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ABSTRACT. Let X be a paracompact topological space and Y be a Banach space.
In this paper, we will characterize the Baire-1 functions f : X → Y by their graph:
namely, we will show that f is a Baire-1 function if and only if its graph gr( f ) is
the intersection of a sequence (Gn)

∞
n=1 of open sets in X ×Y such that for all x ∈ X

and n ∈ N the vertical section of Gn is a convex set, whose diameter tends to 0 as
n→ ∞. Afterwards, we will discuss a similar question concerning functions of higher
Baire classes and formulate some generalized results in slightly different settings: for
example we require the domain to be a metrized Suslin space, while the codomain is a
separable Fréchet space. Finally, we will characterize the accumulation set of graphs
of Baire-2 functions between certain spaces.

1. INTRODUCTION

In [1], S. J. Agronsky, J. G. Ceder and T. L. Pearson gave an equivalent definition
of the real valued Baire class 1 functions defined on a metric space X by characterizing
their graph, which we will denote throughout this paper by gr( f ). In their article,
Theorem 2.2 stated the following:

Proposition 1.1. Let X be a metric space. Let us call an open set G⊆ X×R an open
strip if for each x ∈ X the intersection of Gn and {x}×R is an interval. Let f : X → R
be a function. It is Baire-1 if and only if there is a sequence (Gn)

∞
n=1 of open strips such

that ∩∞
n=1Gn = gr( f ).

In the case X = [0,1], they gave a somewhat elementary proof. However, for the
case when X was an arbitrary metric space, they used Michael’s Selection Theorem
(see [2]). This fact might lead us to the idea to regard the Baire-1 functions defined
on a paracompact topological space X with values from a Banach space Y instead of
R as this selection theorem holds in this more general situation. Furthermore, if Y is a
Banach space, we can easily find a natural counterpart of the notion of open strips in
X×Y :

Definition 1.2. We say that an open set G⊆X×Y is an open strip if the vertical section
G(x) = G∩ ({x}×Y ) is convex for all x ∈ X.
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Using this definition, the following holds:

Theorem 1.3. Let f : X→Y be a function where X is a paracompact topological space
and Y is a Banach space. Then f is Baire-1 if and only if there is a sequence (Gn)

∞
n=1 of

open strips such that ∩∞
n=1Gn = gr( f ) and diam(Gn(x))→ 0 for each x ∈ X as n tends

to infinity.

Concerning the graphs of Baire-α functions for α > 1 countable ordinals, we did
not manage to prove a theorem in the setting of Theorem 1.3. Analogous results to
the one achieved in the direction in which we assume f is Baire-α can be obtained
though rather easily in even more general settings, as it will be shown in Theorem 1.6.
Namely, we can find some nice properties of the graph of a Baire-α function f : X →Y
where X is a topological space and Y is a metric space, and then maybe we can achieve
more specific ones if we require some conditions on Y : for example in Theorem 1.3
we restricted Y to be a Banach space and we managed to prove a property of gr( f )
which does not even make sense if Y is an arbitrary metric space. Following this line of
thought, we can have a generalization of this direction of Theorem 1.3 in more general
settings for any Baire class, but before we would formulate it, we would like to recall
the following notation for higher Borel classes:

Definition 1.4. A set A is of additive class 1, (A ∈ Σ1), if and only if it is open. For
any countable ordinal greater than zero, A is of multiplicative class α , (A ∈Πα ), if and
only if its complement is in Σα . Finally, A is of additive class α , (A ∈ Σα ), for α > 1
if and only if there is a sequence of sets A1,A2, ... such that each Ai is in Παi for some
αi < α and

⋃
∞
i=1 Ai = A.

It is useful to remark that the behaviour of the Borel hierarchy can be a bit chaotic
in general topological spaces. To be more precise, we prefer if the higher Borel classes
contain the lower ones, that is for 0 < β < α < ω1, every set in Πβ or Σβ is also in
Πα and Σα . However, this property does not hold necessarily: for example if we regard
the cofinite topology over any uncountable set, we can immediately see that none of
the nontrivial open sets is in Σ2. The following result is well-known and can be easily
obtained by transfinite induction: if X has the property that any open set is in Σ2 (or
equivalently, any closed set is in Π2) then every set in Πβ or Σβ is also in Πα and Σα for
any 0 < β < α < ω1. The spaces satisfying this requirement are called Gδ or perfect
spaces and their defining property can be regarded as a separation axiom: the closed
sets can be separated from their complements using only countably many open sets. It
can be easily checked that all the metrizable spaces are perfect spaces, which is a fact
we will use in this paper.

Let us recall that a topological vector space is a Fréchet space if it is locally convex
and complete with a translation invariant metric. As the concept of convex sets exists
in Fréchet spaces, we can similarly define open strips of X ×Y if Y is a Fréchet space
instead of being a Banach space. Furthermore, we can generalize this definition to
higher Borel classes:
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Definition 1.5. Let X be a topological space and Y be a Fréchet space. We say that a
Σα set S⊆ X×Y is a Σα -strip if the vertical section S(x) = S∩ ({x}×Y ) is convex for
all x ∈ X.

Theorem 1.6. Let f : X→Y be a Baire-α function where X is a topological space, Y is
a metric space and let α be a countable ordinal. Then there exists a sequence (Gn)

∞
n=1

of Σα sets in X×Y such that ∩∞
n=1Gn = gr( f ) and diam(Gn(x))→ 0 for each x ∈ X as

n tends to infinity. Furthermore, if Y is a Fréchet space, these Σα sets can be chosen to
be Σα strips.

