
GENERIC BIRKHOFF SPECTRA1

ZOLTÁN BUCZOLICH, BALÁZS MAGA, AND RYO MOORE2

Abstract. Suppose that Ω = {0, 1}N and σ is the one-sided shift. The Birkhoff

spectrum S f (α) = dimH

{

ω ∈ Ω : lim
N→∞

1
N

N

∑
n=1

f (σnω) = α
}

, where dimH is the

Hausdorff dimension. It is well-known that the support of S f (α) is a bounded and
closed interval L f = [α∗f ,min, α∗f ,max] and S f (α) on L f is concave and upper semicon-
tinuous. We are interested in possible shapes/properties of the spectrum, especially
for generic/typical f ∈ C(Ω) in the sense of Baire category. For a dense set in C(Ω)

the spectrum is not continuous on R, though for the generic f ∈ C(Ω) the spectrum
is continuous on R, but has infinite one-sided derivatives at the endpoints of L f .
We give an example of a function which has continuous S f on R, but with finite
one-sided derivatives at the endpoints of L f . The spectrum of this function can be
as close as possible to a "minimal spectrum". We use that if two functions f and g

are close in C(Ω) then S f and Sg are close on L f apart from neighborhoods of the
endpoints.
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1. Introduction6

1.1. Background. Let (X,F , µ, T) be a measure-preserving system. Birkhoff’s Er-7

godic Theorem tells us that for µ-a.e. x ∈ X and f ∈ L1(µ), the limit8

limN→∞
1
N ∑

N
n=1 f (Tnx) exists, and is a T-invariant function. Furthermore, if T is9

ergodic with respect to µ, the limit equals the constant
∫

f dµ. For the ergodic case,10

if we let E f (α) := {x ∈ X : limN→∞
1
N ∑

N
n=1 f (Tnx) = α} then µ(E f (α)) = 1 if11

α =
∫

f dµ, and 0 otherwise.12

Now consider (X, T) to be a topological dynamical system, and f be a continuous13

function on X. Instead measuring the level-set E f (α) by the ergodic measure µ,14

one gets more interesting values by considering the Hausdorff dimension of the15

sets E f (α) (including the irregular set E′
f := {x ∈ X : limN→∞

1
N ∑

N
n=1 f (Tnx)16

does not exist.}). For a given measure µ the Birkhoff Ergodic Theorem selects just17

one α and gives zero µ measure to the other sets E f (α
′) for α′ 6= α. The function18

S f (α) := dimH(E f (α)) is called the Birkhoff spectrum for f , and it will be the primary19

object that we study in this paper.20

Such kind of study is referred to as a multifractal analysis. Multifractal analysis21

on Birkhoff averages has been initiated by Y. Pesin and H. Weiss [14] for Hölder22

functions in the context of thermodynamic formalism. Birkhoff spectrum of con-23

tinuous functions was studied by A.-H. Fan, D.-J. Feng, and J. Wu [6]. In their24

study (which we will recall precisely in Theorem 2.3.1), they have shown a varia-25

tional formula between the dimension of the level set and the metric entropy. They26

have also shown that S f (α) is concave and upper semicontinuous (hence contin-27

uous by the nature of concave functions; see [16, §10]) on the interior of the set28

{α ∈ R
d : E f (α) 6= ∅}, while remaining the question regarding the behavior of the29

spectrum at the boundary of its support open.30

For other studies of the Birkhoff spectrum, we refer to, for instance, [1], [18], [3],31

[7], [11], [13], and [9]. For more information on multifractal analysis (especially32

with its relationship to thermodynamic formalism), we refer to [2], [15] and to a33

survey paper of V. Climenhaga [4].34

The main objective of this paper is to better understand the Birkhoff spectrum35

for generic continuous functions. We recall that given a complete metric space36

(X, d), we say a set A ⊂ X is generic (or typical) if A is a complement of a set of37

first category (i.e. a countable union of nowhere dense sets). The Baire category38

theorem asserts that a generic set A is dense in X. In our paper we will work39

with the full shift (Ω, σ) on the alphabet {0, 1} and consider Birkhoff averages of40

real-valued continuous functions f ∈ C(Ω, R) = C(Ω). One of the main foci of41
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this paper will be on the behavior of the spectrum of a generic continuous function1

at the boundary of the support of the spectrum. In case of one-dimensional range2

the support of the spectrum of f ∈ C(Ω) is always a (possibly degenerate) closed3

interval L f and concave and upper semiconinuous functions are always continuous4

on such intervals. However, it may happen that S f , as a function defined on R has5

a jump discontinuity at the endpoints of S f . Such functions were called degenerate6

by J. Schmeling in [17]. We will show that for the generic f ∈ C(Ω) the spectrum is7

continuous, with infinite one-sided derivatives at the endpoints of L f . Continuity8

of the spectrum for the generic Hölder function was proved by Schmeling in [17]. In9

fact, this combined with results in [12] and [6] imply the continuity of the spectrum10

for the generic continuous function in our setting. In this paper we give a direct11

proof of this fact.12

1.2. Summary of the main results, organization of the paper. Let Ω = {0, 1}N,13

and σ be the shift map. We assume that (Ω, σ) is the full shift. The space of14

real-valued continuous functions on Ω (denoted C(Ω)) is equipped with the usual15

supremum norm. We denote by α f ,max (resp. α f ,min) the maximum (resp. mini-16

mum) value of f ∈ C(Ω). The level-sets of the Birkhoff averages are17

(1.1) E f (α) :=
{

ω ∈ Ω : lim
N→∞

1
N

N

∑
n=1

f (σnω) = α
}

.

Let α∗
f ,max := sup{α ∈ R : E f (α) 6= ∅}, and α∗

f ,min := inf{α ∈ R : E f (α) 6= ∅}.18

We also put L f = [α∗
f ,min, α∗

f ,max]. The Birkhoff spectrum is defined as S f (α) :=19

dimH E f (α), keeping in mind that the empty set has Hausdorff dimension zero S f20

is defined on R. Results on concavity of S f and Birkhoff’s Ergodic Theorem imply21

that L f is the support of S f . It is known, [6], that S f is apart from being concave22

is also upper semicontinuous and hence it is continuous on the closed interval L f .23

Often, for ease of terminology, we will mention the endpoints of the support of the24

spectrum as the endpoints of the spectrum.25

In Section 2 after introducing some notation we give some simple examples and26

recall one of the main results of [6].27

Next we discuss some tools used later. First, we show that given a continuous28

function f , any continuous function that is sufficiently close to f would have its29

Birkhoff spectrum also close to S f on L f except for a neighborhood of the endpoints30

of the spectrum. This will be proven in Theorem 3.1.1.31

In Subsection 3.2 we prove some results about piecewise constant continuous32

(or simply PCC) functions, that is about functions which depend on finitely many33

coordinates. Among other results we show that for such functions f there is always34

a periodic ω in E f (α
∗
f ,max).35

The next two results will concern the continuity of a Birkhoff spectrum. Given36

f ∈ C(Ω), we say that the spectrum S f is continuous if it is continuous on R,37

and discontinuous otherwise. Equivalently, S f is continuous when S f (α
∗
f ,min) =38

S f (α
∗
f ,max) = 0. We will first show that continuous, in fact PCC functions with39

discontinuous spectrum are dense in C(Ω) (Theorem 4.1.1). On the other hand, we40
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give a direct proof of the fact that generic continuous functions have continuous1

spectrum (Theorem 4.2.1). In [6, §5, Item (2)] a question was raised about continuity2

of the spectrum at the boundary of its support. In the one-dimensional case, as3

we mentioned the answer is obvious if we consider the restriction of S f onto L f ,4

however there might be discontinuity from the exterior side of L f .5

In Subsection 4.3 we show that for a dense open subset of C(Ω) the support of6

the spectrum is in the interior of [α f ,min, α f ,max].7

It is mentioned in the introduction of [6] that even for Hölder regular functions8

discussions of S f (α) for boundary points of L f are scarce, which is actually a subtle9

problem.10

In the remainder of our paper, in Section 5 we will discuss one-sided derivatives11

of a Birkhoff spectrum at the endpoints/boundary points of the spectrum. Given12

ϕ : R → R, we denote by ∂−ϕ(α) the left-hand derivative of ϕ at α (if the value13

exists). Similarly, ∂+ϕ(α) denotes the right-hand derivative. We will show that the14

spectrum of a generic continuous function f has infinite one-sided derivatives at15

the endpoints of L f , i.e. ∂+ f (α∗
f ,min) = ∞, and ∂− f (α∗

f ,max) = −∞ (Theorem 5.1.1).16

We construct a continuous function with continuous spectrum for which the one-17

sided derivatives at the endpoints are finite (Theorem 5.2.1). This function will also18

have a very small spectrum. By concavity of the spectrum on its support there is19

always a triangle which should be under the graph of the spectrum. Our example20

will provide an example when the spectrum is very close to this lower estimate.21

