holds by ([2.4.9)).
Suppose that f € B(f; y, pnk) € B(fr x> poq®(t)/2). Then

Mn — My Mn — my
o, (F)) C1I, = |Pnk(t) — ———,Pnk(t) + ———
F(@UF)) € Tup(t) = [Pualt) = 5=, Buslt) + —57—
By (2.4.24) we also obtain
Mr e f(F)NLk(t) : dimpy f7(r) > A =8} > koA(f(R4(F))) (2.4.27)
> Ko(A(fr i (Pe(F))) = 20n)
(by choosing a sufficiently small p,, , and using (2.4.25))
1 M,—m
> ho s o 1 —” o

Fort =1,..., L, — 1 the intervals I, ;(¢) are disjoint and equally spaced.
Set G = U, B(f; > Pnk)- Since {f,} was dense in C{'(F) by (2.4.21)) it is clear that
the sets G, are dense open in C7(F') and hence G =, G is dense Gj.
Suppose that f € G. Then for any k£ = 1,2, ... there exists n(k) such that f €
B( k) o Prik)k)-
Put
H:={rec f(F):dimg f'(r) < A —d}.

Proceeding towards a contradiction suppose that A\(H) > 0.

By (2.4.22)) we have

Mo (k) — Minr)

F(F) > [mn(k) + Ptk s Mogry — — Pu(k)k |

Lk %
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and ([2.4.26) implies

Then pu(t) € f(F) fort =1, ..., Ly, — 2.
By Lebesgue’s Density Theorem for every 0 < v < 1 for large k there exists t €
{2, ..., Lngyx — 3} such that letting I* = [Py k(t — 1), Pk (t + 1)] we have

AT N H) > A (). (2.4.28)
On the other hand, L) x(t) € I*. Set
H*:={r e f(F)NI*:dimy f*(r) > A — &}

Using this notation from (2.4.27)) it follows that

AH* NT*) = \(H") > 12—M”(?n(k)f”< dinfo = 75 f‘nméo)\g*). (2.4.29)
Since HN H* = ), adding (2.4.28) to (2.4.29) we obtain
A(I) 2 9A(T) + 124 amfﬁg*)
1>~+ Eqmmﬁo
l—v2 TSQ%m%Q
This yields a contradiction, as v can be chosen arbitrarily close to 1. O

2.4.2 Strongly separated fractals

In this subsection, our goal is to prove that D, («a, F) vanishes for small « in the case
when F admits a (v, p) separated structure, to eventually yield Theorem m
Our first lemma shows how this separation condition is related to bi-Lipschitz iter-

ated function systems.

Lemma 2.4.6. Assume that fi,..., f, is an iterated function system satisfying the
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strong separation condition. Moreover, assume that each f; is bi-Lipschitz, that is for

1 <1 < m there exists 0 < p;,v; < 1 with

vile =yl < [fi(x) = fiy)] < pile —yl.

Then the attractor F' of the system admits a (v, p) separated structure for some v, p > 0.
More specifically, if each f; is a similarity, that is F is a self-similar set, then F

admits a (v,v) separated structure for some v > 0.

Proof. For any ji, ..., 7k € {1,2,...,m} we say that f; (...(f;,(F))...) = F},j,. j, is a kth
level cylinder of F'.

First we show that v = min;<;<,, v; is a valid choice. To establish this, we will define
the required families for any k& by considering smartly chosen cylinder sets. Notably,

S, will consist of cylinders C1, ..., C; such that for the diameter |C}| of any of them,
VY| < |Gy < VIR (2.4.30)

This condition is clearly satisfiable by iteratively splitting the cylinders we consider.
In particular, start this procedure with the O-level cylinder F', split it into m many
first level cylinders. Later on, in each step split precisely those cylinders which have
diameter larger than v*|F|, and leave the others unchanged. Due to the bi-Lipschitz
property of each f;, this algorithm produces a finite system of cylinders in finitely many
steps, such that each cylinder satisfies . It yields that the above choice of v is
valid indeed for large enough K.

Assume now that the minimal distance between any two of the sets Fi, Fb, ..., F},
is r, and consider arbitrary cylinders C;,C; € S;. Now let C' be the smallest cylinder
set containing both C; and Cj. In this case, C' = g(F'), where g is the composition
of a finite sequence of functions f;,, ..., f;, for some 1 < 4y,...,7; < m. Consequently,
C; C g(Fy) and C; C g(Fy) for some 1 < 5/ 1" < m. It yields that the distance between
C; and C; is at least as large as the distance between g(Fj) and g(Fy). Moreover,

C has diameter at least v*|F|: otherwise it would not have been splitted during the
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procedure creating Si. Hence if p, = max;<;<,, p;, we can deduce that for the number

L of functions determining g we have

pEIF| > [g(F)| > V¥|F|

Llogp. > klogv

I < klogv

= logp.

That is L < kL, for
_ logv

L, = :
log p

Altogether it yields that as the distance between [} and Fy is at least r, the distance
between g(Fj) and g(Fy) is at least

rkLs — o (VL*)I‘;,

which implies that v** is a valid choice for p with a large enough K, concluding the
proof of the first part.

Concerning the statement for self-similar sets, capitalizing on the fact that g is a
similarity, we are able to take a more comfortable route to conclude the proof from the
observation that C has diameter at least v*|F|. Notably, this implies that the similarity
ratio of ¢ is at least ¥, and consequently, the distance between C; and C; cannot be

smaller than rv*. Tt verifies that in this case p = v can be chosen. O]

The essence of this subsection is the following lemma:

logv
logp”

Lemma 2.4.7. Assume that F admits a (v, p) separated structure, and 0 < o <
Then piecewise constant functions with finitely many pieces form a dense subset of the

1-Hélder-a functions.

Proof. Taking union over 0 < ¢ < 1, c-Holder-a functions clearly form a dense subset
of 1-Holder-a functions. Consequently, it is sufficient to prove that for any c-Holder-a
function f we can find a piecewise constant 1-Holder-a function f in the & neighborhood

of f in the supremum norm for fixed ¢ > 0. To this end, choose f,. according to Lemma
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such that it is in the § neighborhood of f, M-Lipschitz and c-Holder-a. Our aim
is to introduce some further perturbation to obtain the 1-Holder-ov function f, which
is piecewise constant on F. We will achieve this goal by using the covers granted by
the separated structure of F'. Notably, we will consider the covering S, = {Fi, ..., F;}
guaranteed by Definition for large enough k, and define f separately on Fi, ..., F}
by f .= fr(z;), using some reference points z; € F;. Now we would like to prove
that thze function f is 1-Holder-« for large enough k. Choose points v,y from distinct
elements of the covering Sy, where the reference points are z,2’. (If y,7 are in the

same element of covering, we have nothing to prove.) We have

() = FW) = 1fo(2) = fola)].

Then by the triangle inequality, and the Holder and Lipschitz properties of f

@) = FO < 1) = LW+ 1) = Fol@) + 1F:(y) = fil@)

<cly—y|*+ My — z[ + M|y — 2/|.
Hence it is sufficient to prove
/o / / /o
cly =y|* + Mly — | + My — 2| <[y =y
that is
My — x|+ My — 2’| < (1 =)y —y/|*

Now on the right hand side |y — ¢/| > %p*, while on the left hand side both distances
are at most Kv*, where K comes from Definition [2.1.7. Thus it suffices to prove that

for large enough k£ we have

1_C ko

2K - Mv* <

However, it immediately follows from the choice of «, as that guarantees p® > v. That
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is, f is 1-Holder-« if k is chosen sufficiently large. Moreover, by increasing k, f, and f
can be arbitrarily close to each other. Consequently, f can be in the € neighborhood of

f, which yields the statement of the lemma. O]

The following theorem is a straightforward consequence of Lemma [2.4.7

log v
logp*

Theorem 2.4.8. Assume that F' admits a (v, p) separated structure, and 0 < o <
Then for the generic 1-Hilder-a function we have that A\(f(F')) = 0, and consequently,
D.(a,F)=D,(a,F)=0.

Proof. Due to Lemma the piecewise constant 1-Holder-a functions form a dense
subset of the 1-Holder-a functions. Such a function f has a finite range, hence for every
[ € N, in a small enough neighborhood of it, for any function f we have A\(f(F)) < %
By taking the union of all such neighborhoods we find an open, dense subset of the
1-Holder-« functions, in which A\(f(F)) < 7. Taking intersection of these open sets for
[ =1,2,... we obtain that generically, A(f(F")) = 0. O

Proof of Theorem [2.2.5 The statement directly follows from coupling Lemma[2.4.6|and
Theorem 2.4.8 O

Taking into consideration Theorem we can see that in contrast with certain
results of fractal geometry, this corollary does not extend to self-similar sets satisfying

the open set condition instead of the strong separation condition.

2.5 Constructions and exact calculations

2.5.1 Computation of D,(a, F') for an example

In this subsection we prove Theorem [2.2.6]

Lemma 2.5.1. If I C R? is closed, f: R?* = R and Ax \({(x, f(z,y)) : (z,y) € F}) >
0, then DI (F) > 1.
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Proof. By Fubini’s theorem, there exists a set H C R of positive measure such that for

every r € H we have
Mz € R : there exists a y € R such that (z,y) € f~'(r)} > 0.

That is the projection of f~'(r) onto the z axis is of positive measure, and hence

dimy (f~1(r)) > 1. This implies D/ (F) > 1. O

Proof of Theorem[2.2.6. As F is totally disconnected, its topological dimension is 0,
hence every level set of the typical continuous function defined on it is a singleton,
hence D, (0, F') = 0 indeed.

Now fix an o € (0,1]. The upper estimate D,(a, F') < 1 is obvious by Theorem
221

Using Lemma we can select a countable dense subset {f,, : m € N} of
C¢ ([0,1/2]%) which consists of locally piecewise affine functions. As every f € C¥(F)
have an extension in C2([0,1/2)%), {fm|r : m € N} is dense in C¢(F).

Next we suppose that m € N is fixed. Since 0, f,,(z,y) takes finitely many different
values, we can perturb f,, by adding a function 7 -y with a suitably small 7 to it such
that 0 < |0, fim(z,y)| wherever 0, f,,(z,y) exists. Thus we can assume that there is a
Pm > 0 such that p,, < |0,fn(z,y)| (wherever 0, f,,(z,y) exists).

Fix k > 2 such that

Z2l2 . (2—l3>a < pm . 27]6 _ pm,k’ (251)
= — 1000 1000

where o := P - 277

Since f,, is piecewise affine on [0,1/2]?, we can suppose that & is so large that we
can take j,j' € 7Z such that letting I; := ((z —1)-27¥ (i+1)- 2_k2> for i € Z the
function f,, is affine on Q;; := I; X I;; and A(F N Q, ;) > 0.

Select a density point x of I; N Fy. By our assumptions, 0y f,, (%o, y) takes the same

non-zero value for every y € I, and without limiting generality we can assume that it
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is positive. Set yo := (' — 1)27* and y; := (' +1)27*, that is I;; = [yo,%1]. Then

fm(0,y1) = fn(Z0,Y0) > 2P k- (2.5.2)

Let 0, = pmx/10. Suppose that f € B(fn|r,6m) N CY(F). Denote still by f its
1-Holder-a extension to [0,1/2]2. By (2.5.2),

J(xo,y1) — f(x0,%0) > P

Since z is a density point of Fy and f € C([0,1/2]*) we can choose dy > 0 such that
A(Fo N[z, o+ 60)) > 0.9960 and | f(zo, vi) — f(z,v:)| < 0.01py,x for x € [xg, zo+ J] and
¢ = 0, 1. This implies

[f (w0, 90) + 0.01pp i, f (20, 91) — 0.01ppi] C {f(x,t) : t € [yo, y1]} for @ € [x0, 20 + J],

and by (2.5.2)) we have f(z,y1) — f(z,50) > 0.98pp, . Thus,

M{f(z,y) :y € [yo. ] N Fo})
A{f (@ y) y € o nnl}) — A{Sf(@,9) -y € [yo, ] \ Fo})
(using the definition of Fy and f € C([0,1/2]*) we can estimate the jumps on the

intervals contiguous to Fp)

> 0.98p,% —2) 2" (243) > 0.98pmk — 225 S 0.9

— by @51) 500

By Fubini’s theorem

0<AxA({(z, f(z,9)): (z,y) € ([xo,z0 + o) N Fo) x ([yo,y1] N Fv)})
<AXMN{(z, f(z,y)) : (z,y) € F}).

According to Lemma [2.5.1] this implies D{(F) > 1. Put G = J>_, B(fm, 0m) NCE(F).
Then G is an dense open subset of C%(F) and for every f € G we have D{(F) > 1.
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Therefore D,(a, F') > 1. Since we also know that D,(«, F') < 1, this completes the

proof. O]

2.5.2 Phase transition

In this subsection, our goal is to provide an example which verifies Theorem [2.2.7]

Looking at the example with the Sierpinski triangle our lower estimate for D,(«, A)
guaranteed by Theorem [2.2.8]is positive for positive as, and hence D, (o, A) > D, (0, A) =
0. On the other hand, according to Theorem if F'is a self-similar set satisfying
the strong separation condition, then D,(«, F)) = 0 for 0 < « < 1. This phenomenon
reflects the intuitive difference between these cases: informally speaking, while the Sier-
pinski triangle is a fairly “thick” fractal, self-similar sets satisfying the strong separation
condition are quite loose. It raises the natural question whether there are fractals ad-
hering to an intermediate behaviour in the following sense: for small values of a even
the level sets of Holder-a functions are sufficiently flexible and “compressible” and there
exists 1 > ay > 0 such that D,(a, F) = D.(0,F), holds for all a € [0,a,) while
D.(a, F') > D.(0,A) holds for & > a,. If this happens we say that there is a phase
transition for D,(«, F). In a very rough heuristic way we could say that if there is a
phase transition then for small values of « the “traffic” corresponding to the level sets is
not heavy enough to generate “traffic jams” and can go through the “narrowest” places,
while for larger as “traffic jams” show up and “thicker” parts of the fractal should be
used to “accommodate” the level sets.

Next we construct a fractal F' for which D,(«a, F) = D.(0,F) = 0 for some small
values of «, while D,(«a, F)) > 0 for large values of a. Theorem hints us that
we can hope for simple examples displaying this phenomenon, however, probably not
self-similar ones.

To this end, we construct a fat Cantor set C' = [~ C,,, where (C,,) is a decreasing
sequence of sets, such that C), is the union of 2" disjoint, closed intervals of the same
length. Let Cy = [0, 1], and for n > 0 we obtain C,, by removing an open interval from
the middle of each maximal subinterval of C,,_;. We make the construction explicit by

specifying the length of the maximal subintervals at each level: let it be [, = ﬁ
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Then 2l,, < [,,_1, hence such a system can be constructed indeed by successive interval
removals. Moreover, the Cantor set C' in the limit is indeed a fat Cantor set in terms

of Lebesgue measure, as A(C),) = %, thus

AC) = Tim A(Cy) = %

n—oo

Theorem 2.5.2. F' = C x C C R? admits phase transition. Notably, for 0 < a < % we
have D,(a, F') = 0, while for % < a <1 we have D,(a, F) = 1. In particular, Theorem
(227 holds.