Proving the converse of this theorem in this rather general setting appeared to be
much more difficult. The idea we may follow is similar to the one we will use in the
proof of Theorem 1.3: we construct Baire-αn functions for αn < α through Σα sets
satisfying the conditions we found during the proof of the other direction, and with
the help of these conditions we attempt to show that f is the pointwise limit of these
Baire-αn functions. The essence of this concept is the construction of these functions
which reduces our question to a selection problem concerning Baire functions of a
given class (e.g. in Theorem 1.3 to the problem continuous selections). With the help
of the Kuratowski–Ryll-Nardzewski Theorem about measurable selections (see [5] and
Proposition 2.2 in the next section) we will prove the following for functions defined
on Suslin spaces, which are the continuous images of Polish spaces:

Theorem 1.7. Let f : X → Y be a function where X is a metrized Suslin space, Y is a
separable Fréchet space. Then f is Baire-α for some successor countable ordinal α if
and only if there is a nested sequence (Gn)

∞
n=1 of Σα strips in X×Y such that

• ∩∞
n=1Gn = gr( f ),

• diam(Gn(x))→ 0 for each x ∈ X as n tends to infinity,
• the projection of (X×U)∩Gn to X is in Σα for each open subset U of Y .

Finally, we focus on generalizing some of the results of [3], in which we character-
ized the accumulation sets of graphs of Baire-2 functions f : [0,1]→ R. In that paper,
Theorem 4.1 and 4.2 stated the followings:

Proposition 1.8. Suppose T ⊆ [0,1]×R and let us denote the set of accumulation
points of some gr( f ) by L f . There exists a bounded Baire-2 function satisfying L f = T
if and only if T is closed and T ∩ ({x}×R) 6= /0 for each x ∈ [0,1].

Furthermore, there exists a not necessarily bounded Baire-2 function satisfying L f =
T if and only if T is closed and there is a countable set D⊆ [0,1] such that T ∩ ({x}×
R) 6= /0 for each x ∈ [0,1]\D.

The proofs appearing in that article are a bit complicated, however elementary. We
will see that these problems also can be handled in a much more general setting using
stronger tools as certain selection theorems. We recall that a space is σ -compact if it
can be expressed as the countable union of compact sets.
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Theorem 1.9. Let T ⊆ X×Y , where X is a σ -compact metrizable Suslin space with
no isolated points, and Y is a compact Fréchet space. There exists a Baire-2 function f
satisfying L f = T if and only if T is closed and T ∩ ({x}×Y ) 6= /0 for each x ∈ X.

Furthermore, if Y is σ -compact, but not compact, there exists a Baire-2 function f
satisfying L f = T if and only if T is closed and there is a countable set D⊆ X such that
T ∩ ({x}×Y ) 6= /0 for each x ∈ X \D.

2. PRELIMINARIES

In order to prove our theorems, we need to recall a classical result about the relation-
ship of Baire classes and Borel classes (see [4]). As it is short and useful to prove, we
will not omit the proof and formulate it as a proposition:

Proposition 2.1. Let f : X → Y be a Baire-α function where X is a topological space,
Y is a metric space, and α is a countable ordinal. Then for any open set G⊆ Y the set
f−1(G)⊆ X is a Σα+1 set, or in other words, f is a Borel-(α +1) mapping.

Proof. We proceed by transfinite induction. For α = 0 the proposition states that for
continuous functions the inverse image of an open set is open which is true by definition.
What remains to discuss is the inductive step. Let us assume α ≥ 1 and we already know
the statement for smaller ordinals, and let ( fk)

∞
k=1 be a sequence of functions from lower

Baire classes whose pointwise limit is f , namely let fk be Baire-αk where αk < α . If α

is a successor ordinal, we might assume αk = α − 1. Let us denote the neighborhood
of radius ε > 0 of a closed set F by B(F,ε), which is clearly an open set. Then we may
construct the following decomposition of G into closed sets (Fn)

∞
n=1:

G =
∞⋃

n=1

Y \B
(

Y \G,
1
n

)
=

∞⋃
n=1

Fn.

One can easily check that our decomposition implies that f (x) = limk→∞ fk(x) ∈ G
holds if and only if there is an n such that fk(x) ∈ Fn for all large enough k. Indeed,
as Fn is closed, if there is such an n, then the sequence ( fk(x)) cannot converge out
of Fn ⊆ G hence f (x) ∈ G. Conversely, if f (x) ∈ G, it has a neighborhood of radius
ε for suitable positive ε in G. By convergence, for large enough k the point fk(x) is
in the neighborhood of f (x) of radius ε

2 , thus fk(x) ∈ B
(
Y \G, ε

2

)
for large enough k.

Choosing n such that 1
n < ε

2 gives us a suitable n in our statement, thus it proves the
other direction of our equivalence.

This equivalence yields the following equation:

f−1(G) = {x : f (x) ∈ G}=
∞⋃

n=1

∞⋃
m=1

∞⋂
k=m

{x : fk(x) ∈ Fn} .

Now, for any set {x : fk(x) ∈ Fn} the inductive hypothesis can be used: fk(x) is Baire-αk
thus the inverse image of any open set is Σαk+1, hence the inverse image of the closed
set Fn is in Παk+1. Indeed, the inverse image of the complement is the complement
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of the inverse image, and the complement of Fn is open, while the complement of its
inverse image is in Σαk+1 whose complement is in Παk+1. Now if α is a successor
ordinal, these sets in Παk+1 are in Πα as αk +1 = α . Otherwise, if α is a limit ordinal
the sets in Παk+1 are in Πα by definition: the same unions can be regarded. Hence if
we take the intersection of sets of these type, for all k ≥ m, we will still have a Πα set
for any ordinal. Finally if we take the countable union of such sets (that is, for all n and
m) we will obtain a Σα+1 set as the inverse image of the open set G. �

The proofs of Theorem 1.7 and 1.9 rests on the following corollary of the Kuratowski–
Ryll-Nardzewski Theorem about measurable selections, which we already mentioned
in the introduction:

Proposition 2.2. Let X be a metric space and let Y be a separable complete metric
space. Assume α ≥ 1 is a countable ordinal and let Ψ : X→ 2Y be a multifunction with
nonempty closed values such that Ψ−1(G) is in Σα for each open subset G of Y . Then
Ψ admits a Borel class α selection, that is a mapping f : X → Y such that the inverse
image of any open set of Y is in Σα .