In [18] Takens and Verbitsky calculated the spectrum of the Manneville-Pomeau22

map. It has a Birkhoff spectrum with a finite one-sided derivative at one of the23

endpoints.24

It is not that obvious that functions with finite one-sided derivatives at the25

endpoints of the spectrum exist since for some well-known examples of func-26

tions with continuous spectrum, like the one discussed in Example 2.2.1 we have27

∂+ f (α∗
f ,min) = ∞, and ∂− f (α∗

f ,max) = −∞, however this function does not have28

a “generic spectrum" since α∗
f ,min equals α f ,min and α∗

f ,max equals α f ,max. As we29

mentioned earlier for the generic continuous functions we always have α f ,min <30

α∗
f ,min < α∗

f ,max < α f ,max see Theorem 4.3.1. In Theorem 5.2.4 we prove that for31

PCC functions f with continuous spectrum we always have ∂+ f (α∗
f ,min) = ∞, and32

∂− f (α∗
f ,max) = −∞. This illustrates that for the proof of Theorem 5.2.1 one needs33

to use a more involved construction than a PCC function.34

2. Preliminaries35

2.1. Notation and terminology. Let Ω = {0, 1}N, and σ be the shift map.36

We introduce the usual metric d on Ω defined by37

d(ω, ω′) =
∞

∑
k=1

|ωk − ω′
k|

2k
,

where ωk (resp. ω′
k) denotes the coordinates/entries of ω (resp. ω′). If k ∈ N∪{∞}38

and A is a finite string of 0s and 1s then Ak denotes the k-fold concatenation of39
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A and [A] denotes the cylinder set {ω : Aω′, ω′ ∈ Ω}. Given k, l ∈ N and1

ω = (ω1ω2...) ∈ Ω we put ω|k = ω1...ωk and (ω)l
k := ωkωk+1 . . . ωl−1ωl, if k ≤ 02

then ω|k is the empty string and analogously if k > l then (ω)l
k is also the empty3

string. The "conjugate" ω is the string which we obtain from ω by swapping 0s and4

1s, that is ωk = 1 − ωk for all k.5

The s-dimensional Hausdorff measure of A ⊂ Ω is denoted by Hs(A) and recall6

that Hs(A) = limδ→0+ Hs
δ(A) where Hs

δ(A) = inf{∑i(diam Ui)
s : where A ⊂ ∪iUi7

and diam Ui < δ}. The Hausdorff dimension of A ⊂ Ω is dimH A = inf{s :8

Hs(A) = 0}. From this definition, it is a standard exercise to show that dimH Ω =9

1.10

The complement of a set A is denoted by Ac.11

Let PCCk(Ω) be the set of those piecewise constant continuous functions in12

C(Ω), which depend only on cylinders of length/depth k. While the set of piece-13

wise constant continuous functions in C(Ω), is denoted by PCC(Ω). Obviously14

PCC(Ω) = ∪kPCCk(Ω).15

The (1/2, 1/2)-Bernoulli measure, the “Lebesgue measure" on Ω is denoted by16

λ. In case we write
∫

f for an f : Ω → R we always mean
∫

Ω
f dλ.17

We denote by C0(Ω) the set of continuous functions for which
∫

f = 0, and18

PCCk
0(Ω) = PCCk(Ω) ∩ C0(Ω).19

Given f ∈ C(Ω), we denote ‖ f‖ = supω∈Ω | f (ω)|, and for any δ > 0, B( f , δ) =20

{g ∈ C(Ω) : ‖ f − g‖ < δ}.21

Recall (1.1) and the subsequent definitions of E f (α), S f (α). We remark that our22

definition of S f (α) is a bit different from the usual notation in multifractal analysis,23

since quite often S f (α) is defined to be −∞ when E f (α) is empty.24

As previously defined, we set α∗
f ,max = sup{α ∈ R : E f (α) 6= ∅}, where α∗

f ,min =25

inf{α ∈ R : E f (α) 6= ∅}. In general we have α f ,min ≤ α∗
f ,min ≤ α∗

f ,max ≤ α∗
f ,max,26

and it is possible for the strict inequalities to hold (including the first and the third27

inequality), as we will see in an example (cf. Example 2.2.3). In fact, as Theorem28

4.3.1 shows this property is true for the generic continuous functions as well.29

The σ-invariant Borel probability measures are denoted by Mσ. By Birkhoff’s
Ergodic Theorem, we know that λ(E f (

∫

f )) = 1. Furthermore, if {Ci}∞
i=1 are cylin-

ders in Ω of length at least k ∈ N and E f (
∫

f ) ⊂ ⋃∞
i=1 Ci then

1 = λ

(

E f

(

∫

f

))

≤
∞

∑
i=1

λ(Ci) =
∞

∑
i=1

diam(Ci),

which implies that 1 ≤ H2−k(E f (
∫

f )) ≤ H2−k(Ω) for any k ∈ N, and thus30

S f (
∫

f dλ) = 1. Given f ∈ C(Ω) and α ∈ R we will also use the following subsets31

of Mσ32

(2.1) F f (α) :=
{

µ ∈ Mσ :
∫

f dµ = α
}

.

2.2. Examples. We present a few examples of Birkhoff spectra of certain PCC(Ω)33

functions. We will first provide an example for a function with continuous spec-34

trum.35
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Example 2.2.1. Let f ∈ C(Ω) be the function given by f (ω) = 1 if ω1 = 1 and1

f (ω) = 0 if ω1 = 0. Then for any α ∈ (0, 1) we have2

S f (α) = −α log(α) + (1 − α) log(1 − α)

log 2
,

if α 6∈ (0, 1) then S f (α) = 0. In particular, f has continuous spectrum, as α∗
f ,min = 0,3

α∗
f ,max = 1, and furthermore, ∂+S f (α

∗
f ,min) = +∞ and ∂−S f (α

∗
f ,max) = −∞.4

Verification of the properties of Example 2.2.1. We will prove two inequalities using suit-5

ably defined Hölder functions and the result of [5]. First, let us consider the func-6

tion h1 : Ω → [0, 1] defined by7

h1(ω) =
∞

∑
i=1

ωi

2i
.

That is, h1 takes a 0-1 sequence to the number with the corresponding binary ex-8

pansion. We claim that h1 is a Lipschitz function in fact. Indeed, if ω′ differs9

from ω in its nth coordinate, but not before that point, then d(ω, ω′) ≥ 2−n, while10

|h1(ω)− h1(ω
′)| ≤ 2−n+1, hence h1 has Lipschitz constant 2. Moreover, h1(E f (α))11

equals the set of numbers in [0, 1] having a binary expansion in which the density12

of 1s equals α. Thus due to [5], the dimension of h1(E f (α)) is given by the formula13

in the statement of the lemma, yielding14

S f (α) ≥ −α log(α) + (1 − α) log(1 − α)

log 2
,

as h1 is Lipschitz.15

Concerning the other inequality, define h2 : C → Ω for the triadic Cantor set16

C ⊂ [0, 1]: if the triadic expansion of x ∈ C is17

x =
∞

∑
i=1

xi

3i
,

then let ω = h2(x) have coordinates x1
2 , x2

2 , .... That is, h2 is a one-to-one mapping18

between Ω and C. Now if x differs from x′ in its nth coordinate, but not before that19

point, then |x − x′| ≥ 3−n. On the other hand, d(h2(ω), h2(ω
′)) ≤ 2−n+1. It quickly20

yields that h2 is a Hölder function with exponent log 2
log 3 . Moreover, h−1

2 (E f (α)) is the21

set of numbers in [0, 1] having a ternary expansion with no 1s, in which the density22

of 2s is α and the density of 0s is 1 − α. Hence h−1
2 (E f (α)) is contained by the set23

of numbers in [0, 1] having a ternary expansion in which the density of 2s is α and24

the density of 0s is 1 − α. Thus due to [5], the dimension of h−1
2 (E f (α)) is at most25

−α log(α) + (1 − α) log(1 − α)

log 3
.