Figure 2.1: Step 3 of construction of F

While the statement concerning small exponents will easily follow from Theorem
the other part is more technical. It requires a lemma, for which we will need the

notion of Hausdorff capacity:

Definition 2.5.3. The o dimensional Hausdorff capacity of a set £ C RP is

o0

A%(E) = inf {Z Ui|l*: EC|JU;  for some (Ui);’il} :

i=1 =1
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The Hausdorff capacity is closely related to the problem we consider: it gives an

upper estimate for the measure A\(f(E)) if f is a 1-Ho6lder-« function.

Lemma 2.5.4. Let I}, be a mazximal subinterval of C), and % <a<1l. Then

A (I \ C)

— 0,
1|

as k — oo.

Proof. Let k > 1. By construction, |I| = ﬁ > Qkﬂ We also know that the length

r,n, of an interval removed from C,,_; to obtain (), can be estimated from above by

1 2 1 1
r 1 om _ 1  om+l _ | (2m _ 1)(2m+1 _ 1) < 92m ( )

for m > 2. Now cover the set I} \ C' by intervals contiguous to C' in Ij. It is easy to see
that this covering consists of intervals of length r,, for some m > k, and the number of

intervals with length 7, is 2™7*~!. Consequently,

AT\ C) < Z gm—k-lpa < i gm—k—1-2ma (2.5.4)

m=k+1 m=k+1

where we use ([2.5.3)) for the second estimate. The geometric series is summable for

1 . .
s <a<l, and it yields

2(k+1)(1—2a) 2—2a(k+1)

AT\ C) <27k o T ] i (2.5.5)
Consequently, for % <a<l1
Aa(ﬁ ’\ ) < 21(k+1)2(11_j:) 0, as k — oo, (2.5.6)
. _
which concludes the proof. ]

Proof of Theorem[2.5.2 The first statement about 0 < o < 3 simply follows from

Theorem as [' has a (%, }l) separated structure. This observation follows easily
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from calculations carried out in the proof of Lemma notably, if S consists of the
sets of the form F'N(I; x I;), where I; and [ are (not necessarily different) maximal
subintervals of C}, then each element of S;, has diameter

1
V2 <v2.27h

ok ]

Moreover, for k > 2 one can easily deduce that the distance between different elements

of §; is at least

1 1
> —47F
(2k —1)(2k+1 —1) — 4

using the first part of (2.5.3) and the fact that as the elements of S are product sets,

they differ in one of their factors. It verifies that F' has a (%, }L) separated structure,

and yields the first part of the theorem due to Theorem [2.4.8 and

—t

N[ =

0g
08

5.

—

=

For the second statement, by Theorem we have D,(a, F) < 2—1 =1 and
hence it is sufficient to show that D, (a, F) > 1 holds for 1 < a < 1.

Recall that the union of all the c-Hdélder-a functions for 0 < ¢ < 1 defined on F' is
a dense subset of 1-Hoélder-a functions in the supremum norm. Consequently it would
be sufficient to verify that for a fixed c-Hoélder-a function f and € > 0 we can find
a 1-Holder-a function f € B(f,¢) and ¢ > 0 such that for any 1-Hélder-a function
g € B(f, ') we have dimyg(g~*(r)) > 1 in a set of positive measure of rs. In fact, it
would verify that DI(F) = 1 on a dense open set, which clearly yields that it is the
generic behaviour.

As f is c-Holder-a, f + h is a 1-Holder-a function if A is (1 — ¢)-Holder-a. We
will use this property to introduce the perturbed function f , for which some kth level
cylinder of C' x C' (which is a square) has adjacent vertices vy = (z1,%1),v2 = (22,91)

such that

[f (1) = fo2)] = (1= )or = vg| = (1 =€)y — wa]. (2.5.7)

More explicitly, choose k large enough such that for a maximal subinterval I = [z, x9] C
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C}, we have

/‘\;(I_ \x(j_|> <4 (2.5.8)
where § is to be fixed later. By Lemma [2.5.4] this estimate holds for large enough
k. We can assume without loss of generality that f(v;) < f(vg) for the vertices vy =
(x1,91),v2 = (z2,y1) of some kth level cylinder of C' x C', as the other case is similar.

We can also assume that these vertices are top vertices of that kth level cylinder see

Figure Hence if we define

;

0, if v < xq,

Mz, y) = (1 =)z —z), ifz <a<a, (2.5.9)

(1 —c)(xg —x1) otherwise,
\

then f = f + h satisfies (2.5.7).

We take a ¢ > 0 which will be specified later. By continuity, we can choose r such

that for any y € [y; — r,y1] N C we have

‘f(xhyl) - f:(ﬂé’l?y)‘ < ¢ and ’f(%,yl) - f(iUQ,y)’ <.

Consequently, if g € B(f,¢"), then

l9(z1,11) — g(z1,y)| < 30" and |g(w2, 1) — g(22,y)| < 34"

Besides that, as (z1,v1), (z2,y1) were chosen as top vertices of cylinders of C' x C,
MCNyr = 7)) =10 > 0.

Now by Theorem 1 of [21] we can extend g to a 1-Holder-« function defined on [0, 1]2.
Denote the extended function by g as well. Due to the choice of r, the continuity of the
extended function, and the intermediate value theorem, we have that the g-image of
the planar line segment [(z1,y), (z2,y)] for any y € [y1 —r, y1] N C contains the interval
[f(v1) + 30, f(vz) — 30']. This interval has measure at least (1 — ¢)(zy — 21) — 6.
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Moreover, as [(x1,7), (x2,y)] \ F C [(z1,v), (z2,y)] is congruent to I \ C' C I, due to
(2.5.8) and the fact that g is 1-Holder-c, we have

Ag([(z1,9); (22, )] \ F)) < 025 = a1).

Consequently, the remainder measure of values is taken on [(z1,y), (z2,y)| N F, yielding

that g([(z1,9), (x2,9)] N F) 0 [f(v1) + 3, f(vy) — 36'] has measure at least (1 — ¢ —
0)(xe — 1) — 68". Fix now the values of 6 and ¢’ such that this quantity is positive.

By the above calculations, we can conclude that we have

Yo {(9(2.).9) : g(,9) € [F(01) +30', f(v2) =35, y € [ —rwi] NC, € [m1,25] N C}
>n-((1—c—0)(xg—x1)—65) >0,
(2.5.10)

where Ay denotes the two-dimensional Lebesgue measure. Note that this set is measur-

able indeed as it is the image of the compact set
([z1, 2] N C) x ([yr — ] N O),

under the continuous mapping (x,y) — (9(z,v),y). However, by Fubini’s theorem, we

can rewrite the measure in (2.5.10) as

fva)—46’
/ My:yelyr—r,y]NC and g(x,y) =t for an = € [z, zo) N C} dt.
th(U1)+45/
(2.5.11)
As this integral is positive, the integrand is positive on a set A of positive measure.

That is, for any ¢t € A we have that
My:ye€yr—r,y|NCand g(z,y) =t for an x € [x1,25] N C} > 0.
which is equivalent to that the projection of

g ) NV ([wr,za] X fyr —ropn]) N F
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to the second coordinate has positive measure. That is, the projection has Hausdorff
dimension 1, which obviously yields that g~ (¢) N ([x1, z2] X [y1 —7, y1]) N F has Hausdorff
dimension at least 1 as well for a set of s with positive measure. It concludes the

proof. O

2.6 Estimates for the Sierpinski triangle

2.6.1 Lower estimate for arbitrary functions

In this section, our aim is to prove Theorem As A is a connected self-similar set,
hence by Theorem D, (a, A) equals the Hausdorff dimension of almost every level
set of a generic 1-Holder-a function.

Some people prefer to work with different versions of the Sierpinski triangle. We
work with the one which is obtained by starting with an equilateral triangle of side
length one. Hence it satisfies our earlier assumptions about the fractals considered
since its diameter equals one. Its topological Hausdorff dimension equals one and this
implies that for a generic continuous function every level set is zero-dimensional, see
[7]. The level sets of continuous functions are very flexible, and very “compressible”,
hence during the proof of this theorem one can capitalize on the fact that the Sierpinski
triangle is very “thin” near the vertices of the small triangles appearing during its
construction. As Hoélder-a functions do not have this flexibility, one can expect that
their level sets generically exhibit a different behaviour.

By its definition the Sierpinski triangle is expressible as A = (>, A, where A,, is
the union of the triangles appearing at the nth step of the construction. The set of
triangles on the nth level is 7,,. For T' € 7,, we denote by V(T') the set of its vertices.
Moreover, let V,, be the set of the points which are vertices of some T' € 7,,, and their
union is V = J,~, V,,. We are interested in the Hausdorft dimension of the level sets
of a 1-Hélder-a function f: A - R for 0 < a < 1.

Suppose [ € N. It will be useful for us to define the self-similar set A’ C A as well.
It is induced by the similarities which map Aq to any triangle 7" € 7; on the boundary
of Ay. For example, Al = A, while the case | = 3 is shown by Figure where the
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Figure 2.2: Sierpinski triangle and a crossing level set, shaded blue triangles are used
during the definition of A3, the lighter shaded triangles correspond to the first level
approximation G3(r) of the red level set at level r

shaded triangles on the sides of Ay are used in the definition of A3. (The lighter shaded
triangles will have importance later.)

One can easily check that the number of triangles used in the construction of A! is
3(2! — 1), and the nth level of A! consists of certain triangles of ;. Let us denote the
family of these triangles by 7!, the union of their vertices for fixed n by V!, and the
union of vertices for all the triangles in some 7., by V! = |J°2, V.. It is clear that a
1-Holder-o function f : A — R restricted to Al is still a 1-Holder-o function.

Suppose that f : A’ — R is a 1-Holder-a function and r ¢ f(V). We can define the
nth approximation of f~!(r) denoted by G' (r) for any n and r € f(Al) as the union
of some triangles in .. More explicitly, T € 7! is taken into G! (r) if and only if T" has
vertices v and v’ such that f(v) < r < f(v'), that is, r is in the interior of the convex
hull conv(f(V(T))). The idea is that in this case f~!(r) necessarily intersects 7. On
Figure the level set corresponding to f~1(r) is the intersection of the red curve with

A. The set G3(r) consists of the light shaded triangles. Now it is easy to check that,
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using the notation conv for the convex hull,

conv(f(V(T))) C U conv(f(V(T")), (2.6.1)

T'erh , T'CT

hence if G!(r) contains a triangle 7' € 7/ then G ,(r) contains a triangle 7" € 7!,
such that 77 C T. We introduce the following terminology: we say that 7" € 7. 4k 18
the [, r-descendant of T' C G! (r) if there exists a sequence Ty =T 2T, D ... DT}, = T"
of triangles such that 7; € 7., and T; C G',_,;(r) for i = 0,1, ..., k. We denote the set
of [, r-descendants of T by DL(T).

Observe the obvious property that for any 7" we can label the vertices in V(7) such
that f(vg) < f(ve) < f(v1). We refer to vg, v, as the extreme vertices of T'. Since we
supposed that r € intconv(f(V(T))) we have f(vy) > f(vo). If f(vo) = f(ve) then we
call only one vertex vy as an extreme vertex, the other vertex denoted by vy will not
regarded to be an extreme vertex. We proceed analogously if f(v1) = f(vs).

We define the conductivity ! (T) = & (T, f) of any triangle T € 7! inductively (as
f is fixed during most of our arguments, it will be omitted from the notation unless it
might cause ambiguity). If n = 0, we define 4(T) = 1. On the other hand, if n > 1,
there is a unique triangle 7" € 7!_; such that T C T". Now if T is one of the two
triangles at an extreme vertex of 7", then let ! (T) = s _(7") (in this case we say
that 7" is an extreme triangle of 7”), while in any other case we let % (T) = 1xl,_,(T").

The following lemma can be thought of as the weak conservation of conductivity:

Lemma 2.6.1. Assume that T € G.(r) and k > 1. Then we have

ST Rl 2 KT,
T'erl ,NDL(T)
Proof. By induction, it suffices to work with £ = 1. Consider the vertices vy and
v1 on which f is minimal and maximal respectively in V(7). Since r ¢ f(V) and
f(v) <7 < f(v1) there are at least two edges of T’ containing points of f~'(r). One of
them is the one connecting vy and v.

If there is a 7" € 7}, which contains all the intersection points of the edges of T
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and f~!(r) then it should contain vy, or v;. Hence, it is an extreme triangle of T and
the conductivity of T" equals that of T.
Otherwise we have at least two triangles of G' ., (r) which are in T and the sum of

their conductivity is at least the conductivity of T O
Now we have enough tools to prove Theorem [2.2.8

Proof of Theorem[2.2.8 Since A is compact and connected f(A) is a closed interval.
Moreover as V is a countable and dense subset of A the set f(V) is countable and
dense in f(A). Suppose that r € int(f(A)) \ f(V). Then we can find 7' € |, 7,, such
that r € intconv(f(V(7))). Due to self-similarity properties, we can assume 7 = A,.

Restrict f to some A!. The number [ will be fixed later, it is useful to think of
it as something large. Roughly speaking, in order to bound the dimension, we would
like to obtain that for Lebesgue almost every r € f(A) we have that f~!(r) does not
intersect triangles with high conductivity on the nth level for large n. Consequently,
by Lemma we could deduce that f~!(r) intersects “many” triangles, which yields
“high” Hausdorff dimension due to the Mass Distribution Principle (Theorem [2.1.6).
In order to formalize this idea, we would like to estimate the number of triangles with
high conductivity.

For any T' € Tfl we can consider the chain of triangles 71,75, ...,T,, such that T; O T
and T; € 7!. We bound from above the number of triangles in 7!, whose conductivity is
at least 2774 where 0 < d; < % is chosen to be a small rational number, hence nd; is an
integer for infinitely many n. From this point on we restrict our arguments to such ns,
that is we suppose that n = n’q for some n’ = 1,2, ... where ¢ = min{m € N : md; € N}.
The conductivity is at least 27" if T} is an extreme triangle for at least n — nd,; of the
indices 1 = 1,2, ...,n.

The number of such triangles is estimated from above by

( " ) (3(20—1))"" 2niin = ( " ) (3 (20— 1)) 2,

n — nd; ndy

as we can choose the n—nd; places where we use one of the two extreme triangles, and in

the remaining places we allow the usage of any of the 3 (2l — 1) triangles, hence giving
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an upper bound. By standard bounds on binomial coefficients, this can be estimated

from above by

(ﬂ)ndl (52 1))nd1 on—din (2.6.2)

nd1
The diameter of the triangles in 7! is 27", Consequently, due to f being 1-Holder-a
and by (2.6.2), we know that the f-image of the union of the well conducting triangles

has Lebesgue measure at most

(dﬁl)ndl (3 (2 —1))" " gn-ding=ine — ((%)d (3(2 —1)" 2“““) —

(2.6.3)
Assume that ¢ < 1. Then the corresponding series is convergent, hence we can apply
the Borel-Cantelli lemma to deduce that almost every r € conv(f(V (7)) appears in
the image of well conducting triangles only on finitely many levels. Consequently, for
almost every r, if n is large enough, f~1(r) must intersect at least 2"% triangles of 7!,
as the sum of the conductivities of triangles in T' € 7! for which r € conv(f(V(T))),
is at least 1. We will use this observation paired with the Mass Distribution Principle,
Theorem to give a lower bound on the dimension of almost every level set, but
first, let us consider the question how to choose [, d; in order to guarantee that ¢ < 1.