As we already remarked, we are interested in Baire selections. However, Baire
classes of functions and Borel classes of mappings have a strong relationship. For
example, as we have seen in Proposition 2.1, any Baire-α function defined on a topo-
logical space with values from a metric space is a Borel-(α +1) mapping. Nevertheless
we have to be cautious since the converse does not hold in general: for instance if X is
a connected topological space with at least two points, and Y is the two point discrete
space {0,1}, then the characteristic function of a single point of X is Borel-2, but not
Baire-1, as all the continuous functions from X to Y are constants. As our aim is to
use Proposition 2.2 in as general setting as it is possible, it would be beneficial to know
some results concerning conditions yielding the equivalence of Baire-α functions and
Borel-(α + 1) mappings. We can recall a special form of Theorem 8 of [6] (in that
paper, every space is assumed to be perfect):

Proposition 2.3. Let X be a perfect Suslin space and Y be a metric space. If X is
metrizable and has topological dimension zero, or Y is a locally convex topological
linear space then the family of Baire-α functions coincides with the family of Borel-
(α +1) mappings.

Remark 2.4. In [4], [5] and [6], and in several further articles and books other types of
notation are used for Borel classes, causing a subtle ambiguity with our recent paper. In
particular, in many papers the elements of Σ0 are the open sets instead of the elements
of Σ1, and the higher Borel classes are defined from this starting point the same way
we did in Definition 1.4. It is worth mentioning that this translation of the indices only
leads to a difference in the case of finite ordinals as in the definition of Σω we consider
the same unions.
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We wish to use Propositions 2.2 and 2.3 simultaneously, thus we have to restrict our
observations to spaces satisfying the conditions of both. This explains why we stated
Theorem 1.7 in the setting we did.

For the proof of Theorem 1.9, we first generalize Lemma 3.1 of [3]. We can formu-
late an almost identical proposition and the proof is also verbatim:

Lemma 2.5. Let X and Y be σ -compact metric spaces such that X has no isolated
points. For a given closed set T ⊆ X×Y there exists a countable set A ⊆ X such that
there is a function f : A→ Y satisfying L f = T .

Proof. The product space X ×Y is also σ -compact, hence there is an increasing se-
quence of compact sets (Cn)

∞
n=1 with limit X ×Y . Then Tn = T ∩Cn is also a compact

set. We will construct A and f by induction. Let us consider an open ball of radius one
around each point of T1. These balls give an open cover of the compact set T1 hence it
is possible to choose a finite cover. Let us take a point in each ball of the finite cover
such that the x coordinates of these points are pairwise different. As none of the points
of X is isolated, it is clearly possible. Denote the set of these points by F1, and the
set of their x coordinates by A1. In the following step, let us take open balls of radii
1
2 around each point of T2, choose a finite cover, and take points in each of these balls
with pairwise different x coordinates, which are also distinct from the points in A1. Let
us define A2 and F2 analogously, and continue this procedure: in the nth step regard the
1
n -neighborhoods of the points of Tn, and define the finite sets Fn and An using these
open balls. Now if we let A =

⋃
∞
n=1 An and F = ∪∞

n=1Fn, these are countable sets, and
we may define f to be the function that assigns to every x ∈ A the y coordinate of the
chosen point in F above x. The equality L f = T can easily be checked, as in [3]. �

3. BAIRE-1 FUNCTIONS

Before we would start the proof of Theorem 1.3, a short remark should be mentioned.
Theorem 1.3 gives almost the same characterization for the graphs of Baire-1 functions
from X to Y as the one given in [1] for the graphs of Baire-1 functions from X to R:
in our statement, we can find the reasonable counterpart of the open strip condition of
the real-valued case. However, besides that we drew up an additional limit condition
concerning the diameter of the vertical sections, that has importance during the proof
of the direction in which we show that if the graph has the given properties, then it is
the graph of a Baire-1 function, and we work with the closure of the convex sections.
What we would like to emphasize that this limit condition is vital and can be found
implicitly in the more specific form of the theorem, too. We formulate the relevant
fact as a proposition, since the author of this paper firmly believes this result has been
published already but has yet to see a source:

Proposition 3.1. Let E be a finite dimensional Banach space and (Cn)
∞
n=1 is a nested

sequence of closed convex sets such that
⋂

∞
n=1 Cn equals a point p. Then diam(Cn)→ 0.
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Proof. Proceeding towards a contradiction, let us assume diam(Cn) > d > 0 for all
n∈N. Then Cn must contain a point pn such that ‖p− pn‖> d

2 as it easily follows from
the triangle inequality. As Cn is convex and it contains p and pn, it also contains the
[p, pn] segment, and on this segment a point xn satisfying ‖p−xn‖= d

2 . Now the points
xn all lie on the boundary of the ball with centre p and radius d

2 . By a consequence of
Riesz’s lemma, in our finite dimensional space this set is compact, hence the sequence
(xn)

∞
n=1 has an accumulation point on this boundary. Let us denote it by x. As Cn is

closed for each n∈N and their sequence is nested, it implies x ∈Cn. As a consequence,
x ∈

⋂
∞
n=1 Cn = {p}, which is clearly a contradiction as the distance of x and p is d

2 . �

This proposition implies that if we work with a finite dimensional Banach space,
it is unnecessary to have the additional limit condition concerning the diameters of the
vertical sections. However, one can easily construct counterexamples to Proposition 3.1
if we permit infinite dimensional spaces, for instance we can take the subspace spanned
by a countable set of linearly independent vectors as C1, and then reduce this subspace
by removing the generators one by one.