Hence as h2 is log 2
log 3 -Hölder, we obtain an upper estimate for S f (α), that is the26

dimension of E f (α), notably27

S f (α) ≤ −α log(α) + (1 − α) log(1 − α)

log 2
.
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This shows that the desired equality holds, and the remaining claims clearly follow.1

�2

Next, we will see examples of continuous functions with discontinuous spectra.3

Example 2.2.2. If f is a constant function, i.e. f ≡ C ∈ R, then S f (C) = 1 and4

S f (α) = 0 otherwise. The same is true if f is cohomologous to a constant, i.e. there5

exists g ∈ C(Ω) for which f = C + g − g ◦ σ (we recall that if C is zero, f is called6

a coboundary).7

Finally, we give an example where α f ,min < α∗
f ,min < α∗

f ,max < α f ,max (that is,8

strict inequalities are satisfied), and the Birkhoff spectrum is discontinuous.9

Example 2.2.3. There exists f ∈ PCC3
0(Ω) satisfying α f ,min < α∗

f ,min < α∗
f ,max <10

α f ,max and S f (α
∗
f ,min), S f (α

∗
f ,max) > 0.11

Proof. As f ∈ PCC3
0(Ω) we can define it by giving its values on 3-cylinders by abus-12

ing a bit the notation for f . We define f by f ([000]) = f ([010]) = −2, f ([001]) =13

−3, f ([100]) = −1, and f (ω) = − f (ω). Then we clearly have α f ,min = −3 while14

α f ,max = 3.15

Now we claim α∗
f ,min = −2, while α∗

f ,max = 2, which would yield the inequalities16

α f ,min < α∗
f ,min < α∗

f ,max < α f ,max. Due to symmetry reasons, it suffices to verify17

α∗
f ,min = −2. To this end, consider an arbitrary ω ∈ Ω. Now we are interested18

in the averages 1
N ∑

N
n=1 f (σnω). In the sequence f (σnω) each value is at least -2,19

except for the cases when the first three coordinates of σnω are 001. However, in20

this case the first three coordinates of σn+2ω contain at least two 1s, or they are 100.21

In either case, f (σn+2ω) ≥ −1. This argument shows that in the sum ∑
N
n=1 f (σnω)22

the summands with value -3 can be paired with summands with value at least -1,23

except for possibly the last one, whose pair does not appear in the sum. Besides24

that, all the other summands have value at least -2. Consequently, the average25

1
N ∑

N
n=1 f (σnω) ≥ −2 − 3

N , hence the limit is at least -2, verifying α∗
f ,min ≥ −2.26

For the other inequality, we may simply consider the identically 0 sequence, hence27

α∗
f ,min = −2. It proves the claim of this paragraph.28

It remains to show that S f (α
∗
f ,min), S f (α

∗
f ,max) > 0. Due to symmetry reasons,29

these quantities are clearly equal, hence S f (α
∗
f ,min) > 0 would be sufficient. Con-30

sider the following subset of Ω:31

B = {ω ∈ Ω : ωk = 0 for k ≡ 1, 2 mod 3}.

Then for any ω ∈ B and n we have that at least two of the first three coordinates32

of σnω equals 0. Consequently, f (σnω) < 0. Moreover, similarly to the previous33

argument we find that the in the sum ∑
N
n=1 f (σnω) the summands with value -334

can be paired with summands with value -1, except for possibly the last one. All35

the other summands have value -2. Hence we find36

−2 − 1
N

≤ 1
N

N

∑
n=1

f (σnω) ≤ −2.
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It proves that B ⊂ E f (−2), hence dimH B > 0 would conclude the proof. However,1

this dimension can be calculated explicitly as B is a self-similar set, which equals2

the disjoint union of its 2 similar images, where the similarities have ratio 1
8 . Thus3

dimH B =
log 2
log 8 = 1

3 by Hutchinson’s Theorem [8]. �4

2.3. Variational formula. The following result was obtained by Fan, Feng, and5

Wu. We present this result in the context of the full-shift on an alphabet of two6

symbols (Ω, σ) (in [6], they proved the result for a topologically mixing subshift of7

finite type).8

Theorem 2.3.1 ( [6, Theorem A]). Suppose that f : Ω → R
d is a continuous function.9

We denote L f := {α ∈ R
d : α = limN→∞

1
N ∑

N
n=1 f (σnω) for some ω ∈ Ω}. There10

exists a concave and upper semi-continuous function Λ f such that for any α ∈ L f11

S f (α) := dimH(E f (α)) = Λ f (α),

and12

Λ f (α) = max
µ∈F f (α)

hµ

log 2

where hµ is the metric entropy of µ, and F f (α) can be defined analogously to (2.1).13

The function Λ f (α) is defined in the same paper [6, Proposition 5] using the14

cardinality of the cylinders of large length that contain at least one point ω for15

which the Birkhoff average of f of that length is close to α. It was later shown that16

the quantity Λ f (α) indeed agrees with S f (α) for all α ∈ L f [6, Proposition 6].17

3. Tools18

3.1. Norm Continuity Theorem. We first prove that two Birkhoff spectra of two19

continuous functions are close (except near the endpoints) if those two functions20

are close in the supremum norm.21

Theorem 3.1.1 (Norm continuity theorem). Let f ∈ C(Ω) for which α∗
f ,min < α∗

f ,max,22

and ε ∈ (0, (α∗
f ,max − α∗

f ,min)/2) be given. Then there exists δ > 0 such that for any23

g ∈ B( f , δ), we have |S f (α)− Sg(α)| < ε for all α ∈ (α∗
f ,min + ε, α∗

f ,max − ε).24

Remark 3.1.2. We will later learn that the generic continuous function satisfies the25

hypothesis of this theorem; see Theorem 4.3.1.26

If one considers f , g ∈ C(Ω) with continuous spectrum then the above theorem27

can be used to show that for given ε > 0 one can find δ > 0 such that ‖ f − g‖ < δ28

implies that ‖S f − Sg‖ < ε. On the other hand, if f has discontinuous spectrum, say29

S f (α
∗
f ,max) > 0 then the density of functions with continuous spectrum (Theorem30

4.2.1) and Remark 3.1.4 imply that arbitrary close to f one can find functions g such31

that ‖S f − Sg‖ > S f (α
∗
f ,max)/2.32

To proceed, we first prove the following lemma.33

Lemma 3.1.3. Let ε > 0 be given. Suppose that f ∈ C(Ω), and α ∈ [α∗
f ,min, α∗

f ,max].34

Then for any g ∈ C(Ω) such that ‖ f − g‖ < ε, there exists α′ ∈ (α − ε, α + ε) for which35

Sg(α′) ≥ S f (α). If S f (α) = 0, but E f (α) 6= ∅ then Eg(α′) 6= ∅.36
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Remark 3.1.4. This implies that if ‖ f − g‖ < ε then |α∗
f ,max − α∗

g,max| < ε and1

|α∗
f ,min − α∗

g,min| < ε.2

Proof. Recall the definition of F f (α) from (2.1). By Theorem 2.3.1 there exists µ0 ∈3

F f (α) for which4

S f (α) =
hµ0

log 2
=

maxµ∈F f (α)
hµ

log 2
.

Set α′ =
∫

g dµ0. Since ‖ f − g‖ < ε, we have α′ ∈ (α − ε, α + ε). For α ∈5

[α∗
f ,min, α∗

f ,max] we have E f (α) 6= ∅. If S f (α) = 0, then α ∈ {α∗
f ,min, α∗

f ,max}. Consider6

the map f∗ : Mσ → L f for which that f∗(µ) =
∫

f dµ. Since the map f∗ is affine7

and continuous, µ0 must be one of the extremal points of the convex set Mσ.8

This implies that µ0 is ergodic, so we may apply Birkhoff’s Ergodic Theorem to9

show that for µ0 almost every ω we have limN→∞
1
N ∑

N
n=1 g(σnω) = α′ and hence10

Eg(α′) 6= ∅.11

Hence, from now on we can suppose that S f (α) > 0. In that case since µ0 ∈12

Fg(α′) by Theorem 2.3.1 we obtain that13

Sg(α
′) =

maxµ∈Fg(α′) hµ

log 2
≥ hµ0

log 2
= S f (α).

�14

Using this lemma, we will prove the theorem by using concavity of the spectrum.15

Proof of Theorem 3.1.1. For some L ∈ N, we consider a partition16

α∗
f ,min = α1 < α2 < · · · < αL = α∗

f ,max

for which for every i = 1, 2, . . . , L − 1, |αi+1 − αi| < ε/4 is small enough such that17

for every t ∈ [0, 1], we have18

(1 − t)S(αi) + tS(αi+1) > S((1 − t)αi + tαi+1)− ε/2.

For each αi, we choose a positive number δ(αi) < ε/8 as follows: For any α′
i ∈19

(αi − δ(αi), αi + δ(αi)), and β′
i ≥ S f (αi), the line segments connecting the points20

(α′
i, β′

i) and (α′
i+1, β′

i+1) are above the graph of S f (α)− ε for i = 2, ..., L − 2. We can21

also suppose that the intervals (αi − δ(αi), αi + δ(αi)) are disjoint. Then we set22

δ = min{ε/8, δ(α1), δ(α2), . . . , δ(αL)}.