Elaborating (2.6.3)), we would like to assure

((%)dl (3(2 —1))" 2ttt < 1. (2.6.4)

If this inequality holds for 2 instead of 2! —1, that is still fine for our purposes. Rewriting

our powers in base e, it leads to
exp (dy — dylogd; 4+ dylog 3 + dillog2 + log2 — dy log2 — allog2) < 1,
that is after taking logarithm

di(1 —logd; +log3 —log2) +log2 + I(dy — ) log2 < 0.
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We clearly need d; < « to satisfy this inequality, as only the third term can be negative.

Fixing this assumption, after rearrangement we obtain that it holds if and only if

d (1 —logd, +1log3 —log2) +log2  di(1+logs;) +log2
(v — dy)log2 B (v — dy)log2

<l (2.6.5)

No matter how we fix the rational number 0 < d; < «, such an [ implies ¢ < 1. We
notice that d; can be chosen arbitrarily close to 5, and due to the continuity of the left
hand side of (2.6.5)), if they are sufficiently close to each other, then we can choose [ so

that
2(1 +1log2) 4+ log 2 2(1+1log2) 4+ log 2
5 ( aga) g <zg1+-ﬂ aga) 82
5 log2 5 log2

(2.6.6)

We recall that for such [, d; we have that for almost every r, if n is large enough,
f~Y(r) can only intersect triangles of 7\ with conductivity smaller than 2%, Fix such
an 7 and consider only such large enough ns. We define a probability measure ;1 on A’

Due to Kolmogorov’s extension theorem (see for example [33], [42] or [28]) it suffices

l

to define consistently u(T N A!) for any triangle T in 7.. First, if T is not an [, 7-

descendant of Ay, let u(TNA!) = 0. For descendants, we proceed by recursion. Notably,
if T is an [,7-descendant in 7!, and p(T N A) is already defined, then we divide its

measure among its [, r-descendants in 7. 41 proportionally to their conductivity. More

explicitly, for an [, r-descendant T* € 7! 41 of T' we define

l T*
u(T* N Al = p(T N A e (1)

l AN
ZT/GTTZH_17 T is an I, r-descendant of T’ K41 (T )

Then using Lemma by induction it is clear that
w(T N AN < kL (T) for any [, 7-descendant A,.

Hence,

w(T N Al < 27md, (2.6.7)

Next we want to use the Mass Distribution Principle. Recall that we assumed that we

work with ns of the form n'q. Now assume that we have a Borel set U € A! such that
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for its diameter we have 2~ < |U| < 9—(n'~1al By a simple geometric argument one
can show that U might intersect at most C triangles in Ti,q for some constant C' not
depending on n’. (One can consider the triangular lattice formed by triangles with side

I can intersect

length 274 and it is easy to see that a Borel set with diameter 2~ ("'~ Da
only a limited number of the triangles.) Consequently, the number of [, r-descendants
of Ag in Tfl,q intersected by U is also bounded by C'. For such an [, r-descendant 1" we

can apply (2.6.7)), hence
w(U) < 27mahg

As |U| > 279! the mass distribution principle tells us that if there exists ¢/, s > 0
independent of n’ with

27n’qdlcv < (zfn’ql)scv/’

then s < dimy(f~!(r)). Such a C’ exists if and only if

s <

dy
J— l .
Hence the expression on the right hand side of this inequality is a good choice for s
in the mass distribution principle, thus it is a lower estimate for dimg(f~'(r)) for any
valid pair [, d;. Using (2.6.6) and the argument leading to it, we can approximate § by

possible dys and for sufficiently good approximations we can use

2(1+1log3) 4+ log2 1+log2 2
g(1+1logg) +log2 84

I<1+ - =
5 log 2 log 2 o
Consequently,
dimy (f71(r)) > 2.
L+ Tt +

2.6.2 Upper estimate for the generic function

This subsection is dedicated to the proof of Theorem We will need the following

definition, specific to the Sierpiriski triangle.
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Definition 2.6.2. We say that f: A — R is a piecewise affine function at level n € N
on the Sierpinski triangle if it is affine on any T € 7,.

If a piecewise affine function at level n € N on the Sierpinski triangle satisfies the
property that for any 7' € 7,, one can always find two vertices of T" where f takes the
same value, then we say that f is a standard piecewise affine function at level n € N
on the Sierpinski triangle.

A function f : A — R is a strongly piecewise affine function on the Sierpinski

triangle if there is an n € N such that it is a piecewise affine function at level n.
Here we state a specialized version of Lemma valid for the Sierpinski triangle.

Lemma 2.6.3. Assume that 0 < o < 1, and 0 < ¢ are fivzed. Then the locally non-
constant standard strongly piecewise affine ¢~ -Hdélder-a functions defined on A form a

dense subset of the c-Hélder-a functions.

Before proving this lemma we need to state and prove another one.

Recall that V,, = ;. V(T).

Lemma 2.6.4. Suppose, 0 < ¢, 0 < a<1,0<c¢ f: A — R s Lipschitz-M and
¢ -Hélder-ao on A. Then there exists N € N such that for any fixred n > N if for any
T €, g isc/8-Holder-a on TN A and g(x) = f(z) for all x € V,, then

lg — flleo <€ and g is ¢ -Hélder-a in A. (2.6.8)

Proof. Since f is ¢ -Hélder-a on A we can choose 0 < ¢ < ¢ such that f is ¢-Hoélder-«
on A.
If

1

C 1—a
- S R v
o =yl < (16M)
then

—Q (07 C [0
|f(x) = fy)] < M|z —y|"z —y] < qgle—ul”

Choose ¢’ € (¢, ¢).

First we prove that ¢ is c”-Hélder-a.
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Suppose that |z —y| > M /4, 2 € T, € 7,,, and y € T, € 7,, and select vertices
vy € V(1) and v, € V(T,). (2.6.9)

Then by our assumption f(v,) = g(v,) and f(v,) = g(v,). Since the diameter of T},

and T, equals 27" we obtain

l9(x) — g(y)| < lg(x) — g(va)| + |9(va) — g(vy)| + |g(vy) — 9(y)|
<227+ [f(ve) = f(vy)] < 2e277 + vy — 1|

<227+ (lv—y[+2-27")" —— dlz —y|*,
n—oo

where the convergence is uniform due to |x — y| being separated from zero. Thus, we

can choose N large enough (independently of x and y) such that

l9(x) — g(y)| < ' —y|*. (2.6.10)

Suppose |x —y| < M /4. If T, = T, then by our assumption

!ﬂ@—gwﬂ<§m—M” (2.6.11)

If T, # T,, but T, and T, has a common vertex v then by geometric properties of

the Sierpiniski triangle zvy<t > /6, hence by the Law of sines

|z — y| sin(vyz<)

<
sin(zvy<) <|

|z —v| =

2
x—m;§

and similarly |y —v| < |z — y\\% Hence,

|M@—QWNSMQO—MMMHMW—QWNS%W—UP+§W—MQ

<28 (2) eyl < Sl -yl
“\—=) |z — —lx —y|".
=5\3 Y=gy

(2.6.12)

If T, and T, does not have a common vertex then |z —y| > 2*"‘/75. Choose v, €
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V(T,) and v, € V(T},). Then

|vx—vy|§|x—y|+2-2_”§|x—y|<1—|—2- < Alx —vyl.

>
\/g
['hus

19(x) = g(y)] < lg(z) = g(va)| +19(va) = g(vy)| + lg(vy) = 9(v)]

<2277 4| f(v) - f(vy)] < 25 f) eyl gl -t (2613)

c

2\« c
<2—(—> r—yl*+ —=4%z —y|* < ( ):c— “ r —y|”
s\ /5 lz —y 16 |z — y| Q\f |z —y|* < f\ y|®.

From (2.6.10), (2.6.11)), (2.6.12) and (2.6.13)) it follows that g is ¢~ -Holder-a on A.
To see the inequality in (2.6.8)) select v, € V(T}). Then

(@) = g(@)] < [f(@) = o) + [f(ve) = g(va)| + |g(x) — g(ve)| < M|z — v | + 0
belr = vl S M2 S < M2 g S Ve <

if V is chosen sufficiently large. O]

Proof of Lemma [2.6.3 . With a rather straightforward modification of the proof of
Lemma [2.3.4] one can verify the following weaker form of Lemma locally non-
constant strongly piecewise affine ¢ -Holder-a functions defined on A form a dense
subset of the c-Holder-a functions.

Hence suppose that f € C¢(A) and € > 0 are given. By the previous remark choose
a locally non-constant f; € C¢ (A) and n € N such that

If — filleo < €/2 and f; is piecewise affine on any 7" € 7,,. (2.6.14)

By our assumption about the diameter of A, the triangles in 7,, are of side length 27",
Since f; is piecewise affine on any T' € 7, it is Lipschitz-M for a suitable M and
¢ -Holder-o on A. By Lemma used with f; and /2 instead of f and e choose N.

We want to obtain a locally non-constant standard strongly piecewise affine ¢ -
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Hoélder-a function fy which is e-close to f. Since f; is a locally non-constant strongly
piecewise affine ¢~-Holder-a function which is €/2-close to f we will modify f; to obtain
f2, e-close to f.

Select a sufficiently large n’ > max{N,n} which satisfies

4 /
_M<2—n )1—04 <

N (2.6.15)

ol e

To obtain fy we will modify f; on the triangles T" € 7,,,. On V,; the functions f5 and
f1 will coincide.

Suppose that 1" € 7, is arbitrary. Denote its vertices by v1, v9 and vs. Suppose
that vy, vs and vg are the midpoints of the segments vivs, vov3 and vyvs, respectively.
We denote by 77, T5 and T5 the triangles viv4vg, V40205 and vsvsvg, respectively. The
triangles T;, 7 = 1,2,3 belong to 7,/41.

We define fo(v1) = fa(va) = fi(v1), fo(va) = fa(vs) = fi(ve) and fa(vs) = fo(ve) =
fi(v3). We also assume that f, is affine on any triangle 7" € 7, ;.

By our choice of M we have
’fl(vi) — fl(vj)| S M - 2771/ for any Z,j € {1,2,3}

Suppose that z,y € T) N A (a similar argument works for the triangles 7o and T3).

U,

Denote by 7 the orthogonal projection onto the second coordinate “y”-axis then

Hﬂ@—w@ﬂéi%Mw—m

4 —a o 4 —n'\1—« «a c o
= (e Mle =yl =)o —yl” < M) e =yl < Loyl

V3 V3
where at the last step we used (2.6.15). Hence if Lemma is applied with the
constants fixed above to the function f; as g, we obtain a standard strongly piecewise

affine ¢~ -Holder-« function which is e-close to f. n

We denote by A* the rescaled and translated copy of A in a way that the vertices
of A* are v* = (0,0), v5 = (2/V/3,0) and vi = (1/V/3,1).
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It is clear that R? can be tiled by translated copies of the triangle viviv and its
mirror image about the z-axis. We denote the system of these triangles by Tj. For
n € N we also use the scaled copies of this triangular tiling consisting of triangles of the
form 27T, T' € T{. The system of triangles belonging to this tiling is denoted by T;.
During the definition of box dimension many different concepts can be used, see for
example . Given a set I' C R? we denote by N*(F) the number of those triangles

T € T; which intersect F'. It is an easy exercise to see that

S log N* (F log N* (F
dimgF = lim sup Og—”(> and dimzF' = lim inf Og—”<).

2.6.16
300 nlog2 n—oo  nlog?2 ( )

Lemma 2.6.5. Suppose 0 < a < 1. There exists ¢ : A* — [0,1], ¢ € C$(A*) such
that ¢p(v}) = ¢(v3) = 0, ¢(vi) = 1 and there exists an exceptional set E* such that
AME*) =0 and for any y € R\ E*

S log N* (¢~
dimpe'(y) <1—27% that is limsup 0g N, (¢~ (v)

<1-—-2"% 2.6.17
n—s00 nlog2 ( )

Since the lower, and hence the upper box dimension is never less than the Hausdorff
dimension we also have

dimg ¢ '(y) <1—-27% (2.6.18)

0.8 081

0.6 f’1

0.6 4

0.4 047

0.2 4 f

0.2 4

v'!Vv vV!Vv vy vVva!Vv

ADAD vV-er -Vv-V- ABAD o . t . .
06 10 12 0.2 0.4 0.6 0.8 T 10

Figure 2.3: the rescaled and translated Sierpinski triangle A*, the function f(z) =
A ([0, 7)) and its inverse f~!
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Proof. The basic concepts and results of ergodic theory we use in the sequel can be
found for example in [26]. Suppose that 1/2 < p < 1. Denote by o the doubling map
on [0,1), that is o(x) = {2z}, where {.}, denotes the fractional part. Denote by \,, the

o invariant ergodic measure for which

Ap<iek2—’f + 270, 1)) = pik=1® (] — p)=i=10=e) wwhere e, € {0,1}, k=1,2,....
= (2.6.19)

Set f(z) = A\,([0,2)). Suppose that z,y € [0,1], z <y and 27" < y —x < 27",

k € N. By any interval of the form Y, e,27% +27"[0,1) is of A, measure at

most p". Since [z,y] can be covered by no more than three such intervals we have
1f(2) — f(y)] <3-p" =3-2"08P < 3|g — y| I8P, (2.6.20)

Since o is ergodic with respect to A, by the Birkhoff Ergodic Theorem (see for

example Chapter 4 of [26]) we have for A, almost every z

ZZlne’“(x) VS X[f’”(“%) — A ([1/2,1)) = p (2.6.21)
(where e(x) denotes the kth digit after the binary point in the binary representation
of z). We denote by X, the set of zs satisfying (2.6.21). Since for any z,y € [0,1],
z <y we have A(f([z,y))) = Xp([0,y)) — ([0, 2)) = Ay([z,y)) and the intervals [z, y)
generate the Borel sigma algebra we have A\,(A) = A(f(A)) for any Borel set A C [0, 1).
Hence A(f(X,)) =1 and for A almost every y € [0, 1] we have f~(y) € X,,.
For (x,y) € A* set ¢(z,y) = f(y) and select p such that —log, p = a. From (22.6.20))
it follows that ¢ is a 3-Holder-a function.
The definition of the Sierpiniski triangle implies that if y = >~ €,27" is not a

dyadic rational then the horizontal line
{(z,y) : = € R} intersects 22+=11=) many triangles of T%. (2.6.22)

If needed, by removing a countable set we can assume that f(X,) does not contain
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dyadic rational numbers. Set E* = [0,1]\ f(X,). If y € [0,1] then ¢~ *(y) = 0 and
(2.6.17) is obvious. If y € [0, 1] \ E* then by (2.6.21)) and (2.6.22]) we have

log N (¢~ (y)) log 22-k=1(1=ex)

i =1 2.6.23
L ——— msup —— o (2:6.23)
— lim 1_M:1_p:1_2*0&
n—oo n
]

Now we can prove Theorem [2.2.9

Proof of Theorem[2.2.9 Suppose that {g; : & € N} consists of locally non-constant
standard strongly piecewise affine 17-Holder-a functions defined on A, and this set is
dense in the space of 1-Holder-a functions defined on A. It is also clear that each g is
Lipschitz with a constant which we denote by M.

We suppose that ny, is selected in a way that g, is piecewise affine on each 7' € 7,

and there exist vy (T), v2(T") € V(T') such that

gk(v1(T)) = gr(v2(T)) and if v3(T) denotes the third vertex of T (2.6.24)

then gy (v3(T)) # gi(v1(T)).