Proof of Theorem 1.3. The proof is similar to the one given in [1] for the more specific
case, with some suitable modifications. First, let us assume that f is Baire-1, hence
there is a sequence of continuous functions ( fn)

∞
n=1 with pointwise limit f . Let us

notice that the set
{

x : ‖ fn(x)− f (x)‖< 1
k

}
is in Σ2. Indeed, if we let gn(x) = fn(x)−

f (x), it is also a Baire-1 function, and the set we are interested in is g−1
n {y : ‖y‖ <

1
k}, which is the inverse image of an open ball. Applying Proposition 2.1 yields that{
x : ‖ fn(x)− f (x)‖< 1

k

}
is in Σ2 as we stated. As a consequence, it can be written as

the countable union of closed sets A(n,k, i)⊆ X :{
x : ‖ fn(x)− f (x)‖< 1

k

}
=

∞⋃
i=1

A(n,k, i).

We will define the subsets H(n,k, i) of X×Y as follows:

H(n,k, i) =
{
(x,y) : x ∈ A(n,k, i),‖y− fn(x)‖ ≥

1
k

}
.

We show that H(n,k, i) is closed. In order to prove it, let us write it as an intersection
of two sets which are easier to handle:

H(n,k, i) = [A(n,k, i)×Y ]∩
{
(x,y) : ‖y− fn(x)‖ ≥

1
k

}
.

The first one of these sets on the right hand side is clearly closed in X ×Y as A(n,k, i)
was closed in X , hence it suffices to prove that the second set on the right hand side is
also closed. Let us define the following function hn : X ×Y → R+, where R+ denotes
the nonnegative halfline:

hn(x,y) = ‖y− fn(x)‖.
7



Our claim is that the continuity of fn implies the continuity of hn. To prove this, we
need to show that the inverse image of an open set G⊆ R+ under hn is open in X ×Y .
Thus let us assume hn(x0,y0) ∈ G for some (x0,y0) ∈ X×Y , which yields for some
ε > 0 its neighborhood of radius ε is the subset of G, that is B(hn(x0,y0),ε) ⊆ G. We
need that hn(x,y) is also in G if (x,y) is an element of a suitable neighborhood U of
(x0,y0). We state this holds if we regard the following neighborhood:

U = f−1
n

(
B
(

fn(x0),
ε

2

))
×B

(
y0,

ε

2

)
By the continuity of fn it is indeed a neighborhood of (x0,y0) as f−1

n
(
B
(

fn(x0),
ε

2

))
is

an open subset of X . Furthermore, if (x,y) ∈U , by the triangle inequality we have

‖y− fn(x)‖ ≤ ‖y− y0‖+‖y0− fn(x0)‖+‖ fn(x0)− fn(x)‖< ε +‖y0− fn(x0)‖,

and

‖y− fn(x)‖ ≥ −‖y− y0‖+‖y0− fn(x0)‖−‖ fn(x0)− fn(x)‖>−ε +‖y0− fn(x0)‖,

which implies hn(x,y) ∈ B(hn(x0,y0),ε)⊆ G.
Thus hn is continuous indeed, yielding

{
(x,y) : ‖y− fn(x)‖ ≥ 1

k

}
= h−1

n
([ 1

k ,∞
))

is a
closed set of X×Y . By our previous remarks it implies that H(n,k, i) is also closed.

The set of such sets H(n,k, i) is countable thus we can take an enumeration H1, H2,
..., of them. Let us denote by G∗j the complement of H j in X ×Y , that is an open set.
Furthermore, one can easily check that G∗j is an open strip, that is the G∗j(x) vertical
section is convex for each j ∈ N and x ∈ X . Indeed, by the construction of G∗j , this
vertical section is either the complete space Y or the ball of radius 1

k centered at fn(x) for
some k∈N and x∈X . However, balls are convex in Banach spaces, hence G∗j is an open

strip. It implies G j =
⋂ j

l=1 G∗l is also an open strip. Furthermore, the sequence (G j)
∞
j=1

is nested and diam(G j(x)) tends to 0 for each x ∈ X . Indeed, when we constructed
G j, we took the intersection of the complements of some sets H(n,k, i). A vertical
section of this complement is either the entire Y or a ball with diameter 2

k . But as all
x ∈ X appears in A(n,k, i) for any k, for some i and large enough n, this implies that
diam(G j(x)) ≤ 2

k for large enough j. As a consequence, diam(G j(x))→ 0. Hence if
we could verify that the intersection of the open strips (G∗j)

∞
j=1 equals gr( f ), that would

conclude the proof. But the proof of this fact is quite straightforward, we can check two
inclusions. First, (x, f (x)) ∈G∗j for any j ∈N and x ∈ X , implying gr( f )⊆

⋂
∞
j=1 G j. In

order to show this, let us recall that the complement of G∗j is H j = H(n,k, i) for some
n,k, i ∈ N. We need (x, f (x)) /∈ H(n,k, i). Proceeding towards a contradiction, let us
assume (x, f (x)) ∈ H(n,k, i), yielding x ∈ A(n,k, i). Then by the definition of A(n,k, i),
the inequality ‖ fn(x)− f (x)‖< 1

k holds. However, ‖ f (x)− fn(x)‖ ≥ 1
k by the definition

of H(n,k, i), a contradiction. Thus gr( f )⊆
⋂

∞
j=1 G j. For the other inclusion, it suffices

to prove that for any x ∈ X and y ∈ Y distinct from f (x), we have (x,y) ∈ H(n,k, i)
for suitable n,k, i ∈ N. In order to verify this, choose k such that 1

k < ‖y− f (x)‖
2 and n
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such that ‖ fn(x)− f (x)‖ < 1
k . As f is the pointwise limit of ( fn)

∞
n=1, it is possible.