We apply Lemma 3.1.3 with ε = δ to show that there exists α′
i ∈ (αi − δ, αi +23

δ) ⊂ (αi − δ(αi), αi + δ(αi)) such that Sg(α′
i) ≥ S f (αi) for i = 1, ..., L − 1. Since24

|α′
1 − α∗

f ,min| = |α′
1 − α1| < ε/8 and |α′

L − α∗
f ,max| = |α′

L − αL| < ε/8 by using25

the concavity of Sg one can show that Sg(α) > S f (α) − ε for all α ∈ (α∗
f ,min +26

(ε/2), α∗
f ,max − (ε/2)). By reversing the roles of f and g, by an analogous argument27

we can conclude that S f (α) > Sg(α)− ε for all α ∈ (α∗
g,min + (ε/2), α∗

g,max − (ε/2)).28

Using Remark 3.1.4 we can conclude the proof. �29
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3.2. Piecewise constant (PCC) functions. We start with a lemma in which we show1

that α∗
f ,max is a uniform upper bound of the limit of the Birkhoff averages of any2

f ∈ PCCk.3

Lemma 3.2.1. Assume f ∈ PCCk(Ω) and ε > 0. Then there exists N0 such that for any4

N ≥ N0, for any ω ∈ Ω, we have5

(3.1)
1
N

N

∑
n=1

f (σnω) ≤ α∗
f ,max + ε,

which implies that6

(3.2) lim sup
N→∞

1
N

N

∑
n=1

f (σnω) ≤ α∗
f ,max uniformly for any ω ∈ Ω.

Proof. Choose N0 such that for any N > N07

(3.3)
−k ‖ f‖+ N(α∗

f ,max + ε)

N + k
> α∗

f ,max +
ε

2
.

We claim that this N0 satisfies the statement of the lemma. Proceeding towards a8

contradiction, assume the existence of a configuration ω and N > N0 which refutes9

this claim, that is10

(3.4)
1
N

N

∑
n=1

f (σnω) > α∗
f ,max + ε.

Our goal is to construct ω′ ∈ Ω, periodic by N + k which will satisfy11

(3.5)
N

∑
n=1

f (σnω′) =
N

∑
n=1

f (σnω) > N(α∗
f ,max + ε),

and this will contradict the definition of α∗
f ,max as we will see in (3.7). In the ergodic12

sums we consider, the first coordinate has no importance, thus it is sufficient to13

construct σω′. Let it be periodic with period N + k (that is σN+k+1ω′ = σω′), and14

define its first N + k coordinates to be ω2, ω3, ..., ωN+k+1. Now if N′ is arbitrary,15

express it modulo N + k as N′ = p(N + k) + q, where p is a nonnegative integer,16

while 0 ≤ q < N + k. Then the corresponding ergodic sum can be written as17

1
N′

N′

∑
n=1

f (σnω′) =
1

N′

p(N+k)

∑
n=1

f (σnω′) +
1

N′

q

∑
n=1

f (σp(N+k)+nω′)

=
p(N + k)

N′

(

1
p(N + k)

p(N+k)

∑
n=1

f (σnω′)

)

+
1

N′

q

∑
n=1

f (σp(N+k)+nω′) = ⊛

(3.6)

Using the periodicity of σω′ in the first sum, and the boundedness of f in the
second one we infer

⊛ =
p(N + k)

N′

(

1
N + k

N+k

∑
n=1

f (σnω′)

)

+ o(N′).
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Hence if N′ → ∞, the ergodic sum 1
N′ ∑

N′
n=1 f (σnω′) converges to 1

N+k ∑
N+k
n=1 f (σnω′).1

Now by (3.4) and f ∈ PCCk(Ω), we have (3.5). Thus by (3.3), we deduce2

(3.7)
1

N + k

N+k

∑
n=1

f (σnω′) >
−k ‖ f‖+ N(α∗

f ,max + ε)

N + k
> α∗

f ,max +
ε

2
,

Hence E f (α) 6= ∅ for some α > α∗
f ,max +

ε
2 , which is obviously a contradiction. It3

concludes the proof. �4

Next, we will show that if f ∈ PCC(Ω), then there exists a periodic point in Ω5

for which the limit of the Birkhoff averages of f equals α∗
f ,max.6

Lemma 3.2.2. Let f ∈ PCCk(Ω). Then there exists a periodic configuration ω such that7

limN→∞
1
N ∑

N
n=1 f (σnω) = α∗

f ,max.8

Proof. We define a directed graph G = (V, E) as follows: V = {0, 1}k, and there is9

an edge from u ∈ V to v ∈ V if roughly speaking v is one of the possible shifted10

images of u, that is vi = ui+1 for i = 1, ..., k − 1. Now we can think of the values11

of f as weights on the vertices of G, while an arbitrary ω ∈ Ω corresponds to an12

infinite walk Γω in G. Moreover, the ergodic averages are simply the averages of13

weights along the vertices of finite subwalks of Γω.14

For technical reasons, it is advantageous to put the weights on the edges and15

work with those ones: one of the convenient ways to do so is putting weight f (u)16

on all the edges leaving the vertex u. Denote the function E → R obtained this way17

by f , too. Now the ergodic averages can be considered as the averages of weights18

along the edges of finite subwalks of ω.19

Consider now ω ∈ Ω such that 1
N ∑

N
i=1 f (σiω) → α∗

f ,max. Take the corresponding20

path Γω. As V is finite, there exists a vertex which appears infinitely many times21

in Γω. By erasing the first few entries of ω, or equivalently, erasing the first few22

edges of Γω, we might assume by abuse of notation that the first vertex v of Γω23

recurs infinitely many times. Now based on the recurrences of v, we can partition24

the infinite walk Γω into closed, finite walks Γ
(1)
ω , Γ

(2)
ω , ... such that each such walk25

starts and ends with v, and in the meantime it does not hit v. Now it is simple to26

verify that the edge set (counted with multiplicities from now on) of each Γ
(i)
ω is the27

union of graph cycles, or in other words, it is the union of closed walks containing28

each of their edges precisely once. (One cycle might also appear multiple times in29

this decomposition.) Indeed, we can find a subpath e1e2...er such that e1 = er, and30

there is no other repetition of edges in this subpath. Then e1e2...er−1 is a cycle, and31

its removal from Γ
(i)
ω results in a shorter closed walk starting and ending with v.32

Thus we can repeat the previous reasoning to find another cycle, if such exists and33

this procedure ends in finitely many steps.34

Let us note now that there are only finitely many cycles in G as it is a finite35

graph. Denote their set by C. By the previous paragraph, up to the last edge of any36

Γ
(i)
ω , the edge set of Γω can be written as the union of these cycles, such that C ∈ C37

is used ρC,i times. Thus the ergodic average corresponding to the subpath of the38
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Γω up to the last edge of Γ
(i)
ω is the following:1

(3.8)
∑C∈C ρC,i ∑e∈C f (e)

∑C∈C ρC,i|C|
=

∑C∈C ρC,i|C| ∑e∈C
f (e)
|C|

∑C∈C ρC,i|C|
.

Notice that it is simply a convex combination of the cycle averages ∑e∈C
f (e)
|C| . Hence2

the ergodic average in (3.8) can be bounded from above by maxC∈C ∑e∈C
f (e)
|C| . Now3

by the choice of ω we also know that this ergodic average tends to α∗
f ,max as i → ∞,4

hence5

(3.9) α∗
f ,max ≤ max

C∈C ∑
e∈C

f (e)

|C|
also holds.6

Now consider the infinite walk which goes along a cycle C0 over and over again,7

where C0 is chosen so that the above maximum is attained. Then C0 together with8

a starting point uniquely determines a periodic configuration ω∗ ∈ Ω for which9

σiω∗ always equals the respective vertex of C0. Moreover, it is simple to check that10

the ergodic averages tend to ∑e∈C0

f (e)
|C0| . Hence this limit must be α∗

f ,max by (3.9), as11

it is an upper estimate for all ergodic limits. �12

4. Continuity, discontinuity and support of the spectrum13

By [6], we know that S f is necessarily upper semi-continuous for any continuous14

function. Moreover, it is continuous on [α∗
f ,min, α∗

f ,max], while it vanishes outside15

of this interval. However it is not necessarily continuous at the endpoints of this16

interval.17

4.1. Denseness of PCC functions with discontinuous spectra. Recall an example18

of a PCC3(Ω) function with discontinuous spectrum from Example 2.2.3. In this19

section, we will show that functions in PCC(Ω) with discontinuous spectrum form20

a dense subset of C(Ω).21

Theorem 4.1.1. Functions h ∈ PCC(Ω) with Sh(α
∗
h,max) > 0 are dense in C(Ω).22

Remark 4.1.2. Of course, a similar theorem is valid with Sh(α
∗
h,min) > 0 in the con-23

clusion and with a little extra technical effort one can show density in C(Ω) of those24

f ∈ PCC(Ω) for which Sh(α
∗
h,max) > 0 and Sh(α

∗
h,min) > 0 hold simultaneously. As25

Theorem 4.2.1 shows functions satisfying the conclusion of Theorem 4.1.1, or any26

of its above mentioned variants form a first category set in C(Ω).27

The main idea of the proof of Theorem 4.1.1 is to show that given any continuous28

function, we can approximate it by a PCC function, and we further "perturb" that29

PCC function in an appropriate way so that its spectrum will be discontinuous.30

Proof of Theorem 4.1.1. Suppose ε > 0 and f0 ∈ C(Ω) are arbitrary. We need to find31

an h ∈ PCC(Ω) such that32

(4.1) ‖ f0 − h‖ < ε and S f (α
∗
h,max) > 0.
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By using a suitably large k choose f ∈ PCCk(Ω) such that ‖ f − f0‖ < ε/2. By1

Lemma 3.2.2 select a periodic ω′ such that2

(4.2) lim
N→∞

1
N

N−1

∑
n=0

f (σnω′) = α∗
f ,max.