Observe that if we take subdivisions, that is we take an nj > n; then (2.6.24]) holds
for suitably chosen vertices of triangles 7' € 7,;. Later in the proof we will select a
sufficiently large n.

Next we define a function f} satisfying
1fi = gklle <27, (2.6.25)

First using Lemma with a = a, c =1, f = gp, M = M, and £ = 27%, select
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We define fj, such that with nj > Ny

fr(x) = gr(x) for any = € U V(T). (2.6.26)

TETn/
k
Since gx is Mj-Lipschitz if T € 7, z,y € V(T) are different then |z — y| = 27"
and

/ 1
9e(2) — g (y)| < Mylz — y| = My, - 27607 |z — y|* < m|x —yl|*, (2.6.27)

if we suppose that n) is chosen large enough to satisfy

, 1
M, -2 (- ~ _— 2.6.28
K 100 ( )

Suppose that 7" € 7,,. For ease of notation we will write v; instead of v;(T) for
1 = 1,2, 3. Using notation from the second paragraph before Lemma denote by
U the similarity for which Ur (7' N A) = A* and the vertices of T" for which we have

(2.6.24)) satisfied are mapped in a way that

‘IJT(UZ') =v; fori=1,2,3. (2.6.29)
Then for every x,y € A*
|\I/()—\I/()]—2";v—2| — | (2630)
z = T . .0.
T T\Y \/g Y

Let ¢ € C§(A*) be given by Lemma For x € TN A we put

fi(@) = o(Vr(z))(gr(v3) — gr(v1)) + gr(v1). (2.6.31)

Suppose x,y € T'N A then

[fe(x) = fu)| < lgn(vs) = g(vr)] - 3[¥r(z) — Yr(y)|* (2.6.32)
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—n/ n' o 2\« a —n) (1—a
< M2 ™ - 3. 2" <%> |z — y|* = M2 (1 ).3.(

where at the last step we used (2.6.28)).
Now by (2.6.26)), (2.6.32) and nj, > Nj we can apply Lemma [2.6.4 Thus f; is a

17-Holder-a function satisfying (2.6.25)).

Since 7, consists of finitely many triangles T', finite union of exceptional sets of

)al "< eyl
T — =z —
Yy 3 v

Sl

measure zero is still of measure zero, and affine transformations are not changing the

Hausdorff dimension we obtain from (2.6.18) and (2.6.31)) that dimg f, '(y) <1 —27

for almost every y € R and for every k. Therefore D/(A) < 1 — 272 for every k
and by the density of the functions g, and the functions f;, are also dense in
C¢(A). Hence we can apply Lemma with the compact set A and the dense set
of functions f; to obtain a dense G set Gy such that DI(A) <1—27%for any f € Gj.
Since in there is also a supremum a little extra care is needed. Using Theorem
select and denote by G, a dense G subset of C*(A) such that for every f € Gy we
have D{(A) = D.(a,A). Since G; N G, is non-empty we can select a function f from
it. For this function DJ(A) = D,(a, A) < 1 —27%. This completes the proof of the

theorem. O
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Chapter 3

Generic Birkhoff spectra

3.1 Preliminaries

3.1.1 Notation and terminology

Let Q = {0,1}", and o be the shift map.
We introduce the usual metric d on €2 defined by

0 o
dw,w) = o = i o i ,
i

where wy, (resp. wj,) denotes the coordinates/entries of w (resp. w'). If k € NU {oo}
and A is a finite string of Os and 1s then A* denotes the k-fold concatenation of A and
[A] denotes the cylinder set {w : Aw’, W’ € Q}. Given k,l € N and w = (wyws...) € )
we put wlk = wy..wy and (w)! == WpWry1 ... wiwy, if k < 0 then w|k is the empty
string and analogously if & > [ then (w)} is also the empty string. The "conjugate" @
is the string which we obtain from w by swapping Os and 1s, that is Wy = 1 — wy, for all
k.

We recall the definition of the s-dimensional Hausdorff measure H* and the Haus-
dorff dimension dimg. Notably, for A C Q, H*(A) = lims_,o H3(A) where Hj(A) =
inf{} ", (diam U;)® : where A C |J,U; and diam U; < §}. The Hausdorff dimension of
A CQisdimyg A =inf{s: H*(A) = 0}. From this definition, it is a standard exercise
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to show that dimy Q = 1.

The complement of a set A is denoted by A°.

Let PCC*(Q) be the set of those piecewise constant continuous functions in C(Q),
which depend only on cylinders of length/depth k. While the set of piecewise con-
stant continuous functions in C(£2), is denoted by PCC(f2). Obviously PCC(Q2) =
U, PCCH(Q).

The (1/2,1/2)-Bernoulli measure, the “Lebesgue measure" on (2 is denoted by \. In
case we write [ f for an f:Q — R we always mean [, fd\.

We denote by Cy(€2) the set of continuous functions for which [ f = 0, and PCC§(Q) =
PCCH(Q) N Cy(9).

Given f € C(Q2), we denote || f|| = sup,cq |f(w)], and for any § > 0, B(f,d) ={g €
C) : |If —gll <4}

Recall L

E¢(a) == {w € Q: lim N Zf(a”w) = a}, (3.1.1)

and Sy(a) := dimpy E¢(o) We remark that our definition of S¢(«) is a bit different from
the usual notation in multifractal analysis, since quite often Sy(«a) is defined to be —oo
when Ef(a) is empty.

As previously defined, we set o} .. = sup{a € R : E¢(a) # 0}, where o} ;, =
inf{a € R: Ey(a) # 0}. In general we have afmin < @} i < @ oy < Qfmax, and it is
possible for the strict inequalities to hold (including the first and the third inequality),
as we will see in an example (cf. Example [3.1.4). In fact, as Theorem shows this
property is true for the generic continuous functions as well.

The o-invariant Borel probability measures are denoted by M,. By Birkhoft’s
Ergodic Theorem, we know that A(E¢([ f)) = 1. Furthermore, if {C;}°, are cylinders
in Q of length at least k € N and E¢([ f) C U;2, C; then

1= (Ef </ f>) < ix(cy) - idiam(@),

which implies that 1 < M) (Er([ f)) < Hi(Q) for any k € N, and thus Sy([ fd\) =
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1. Given f € C(€2) and a € R we will also use the following subsets of M,
Fila) == {;LEMU:/fdu:a}. (3.1.2)

3.1.2 Examples

We present a few examples of Birkhoff spectra of certain PCC(Q) functions. We will

first provide an example for a function with continuous spectrum.

Example 3.1.1. Let f € C(Q) be the function given by f(w) = 1 if wy = 1 and
fw) =0 if wy =0. Then for any a € (0,1) we have

_alog(a) + (1 —a)log(l — )
log 2

Syla) = :

if a & (0,1) then Sy(a) = 0. In particular, f has continuous spectrum, as ., = 0,

O} max = 1, and furthermore, 0% S¢(a} ) = +00 and 07 S¢(af ) = —00.

Verification of the properties of Example[3.1.1, We will prove two inequalities using
suitably defined Holder functions and Eggleston’s formula on dimension of real subsets
determined by their digit density (|17]). First, let us consider the function hy : Q — [0, 1]
defined by

(e e}
Wi

5.

=1

hi(w) =

That is, hy takes a 0-1 sequence to the number with the corresponding binary expansion.
We claim that h; is a Lipschitz function in fact. Indeed, if W’ differs from w in its nth
coordinate, but not before that point, then d(w,w’) > 27", while |h;(w) — hi ()] <
27"+ hence hy has Lipschitz constant 2. Moreover, hy (E¢(«)) equals the set of numbers
in [0, 1] having a binary expansion in which the density of 1s equals . Thus due to
[17], the dimension of hy(E;(«v)) is given by the formula in the statement of the lemma,

yielding
_alog(a) + (1 —a)log(l — )

>
St(a) o 2

9

as h, is Lipschitz.
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Concerning the other inequality, define hy : C' —  for the triadic Cantor set

C C [0,1]: if the triadic expansion of x € C'is

=z
i
i=1
then let w = hy(x) have coordinates %, %2,.... That is, hy is a one-to-one mapping

between €2 and C. Now if z differs from 2’ in its nth coordinate, but not before that

point, then |z — 2’| > 37™. On the other hand, d(hs(w), he(w")) < 271 Tt quickly

yields that hy is a Holder function with exponent }ggg Moreover, hy ' (E;(a)) is the set
of numbers in [0, 1] having a ternary expansion with no 1s, in which the density of 2s is
« and the density of Os is 1 — . Hence hy'(Ef(«)) is contained by the set of numbers
in [0, 1] having a ternary expansion in which the density of 2s is « and the density of

0s is 1 — . Thus due to [17], the dimension of h;'(E;(a)) is at most

_alog(a) + (1 —a)log(l —a)
log 3 '

2_
3

Hence as hy is }gi Hoélder, we obtain an upper estimate for S¢(a), that is the dimension
of E¢(a), notably
alog(a) + (1 — a)log(l — «)

log 2

St(a) <

This shows that the desired equality holds, and the remaining claims clearly follow. [J

Remark 3.1.2. One can use the fact that Sy is the Legendre transform of the topolog-
ical pressure function P(tf) to obtain a less direct argument that verifies the formula

in Example [3.1.1
Next, we will see examples of continuous functions with discontinuous spectra.

Example 3.1.3. If f is a constant function, i.e. f = C € R, then S¢(C) =1 and
S¢(a) = 0 otherwise. The same is true if f is cohomologous to a constant, i.e. there
erists g € C(Q) for which f = C+ g — go o (we recall that if C is zero, f is called a

coboundary).
Finally, we give an example where afmin < 0F 5 < O oy < Qfmax (that is, strict
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inequalities are satisfied), and the Birkhoff spectrum is discontinuous.

Example 3.1.4. There ezists f € PCCY(Q) satisfying o s min < O} min < @ max < Of max
and Sf(a}’min% Sf(a?,max) > 0.

Proof. As f € PCC}(Q) we can define it by giving its values on 3-cylinders by abusing
a bit the notation for f. We define f by f([000]) = f([010]) = —2, f([001]) = —3,
f([100]) = —1, and f(@W) = —f(w). Then we clearly have o ymin = —3 while af max = 3.

Now we claim af ;. = —2, while o} . = 2, which would yield the inequalities
Afmin < Cpin < oy < Ofmax- Due to symmetry reasons, it suffices to verify
@} in = —2. To this end, consider an arbitrary w € 2. Now we are interested in the
averages SV f(0"w). In the sequence f(c"w) each value is at least -2, except for
the cases when the first three coordinates of ¢"w are 001. However, in this case the
first three coordinates of 02w contain at least two 1s, or they are 100. In either case,
f(0"2w) > —1. This argument shows that in the sum 3. f(0"w) the summands
with value -3 can be paired with summands with value at least -1, except for possibly the
last one, whose pair does not appear in the sum. Besides that, all the other summands
have value at least -2. Consequently, the average % Zivzl flo"w) > =2 — %, hence
the limit is at least -2, verifying a5 ;, > —2. For the other inequality, we may simply
consider the identically 0 sequence, hence o} ;, = —2. It proves the claim of this
paragraph.

It remains to show that Sy(a} i), S5(Q} max) > 0. Due to symmetry reasons, these
quantities are clearly equal, hence Sy¢(aj ;) > 0 would be sufficient. Consider the

following subset of {2:
B={weQ:w,=0for k=1,2 mod 3}.

Then for any w € B and n we have that at least two of the first three coordinates of
o"w equals 0. Consequently, f(o"w) < 0. Moreover, similarly to the previous argument
we find that the in the sum 3" | f(¢0"w) the summands with value -3 can be paired

with summands with value -1, except for possibly the last one. All the other summands
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have value -2. Hence we find
N
1 1
e

It proves that B C Ey(—2), hence dimy B > 0 would conclude the proof. However,

this dimension can be calculated explicitly as B is a self-similar set, which equals

the disjoint union of its 2 similar images, where the similarities have ratio %. Thus
dimy B = bg; = 1 by Hutchinson’s Theorem [22]. O

3.1.3 Variational formula

The following result was obtained by Fan, Feng, and Wu. We present this result in the
context of the full-shift on an alphabet of two symbols (2,0) (in [19], they proved the

result for a topologically mixing subshift of finite type).

Theorem 3.1.5 (|19, Theorem A|). Suppose that f : Q — R? is a continuous function.
We denote Ly == {a € R? : o = limNﬁoo%Zgzl f(o™w) for some w € Q}. There

exists a concave and upper semi-continuous function Ay such that for any o € Ly

Si(a) == dimp(Ef(a)) = As(a),

and
h
max =
peFs(a) log 2

Ag(a) =
where hy, is the metric entropy of p, and F¢(c) can be defined analogously to (3.1.2)).

The function As(«) is defined in the same paper |19, Proposition 5| using the car-
dinality of the cylinders of large length that contain at least one point w for which the
Birkhoff average of f of that length is close to «. It was later shown that the quantity
Af(ar) indeed agrees with Sy(«) for all a € Ly |19, Proposition 6].
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3.2 Main results

We first prove that two Birkhoff spectra of two continuous functions are close (except

near the endpoints) if those two functions are close in the supremum norm.

Theorem 3.2.1. Let f € C(Q) for which a5, < O ay, and € € (0, %) be
given. Then there exists 0 > 0 such that for any g € B(f,0), we have |S¢(a)—59, ()| < ¢

fO’f' all o € (Oé;z,min + &, a?,max - 8)'

Remark 3.2.2. We will later learn that the generic continuous function satisfies the

hypothesis of this theorem; see Theorem [3.2.7]

Recall an example of a PCC?*(Q) function with discontinuous spectrum from Exam-
ple[3.1.4] Our next theorem tells that functions in PCC(2) with discontinuous spectrum
form a dense subset of C'((2).

Theorem 3.2.3. Functions h € PCC(Q) with Sy(aj, .,) > 0 are dense in C().

Remark 3.2.4. Of course, a similar theorem is valid with Sp(a}, ,,) > 0 in the con-
clusion and with a little extra technical effort one can show density in C(2) of those
f € PCC(Q) for which Si(aj a) > 0 and Sp(aj ,) > 0 hold simultaneously. As
Theorem [3.2.5] shows functions satisfying the conclusion of Theorem [3.2.3], or any of its

above mentioned variants form a first category set in C'(Q).

Next we will show that the set of functions with discontinuous spectrum is of first

category.

Theorem 3.2.5. For the generic continuous function f € C(2), we have that Sy is

continuous on R.

Remark 3.2.6. This theorem implies that the set of continuous functions with discon-
tinuous Birkhoff spectrum is a set of first category. This set includes functions which are
cohomologous to a constant, as we observed in Example [3.1.3] hence this is a possible

way to see that these functions form a set of first category.
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In Example we saw a very simple PCC function for which the range of the
function [ min, g max] coincides with the support of the spectrum [a} ., @F oy Our
next theorem states that generically, this coincidence does not hold. In fact, we prove a
little more; we show that the set of functions for which [} ., @F may] C (@fmin, @f max)

is open and dense.

Theorem 3.2.7. For a dense open set G C C(Q)) we have
O f min < Oé‘?min < O‘;,max < Of max (3.2.1)

hence the generic f € C(Q) satisfies (3.2.1]).