Then by definition there exists i such that x ∈ A(n,k, i). Furthermore, ‖y− fn(x)‖ ≥
‖y− f (x)‖−‖ fn(x)− f (x)‖> 1

k by the triangle-inequality, implying (x,y) ∈H(n,k, i),
which concludes the proof. Thus

⋂
∞
j=1(G j) = gr( f ), we finished the proof of this

direction.
For the other direction, let us assume gr( f ) =

⋂
∞
j=1 G j where for each j the set G j is

an open strip. We can also assume that their sequence is nested as the finite intersection
of open sets is open and any intersection of convex sets is convex. Thus G j+1 ⊆ G j for
any j. Let us define Fj as it follows:

Fj =
⋃
x∈X

G j(x),

where the overline means the closure. Hence Fj stands for the closure by coordinates.
Regard it as a multivalued function defined on X with range 2Y , whose values are nat-
urally the vertical sections of the set. Then this multivalued function has nonempty
closed, convex values. Furthermore, we can easily show that Fj is lower hemicontinu-
ous: let us assume V ∩Fj(x) is nonempty for some open set V of Y and x ∈ X . Since
Fj(x) is the closure of the open set G j(x), we have V ∩G j(x) is nonempty. Let y ∈ Y
be one of its elements. As G j is open, it contains a neighborhood of (x,y). This neigh-
borhood intersects X×{y} in a set whose projection to X is open and suitable for us in
the definition of lower hemicontinuity as one can easily check. Thus Fj : X → 2Y is a
lower hemicontinuous function with nonempty closed, convex values. By the Michael
selection theorem there exists a continuous selection f j : X → Y in Fj. Furthermore, as
the intersection of the sets Fj(x) is only f (x) and their diameter tends to 0, we obtain
f j(x)→ f (x). Hence f is the pointwise limit of continuous functions, meaning f is
Baire-1. �

4. HIGHER BAIRE CLASSES

Proof of Theorem 1.6. The proof has a similar structure to the proof of Theorem 1.3,
we just have to be more careful with the sets in higher Borel classes and make some
slight, but necessary changes. As f is Baire-α , there is a sequence of functions ( fn)

∞
n=1

with pointwise limit f , where fn is Baire-αn for some αn < α , and if α is a succes-
sor ordinal, we can assume αn = α − 1. Proposition 2.1 easily yields that the set{

x : dY ( fn(x), f (x))< 1
k

}
is in Σα+1. To verify this, we show that if the functions

g1,g2 : X → Y are Baire-α , then the function ρg1,g2 : X → R+ defined by ρg1,g2(x) =
dY (g1(x),g2(x)) is also Baire-α . We proceed by transfinite induction: if α = 0, that is
our functions are continuous, then our claim can be proven as the similar statement in
the proof of Theorem 1.3. Furthermore, if we have α > 0, then g1 is the pointwise limit
of the functions (g1,n)

∞
n=1 and g2 is the pointwise limit of the functions (g2,n)

∞
n=1, such

that these functions are in lower Baire classes. Thus by the continuity of the metric dY ,
9



we have
ρg1,g2(x) = lim

n→∞
dY (g1,n(x),g2,n(x)) = lim

n→∞
ρg1,g2,n(x).

However, the induction hypothesis easily yields that each of the functions ρg1,g2,n are in
lower Baire classes than Baire-α . Thus ρg1,g2 is a Baire-α function, as we stated. As a
consequence, {

x : dY ( fn(x), f (x))<
1
k

}
= ρ

−1
g1,g2

([
0,

1
k

))
is in Σα+1 by Proposition 2.1, as we consider the inverse image of an open set in R+

under a Baire-α function. Thus it can be written as the countable union of Πα sets
A(n,k, i)⊆ Y : {

x : dY ( fn(x), f (x))<
1
k

}
=

∞⋃
i=1

A(n,k, i).

We define the subsets H(n,k, i) of X×Y as follows:

H(n,k, i) =
{
(x,y) : x ∈ A(n,k, i),dY (y, fn(x))≥

1
k

}
.

We state H(n,k, i) is in Πα . The proof of this claim starts with the same reformulation,
that is we write H(n,k, i) as the intersection of two simpler sets:

H(n,k, i) = [A(n,k, i)×Y ]∩
{
(x,y) : dY (y, fn(x))≥

1
k

}
.

The first one of these sets on the right hand side is clearly in Πα in X ×Y as A(n,k, i)
was in Πα in X , hence it suffices to prove that the second set on the right hand side is
also in Πα . Let us define the following function hn : X×Y → R+:

hn(x,y) = dY (y, fn(x)) .

One can easily prove by transfinite induction on αn that if fn is Baire-αn then hn is also
Baire-αn: the base case αn = 0, where fn is continuous, can be verified exactly as we
did it in the proof of Theorem 1.3, we only have to replace the norms of the differences
in the inequalities with the respective distances. Now if fn is the pointwise limit of a
sequence of functions (φn,m)

∞
m=1 from lower Baire classes, then hn is the pointwise limit

of the sequence of functions dY (y,φn,m(x))
∞

m=1, and for these functions the inductive
hypothesis can be used. Hence hn is Baire-αn, yielding

{
(x,y) : dY (y, fn(x))≥ 1

k

}
is in

Παn+1, and as a consequence, it is also in Πα , as we can separate the cases of successor
and limit ordinals as in the proof of Proposition 2.1. Thus H(n,k, i) is in Πα .