In this proof, as in (4.2) we prefer to take Birkhoff sums with indices between 03

and N − 1, when taking limits it makes no difference. We can assume that there4

is a finite string of 0s and 1s, denoted by A such that ω′ = A∞, by not necessarily5

using the minimal period we can also suppose that kA = |A|, the length of A is a6

multiple of k.7

Now we select a string B of length kA. If A 6= 0kA then we let B = 0kA , if A = 0kA8

then we let B = 1kA . Without limiting generality in the sequel we assume that9

B = 0kA .10

By using a suitably large number ℓ, to be fixed later, we consider strings X =11

(A2ℓ)AABAA and Y = (A2ℓ)ABAAA.12

Set H = {X, Y}∞.13

Observe that14

(4.3) lim
N→∞

1
N

N−1

∑
n=0

f (σnω) =: αXY ≤ α∗
f ,max for any ω ∈ H.

Put m = ℓ+ 7. We define the following finite union of cylinder sets in Ω15

(4.4) Cm = {U1U2...Umω0ω1... : Ui ∈ {X, Y}, i = 1, ..., m, ωj ∈ {0, 1}, j = 0, 1, ...}.

Put P = ∪ℓ−1
i=0 σikACm.16

Next we define our perturbation function g ∈ PCCmkA(Ω). If ω ∈ P then we set17

g(ω) = ε/4, otherwise put g(ω) = 0.18

It is easy to see that dimH H > 0, since by Hutchinson’s theorem19

2 · (2−(2ℓ+5)kA)dimH H = 1, which gives dimH H = 1/((2ℓ + 5)kA). Take and fix an20

arbitrary ω ∈ H. Recall that |X| = |Y| = (2ℓ+ 5)kA. By our definition of X and Y21

we have22

(4.5)
1

(2ℓ+ 5)kA

(2ℓ+5)kA−1

∑
j=0

f (σj+t(2ℓ+5)kA ω) = αXY for any t ∈ {0, 1, ...}.

From the choice of ω and A it is also clear that23

(4.6)
1

2ℓkA

2ℓkA−1

∑
j=0

f (σj+t(2ℓ+5)kA ω) = α∗
f ,max for any t ∈ {0, 1, ...}.

Hence,24

(4.7) αXY ≥
2ℓkA · α∗

f ,max + 5kAα f ,min

(2ℓ+ 5)kA
→ α∗

f ,max as ℓ → ∞.

Observe that if Ui ∈ {X, Y} then there is a maximal substring of Ui which con-25

sists of consecutive zeros. This is the one which contains B, and of course might26



Generic Birkhoff Spectra 14

contain some zeros from the end/beginning of the As before/after B in Ui. This1

and the definition of P and g imply that for ω ∈ H2

(4.8) g(σjω) > 0 holds iff j = ikA + t(2ℓ+ 5)kA, i = 0, ..., ℓ− 1, t = 0, 1, ... .

Therefore,3

(4.9)
1

(2ℓ+ 5)kA

(2ℓ+5)kA−1

∑
j=0

g(σj+t(2ℓ+5)kA ω) =
ℓε

4(2ℓ+ 5)kA
for any t ∈ {0, 1, ...}.

Next we select ℓ. First we have to suppose that4

(4.10) ℓ · ε

8
> 5kA(α

∗
f ,max − α f ,min) and

ℓ

8(2ℓ+ 5)
>

1
32

.

Then
2ℓkAα∗

f ,max + 5kAα f ,min + ℓ
ε
4

(2ℓ+ 5)kA
>

2ℓkAα∗
f ,max + 5kAα∗

f ,max + ℓ
ε
8

(2ℓ+ 5)kA
(4.11)

> α∗
f ,max +

ε

32kA
.

From (4.6), (4.7) and (4.11) it follows that if h = f + g then for ω ∈ H5

(4.12)
1

(2ℓ+ 5)kA

(2ℓ+5)kA−1

∑
j=0

h(σj+t(2ℓ+5)kA ω) = b∗ > α∗
f ,max +

ε

32kA
for t = 0, 1, ... .

This obviously implies that H ⊂ Eh(b
∗) and hence Sh(b

∗) = dimH Eh(b
∗) > 0.6

If we can verify that b∗ = α∗
h,max then we are done. We need to show that if7

(4.13) lim
N→∞

1
N

N−1

∑
n=0

h(σnω) = α then α ≤ b∗.

Suppose that we have a fixed ω ∈ Ω for which the limit in (4.13) exists and equals8

α.9

Now we subdivide ω into finitely or infinitely many substrings in the following
way

ω = Z0W1Z1W2Z2...

where Z0 might be the empty string, the other strings are non-empty. For any j10

the strings Wj ∈ {X, Y}dj , where 1 ≤ dj ≤ +∞. The strings Zj do not contain any11

substring of the form X or Y and they can be finite, or infinite. In case one of the12

Zjs is infinite then there exists N1 such that for all n ≥ N1, g(σnω) = 0 and hence13

α ≤ α∗
f ,max < b∗.14

Hence from now on we can suppose that the Zjs are finite.15

If one of the Wjs is infinite then one can find N1 such that σN1ω ∈ H and hence16

α = b∗ by (4.12).17

Hence from now on we can suppose that all the Wjs are finite.18

Since for any k ∈ N we have ω ∈ Eh(α) iff σkω ∈ Eh(α) we can suppose that19

Z0 = ∅ and hence ω = W1Z1W2Z2.... Choose kj, j = 1, 2, ... such that the substring20

WjZj of ω starts at ωkj
, that is WjZj = ωkj

ωkj+1...ωkj+1−1. We denote by k′j the place21

where Zj starts, that is, Wj = ωkj
ωkj+1...ωk′j−1 and Zj = ωk′j

ωk′j+1...ωkj+1−1.22
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Suppose that we have a j for which1

(4.14) there exists n ∈ {kj, ..., kj+1 − 1} such that g(σnω) > 0.

We denote the set of such js by J.2

Then g(σnω) = ε/4. We can assume that nj is the maximal n satisfying the
inequality in (4.14). Then nj < k′j. Moreover, by the definition of g and P we have

nj = k′j − m(2ℓ+ 5)kA + (ℓ− 1)kA.

Put
k′′j = nj − (ℓ− 1)kA + (2ℓ+ 5)kA.

Then by the definition of g3

(4.15) σ
k′′j ω|(2ℓ+ 5)kA ∈ {X, Y} and σkjω|(k′′j − kj) ∈ {X, Y}(k

′′
j −kj)/(2ℓ+5)kA ,

where (k′′j − kj)/(2ℓ + 5)kA is an integer, that is σkjω|(k′′j − kj) starts with a long4

string of Xs and Ys. Hence5

(4.16)
1

k′′j − kj

k′′j −1

∑
n=kj

g(σnω) =
ℓε

4(2ℓ+ 5)kA
.

It is also clear that6

(4.17)
1

kj+1 − k′′j

kj+1−1

∑
n=k′′j

g(σnω) = 0.

Suppose that δ > 0 is given. We want to find Nδ such that for N ≥ Nδ we have7

(4.18)
1
N

N−1

∑
n=0

h(σnω) < b∗ + δ.

We can suppose that J is infinite since otherwise there exists N1 such that h(σnω) =8

f (σnω) for n ≥ N1 and α ≤ α∗
f ,max < b∗ holds.9

Now we split ω into two infinite substrings ωg, the "good part" of ω can be10

obtained as the concatenation of the substrings σkjω|(k′′j − kj), j ∈ J.11

While ωb, the "bad part" of ω is the "rest" of ω, that is what is left of ω if we12

delete from it the good part. To be more specific if j 6∈ J then we take the string13

σkjω|(kj+1 − kj), otherwise if j ∈ J then we take the string σ
k′′j ω|(kj+1 − k′′j ) and14

concatenate these strings.15

Using (4.12), (4.16), and the definition of the strings X and Y it is clear that if16

j ∈ J then17

(4.19)
1

k′′j − kj

k′′j −1

∑
n=kj

h(σnω) = b∗.