For the generic continuous function we have already seen in Theorem that the
spectrum is continuous at these endpoints, and as in the direction of the exterior of Ly
the spectrum is constant zero, the one-sided derivative is also zero. On the other hand,
towards the interior of the support it is of infinite absolute value as we see in the next

theorem.

Theorem 3.2.8. For the generic continuous function f € C(S2), we have 0~ S¢(} pay) =

—00, while 9% S¢(a} i) = 00.

Our next theorem tells that there exist functions which are exceptional in Theorem

B3.2.8

Theorem 3.2.9. There exists f € Co(S2) such that Sy is continuous, o}, = —1
and & . = 1, and 07 Sp(a} ,,) > —00, while 07Sp(a} ;) < oo. Moreover, these

derwatives can be arbitrarily close to —1 and 1, respectively.

It is natural to ask whether Theorem [B.2.9 holds if we restrict our attention to the
class of Holder functions, or PCC functions. While we do not know whether there is
a PCC function with finite one-sided derivatives at the endpoints of the spectrum, our

final theorem might make one believe that the answer to this question is negative:

Theorem 3.2.10. If f € PCC(Q) and Sy is continuous, then 0~ S¢(a} .) = —00,
while 0% S¢(af i) = 0.
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3.3 Tools

3.3.1 Norm Continuity Theorem

The goal of this subsection is to prove Theorem [3.2.1]

If one considers f,g € C(£2) with continuous spectrum then the above theorem
can be used to show that for given € > 0 one can find § > 0 such that ||f —g|| < ¢
implies that ||S; — Sy|| < e. On the other hand, if f has discontinuous spectrum, say
S§(@% max) > 0 then the density of functions with continuous spectrum (Theorem
and Remark imply that arbitrary close to f one can find functions g such that
17 = Syll > () ) /2

To proceed, we first prove the following lemma.

Lemma 3.3.1. Let ¢ > 0 be given. Suppose that f € C(2), and a € [} 0, OF max)-
Then for any g € C(Q2) such that || f — g|| < e, there ezists o/ € (a« —e,a+¢) for which
Sy(a') > Sp(a). If Sp(a) =0, but Ep(a) # 0 then Ey (/) # 0.

Remark 3.3.2. This implies that if ||f — g|| < e then |a} .. — o < ¢ and

g,max

‘a}k‘,min - Oé;,min| <E.

Proof. Recall the definition of F¢(«) from (3.1.2)). By Theorem there exists p €
F(av) for which

! log 2 log 2

Defining o/ = [ g dpuqo, the bound || f — g|| < € yields o € (o — &, + ¢), and from
Theorem we can quickly conclude S,(a’) > S¢(«), as

maxuefg(a/) h’# h

Sy(a) = 10— Si(a).

log 2 ~ log2

If S¢(a) = 0, but Ef(a) # 0, we will obtain the desired conclusion by integrating
g with respect to another measure to get o/. First, consider the map f. : M, — Ly
for which f,(n) = [ fdp. Since this map is affine and continuous, and f.(uy) = «

is an extremal point of its range, we can conclude the existence of an extremal point
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fip of the convex set M, that is an ergodic measure, for which f.(f) = a. Thus for

o = [ gdp, by Birkhoff’s Ergodic Theorem we have fip-a.e.

N—oo

|
lim T ;g(anw) =d,

and hence Ey(a') # 0. O
Using this lemma, we will prove the theorem by using concavity of the spectrum.

Proof of Theorem (3.2.1]. For some L € N, we consider a partition
a;min = <ap<---<ap= a},max

for which for every i = 1,2,..., L — 1, |a;41 — o] < /4 is small enough such that for

every t € [0, 1], we have
(1 — t)S(OQ) + tS(ai+1) > S((l — t)OéZ + tOéi+1) — 8/2

For each «;, we choose a positive number 0(a;) < £/8 as follows: For any o} € (a; —
d(ev), i +6(ay)), and B > S¢(ey), the line segments connecting the points (o, 5/) and
(aiyq, Biy1) are above the graph of Sy(a) —e for i = 2,..., L — 2. We can also suppose

that the intervals (o; — d(v), a; + 0(a;)) are disjoint. Then we set
0= min{e’;‘/& 5(&1), 5(&2), s 75<04L)}'

We apply Lemma with e = § to show that there exists o € (o; — ,; +9) C
(i —6(ai), a;+6(ay)) such that Sy(aj) > Sp(ay) fori =1,..., L—1. Since |0} —a} ;0| =
o} —as| <e/8and |} — @} .| = o) — ar| < &/8 by using the concavity of S, one
can show that Sy(a) > Sy(a) —¢ for all a € (a} 5, +€/2, O ax —€/2). By reversing the

roles of f and g, by an analogous argument we can conclude that S¢(a) > S, () — ¢ for

all @ € (o in +6/2, Q) a0 — €/2). Using Remark we can conclude the proof. [
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3.3.2 Piecewise constant (PCC) functions

We start with a lemma in which we show that a3 .. is a uniform upper bound of the

limit of the Birkhoff averages of any f € PCC*.

Lemma 3.3.3. Assume f € PCC*(Q) and ¢ > 0. Then there exists Ny such that for

any N > Ny, for any w € €, we have

N
1
37 (0"0) < O 2. 3.3.1)
n=1
which implies that
N
lim sup 1 Z flo"w) < af uniformly for any w € Q (3.3.2)
Nooo N &= = fmax '

Proof. Choose Ny such that for any N > N,

—k ”f” + N(a},max + 5)
N +k

> 0% + (3.3.3)

We claim that this N, satisfies the statement of the lemma. Proceeding towards a
contradiction, assume the existence of a configuration w and N > Ny which refutes this

claim, that is

N

1

N Z flo"w) >} oy + € (3.3.4)
n=1

Our goal is to construct w’ € Q, periodic by N + k which will satisfy

N N
D fomW) =) f(0"w) > N(0 g + 6, (3.3.5)

and this will contradict the definition of a7 .. as we will see in (3-3.7). In the ergodic
sums we consider, the first coordinate has no importance, thus it is sufficient to construct
ow'. Let it be periodic with period N + k (that is oV ¥+ = gw’), and define its first
N + k coordinates to be wq,ws, ...,wnikr1- Now if N’ is arbitrary, express it modulo

N+ k as N = p(N + k) + g, where p is a nonnegative integer, while 0 < g < N + k.
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Then the corresponding ergodic sum can be written as

1 N’ 1 p(N+k) 1 q
N/ Z flo"w') = N Z flo"wW') + ~ Z F(aPNFRAm
n=1 n=1 —
(N+k) .
p(N + k) 17 } 1 )
n=1 n—1

(3.3.6)

Using the periodicity of ow’ in the first sum, and the boundedness of f in the second

one we infer

N-+k

Hence if N’ — oo, the ergodic sum + Zﬁll f(e"w') converges to N+rk ZnNilk (o™w").

Now by (3.3.4) and f € PCC*(Q), we have (3.3.5). Thus by (3.3.3), we deduce

N+k
1 ’ _kaH—i_N(aj‘max—{—g) 9
) n : ; c 3.3.7
N+kmﬂﬂgw)> N+ k 7 Ofmax + 5 (3.3.7)

Hence Ef(a) # () for some a > aj .. + 5, which is obviously a contradiction. Tt

concludes the proof. O

Remark 3.3.4. More general version of Lemma can be found in [40, Theorem
1.9]. In particular, the result would hold for continuous functions, rather than PCC

functions. We will not, however, require such general result in our subsequent argument.

Next, we will show that if f € PCC(f2), then there exists a periodic point in €2 for

which the limit of the Birkhoff averages of f equals o} ...
Lemma 3.3.5. Let f € PCC"”(Q). Then there exists a periodic configuration w such
that imy_ oo % Zf:f:l flo"w) = O max-

Proof. We define a directed graph G = (V, E) as follows: V = {0,1}*, and there is an
edge from u € V to v € V if roughly speaking v is one of the possible shifted images of
u, that is v; = u;4q for e =1,...,k — 1. Now we can think of the values of f as weights

on the vertices of G, while an arbitrary w € €) corresponds to an infinite walk I',, in G.
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Moreover, the ergodic averages are simply the averages of weights along the vertices of
finite subwalks of I',,.

For technical reasons, it is advantageous to put the weights on the edges and work
with those ones: one of the convenient ways to do so is putting weight f(u) on all the
edges leaving the vertex u. Denote the function £ — R obtained this way by f, too.
Now the ergodic averages can be considered as the averages of weights along the edges
of finite subwalks of w.

Consider now w € Q such that + SV flotw) — O} max- Lake the corresponding
path I',. As V is finite, there exists a vertex which appears infinitely many times in
I',,. By erasing the first few entries of w, or equivalently, erasing the first few edges of
I',,, we might assume by abuse of notation that the first vertex v of I',, recurs infinitely
many times. Now based on the recurrences of v, we can partition the infinite walk I,
into closed, finite walks FS), Fsz), ... such that each such walk starts and ends with v,
and in the meantime it does not hit v. Now it is simple to verify that the edge set
(counted with multiplicities from now on) of each I'? is the union of graph cycles, or
in other words, it is the union of closed walks containing each of their edges precisely
once. (One cycle might also appear multiple times in this decomposition.) Indeed, we
can find a subpath ejes...e, such that e; = e,, and there is no other repetition of edges
in this subpath. Then eje,...e,_1 is a cycle, and its removal from FS) results in a shorter
closed walk starting and ending with v. Thus we can repeat the previous reasoning to
find another cycle, if such exists and this procedure ends in finitely many steps.

Let us note now that there are only finitely many cycles in G as it is a finite graph.
Denote their set by C. By the previous paragraph, up to the last edge of any FS), the
edge set of ', can be written as the union of these cycles, such that C' € C is used p¢;

times. Thus the ergodic average corresponding to the subpath of the I',, up to the last
edge of I is the following:

I(e)
Scec PCi Soeec Fl€)  2cec PeilCl Ycee T

— 3.3.8
S oo sl S oo pealCl (3.38)

Notice that it is simply a convex combination of the cycle averages ) .. ]‘C(Ce) Hence
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the ergodic average in (3.3.8) can be bounded from above by maxcec D .o |(e|). Now

by the choice of w we also know that this ergodic average tends to aj .. as i = oo,

hence

O max < maXZ |C| (3.3.9)

also holds.

Now consider the infinite walk which goes along a cycle Cy over and over again,
where Cj is chosen so that the above maximum is attained. Then Cjy together with
a starting point uniquely determines a periodic configuration w* €  for which o‘w*

always equals the respective vertex of Cy. Moreover, it is simple to check that the

fle)
ecCy ‘C ‘

ergodic averages tend to > Hence this limit must be o .. by (3.3.9), as it is

an upper estimate for all ergodic limits. O]

3.4 Continuity, discontinuity and support of the spec-
trum

By [19], we know that S is necessarily upper semi-continuous for any continuous func-
tion. Moreover, it is continuous on [} i, @} .y, While it vanishes outside of this

interval. However it is not necessarily continuous at the endpoints of this interval.

3.4.1 Denseness of PCC functions with discontinuous spectra

The goal of this subsection is to prove Theorem [3.2.3] The main idea of the proof of
Theorem is to show that given any continuous function, we can approximate it by
a PCC function, and we further "perturb" that PCC function in an appropriate way

so that its spectrum will be discontinuous.

Proof of Theorem[3.2.3] Suppose € > 0 and fy € C()) are arbitrary. We need to find
an h € PCC(2) such that

|fo = hl| < e and Sh(a, pax) > 0. (3.4.1)
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We will achieve this by the following. We first find f € PCC¥(Q) for suitably large k
that approximates fy;. By Remark , O max ~ O max- Next we will "perturb" the
function f by adding another PCC function g. This function g will be small in a sense
that it does nothing to perturb f for many points, but it will perturb just slightly near
the points where the limit of Birkhoff averages of f attains the maximum (i.e. o} ..)
to the point where Sy, discontinuous at the boundary of Ly, ,. The sum f + g will be
our candidate for h.

By using a suitably large k choose f € PCC*(Q) such that ||f — fo| < /2. By
Lemma select a periodic w’ such that

N-1
: 1 n, \ __ *
J\}LH;ON 5_0 f(o"W') =} pax- (3.4.2)

In this proof, as in (3.4.2) we prefer to take Birkhoff sums with indices between 0 and
N — 1, when taking limits it makes no difference. We can assume that there is a finite
string of Os and 1s, denoted by A such that w’ = A*, by not necessarily using the prime
period we can also suppose that ks = |A|, the length of A is a multiple of k.

Now we select a string B of length k4. If A # 04 then we let B = 0F4, if A = (k4
then we let B = 1¥4, Without limiting generality in the sequel we assume that B = 0%4.

By using a suitably large number ¢, to be fixed later, we consider strings X =
(A?)AABAA and Y = (A?)ABAAA.

Set H = {X,Y}**. We will later show that this set will be contained in Ej (a7, ,..)
(where h will be defined by perturbing f slightly). We note that it is easy to see that
dimg H > 0, since by Hutchinson’s theorem, 2 - (27(2¢+9ka)dima H — 1" which gives

dimy H = m This would imply Ej(aj; ) > 0.

Claim 3.4.1. There exists oy € R such that

N-1
1 n .
]\;Ln(l)o N EO flo"w) = ay < @} .y for any w € H. (3.4.3)

2(0+5)k a4 —1
2L £ (

[AA], wAB € [ABA]. Since f € PCC¥, and k divides k4, the values of f(c"w?); n =

Proof. First we consider the sum ) o™w) for any w € H. We select w? €
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0,....,ka—1and f(o"wAB); n =0,...,2ks—1 are independent of our choice of w” € [AA]

and w?P € [ABA]. Hence, there exists a constant Y, such that for any w € H, we have

(20+5)ka—1 ka—1 2%k a—1
Yy = Z f(o"w) = (20 + 3) Z flo"w?) + Z f(o"wAP).
n=0 n=0 n=0

Define ay so that it satisfies 2(¢ + 5)kacy = Xy. Let N be greater than 2(¢ + 5)k,, and
write N = 2({ 4+ 5)kaMy + Ry for some positive integer My and Ry € {0,1,...,2(¢+
5)]€A — 1} Thus

=2

flo"w) =2(0+ 5)kaMyag+ > f(o"w)

n=N—-Rpn

I
=)

n

for any w € H. Thus, we obtain (3.4.3) by dividing both sides of the equation by N
and letting N — oc. O

Now we return to the proof of Theorem Next we construct the perturbation

function g. Put m = ¢+ 7 and
Cm = {UlUQ...Umwowl... . UZ € {X,Y}, 1= 1, cey My, Wy < {O, 1}, j = 0, 1, } (344)

We take the following finite union of cylinder sets in 2
-1
P = U okaC .
i=0
Next we define our perturbation function g € PCC™*4(Q). If w € P then we set

g(w) = &/4, otherwise put g(w) = 0.