At this point, we can proceed exactly as we did in the proof of Theorem 1.3. We can
take an enumeration H1,H2, ... of the sets H(n,k, i) and define G j as (X×Y )\

⋃ j
l=1 Hl .

Then these sets are in Σα and their intersection is gr( f ). Furthermore, if Y is a Fréchet
space, these sets are also Σα strips as balls are convex sets in Fréchet spaces. �
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Proof of Theorem 1.7. For the direction in which we assume that f is Baire-α , we can
refer to the proof of Theorem 1.6, the only detail we have to check that is the third
condition is also satisfied. In general, let us denote the projection of a set C⊆X×Y to X
by π(C), and let us denote the projection of (X×U)∩Gn to X for the sake of simplicity
by π∗n (U). Let us define the sets A(n,k, i) and H(n,k, i), and then the sequences (H j)

∞
j=1

and (G j)
∞
j=1 as we did in that proof. Namely, if ( fn)

∞
n=1 is the sequence of functions

from lower Baire classes with pointwise limit f , then{
x : dY ( fn(x), f (x))<

1
k

}
=

∞⋃
i=1

A(n,k, i),where A(n,k, i) ∈Πα ,

H(n,k, i) = [A(n,k, i)×Y ]∩
{
(x,y) : dY (y, fn(x))≥

1
k

}
,

(H j)
∞
j=1 is the enumeration of these sets H(n,k, i), and

G j = (X×Y )\
j⋃

l=1

Hl =
j⋂

l=1

(X×Y )\Hl .

Our goal is to prove that π∗j (U) is in Σα for each open subset U of Y . Assume that G j
can be decomposed as the following:

G j = (X×Y )\
j⋃

l=1

H(nl ,kl , il) =
j⋂

l=1

(X×Y )\H(nl ,kl , il).

Now we can divide each (X ×Y ) \H(nl ,kl , il) into two parts with disjoint projections
to X :

(X×Y )\H(nl ,kl , il)= [(X \A(nl ,kl , il))×Y ]∪[(A(nl ,kl , il)×Y )\H(nl ,kl , il)]=Vl,1∪Vl,2,

yielding

G j =
j⋂

l=1

(X×Y )\H(nl ,kl , il) =
j⋂

l=1

(Vl,1∪Vl,2).

By distributivity, we can replace this intersection of unions by a union of intersections:
j⋂

l=1

(Vl,1∪Vl,2) =
⋃

(θ1,...θ j)∈{1,2} j

j⋂
l=1

Vl,θl .

What is intriguing about this expression, that is the projections of the sets
⋂ j

l=1 Vl,θl to
X are clearly disjoint as two such intersection differs in at least one θ -coordinate, and
the projections π(Vl,1) and π(Vl,2) are disjoint. As a consequence, the projection of the
union ⋃

(θ1,...θ j)∈{1,2} j

j⋂
l=1

Vl,θl

11



to X equals the union of the projections, hence

π
∗
j (U) = π ((X×U)∩G j) =

⋃
(θ1,...θ j)∈{1,2} j

π

(
(X×U)∩

j⋂
l=1

Vl,θl

)
. (1)

We would like to show that this set is in Σα . Let us consider one of these sets

π

(
(X×U)∩

j⋂
l=1

Vl,θl

)
and take a closer look at

⋂ j
l=1 Vl,θl . Amongst these sets, certain ones are of the type Vl,1,

others are of the type Vl,2. Let us denote the set of indices belonging to the first type by
J1, and the set of indices belonging to the second type by J2, yielding

π

(
(X×U)∩

j⋂
l=1

Vl,θl

)
= π

(
(X×U)∩

⋂
l∈J1

Vl,1∩
⋂

l∈J2

Vl,2

)
.

In this expression, Vl,1 = [(X \A(nl ,kl , il))×Y ] for l ∈ J1, meaning Vl,1 contains the
whole space Y above X \A(nl ,kl , il). As a consequence, one can easily verify that

π

(
(X×U)∩

⋂
l∈J1

Vl,1∩
⋂

l∈J2

Vl,2

)
=
⋂

l∈J1

(X \A(nl ,kl , il))∩π

(
(X×U)∩

⋂
l∈J2

Vl,2

)
.

(2)
Let us recall the definiton of Vl,2:

π

(
(X×U)∩

⋂
l∈J2

Vl,2

)
=

{
x : x ∈

⋂
l∈J2

A(nl ,kl , il),U ∩
⋂

l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

}
.

Using these identities, we can reformulate (1), yielding π∗j (U) equals the following:

⋃
J1,J2

(⋂
l∈J1

(X \A(nl ,kl , il))∩

{
x : x ∈

⋂
l∈J2

A(nl ,kl , il),U ∩
⋂

l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

})
.

(3)
Now we will show that the condition x ∈

⋂
l∈J2

A(nl ,kl , il) might be omitted from this
expression for each J1,J2 without changing the union. This omission extends each of
the sets⋂

l∈J1

(X \A(nl ,kl , il))∩

{
x : x ∈

⋂
l∈J2

A(nl ,kl , il),U ∩
⋂

l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

}
to ⋂

l∈J1

(X \A(nl ,kl , il))∩

{
x : U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

}
, (4)

12



however, as we will show the increment is contained by other sets of the union in (3),
yielding this union remains the same. Indeed, as J runs over the subsets of J2, the sets⋂

l∈J

(X \A(nl ,kl , il))∩
⋂

l∈J2\J
A(nl ,kl , il)

give a natural partition of X . As a consequence, the set in (4) can be expressed as it
follows, by taking the intersection with each of the elements of this partition and then
forming their union:

⋃
J⊆J2

 ⋂
l∈J∪J1

(X \A(nl ,kl , il))∩
⋂

l∈J2\J
A(nl ,kl , il)∩

{
x : U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

} .