We also know that if n 6∈ ∪j∈J[kj, k′′j − kj) then g(σnω) = 0 and hence h(σnω) =18

f (σnω).19
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Moreover, if (t + 1)(2ℓ+ 5)kA ≤ k′′j − kj, for a j ∈ J then1

(4.20)
1

(2ℓ+ 5)kA

kj+(t+1)(2ℓ+5)kA−1

∑
n=kj+t(2ℓ+5)kA

h(σnω) = b∗

holds as well.2

We introduce the notation Ng = ∪j∈J{kj, ..., k′′j − 1} and Nb = {0, 1, ...} \ Ng.3

From (4.20) and the boundedness of h it follows that we can select N′
δ such that for4

N > N′
δ5

(4.21)
1

#{n ∈ Ng : n < N} ∑
n∈Ng, n<N

h(σnω) < b∗ +
δ

2
.

Denote #{n ∈ Nb : n < N} by νb(N).6

Next we need to estimate7

(4.22)
1

νb(N) ∑
n∈Nb, n<N

h(σnω) =
1

νb(N) ∑
n∈Nb, n<N

f (σnω).

A little later we will show that8

(4.23)
1

νb(N) ∑
n∈Nb, n<N

f (σnω) =
1

νb(N)

νb(N)−1

∑
n=0

f (σnωb).

Next we show that if we verified this then we can complete our proof. Indeed by
Lemma 3.2.1

lim sup
N′→∞

1
N′

N′−1

∑
n=0

f (σnωb) ≤ α∗
f ,max

and hence we can select Nδ ≥ N′
δ such that if N ≥ Nδ then νb(N) is sufficiently

large to have

1
νb(N)

νb(N)−1

∑
n=0

f (σnωb) ≤ α∗
f ,max +

δ

2
.

By (4.23) this yields that

1
νb(N) ∑

n∈Nb, n<N

f (σnω) < α∗
f ,max +

δ

2
< b∗ +

δ

2
.

From this, (4.21), and (4.22), it follows that for N > Nδ

1
N

N−1

∑
n=0

h(σnω) < b∗ +
δ

2
.

Since a suitable Nδ can be chosen for any δ > 0 we proved that α ≤ b∗.9

Hence, to complete the proof of the theorem we need to verify (4.23). But this is10

not difficult. Since f ∈ PCCk(Ω) we know that f (σnω) depends only on the string11

σnω|k.12

Observe that during the definition of ωb we concatenate strings which start with13

a string A and A is of length kA > k. Indeed, if j 6∈ J then during the definition we14

concatenate the string σkjω|(kj+1 − kj) = WjZj, and Wj starts with X or Y and they15

both start with A.16
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If j ∈ J then we take the string σ
k′′j ω|(kj+1 − k′′j ) and by (4.15) this string starts1

with A.2

We can define a function ψ : {0, 1, ...} → Nb the following way. For n ∈ {0, 1, ...}3

if we take ωb
n then this entry corresponded to exactly one entry ωψ(n) of ω and be-4

longed to a concatenated string making up ωb. Suppose that kj ≤ ψ(n) < kj+1. If5

ψ(n) ≤ kj+1 − k then the strings σnωb|k and σψ(n)ω|k are identical and hence6

f (σnωb) = f (σψ(n)ω). If ψ(n) > kj+1 − k then there is an n′ < n + k such7

that ψ(n′) = kj+1. By our concatenation procedure it is clear that the strings8

σnωb|(n′ − n) and σψ(n)ω|(n′ − n) are identical. It is also clear that ψ(n′) = kj+19

and σψ(n′)ω|kA = A, since we take the first kA entries of a string which equals X10

or Y. Now recall our earlier observation that ωb was obtained by the concatenation11

of strings which start with A. Hence σn′
ωb starts with the string A. This implies12

again that f (σnωb) = f (σψ(n)ω). �13

4.2. A generic continuous function has a continuous Birkhoff spectrum. We have14

seen in the previous subsection that functions with dicontinuous spectrum form a15

dense set in C(Ω). Next we will show that the set of such functions is of first16

category.17

Theorem 4.2.1. For the generic continuous function f ∈ C(Ω), we have that S f is con-18

tinuous on R.19

Remark 4.2.2. This theorem implies that the set of continuous functions with dis-20

continuous Birkhoff spectrum is a set of first category. This set includes functions21

which are cohomologous to a constant, as we observed in Example 2.2.2, hence this22

is a possible way to see that these functions form a set of first category.23

To prove Theorem 4.2.1, we need the following lemma, which shows that one24

can "perturb" a PCC function so that the new function would have a continuous25

spectrum.26

Lemma 4.2.3. Let f ∈ PCCk(Ω) and let ε > 0. Then there exists p ∈ N and g ∈ C(Ω)27

such that ‖g‖ < ε, S f+g vanishes at α∗
f+g,max and α∗

f ,min − ε ≤ α∗
f+g,min ≤ α∗

f+g,max ≤28

α∗
f ,max + ε.29

Proof. Let f ∈ PCCk(Ω) and let ε > 0. Let ω∗ be a periodic point with prime period30

p for which 1
p ∑

p
n=1 f (σnω∗) = α∗

f ,max (which exists by Lemma 3.2.2). Suppose31

g0(ω) = mini=1,...,p{d(ω, σiω∗)}, and let g = −εg0 + c for some c ∈ (0, ε) chosen in32

a way that
∫

gdλ = 0. Since λ(Ω) = diam(Ω) = 1, it is clear that ‖g‖ < ε.33

Given E ⊂ N, we denote by d(E) the density of the set E, that is limN→∞
#(E∩[1,N])

N34

(if it exists). We let35

Hω∗ := {ω ∈ Ω : ω|E = ω∗ where d(Ec) = 0},

where ω|E denotes the concatenation of ωj, j ∈ E. We will show that E f+g(α
∗
f+g,max) ⊂36

Hω∗, and then we observe that dimH Hω∗ = 0.37
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By using (3.2) from Lemma 3.2.1 one can see that α∗
f+g,max ≤ α∗

f ,max + c. Since1

g0(σ
nω∗) = 0 for any n, we obtain α∗

f+g,max ≥ α∗
f ,max + c, and hence α∗

f+g,max =2

α∗
f ,max + c. Let ω ∈ E f+g(α

∗
f+g,max). Then we must have3

lim
N→∞

(

1
N

N

∑
n=1

f (σnω)− ε

N

N

∑
n=1

g0(σ
nω)

)

= α∗
f ,max ,

and this is only possible if 1
N ∑

N
n=1 f (σnω) → α∗

f ,max, and, in particular,

1
N

N

∑
n=1

g0(σ
nω) → 0 as N → ∞.

This implies that the set

Jω := {n ∈ N : g0(σ
nω) ≥ 2−p}

has zero density. Observe that if g0(σ
nω) < 2−p for n = j′, ..., j′+ l then there exists4

i ∈ {0, ..., p − 1} such that5

(4.24) (σnω)
j′+l+p
j′ = σiω∗|l + p + 1.

The case when Jω is finite is much easier and is left to the reader, we detail only6

the case when Jω is infinite.7

Suppose we enumerate Jω = {j1, j2, j3, . . .} in the increasing order and we set8

j0 := 1. Then for each k ∈ N ∪ {0}, there exists ik ∈ {0, ..., p − 1} such that the9

(possibly empty) string γ(jk) := (ω)
jk+1−1
jk+1 equals σik ω∗|jk+1 − jk − 1. Hence, we10

have11

ω|Jc
ω
= γ(j0)γ(j1)γ(j2) · · · .

Since ω∗ is periodic we can choose mk ∈ {0, ..., p − 1} such that if γ∗(jk) =12

σmk γ(jk), that is we throw away the first mk entries of γ(jk), then13

γ∗(j0)γ
∗(j1)γ

∗(j2) · · · = ω∗ .

Put F = ∪k{jk, ..., jk + mk}. Then F ⊂ ⋃p−1
i=0 Jω + i (where A + b = {a + b : a ∈ A}14

for any A ⊂ N and b ∈ N), which has a zero density. Setting E = Fc, we get15

ω|E = ω∗. Hence, ω ∈ Hω∗, which shows that E f+g(α
∗
f+g,max) ⊂ Hω∗.16

We now show that dimH Hω∗ = 0. Consider the set H0 := {ω ∈ Ω : d({i ∈ N :17

ωi = 1}) = 0}. Due to Example 2.2.1 we see that dimH(H0) = 0 as it equals S f (0)18

for f defined in that example. Given ω ∈ Ω and i ∈ N we set ν(i, ω) = #{j : ωj =19

0, j ≤ i}. We define a map h : Ω → Ω as follows: h(ω) = h1h2h3 . . ., where20

hi :=

{

ω∗
ν(i,ω) if ωi = 0

1 − ω∗
ν(i,ω)+1 if ωi = 1.