Claim 3.4.2. If /7 is sufficiently large then for h = f + g and for any w € H we have

1 (2045)ka—1 .
§=0

Proof. Take and fix an arbitrary w € H. Recall that | X| = |Y| = (20 + 5)k4. By our
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definition of X and Y we have

1 (20+5)ka—1
A -
7=0

From the choice of w and A it is also clear that

20k a—1
1 4
20k > [l TEEIy) = aj, forany t € {0,1,...} (3.4.7)
A
7=0
Hence,
20k 4+ 5 o + 5K AQ min
e A I 0 e 28 £ 00, (3.4.8)

- (204 5)k4

Next we look at the averages of g. Observe that if U; € {X,Y} then there is a
maximal substring of U; which consists of consecutive zeros. This is the one which
contains B, and of course might contain some zeros from the end/beginning of the As

before/after B in U;. This and the definition of P and ¢ imply that for w € H

g(c?w) > 0 holds iff j = iky +t(20 +5)ka, i =0,...,0 —1, t =0,1,.... (3.4.9)
Therefore,
1 (26+5)ka—1 (e
S — TRk = =, te{0,1,..}. (3.4.10
(201 5)k4 2, gl “)= a1k, a0l (3410

j=0
Now we determine how large ¢ should be. Indeed, we select an ¢ such that

€ 14 1
C- = > b5ks(a] — Ofmin) aNd ———— > —. 3.4.11
8 A(O'/f,max O[f7 ) an 8(2€+ 5) 32 ( )

These inequalities will grant us that

2€/{Aa}’max + 5k:Aaf,min + gi QEkAa’}’maX + 5/<:A0z;27max + £§

3.4.12

(201 5)ka ~ (201 5)k4 (34.12)
* _c
> Qf max + 32/€A'
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From (3.4.7), (3.4.8), (3.4.10) and (3.4.12), it follows that if h = f + ¢ then for
w € H we have (3.4.5).

]

Now we return again to the proof of Theorem [3.2.3] Claim implies that H C
Eh(b*) and hence Sh<b*) = dimpg Eh(b*) > 0.

If we can verify that b* = o, .. then we are done. We need to show that if

=

1
lim

— "w) = <b". 4.
im h(c"w) = a then a < b (3.4.13)

Il
o

Suppose that we have a fixed w € €2 for which the limit in (3.4.13) exists and equals a.

Now we subdivide w into finitely or infinitely many substrings in the following way
W = Z()lelWQZQ...

where Z; might be the empty string, the other strings are non-empty. For any j the
strings W; € {X,Y}% where 1 < d; < 4o00. The strings Z; do not contain any
substring of the form X or Y and they can be finite, or infinite. In case one of the
Z;s is infinite then there exists N; such that for all n > Ny, g(0"w) = 0 and hence
A< O oy < D"

Hence from now on we can suppose that the Z;s are finite.

If one of the Wjs is infinite then one can find NV; such that oMw € H and hence
a = b* by .

Hence from now on we can suppose that all the W;s are finite.

Since for any k € N we have w € Ej,(a) iff c*w € E),(a) we can suppose that Z; = ()
and hence w = W12, Wy Z,.... Choose kj, j = 1,2,... such that the substring W;Z; of
w starts at wy,, that is W;Z; = wy, Wi, 41.--Wi,,,—1- We denote by k; the place where Z;
starts, that is, W; = Wh; W41+ Wh! —1 and Z; = Wk Wk 41+ Wl —1-

Suppose that we have a j for which
there exists n € {k;j, ..., k;+1 — 1} such that g(c"w) > 0. (3.4.14)
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We denote the set of such js by J.

Then g(0"w) = €/4. We define n; to be the maximal n satisfying the inequality in
(3.4.14). Since Z; does not contain a substring of the form X or Y, ¢"w ¢ P for any

ki <n < kj;1. Hence nj < k7. Moreover, by the definition of g and P we have
nj = ki —m(20+5)ks + (€ — 1)ka.

Put
k:;-’ =n; — (. —1)ka+ (20 +5)ka.

Then by the definition of ¢

k! —k

o ul(20 +5)ka € (X, V) and oBu|(K] k) € (X, Y}TA, (3.4.15)

11

where m is an integer, that is o®w|(k] — k;) starts with a long string of X's and

Y's. Hence

K/ —1

1 < le

g(o"w) = ——. (3.4.16)
k;’ — k; nz;j 4(20+ 5)k4
It is also clear that
1 kjy1—1
—_— "w) = 0. 3.4.17
- 2;; g(0"w) (3.4.17)

Suppose that 6 > 0 is given. We want to find Ns such that for N > N we have

=z

1
3 2 o) <748 (3.4.18)

3
Il
o

We can suppose that J is infinite since otherwise there exists Ny such that h(c"w) =
flo"w) for n > Ny and o < o} ., < 0" holds.

We will obtain Ny by splitting w into two infinite substrings: The "good part" and
the "bad part." The "good part" can be obtained as the concatenation of the substrings
U’“Jw|(k‘}’ —k;), 7 € J, while the "bad part" of w is the "rest" of w, that is what is left of

w if we delete from it the good part. We denote this bad part w’. To be more specific if
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j & J then we take the string o*iw|(k;.1 —k;), otherwise if j € J then we take the string
a’“ywl(kjﬂ — k7) and concatenate these strings. To achieve our goals of obtaining Nj,
we will be observing Birkhoff averages along the "good" part N9 := (J,;{k;, ..., k] — 1}
and the "bad" part N® = {0,1,..} \ NY. In particular, we will be at some point
evaluating Birkhoff sum on the point w’ rather than w; we will explain why this works,
particularly when we verify equation (3.4.23]).

Using (3.4.5), (3.4.16), and the definition of the strings X and Y it is clear that if

J € J then
1 k;’—l
J J n=k;

We also know that if n € N° then g(0"w) = 0 and hence h(c"w) = f(o"w).
Moreover, whenever ¢ € N satisfies the inequality (¢ + 1)(2¢ + 5)ka < k] — kj, for

some j € J, then
] kj+(t41) (2045)ka—1

(204 5)ka Z

n=k;+t(20+5)k

h(o"w) = b* (3.4.20)

holds as well.
From (3.4.20) and the boundedness of h it follows that we can select N} such that
for N > Nj

1 5
#{n e N9:n < N} Z h(o"w) <b" + 5 (3.4.21)

neN9I, n<N
Denote #{n € N* : n < N} by v(N).

Next we need to estimate

1 o )
N) >, he “) =N > flo"w). (3.4.22)

Vb( neEN® n<N n€ENb, n<N
A little later we will show that
1 1 I/b(N)—l
n n,.b
o"w) = o'w’). 3.4.23
w2 WSy 2 fe) (3429
neN°, n<N n=0

Next we show that if we verified this then we can complete our proof. Indeed by Lemma
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N’'—1
limsup = Z F(0"W") < 0 s

and hence we can select Ny > Nj such that if N > N then 14,(N) is sufficiently large

to have

glly 5
;0 <afmax+§‘

By (3.4.23) this yields that

J J
Z flo"w) < % oy + 5 < b* + —.

2
neNb, n<N

Vb(N)

From this, (3.4.21)), and (3.4.22]), it follows that for N > Nj

=

1 s

n=0

Since a suitable Ns can be chosen for any ¢ > 0 we proved that a < b*.

Hence, to complete the proof of the theorem we need to verify . But this
is not difficult. Since f € PCC¥(Q) we know that f(c"w) depends only on the string
o"wl|k. Observe that during the definition of w® we concatenate strings which start with
a string A and A is of length k4 > k. Indeed, if j ¢ J then during the definition we
concatenate the string o%w|(k;.1 — k;) = W;Z;, and W; starts with X or Y and they
both start with A. If j € J then we take the string 0"/ w|(k;+1 — &7) and by
this string starts with A.

We can define a function ¢ : {0,1,...} — N the following way. For n € {0,1,...} if
we take w? then this entry corresponded to exactly one entry Wy(n) of w and belonged to
a concatenated string making up w®. Suppose that k; < ¥(n) < kj 1. Ilf(n) < kj—k
then the strings 0"w’|k and o¥™wl|k are identical and hence f(o"w’) = f(o¥™w). If
Y(n) > k;jp1—k then there is an n’ < n+k such that ¢)(n’) = k;;1. By our concatenation
procedure it is clear that the strings o"w®|(n’ —n) and o¥™w|(n’ —n) are identical. It

is also clear that ¢(n') = kj;, and 0¥(™w|ky = A, since we take the first k4 entries of

a string which equals X or Y. Now recall our earlier observation that w® was obtained
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by the concatenation of strings which start with A. Hence o™ w? starts with the string

A. This implies again that f(0"w®) = f(o¥™w). O

3.4.2 A generic continuous function has a continuous Birkhoff

spectrum

To prove Theorem [3.2.5] we need the following lemma, which shows that one can

"perturb" a PCC function so that the new function would have a continuous spectrum.

Lemma 3.4.3. Let f € PCC*(Q) and let € > 0. Then there exists g € Co(Q) such that

- * * * * *
9]l <&, Sprg vanishes at @}y, oy 404 O iy — € < QG min < Oty max < O max T €

Proof. Let f € PCC*(Q) and let € > 0. Let w* be a periodic point with prime period

p for which %Zi:l f(o"w*) = af . (which exists by Lemma . Let go(w) =

min;_;_p{d(w,o'w*)}, and let ¢ = —egyg + ¢ , where ¢ = ¢ [ god\, which implies

J gdX=0. Since A\(Q) = diam(Q2) = 1, it is clear that ||g|| < e.

#(EN[,N])
N

Given E C N, we denote by d(E) the density of the set E, that is limy_,
(if it exists). We let

H, ={w € Q:w|p = w" for some E C N for which d(E) = 0},

where w|p denotes the concatenation of wy, j € E. We will show that Ey (0%, ) C

H,, and then we observe that dimy H_ - = 0.
By using ({3.3.2)) from Lemma one can see that oj, . <} . +c Since

n, k) __ : * * * ok
go(0"w*) = 0 for any n, we obtain a}, , ... > @} .. +¢ and hence %, . = af . +c.

Let w € Efy () may)- Then we must have
1 & e w
]\}'linoo <N Zlf(o- w) - N ZIQO(O- (U)) = af,max?
and this is only possible if % ij:l f(0"w) = @} 0, and, in particular,

N

1

NZgg(anw) — 0 as N — oc.
n=1
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This implies that the set
J, ={n €N:gy(c"w) > 27"}

has zero density. Observe that if go(c"w) < 2P for n = j',...,j/ + [ then there exists

i € {0,...,p — 1} such that
(0"w) P = glwr |l + p + 1. (3.4.24)

The case when J, is finite is much easier and is left to the reader, we detail only
the case when J, is infinite.

Suppose we enumerate J,, = {j1, j2, J3, - . .} in the increasing order and we set jo := 1.
Then for each k € NU{0}, there exists i € {0, ...,p— 1} such that the (possibly empty)

string v (jx) := (w)?’;fl_l equals o' w*|jry1 — jr — 1. Hence, we have

wlye = (o) y(J)v(a2) - - - -

Since w* is periodic we can choose my, € {0, ...,p—1} such that if v*(jx) = "y (Ji),

that is we throw away the first my, entries of v(jx), then

Vo) )y (d2) - = W'
Put F' = U, {jk, -, jx +mx}. Then F C (J'2y J, +i (where A+b={a+b:ac A}
for any A C N and b € N), which has a zero density. Setting £ = F°, we get w|g = w*.
Hence, w € H,-, which shows that Efy (., na) C Hor
We now show that dimy H,- = 0. Consider the set Hy :={w € Q:d({i e N: w; =
1}) = 0}. Due to Example we see that dimpy(Hp) = 0 as it equals S;(0) for f
defined in that example. Given w € Q and i € N we set v(i,w) = #{j 1 w; =0, j <i}.
We define a map h : Q2 — Q as follows: h(w) = hihshg ..., where
Wy if w, =0

hi - v(i,w)

1—w*

v(iw)+1 if w; = 1.
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It is easy to see that h is Lipschitz. One can also verify easily that h(Hg) D H,-.
Therefore, 0 < dimy (H,+) < dimg(h(Hp)) = 0. O

What remains from the proof of Theorem [3.2.5]is rather standard:

Proof of Theorem[3.2.5 1t suffices to prove that a generic continuous function h has
continuous spectrum at the points oj, ;, and «j, ., and due to symmetry reasons, it
suffices to prove the continuity in aj .. (if it holds in a residual set, the other also
does in another residual set, and the intersection of these sets is still residual). We will

prove in fact that the set
Z ={h € (%) : S, is not continuous at aj, ...}

is meager. Note that we know that S, is concave and achieves its maximum at [ hd\,

hence

Y

3=

7 = G A
n=1
where

Zy = {h € C(Q): Sp(z) >0 forall z € [/hd)\,a}:,max] } :

Now it suffices to prove that each Z, is nowhere dense, and clearly it is enough to
consider small enough 6 < 1. To this end, take arbitrary f € PCCk(Q) for some k,
and ¢ > 0. By Lemma [3.4.3] we can find f + ¢ in the e-neighborhood of f such that it
has continuous spectrum at o, , ... Then af, .. > [(f +9g) > o}, ., necessarily
holds, as Sy.4([(f+g)dX) = 1. Now by continuity, we can take € [ [ h, 0}, 0] Such
that 0 < Syy4(z) < &. By its concavity Sy, is monotone decreasing on [[ A, f 4 g maxd)
hence we can assume that

* *
T — O{f,min Z af,max - T

Now apply Theorem for f + g with

0
¢’ = min {5, Of max — a:} (3.4.25)

It guarantees that 0 < Si(z) < 0 for any h with ||h — (f + g)|| < ¢ for some ¢ > 0.
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Moreover, if h and f + g are close enough to each other, we also have that their integral
cannot differ by much, hence we also have that x € [f h, a;*l’max]. Consequently, if h is
in a sufficiently small neighborhood of f + g satisfying both this integral condition and
what is given by (3.4.25)), then h is not in Zy. It yields that Z, is nowhere dense, as
PCC(RQ) is dense, and in the neighborhood of an arbitrary f belonging to this set we

constructed an open ball which is disjoint from Z,. It concludes the proof. O

3.4.3 Supports of generic spectra are in (& min; @ max)

Proof of Theorem[3.2.7]. 1t suffices to prove that each inequality in (3.2.1)) holds in a
dense open subset of C'(€2), and due to symmetry, it is sufficient to prove that o} ;, <
O} pnax and Q%0 < Q@ max hold in dense open subsets, respectively. Given Remark
3.3.2 it immediately follows that each of these inequalities holds in an open subset,
thus we only have to keep an eye on denseness.

Consider first o} ;, < @} 0. By Theorem we know that Sy is continuous for
f € Gy with a dense subset G; C C(Q). However, for ay, = [ fdX we have Sp(ay) = 1,
and S¢(af pin) = S#(QF ay) = 0, hence

Ot min < Of max- (3.4.26)

It yields that for any f € G; we have o, < &} .., thus this inequality holds in a
dense subset indeed.

Let us consider now a} .. < Qpmax. We know that functions f € PCC(Q)
are dense in C(f). Consider such a function f, we have f € PCCF(Q) for some
k > 0. By Lemma we know that there exists a periodic configuration wy with
limpy o0 + SN flomwy) = O} max @ oy < Qpmax then we are done. Hence we can
suppose that QF max = Of max-

Assume first that w; can be chosen such that wy is neither identically 1° nor 0°°.
Then we can choose a substring A of length & such that f is maximal on [A] and A
is neither 11---1 nor 00---0 (i.e. blocks of k many 1s or Os, respectively), actually,
by periodicity of wy any substring of A, different from 11---1 and 00---0 is suitable.
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Now for given € > 0 define g € PCC*(Q) such that g = f + €ly). Select a periodic w,

for which limy_,o — ¥ En 19(0"w,) = the existence of w, is again guaranteed by

g,max’
Lemma[3.3.5] The relative frequency of the substring A in w, is strictly smaller than 1,
as A contains both 0s and 1s, hence at least 1/k of the substrings start with a binary

digit different from the first entry in A. Thus we can conclude

Nooco N

lim —Zgawg — lljnw—Zfawf <|lg—fll =¢,
n=1

hence

g,max max

However,

Qg max — Xfmax = €

by definition. Hence we can find ¢ arbitrarily close to f with o < Qg max i this

g,max
case.