(5)
Taking the intersection of the sets BY

(
fnl (x),

1
kl

)
only for J2 \ J clearly extends this

set, and
⋂

l∈J2\J A(nl ,kl , il) can be moved inside
{

x : U ∩
⋂

l∈J2
BY

(
fnl (x),

1
kl

)
6= /0
}

,
yielding the set in (4) is contained by

⋃
J⊆J2

 ⋂
l∈J1∪J

(X \A(nl ,kl , il))∩

x : x ∈
⋂

l∈J2\J
A(nl ,kl , il),U ∩

⋂
l∈J2\J

BY

(
fnl (x),

1
kl

)
6= /0


 .

Now we may notice that each of the unioned sets in this expression appears in the
union in (3), which verifies our statement: we can make the omissions for any J1 and
J2 without changing the union there. In other words, π∗j (U) is also the union of these
modificated sets, that is

π
∗
j (U) =

⋃
J1,J2

(⋂
l∈J1

(X \A(nl ,kl , il))∩

{
x : U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

})
.

As it is a finite union, it suffices to prove about each of the unioned sets that they are in
Σα , that is

⋂
l∈J1

(X \A(nl ,kl , il))∩

{
x : U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

}
∈ Σα .

The sets X \A(nl ,kl , il) are also in Σα , therefore it would be sufficient to prove the same
about

{
x : U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0
}

. The intersection which we regard in this set
is the intersection of a finite collection of open sets, hence it is also open. Furthermore,
U is separable as a subspace of the separable space Y . Thus it contains a countable
dense set {u1,u2, ...}. As a consequence, U ∩

⋂
l∈J2

BY

(
fnl (x),

1
kl

)
6= /0 holds if and

13



only if there exists some ut for t ∈ N such that ut ∈
⋂

l∈J2
BY

(
fnl (x),

1
kl

)
, thus{

x : U ∩
⋂

l∈J2

BY

(
fnl (x),

1
kl

)
6= /0

}
=

∞⋃
t=1

{
x : ut ∈

⋂
l∈J2

BY

(
fnl (x),

1
kl

)}
.

For some x∈X , the relation ut ∈BY

(
fnl (x),

1
kl

)
holds if and only if fnl (x)∈BY

(
ut ,

1
kl

)
by symmetry. Hence
∞⋃

t=1

{
x : ut ∈

⋂
l∈J2

BY

(
fnl (x),

1
kl

)}
=

∞⋃
t=1

⋂
l∈J2

{
x : fnl (x) ∈ BY

(
ut ,

1
kl

)}
=

∞⋃
t=1

⋂
l∈J2

S(t, l).

On the right hand side, each set S(t, l) is the inverse image of an open set under fnl
which is Baire-αnl , where αnl < α . Thus each S(t, l) is in Σα by Proposition 2.1 as
X ×Y is metrizable, yielding that it is perfect. Hence if we take the finite intersection
for l ∈ J2 and then the countable union for t = 1,2, ..., we will still have a set in Σα and
as we have already seen it concludes the proof of the first direction.

For the other direction, let us assume gr( f ) =
⋂

∞
j=1 G j where the set G j is in Σα for

each j, their sequence is nested, and they satisfy the three conditions of the theorem.
Let us define Fj as it follows:

Fj =
⋃
x∈X

G j(x),

thus Fj is the closure by coordinates. If we regard it as a multivalued function defined
on X with range 2Y , whose values are naturally the vertical sections of the set, we can
easily verify that it satisfies the conditions of Proposition 2.2. Indeed, it has clearly
nonempty, closed values, and as the projection of (X ×U)∩Gn to X is in Σα for each
open subset U of Y , the inverse image F−1

j (U) is in Σα for the open subsets of Y .
Hence Fj has a Borel-α selection f j. As α is a successor ordinal, α − 1 makes sense
and Proposition 2.3 can be applied, yielding f j is Baire-(α−1). The conclusion is the
same as it was in the proof of Theorem 1.3: as the intersection of the sets Fj(x) is only
{ f (x)} and their diameter tends to 0, f j(x)→ f (x) must hold, and as a consequence, f
is the pointwise limit of Baire-(α−1) functions, meaning f is Baire-α . �

5. ACCUMULATION POINTS OF GRAPHS

Before we start the proof of Theorem 1.9, we would like to remark that the conditions
concerning T are clearly necessary, even if we do not require f to be Baire-2:

Proposition 5.1. In the setting of the first case of Theorem 1.9, if a subset T of X ×Y
equals L f for a function f : X → Y , then T is closed and T ∩ ({x}×Y ) 6= /0 for each
x ∈ X.

Furthermore, in the setting of the second case of Theorem 1.9, if a subset T of X×Y
equals L f for a function f : X →Y , then T is closed and there is a countable set D⊆ X
such that T ∩ ({x}×Y ) 6= /0 for each x ∈ X \D.
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Proof. As L f is the set of the accumulation points of gr( f ), it must be closed in both
cases. On the other hand, in the first case, if we consider any x ∈ X , by our conditions
there is a sequence (xn)

∞
n=1 with elements from X distinct from x and with limit x. Thus

by the compactness of Y , for any f the sequence ( f (xn))
∞

n=1 has a limit point, implying
the sequence (xn, f (xn))

∞

n=1 has a limit point in {x}×Y . Hence if T = L f , the set T has
to intersect any vertical line in the first case.