It is easy to see that h is Lipschitz. One can also verify easily that h(H0) ⊃ Hω∗.21

Therefore, 0 ≤ dimH(Hω∗) ≤ dimH(h(H0)) = 0. �22

What remains from the proof of Theorem 4.2.1 is rather standard:23
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Proof of Theorem 4.2.1. It suffices to prove that a generic continuous function h has1

continuous spectrum at the points α∗
h,min and α∗

h,max, and due to symmetry reasons,2

it suffices to prove the continuity in α∗
h,max (if it holds in a residual set, the other3

also does in another residual set, and the intersection of these sets is still residual).4

We will prove in fact that the set5

Z = {h ∈ C(Ω) : Sh is not continuous at α∗
h,max}

is meager. Note that we know that Sh is concave and achieves its maximum at6
∫

h dλ, hence7

Z =
∞
⋃

n=1

Z 1
n
,

where8

Zθ =

{

h ∈ C(Ω) : Sh(x) > θ for all x ∈
[

∫

h dλ, α∗
h,max

]}

.

Now it suffices to prove that each Zθ is nowhere dense, and clearly it is enough to9

consider small enough θ < 1. To this end, take arbitrary f ∈ PCCk(Ω) for some10

k, and ε > 0. By Lemma 4.2.3, we can find f + g in the ε-neighborhood of f such11

that it has continuous spectrum at α∗
f+g,max. Then α∗

f+g,max >
∫

( f + g) ≥ α∗
f+g,min12

necessarily holds, as S f+g(
∫

( f + g)dλ) = 1. Now by continuity, we can take x ∈13
[

∫

h, α∗
f+g,max

]

such that 0 < S f+g(x) <
θ
2 . By its concavity S f+g is monotone14

decreasing on [
∫

h, α∗
f+g,max] hence we can assume that15

x − α∗
f ,min ≥ α∗

f ,max − x.

Now apply Theorem 3.1.1 for f + g with16

(4.25) ε′ = min
{θ

2
, α∗

f ,max − x
}

.

It guarantees that 0 < Sh(x) < θ for any h with ‖h − ( f + g)‖ < δ′ for some17

δ′ > 0. Moreover, if h and f + g are close enough to each other, we also have18

that their integral cannot differ by much, hence we also have that x ∈
[

∫

h, α∗
h,max

]

.19

Consequently, if h is in a sufficiently small neighborhood of f + g satisfying both20

this integral condition and what is given by (4.25), then h is not in Zθ . It yields that21

Zθ is nowhere dense, as PCC(Ω) is dense, and in the neighborhood of an arbitrary22

f belonging to this set we constructed an open ball which is disjoint from Zθ . It23

concludes the proof. �24

4.3. Supports of generic spectra are in (α f ,min, α f ,max). In Example 2.2.1 we saw25

a very simple PCC function for which the range of the function [α f ,min, α f ,max]26

coincides with the support of the spectrum [α∗
f ,min, α∗

f ,max]. In this subsection we27

verify that for the generic continuous function this is not true, we have (4.26), in28

fact we prove a little more, we show that the set of functions having this property29

is comeager.30

Theorem 4.3.1. For a dense open set G ⊂ C(Ω) we have31

(4.26) α f ,min < α∗
f ,min < α∗

f ,max < α f ,max
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hence the generic f ∈ C(Ω) satisfies (4.26).1

Proof. It suffices to prove that each inequality in (4.26) holds in a dense open subset2

of C(Ω), and due to symmetry, it is sufficient to prove that α∗
f ,min < α∗

f ,max and3

α∗
f ,max < α f ,max hold in dense open subsets, respectively. Given Remark 3.1.4, it4

immediately follows that each of these inequalities holds in an open subset, thus5

we only have to keep an eye on denseness.6

Consider first α∗
f ,min < α∗

f ,max. By Theorem 4.2.1 we know that S f is continuous7

for f ∈ G1 with a dense subset G1 ⊂ C(Ω). However, for αλ =
∫

f dλ we have8

S f (αλ) = 1, and S f (α
∗
f ,min) = S f (α

∗
f ,max) = 0, hence9

(4.27) α∗
f ,min < α∗

f ,max.

It yields that for any f ∈ G1 we have α∗
f ,min < α∗

f ,max, thus this inequality holds in10

a dense subset indeed.11

Let us consider now α∗
f ,max < α f ,max. We know that functions f ∈ PCC(Ω)12

are dense in C(Ω). Consider such a function f , we have f ∈ PCCk(Ω) for some13

k > 0. By Lemma 3.2.2 we know that there exists a periodic configuration ω f with14

limN→∞
1
N ∑

N
n=1 f (σnω f ) = α∗

f ,max. If α∗
f ,max < α f ,max then we are done. Hence we15

can suppose that α∗
f ,max = α f ,max. Assume first that ω f can be chosen such that16

ω f is neither identically 1∞ nor 0∞. Then we can choose a substring A of length k17

such that f is maximal on [A] and A is neither [11 · · · 1] nor [00 · · · 0] (i.e. cylinders18

of k many 1s or 0s, respectively). Now for given ε > 0 define g ∈ PCCk(Ω)19

such that f = g except on the cylinder [A] where g = f + ε. Set ωg to be a20

periodic configuration for which limN→∞
1
N ∑

N
n=1 g(σnωg) = α∗

g,max, which is again21

guaranteed to exist by Lemma 3.2.2. The relative frequency of the substring A in22

ωg is strictly smaller than 1, as A contains both 0s and 1s, hence at least 1/k of the23

substrings start with a binary digit different from the first entry in A. Thus we can24

conclude25

lim
N→∞

1
N

N

∑
n=1

g(σnωg)− lim
N→∞

1
N

N

∑
n=1

f (σnω f ) < ‖g − f‖ = ε,

hence26

α∗
g,max − α∗

f ,max < ε.

However,27

αg,max − α f ,max = ε

by definition. Hence we can find g arbitrarily close to f with α∗
g,max < αg,max in this28

case.29

Assume now that the only possible choices for ω f are amongst 1∞ and 0∞. If A30

can be chosen as in the first case, differing from the identically 1 and identically 031

strings of length k, then the previous argument might be repeated, thus it suffices32

to observe the cases when ω f and A can only be identically 1 or identically 0.33

Clearly without loss of generality we can assume that the former one holds. In this34

case we perturb f as follows: let g ∈ PCCk+1(Ω) such that it equals f everywhere,35

except on the (k + 1)-cylinder which starts with k many 1s and ends with a 0. On36
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this cylinder let g = f + ε such that g is very close to f . Then αg,max − α f ,max = ε1

as previously. Moreover, if ε = ‖g − f‖ is sufficiently small, by the conditions2

of this case the only maximizing periodic configuration for g is 1∞, too. Hence3

α∗
g,max = α∗

f ,max, which immediately yields α∗
g,max < αg,max again.4

Thus in both cases we showed that any f ∈ PCCk(Ω) can be approximated by5

functions satisfying α∗
g,max < αg,max. It yields that such functions also form a dense6

set, which concludes the proof. �7

Remark 4.3.2. In ergodic optimization, a function f ∈ C(Ω) for which α∗
f ,max =8

α f ,max is called revealed (cf. [10, §5]). Theorem 4.3.1 tells us that the set of revealed9

functions in C(Ω) forms a nowhere dense set.10

5. One-sided derivatives of the Birkhoff spectra at endpoints11

In this section for functions with continuous spectrum we are interested in the12

one-sided derivatives of the spectrum at the endpoints of its support in the direc-13

tion of the interior of the support.14

5.1. One-sided derivatives at the endpoints of spectra for generic functions. For15

the generic continuous function we have already seen in Theorem 4.2.1 that the16

spectrum is continuous at these endpoints, and as in the direction of the exterior17

of L f the spectrum is constant zero, the one-sided derivative is also zero. On the18

other hand, towards the interior of the support it is of infinite absolute value as we19

see in the next theorem.20

Theorem 5.1.1. For the generic continuous function f ∈ C(Ω), we have ∂−S f (α
∗
f ,max) =21

−∞, while ∂+S f (α
∗
f ,min) = ∞.22

We start with a lemma which will be the building block for the proof of the above23

theorem.24

Lemma 5.1.2. Let f0 ∈ C(Ω), ε > 0, and ν ∈ N be given. Then there exists f2 ∈ C(Ω)25

and δ > 0 such that ‖ f0 − f2‖ < ε/2, δ < ε/2, and for any f ∈ B( f2, δ) ⊂ B( f0, ε) there26

exists α′ < α∗
f ,max such that27

(5.1)
S f (α

′)− S f (α
∗
f ,max)

α′ − α∗
f ,max

< −ν.