Assume now that the only possible choices for wy are amongst 1°° and 0°°. If A can
be chosen as in the first case, differing from the identically 1 and identically 0 strings
of length k, then the previous argument might be repeated, thus it suffices to observe
the cases when wy and A can only be identically 1 or identically 0. Clearly without
loss of generality we can assume that the former one holds. In this case we perturb f
as follows: let A =11...10, which is a block consisting of k-many 1’s then followed by
a 0. We define g € PCC*™(Q) such that g = f + €li4. Then agmax — Ofmax = € as

previously. Moreover, if w' is periodic then we compute that

||Mz

N
.1 N
i 37 Do) = i

1
< Qf pay T €0 lim N Z a(o"w’).

N—oo

N
€ n
I+, 3y 2 )
N
1
=1

n

Note that limy_,o, ~ v Z 1 1a(0"W’), the relative frequency of A in W' is at most k+1

(which is obtained when w’ = A>). This implies that if w, is the maximal periodic
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configuration for g, then

* : 1 * € *
Qg max — lim — Zg(o"wg) < Q¢ max + k——H. < Q¢ max te= Qg,max-

Thus in both of these two cases we showed that any f € PCCF(Q) can be approxi-

*
g,max

mated by functions satisfying « < 0ygmax- It yields that such functions also form a

dense set, which concludes the proof. O]

Remark 3.4.4. In ergodic optimization, a function f € C(£2) for which o} .. = af max
is called revealed (cf. [24, §5]). Theorem tells us that the set of revealed functions

in C(Q) forms a nowhere dense set.

3.5 Omne-sided derivatives of the Birkhoff spectra at
endpoints

In this section for functions with continuous spectrum we are interested in the one-
sided derivatives of the spectrum at the endpoints of its support in the direction of the

interior of the support.

3.5.1 One-sided derivatives at the endpoints of spectra for generic

functions

The goal of this subsection to verify Theorem [3.2.8
We start with a lemma which will be the building block for the proof of the above

theorem.

Lemma 3.5.1. Let fo € C(2), € > 0, and v € N be given. Then there ezists fo € C(Q)
and 0 > 0 such that ||fo — fa|| < /2, 0 < €/2, and for any f € B(f2,0) C B(fo,¢)

there erists o/ < o .. such that

Si(a’) — S(a
f(Oé ) f(af,max) <

;%
aQ af,max

—v. (3.5.1)
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Remark 3.5.2. As S} is concave on the interval Ly, the inequality (3.5.1]) in the lemma
implies 7S¢ (0} pax) < —V-

Proof. Using Theorem choose f; € PCC(Q) with [|fo — fi|| < €/4 such that
e1 = S5 (0% max) > 0.

Set e3 = min{ey, §,1/2}.

Using Theorem choose f, € C(Q) such that

€9 %
1f1— fal < Tow and Sy, (%, max) = 0.

By Lemma and Remark applied to fi and f; we obtain that af, .. <

* €2 M / * &2
Q% max T 705 and there exists o' > of .. — 75 such that

Sf2 (O/) > Sfl (a;k”l,max) =¢€1 2 €. (352)
Then
€9
P —a <2 —. .D.
Oy max — O 100 (3.5.3)

Keep in mind that Sy,(a%, ,..,) = 0 and choose d; > 0 such that

£ . .
Sp,(a) < 2—(2) holds for o € (@}, ax — 015 %, maxl- (3.5.4)

Observe that from (3.5.2) it also follows that o}, ., < @' <}, ., — 01. Now choose
d2 > 0 such that

o —o' b e
5, < mi { fomax 7 7 01 } 355
2w 10 57 200 (3.5.9)

Using this d, as € in Theorem select 0 € (0,09) such that for f € B(f2,d) we have
[S¢(a) = Spy(a)| < 9 for a € (A, min + 02, A%, max — 02)- (3.5.6)

Suppose f € B(f2,6). Then by Lemma Remark (3.5.3) and (3.5.5)) we
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obtain

£
0% max = @fymax] < 02 and hence | — of .| < L1(a}, oy — @) < 1.1- 5—i

By ‘) Sf2<aj’2,max - 51/2) < 52/20 and then by ‘ ) Sf(a}g,max o 51/2) <

£2/10 < 1. By concavity of Sy and S¢( [ f) = 1it is clear that Sy is monotone decreasing

on [} . — 01/2,0% ., ) and hence

. €
SO max) < % (3.5.7)

Using (3.5.2), (3.5.5) and (3.5.6) we infer

St(a’) > Sy, (o) — 6o > 0.9¢,.

By this, (3.5.7) and (3.5.3)

Sf(O/) - Sf(a},max) < 0.829

I o 1. e
' — O 1.1 =

—U.

]

Remark 3.5.3. We remark that due to symmetry reasons a version of Lemma [3.5.1
also holds at the other endpoint, aj ;, of the spectrum yielding that for any f €
B(f2,6) C B(fo,€) there exists o’ > a7}, such that

Sf<0/) - Sf(a?,min)

I %
« Oéf’

> . (3.5.8)
min

As we observed earlier in the one-dimensional case Sy is continuous on [} ., 0% ]
hence even in case of discontinuous spectra one can consider 9~ Sy (0} ,.,) and 0TS¢ (A} i),
one might have a one-sided discontinuity only in the direction pointing towards the ex-

terior of the support of the spectrum.

Lemma [3.5.] easily implies Theorem [3.2.8}

Proof of Theorem[3.2.8, Consider an arbitrary fo € C(2) and ¢ > 0. Fix v € N. We
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may apply Lemma and Remark to see that B(fy,e) contains a smaller open
set B(fa,d) of C(Q2) such that for any f € B(fy,d) we have 97 S¢(a} ,.,) < —v. It

implies that the complement of
A, ={feC(Q): 7S (A pnax) < —v}

is nowhere dense for any v. Hence A = J,~, A, is a residual set of C(€2), yielding that
for the generic continuous function f € C(2), we have 07S¢(a} ,.,) = —00.

However, by Remark we may conclude the same way that for the generic
continuous function f € C(2), we have 9%Sy(a} ,) = oo. Thus for the generic
continuous function, we have both of these prescribed equalities, which concludes the

proof. ]

3.5.2 Finite one-sided derivatives at the endpoints of the spec-

trum

In this subsection, we will prove Theorem [3.2.9] and Theorem

The first step towards the proof of Theorem is the following lemma, in which
we give upper bounds on a value of the spectrum for a suitably defined function. Since
S¢([ fdX) = 1 if we have a function with continuous spectrum then by concavity of the

spectrum 07 Sy (] ) and 9" Sy(af i)

- Oéf,max_f fd)‘ - ffd)‘_af,min

In the next Lemma we define a PCC function with "very small" spectrum. This

type of functions serve as building blocks in the proof of Theorem [3.2.9

Lemma 3.5.4. Let b > a, and let f : Q@ — R be such that f(w) = b if the first L
coordinates of w is 1, otherwise f(w) = a. Moreover, fit e >0 and 0 < < 1. Then if
L s sufficiently large, then

Set) < B+e (3.5.9)

fort = Ba+ (1—p)b.

Remark 3.5.5. See Figure for an illustration of this remark. Observe that in the
above lemma if L is large then [ fd\ =b-27% + a(1 —27%) and hence S;(b- 271 +
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a-(1—=271)) =1. The point b-27% +a- (1 —27L) is very close to a = oy . It is
also clear that E(b) # (), since 1% belongs to it. By also considering 0™ we see that
[a,b] = [@F 1nin> @ max)- Hence the line segment connecting (b-27% +a- (1 —-27%),1) to
(b,0) should be under the graph of S; on [b-27F +a-(1—27F),b]. If 3 is small then ¢ is
very close to b and by concavity of the spectrum on [b-27F+a-(1—271), t] the graph of S;
should be under the dashed line on the figure connecting (¢, +¢) = (Ba+(1—F)b, f+¢)
to (b,0). This implies that for small 5 and large L apart from a very short interval
near the endpoint a the spectrum Sy is very close to the line segment connecting (a, 1)
to (b,0) and on [a, b] approximates the upper part of the boundary (shown with dotted
line on the figure) of the right angled triangle with vertices (a,0), (a,1) and (b,0).

| | I
a t b
b-27Ly+a-(1-271)

Figure 3.1: An illustration of Remark

Proof. Let t = fa+ (1 — (5)b. Clearly it suffices to prove the statement of the lemma for
small enough ¢, thus we might assume that * =+ 5 < 1. We would like to estimate

the dimension of

N—ooo N

E¢(t) = {w : lim lij:f(cr”cu) = t}.
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This set contains w if and only if it contains o(w), thus we can shift the sum by one for
technical convenience. Moreover, if we replace the lim by a liminf, we can deduce that

this set is contained by

2

{w hmmf% Z flo"w) > t}.

n=0

If w is in this set, then for large enough N the corresponding ergodic average exceeds

t* = p*a+ (1 — f%)b < t, that is
00 o) 1 N—-1
Extyc |J N {w D fe"w) > t*} . (3.5.10)

In the sequel we will use {% SN flotw) > t*} instead of {w % SN flotw) > t*}
to ease the notation.
The union in (3.5.10)) is the union of a growing sequence of sets, thus the dimension

is simply the limit of dimgy A,,, where

00 N-1
Ap, ﬂ{ fo }
N=m n=0

Now we focus on estimating the dimension of this set. To this end, we would like to
count the cylinder sets of length N + L — 1 which intersect {% Zivz_ol (0"w) > t*} for
large N, as they give a cover of A, for any N > m. (We are concerned with cylinders
of length N + L — 1 instead of the ones with length N as the first N 4+ L — 1 coordinates
affect S f(6"w).) For our purposes it suffices to choose N such that L|N + L — 1,
as we can diverge to infinity with N even under this restriction and we need an upper
estimate of the dimension.

" N+L T

The number of blocks consisting of at least L consecutive 1s is at mos

L > 2, and there are 7 such blocks, the number of ways to place them among the

N + L — 1 coordinates is at most (NJ’Q?_I), since the placement of each block can be
uniquely specified by the coordinates for which the first and the last coordinates of the

block occupy. (We note that it is indeed an upper estimate: this expression does not
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deal with the length of the blocks, neither with the fact that blocks are separated from
each other with at least one intermediate coordinate.) Moreover, if L > 5, then for the

% we still have

largest possible value of 7, that is for ¢ =

N+L-1 N+4+L-1

2% =2 <
! L 2

Thus the number of ways we can arrange the blocks of at least L consecutive 1s is at

most

L N+ L-1 N+L-1 N+L-1

_'_ — — —
4 ( 9 ) < (T+1) . (2. N+L—1) (3.5.11)
=0 L

N+L-1
<(N+L-1). (QN)
L

as the binomial coefficients are increasing until the middle ones.

We should also give a bound on the number of ways we can choose the other co-
ordinates. Since 27]:[:_01 (0"w) > t*, we know that most of the coordinates belong
to one of the above blocks. More specifically, in the first N coordinates there are at
most %N not covered by them, as otherwise the number of terms in -2 "' f(0™w) with

=0
f(o"w) = a exceeds $*N, which yields that

=2

1 n * *\7, g%
N flo"w) < B*a+ (1 —B")b=t"

i
o

Thus a raw upper estimate for the number of the ways we can choose the remaining

coordinates in order to have an N + L — 1l-cylinder intersecting

{%Zlﬂa"w) > t*}

n=0

is 27"V . 2L=1 where the last factor is simply the number of ways we can choose the last

L — 1 coordinates.
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Combining the results of the preceding two paragraphs yields that
| V-l
{N > J(") 2 t*}

is covered by at most

N+L_1 *
(N‘l'L_l)'(2.N+L—1)'25N+L_1
L

many cylinders of diameter 2-(WFE=1_ By using the standard (§) < (%)b bound on

the binomial coefficients, we can relax this upper bound to

9. N+L—1

(N+L—1).<%) "

where k = N + L — 1. Notice that for large enough L (and consequently, large enough

2k
9B N+L-1 _ g, (%) Yosk, o(=AE=1) "~ (3.5.12)

k) we have

25>W<%) ,

as both factors on the right tend to 1. Fix L to be sufficiently large in order to guarantee

this. Consequently, (3.5.12)) can be estimated from above by

Hence

{%Nfﬂa%) > t*}

can be covered by at most 200" +2)% . 20=8(=1) many cylinders of diameter 2% for any

k with L|k. It immediately yields

N—-1
B*+5 1 n . 8% (L—
7.[2_k2 ({N E f(U w) > ¢ }) §2(1 B*)(L-1)
n=0

where N = k — L + 1 as before. However, this set contains A,, for large enough k, N,
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thus

’Hfi:i (Ay,) < 20-89E-1),

As k, N can be arbitrarily large, it shows that in fact
P32 (Ap) < 9(1=6)(L~1)

and consequently,

. ., €
dimg(A,,) < "+ 5= 8+ e.
Consequently, by our initial observations
Sf (t) S 5 + g,
as stated. O]

Proof of Theorem [3.2.9) We define f to be a more elaborate variant of the function
appearing in Lemma Set t; = 1 —277. Then t; € (0,1) and t; — 1. We
will define a strictly increasing sequence (L) of positive integers, to be fixed later and
chosen recursively. We can suppose that L; > 5.

Now we let f(w) = t; if w starts with a block of 1s of length at least L,, but less
than L. Moreover, f(w) = —t; if w starts with a block of Os of length at least L;,
but less than L;y. Finally, let f(1*°) =1 and f(0>°) = —1 for the constant sequences,
and let f(w) = 0 for any remaining w. Due to symmetry, it is clear that [ f =0, and it
is straightforward to check continuity. It remains to prove that the relevant derivatives
are finite. By symmetry again, it suffices to verify 97Sy(a% ,.,) > —oc. To this end,
we will use an argument similar to the one seen in the proof of Lemma [3.5.4

As in (3.5.10)), we can deduce

s U A {3 Tz},

This union is the union of a growing sequence of sets, thus the dimension is simply the
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limit of dimg A,,, where

o0 1 N-1
A, = — Y flo"w) > tj} :
NOm { N n=0

In order to estimate this dimension, we first introduce an auxiliary function, which is
easier to examine. Explicitly, we let f; =0, if f <0, and we let f; = 1if f > ¢;. In

any other case we let f; = f. Then f; > f, consequently

o0

i)

N=m

contains A,,. Thus it suffices to estimate the dimension of A,,;. The argument is
similar to the one in the proof of Lemma [3.5.4 We would like to count the cylinder sets
of length N + L; — 1 which intersect {% 22:01 i(0"w) > tj} for large N, as they give
a cover of A, ; for any N > m. In order to avoid the inconvenience caused by integer
parts, we will only consider Ns with certain divisibility properties, as before.