In the second case, proceeding towards a contradiction, let us assume the set D of
points in X satisfying T ∩ ({x}×Y ) = /0 is uncountable and there exists a function
f : X → Y for which T = L f holds. As both X and Y is σ -compact, it implies the
existence of compact sets CX ⊆ X and CY ⊆ Y such that CX ∩D is uncountable and
the cardinality of D∗ = {x : x ∈ CX ∩D, f (x) ∈ CY} is also uncountable. Thus by the
separability of X , the set D∗ contains one of its accumulation points, d. Therefore
there exists a sequence (di) in D∗, (di 6= d) with limit d. Since all the elements of the
sequence ( f (di)) are in the compact set CY , it has a convergent subsequence, therefore
L f (d) cannot be empty, while T (d) is, a contradiction. �

However, Theorem 1.9 states for such a set T we have a Baire-2 function satisfying
L f = T , yielding the following:

Corollary 5.2. In the setting of any case of Theorem 1.9, if a subset T of X×Y equals
L f for a function f : X → Y , then there exists a Baire-2 function such that L f = T .

Proof of Theorem 1.9. Let us regard the first case. Consider a metric on X . By Lemma
2.5, there exists a countable set A ⊆ X and a function f0 : A→ Y satisfying L f0 = T .
We wish to extend this function to f : X → Y such that f is Baire-2 without making L f
larger. In order to do this, define a multifunction F : X → 2Y the following way:

F(x) =

{
{ f0(x)} if x ∈ A

T ∩ ({x}×Y ) if x ∈ X \A.

As T is closed and its vertical sections are nonempty, F has nonempty closed values.
Furthermore, F−1(G) is in Σ3 for each open subset G of Y . Indeed, T ∩ (X×G) is a set
in Σ2. Next we show that π(T ∩ (X ×G)) is also in Σ2. Let us recall that as X ×Y is
σ -compact, any closed set is the union of countably many compact sets, implying any
set in Σ2 is also the union of countably many compact sets. However, the projection of
a compact set is obviously compact, thus closed. Hence π(T ∩ (X ×G)) is in Σ2 as we
stated. Furthermore, one can easily verify that F−1(G) and π(T ∩ (X ×G)) can differ
only in the points of A, because if we regard T as a multifunction whose values are its
vertical sections, T and F differ only in A. Thus F−1(G) differs only in a countable set
from a set in Σ2, yielding it is in Σ3: indeed, a countable set is always in Σ2, thus if we
add a countable set to π(T ∩ (X ×G)) we obtain another set in Σ2, while removing a
countable set is equivalent to intersecting with its complement, which is in Π2. Hence
the set we are interested in is the intersection of a set in Σ2 and a set in Π2, which
are both in Σ3 as X is metrizable. As a consequence, the intersection is also in Σ3, as
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we stated. Hence F satisfies all the conditions of Proposition 2.2, yielding it admits a
Borel-3 selection f . This function f is also Baire-2 since the conditions of Theorem 1.9
satisfy the conditions of Proposition 2.3. What remains to show that is L f = T . We have
already seen T ⊆ L f as T = L f0 by the construction of f0 and L f0 ⊆ L f clearly holds.
For the other inclusion, we only have to verify that there is no sequence in gr( f ) with
limit outside of T . However, in that case there would be such a sequence in gr ( f0) as
every point of gr( f ) is in the closed set T , except for the ones in gr ( f0). Nevertheless
that would imply L f0 is already larger than T , which is a contradiction.

In the second case, we can proceed almost the same way. Let us define f0 on a
countable set A provided by Lemma 2.5. As Y is not compact, there exists a sequence
(y1,y2, ...) in Y without any accumulation point. Furthermore, as D \A is a countable
set, we can enumerate its elements, possibly finitely: (d1,d2, ...). Let us define the
multifunction F : X → 2Y as it follows:

F(x) =


{ f0(x)} if x ∈ A
{yi} if x = di

T ∩ ({x}×Y ) if x ∈ X \ (A∪D).

The steps of the previous case can be repeated to show that we can apply Proposition
2.2 to F without any difficulty, yielding the existence of a Borel-3 selection f , which is
also Baire-2 by Proposition 2.3. What is a difference from the previous case, that in the
proof of L f = T we have to take into account those sequences of points of gr( f ) which
contain infinitely many points above D\A. However, as the sequence (y1,y2, ...) has no
accumulation point in Y , such a sequence cannot have an accumulation point in X ×Y ,
thus L f = T , indeed. �

REFERENCES

[1] S. J. AGRONSKY, J. G. CEDER, T. L. PEARSON, Some characterizations of Darboux Baire 1 Func-
tions, Real Analysis Exchange Vol. 23(2) (1997-1998), 421–430.

[2] E. MICHAEL, Continuous selections, Ann. Math., 63 (1956), 361–382.
[3] B. MAGA, Accumulation points of graphs of Baire-1 and Baire-2 functions, to appear in Real Analysis

Exchange Vol. 41(2) (2016).
[4] K. KURATOWSKI, Topologie, Vol. 1, 4th ed., PWN, Warsaw, 1958; English transl., Academic Press,

New York; PWN, Warsaw, 1966.
[5] K. KURATOWSKI, C. RYLL-NARDZEWSKI, A general theorem on selectors, Bull. Acad. Polon. Sci, 13

(1965), 397–402.
[6] R. W. HANSELL, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math.

Soc., 161 (1971), 145–169.
16



* EÖTVÖS LORÁND UNIVERSITY, DEPARTMENT OF ANALYSIS

PÁZMÁNY PÉTER SÉTÁNY 1/C

BUDAPEST

H-1117
HUNGARY

E-mail address: magab@cs.elte.hu

17