First of all, the number of blocks consisting of at least L; consecutive 1s is at most

N+L;—1
L;

, which is an integer for infinitely many N. Thus the number of ways we can

arrange the blocks of at least L; consecutive 1s is at most

N+L;—1
L.
- N+Lj—1) <N+Lj—1 ) (N+Lj—1>
, < (——2L—+1)- _ (3.5.14)
=0 ( 2i L 2'%
N+L—1
<=0 () i)

using L; > Ly > 5, as in (3.5.11). We call these blocks j-blocks.
The novelty of cylinder counting in this proof compared to the previous one is that
we have to take into account the blocks responsible for the values of f; between 0 and

=N =

ti1. As & SV fi(0™w) > t5, in the first N coordinates there are at most 7
not covered by the j-blocks, as otherwise the number of terms in ano f(a w) with

f(o"w) < t;_; is too large and we have + SV f(0™w) < t;. Thus beside the already

107



1-t;

placed j-blocks, there are at most [

N+L;—1= % + L; —1 coordinates remaining,
which might contain some (j — 1)-blocks of at least L,_; consecutive 1s. By a similar
estimate to (3.5.14) we find that the number of possible arrangements of these (j — 1)-

blocks is at most

HF+r;-1
Lj-1 N N N L
NyL—1 S+L—1 > +Lj—1
2 J <2 -4+1]- ( 3.5.15
=0 < QZ > - ( Lj—l > 2 . %szl_l ( )
N
Ljfl

using Lj—l > Ly > 5.
Suppose that jo € {0,...,j — 1}. Proceeding recursively, by the same argument we

can conclude that the union of the (j — ¢)-blocks taken for ¢ = 0,1, ...,jo — 1 cover all

but at most 11__;,' N = 2% of the first N coordinates. Thus beside these blocks there are
J0

at most 2= + L; — 1 coordinates remaining, which yields similarly to (3.5.15) that the

270

number of possible arrangements of the (j — jg)-blocks is at most

N N
N 290 + Lj —1 %0 + Lj -1
<ﬁ +L— 1) : ( 7 ) <(N+L;—1)- ( R ) (3.5.16)
2 Lj—jg 2 Lj—jq

We can use this bound for jo = 0,1,...,7 — 1. (We note that for infinitely many values
of N each number appearing in the above binomial coefficients is an integer.) Finally,
there can be coordinates which are not contained by any such block. At most (1—¢;)NV
of them in the first IV coordinates, and arbitrarily many of them in the last L; — 1

(17tj)N+Lj

coordinates. Thus they can be chosen at most 2 ~1 different ways. Hence

the number of cylinders which intersect {% Zg;ol i(0"w) > tj} can be bounded by

taking the product of the estimates in (3.5.16), and multiplying it by 200-t)N+L;—1,
Hence {% SV filomw) > tj} can be covered by at most

-1 N L
(N +Lj — 1) - 20N +-L T o+ L1 (3.5.17)
J So+Li—1 -9
jo=0 N2 Fp
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many cylinders of diameter 2-(V+Li=1)  Observe that the j, = 0 case in (3.5.17) includes
the estimate (3.5.14)). By the standard estimate of binomial coefficients we can estimate

it further from above by

N
N 41
i1 9. 20

, L;_; Lj—j
(N + L — 1)] (=t )N+L;—1 H (eJTJO> o (3.5.18)

Jo=0

Introduce the notation & = N 4 L; — 1 again. By factoring out constants depending
on Ly, ..., L; into a constant denoted by C(Ly, ..., L;), and rearranging (3.5.18) one can
obtain that it equals

7j—1 __2k
; Lj_j, \ #0L-;
C(Ly,...,Lj) - k7 - 20—tk H (GJTJO> Yo (3.5.19)

Jjo=0

This formulation leads us to a suitable choice of L,,: for an arbitrary fixed 7 > 0, define

L, large enough to guarantee that

2
L\% .
(%) < 03, (3.5.20)

With this choice, (3.5.19)) can be estimated by

J—1
C(Ly, ... Ly) - & - 20795 T 2% < O(Ly,..., L) - kI - 2075k (3.5.21)

jo=0
< C(Ly, ..., L) - 207t 5k,

where the last inequality holds for large enough N, k. It immediately yields

N-1
l_tj+% 1 E n
HQ—k ({N fj(O’ LL)) 2 t]}> S C(Ll, ...,Lj)
n=0

where N =k — L; +1 as before. However, this set contains A,, ; for large enough k, NV,

thus
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As k, N can be arbitrarily large, it shows that in fact
T (An) < CO(Ly, ooy Ly)

and consequently,

_ 27
Consequently, by our initial observations
27
Sylty) < 1=t + 55,
that is, using t; =1 — 277 we have

1+ 27

Sf(1_2_]) < 9

Thus if we calculate the left derivative of S; at 1 by going along the sequence t;, we

find that it is at most —(1 + 27) > —oo, which concludes the proof. O

Remark 3.5.6. We note that as the spectrum is concave, for any function f € Cy(2)
such that o}, ;, = —1 and o} . = 1 we have that the graph of Sy is above the triangle
graph with vertices (—1,0),(0,1),(1,0). On the other hand, it must be below the
constant 1 function in the interval [—1,1]. It is natural to ask whether these extremes
can be attained /approximated. We do not give the complete answer for these questions,
but make a few observations.

First of all, Theorem easily yields that Sy can be arbitrarily close to the triangle
graph: notably for the function f constructed in the previous proof, Sy is contained by
the triangle with vertices (—1,0), (0,1+27), (1,0) due to concavity. Thus the theoretic
minimum can be approximated.

On the other hand, if we would like to construct some f such that Sy is considerably
large, we can consider a function similar to the one in Example More explicitly,
let f € PCC?**™(Q) be such that it takes the value -1 on cylinders which contain more
Os than 1s in their first 2k + 1 coordinates, and f(w) = 1 otherwise. As in the proof
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of Example we can show by Hutchinson’s theorem that Sp(—1) = Sg(1) is at

least Thus the piecewise linear graph determined by the vertices (-1,1/2), (0,1),

2k:+1
(1,1/2) can be arbitrarily close to a lower estimate of the spectrum, which means that
St is considerably large, even though it is far from what we strove for.

We also provide another example, which displays that S f(Oé}’maX> can be arbitrarily
close to 1 even for nonconstant functions, if we drop the condition that o} . = 1.
Notably, let f € PCC’“(Q) such that it takes the value —1 if the first k coordinates equal
0, while it takes the value 77— if these coordinates contain at least one 1. Then similarly

to the previous argument we have that S; <2k 1) > k' . It would be interesting to see

how large S¢(a} ,.,) can be if f € Cy(2) such that o} ;= —1 and o} . = 1.

Proof of[3.2.10 Choose k such that f € PCC(Q). By symmetry, it clearly suffices
to prove 07 S¢(a} ) = —00. Consider the directed graph G = (V, E) defined in the
proof of Lemma [3.3.5] and the set C of its cycles. By that reasoning it is clear that
there exist cycles with distinct weight averages as otherwise for any infinite path I' we
would get the same weight average in limit, which means that the ergodic averages have
the same limit for all configurations, hence Sy cannot be continuous. Moreover, as G is
connected as a directed graph, the graph of cycles G¢ is also connected, in which the
vertices are the elements of C, and two of them are connected if they have a common
vertex. This, together with our previous observation implies that we can choose cycles
C and C’ such that they have a common vertex v, the cycle C' has maximal weight
average amongst the elements of C, while C” does not. Now consider the set of infinite
paths in G denoted by Hz which consists of the paths which start from v, and can be
partitioned into finite pieces I'y,I's, ... such that each I'; equals either C or C”, and the
density d ({i : I'; = C'}) = 8. Then it is obvious to see that the weight average along
any I' € Hg tends to

Zf B |C"|

eEC

Z f ﬁa},max + (1 - 6)0/7

ecC’

where o/ < a} ... by the choice of C". Thus if we take the corresponding configuration
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w(T), and in the ergodic averages we shift the indexing again by one, we see that

MZ

LS (D) = B + (1 B)

n=0

That is, if Q25 denotes the set of w(I')s for which I' € Hg, we have

Qy C E(B0} o + (1= B)). (3.5.22)

However, the dimension of (25 is easy to estimate from below using the following map-

ping: for w(I') € Qs define A(w(I')) = hyhs... by

Now h is a Holder-mapping. Note that the starting point of I' determines the first &
coordinates of w(I'), and then going along C' (resp. C”) determines the next |C| (resp.
|C’|) coordinates. By reversing this argument, if X' = max{|C|,|C"|}, the first k +mK
coordinates of w(I') uniquely determine the cycles I'y,...,T',, in the decomposition of
I'. In other words, the first m coordinates of h(w(I')) are uniquely determined by the
first k+mK coordinates of w(I'). From this, one easily obtains that h is a Holder-1/K
mapping.

Moreover, by the definition of Hg and (2, it is clear that h(€s) equals the set of
configurations in which the density of 1s equals 5. Thus by Example [3.1.1, we can
deduce that

Blog(B) + (1 — B3)log(1 — 5)'

dimp (h(25)) = - o

Hence as h was Holder-1/K:

Blog(8) + (1 — B)log(1 — B)
Klog?2 ‘

dlmH(Qg) Z —
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Thus by (3.5.22)):

_ Blog(B) + (1 — f)log(1 — B)
Klog?2 '

Sf(ﬁa;,max + (1 - B)O/) Z
Consequently, also using that by continuity of Sy we have S f(a}’max) = 0 we infer

51 max) = 57 (B0max + (1 = F)) _ Blog(B) + (1 = B) log(1 — B)
Oé?,max - (Ba;{”,max + (]‘ - ﬁ)Oé/) N (1 - B) (Oé?max - Oé/)KIOg2

However, the right hand side can be estimated from above by omitting the negative
first term, and after simplifying by 1 — 8 we see that it tends to —ooc as § — 1. Hence
the same holds for the left hand side, showing that 9~ S¢(a} ,.,) = —00. O
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Parallel research

The author of this dissertation have produced a number of further papers, most promi-
nently as a member of a research group consisting of Zoltan Buczolich, Bruce Hanson,
Gaspar Vértesy, and himself. Out of these papers three were used in this dissertation:
[12], [11], and [13]. (In the list below, these are items [VIII], [V1I], [X], respectively.)

Since G. Vértesy has also been a graduate student during our collaboration, we
had to be careful to avoid any collisions between our dissertations. Thus G. Vértesy
exclusively included other papers produced by our research group, in a topic which does
not overlap with the content of this thesis.

On all of my papers, like it is customary in pure mathematics, author’s names are
listed in alphabetical order, first/last listed author has no specific role in the production
of the paper. Contribution to the papers is considered to be equal by all coauthors.
Although in the dissertations the two Ph.D. students are mutually "giving up" their
share of the articles for the benefit of the other student.
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Summary

This thesis synthesizes two research projects.

The first of these topics concerns with the Hausdorff dimension of level sets of a
generic Holder function defined on various fractals, while the second one deals with
generic Birkhoff spectra, defined by the Hausdorff dimension of level sets of Birkhoff
averages. The motivation and historical background of these topics are explained in
Chapter

Chapter [2| contains our contribution to the first of these topics. The necessary
notation and preliminaries are introduced in Section while Section [2.2] enumerates
our main results. The main object of our interest is D, («, F') for F' C RP, which is the
essential supremum of the Hausdorff dimension of level sets for the generic 1-Holder-a
function, defined on F'.

In Sections [2.312.4] we verify the existence of this generic value and prove other
qualitative results concerning certain families of fractals, such as the monotonicity and
various estimates of D,(«a, F'). In Section we investigate the phenomenon of phase
transition. Section concludes the chapter with quantitative results, giving lower and
upper bounds for D,(«, F') on the Sierpiniski triangle.

Chapter [3]is dedicated to the second topic. The necessary notation and preliminaries
are introduced in Section while Section [3.2] enumerates our main results. The main
object of our interest is the Birkhoff spectrum Sy(«) for continuous f on {0, 1}, which
is a concave, continuous function on its support interval Ly, and 0 outside of it.

Our contribution deals with the continuity and differentiability properties of Sy at
the endpoints of L;. After introducing some vital tools in Section in Section
we prove that while the generic Birkhoff spectrum is continuous, discontinuous spectra
also occur densely.

In Section we discuss the nontrivial one-sided derivatives of Sy at the endpoints
of L¢. First, we prove that generically, these derivatives are infinite. On the other hand,
we construct an exceptional continuous function f, for which one of these derivatives

is finite.



Osszefoglalo

Tézisemben két kutatdasomat mutatom be.

Az el6bbi ezen kutatasok koziil fraktalokon definialt generikus Holder-fiiggvények
szinthalmazainak Hausdorff-dimenziojanak vizsgalata, mig az utobbi a generikus Birkhoff
spektrum vizsgélata, mely spektrumot Birkhoff-atlagok szinthalmazainak Hausdorff-
dimenzidjabol eredeztetjiik. Ezen témak motivaciojat és torténeti hatterét mutatja be
a[l] fejezet.

A 2 fejezetben mutatom be hozzajarulasunkat az elgbbi téméahoz. A sziikséges
jeloléseket és elGismereteket a [2.11 szekcid tartalmazza, mig a szekcioban a f6bb
eredmények keriilnek felsorolasra. Vizsgalodasunk elsGdleges targya F' C RP mellett
D.(a, F), mely az F-en definialt generikus 1-Ho6lder-« fiiggvényhez tartozé szinthalma-
zok Hausdorff-dimenzi6janak lényeges szuprémuma.

A2.3}2.4] szekciokban igazoljuk, hogy ez a generikus érték valoban létezik, s tovabbi
kvalitativ eredményeket igazolunk kiilonboz6 fraktalcsaladokon, példaul D, («, F') mono-
tonitasat, illetve altalanos érvénytd becsléseket. A [2.5] szekcioban a fazisatalakulas je-
lenségét vizsgaljuk, mig a fejezetet zaro [2.6] szekcioban kvantitativabb jellegt tételeket
bizonyitunk, ezekkel also és fels§ becslést adva D, («a, F')-re a Sierpinski-haromszogon.

A [3 fejezetben a masodik témaval foglalkozunk. A sziikséges jeloléseket és elis-
mereteket a(3.1] szekcio tartalmazza, mig a szekcidoban a f6bb eredmények keriilnek
felsorolasra. Vizsgalodasunk elsddleges targya {0, 1} -en definialt folytonos f fiiggvény
Sr(a) Birkhoff-spektruma, ami egy konkav, folytonos fiiggvény az L ,-fel jelolt tart6in-
tervalluman, s 0 azon kiviil.

Hozzajarulasunk S; folytonossagi és differencidlhatoségi tulajdonsagaival kapcso-
latos Ly végpontjaiban. Miutan a szekcioban bevezetiink tobb fontos eszkozt, a
3.4l szekcioban igazoljuk, hogy mig a generikus Birkhoff spektrum folytonos, a nem-
folytonos Birkhoff spektrumok is stirtin fordulnak elg.

A B.5 szekcioban Sy nemtrivialis féloldali derivaltjaival foglalkozunk L; végpont-
jaiban. ElGszor belatjuk, hogy generikusan ezek a derivaltak végtelenek, majd példaval

igazoljuk, hogy ez a derivalt lehet véges is.
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