Remark 5.1.3. As S f is concave on the interval L f , the inequality (5.1) in the lemma28

implies ∂−S f (α
∗
f ,max) < −ν.29

Proof. Using Theorem 4.1.1 choose f1 ∈ PCC(Ω) with ‖ f0 − f1‖ < ε/4 such that30

ε1 = S f1
(α∗

f1,max) > 0.31

Set ε2 = min{ε1, ε
2 , 1/2}.32

Using Theorem 4.2.1 choose f2 ∈ C(Ω) such that

‖ f1 − f2‖ <
ε2

10ν
and S f2(α

∗
f2,max) = 0.
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By Lemma 3.1.3 and Remark 3.1.4 applied to f1 and f2 we obtain that α∗
f2,max <1

α∗
f1,max +

ε2
10ν and there exists α′ > α∗

f1,max −
ε2

10ν such that2

(5.2) S f2(α
′) ≥ S f1

(α∗
f1,max) = ε1 ≥ ε2.

Then3

(5.3) α∗
f2,max − α′

< 2 · ε2

10ν
.

Keep in mind that S f2(α
∗
f2,max) = 0 and choose δ1 > 0 such that4

(5.4) S f2(α) <
ε2

20
holds for α ∈ (α∗

f2,max − δ1, α∗
f2,max].

Observe that from (5.2) it also follows that α∗
f2,min ≤ α′ < α∗

f2,max − δ1. Now choose5

δ2 > 0 such that6

(5.5) δ2 < min
{α∗

f2,max − α′

10
,

δ1

5
,

ε2

20ν

}

.

Using this δ2 as ε in Theorem 3.1.1 select δ ∈ (0, δ2) such that for f ∈ B( f2, δ) we7

have8

(5.6) |S f (α)− S f2(α)| < δ2 for α ∈ (α∗
f2,min + δ2, α∗

f2,max − δ2).

Suppose f ∈ B( f2, δ). Then by Lemma 3.1.3, Remark 3.1.4, (5.3) and (5.5) we
obtain

|α∗
f ,max − α∗

f2,max| < δ2 and hence |α′ − α∗
f ,max| < 1.1(α∗

f2,max − α′) < 1.1 · ε2

5ν
.

By (5.4), S f2(α
∗
f2,max − δ1/2) < ε2/20 and then by (5.6), S f (α

∗
f2,max − δ1/2) <9

ε2/10 < 1. By concavity of S f and S f (
∫

f ) = 1 it is clear that S f is monotone10

decreasing on [α∗
f ,max − δ1/2, α∗

f ,max] and hence11

(5.7) S f (α
∗
f ,max) <

ε2

10
.

Using (5.2), (5.5) and (5.6) we infer

S f (α
′) > S f2(α

′)− δ2 ≥ 0.9ε2.

By this, (5.7) and (5.3)

S f (α
′)− S f (α

∗
f ,max)

α′ − α∗
f ,max

< − 0.8ε2

1.1 · ε2
5ν

< −ν.

�12

Remark 5.1.4. We remark that due to symmetry reasons a version of Lemma 5.1.213

also holds at the other endpoint, α∗
f ,min of the spectrum yielding that for any f ∈14

B( f2, δ) ⊂ B( f0, ε) there exists α′ > α∗
f ,min such that15

(5.8)
S f (α

′)− S f (α
∗
f ,min)

α′ − α∗
f ,min

> ν.
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As we observed earlier in the one-dimensional case S f is continuous on [α∗
f ,min, α∗

f ,max]1

hence even in case of discontinuous spectra one can consider ∂−S f (α
∗
f ,max) and2

∂+S f (α
∗
f ,max), one might have a one-sided discontinuity only in the direction point-3

ing towards the exterior of the support of the spectrum.4

Lemma 5.1.2 easily implies Theorem 5.1.1:5

Proof of Theorem 5.1.1. Consider an arbitrary f0 ∈ C(Ω) and ε > 0. Fix ν ∈ N.6

We may apply Lemma 5.1.2 and Remark 5.1.3 to see that B( f0, ε) contains a smaller7

open set B( f2, δ) of C(Ω) such that for any f ∈ B( f2, δ) we have ∂−S f (α
∗
f ,max) < −ν.8

It implies that the complement of9

Aν = { f ∈ C(Ω) : ∂−S f (α
∗
f ,max) < −ν}

is nowhere dense for any ν. Hence A =
⋃∞

ν=1 Aν is a residual set of C(Ω), yielding10

that for the generic continuous function f ∈ C(Ω), we have ∂−S f (α
∗
f ,max) = −∞.11

However, by Remark 5.1.4 we may conclude the same way that for the generic12

continuous function f ∈ C(Ω), we have ∂+S f (α
∗
f ,min) = ∞. Thus for the generic13

continuous function, we have both of these prescribed equalities, which concludes14

the proof. �15

5.2. Finite one-sided derivatives at the endpoints of the spectrum. Now our goal16

is to construct a continuous function f with the property that the spectrum S f is17

continuous, but it is not generic in the above sense, that is the one-sided derivatives18

in the endpoints α∗
f ,min and α∗

f ,max are finite.19

Theorem 5.2.1. There exists f ∈ C0(Ω) such that S f is continuous, α∗
f ,min = −1 and20

α∗
f ,max = 1, and ∂−S f (α

∗
f ,max) > −∞, while ∂+S f (α

∗
f ,min) < ∞. Moreover, these deriva-21

tives can be arbitrarily close to −1 and 1, respectively.22

The first step in this direction is the following lemma, in which we give up-23

per bounds on a value of the spectrum for a suitably defined function. Since24

S f (
∫

f dλ) = 1 if we have a function with continuous spectrum then by con-25

cavity of the spectrum ∂−S f (α
∗
f ,max) ≤ −1/(α∗

f ,max −
∫

f dλ) and ∂+S f (α
∗
f ,min) ≥26

1/(
∫

f dλ − α∗
f ,min).27

In the next Lemma we define a PCC function with "very small" spectrum. This28

type of functions serve as building blocks in the proof of Theorem 5.1.1.29

Lemma 5.2.2. Let b > a, and let f : Ω → R be such that f (ω) = b if the first L30

coordinates of ω is 1, otherwise f (ω) = a. Moreover, fix ε > 0 and 0 < β < 1. Then if L31

is sufficiently large, then32

(5.9) S f (t) ≤ β + ε

for t = βa + (1 − β)b.33

Remark 5.2.3. Observe that in the above lemma if L is large then
∫

f dλ = b · 2−L +34

a(1− 2−L) and hence S f (b · 2−L + a · (1− 2−L)) = 1. The point b · 2−L + a · (1− 2−L)35

is very close to a = α f ,min. It is also clear that E f (b) 6= ∅, since 1∞ belongs to it.36

By also considering 0∞ we see that [a, b] = [α∗
f ,min, α∗

f ,max]. Hence the line segment37
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connecting (b · 2−L + a · (1 − 2−L), 1) to (b, 0) should be under the graph of S f on1

[b · 2−L + a · (1 − 2−L)]. If β is small then t is very close to b and by concavity2

of the spectrum on [b · 2−L + a · (1 − 2−L), t] the graph of S f should be under the3

line segment connecting (t, β + ε) = (βa + (1 − β)b, β + ε) to (b, 0). This implies4

that for small β and large L apart from a very short interval near the endpoint a5

the spectrum S f is very close to the line segment connecting (a, 1) to (b, 0) and on6

[a, b] approximates the upper part of the boundary of the right angled triangle with7

vertices (a, 0), (a, 1) and (b, 0).8

Proof. Let t = βa + (1− β)b. Clearly it suffices to prove the statement of the lemma9

for small enough ε, thus we might assume that β∗ = β + ε
2 < 1. We would like to10

estimate the dimension of11

E f (t) =
{

ω : lim
N→∞

1
N

N

∑
n=1

f (σnω) = t
}

.

This set contains ω if and only if it contains σ(ω), thus we can shift the sum by12

one for technical convenience. Moreover, if we replace the lim by a lim inf, we can13

deduce that this set is contained by14

{

ω : lim inf
N→∞

1
N

N−1

∑
n=0

f (σnω) ≥ t
}

.

If ω is in this set, then for large enough N the corresponding ergodic average15

exceeds t∗ = β∗a + (1 − β∗)b < t, that is16

(5.10) E f (t) ⊂
∞
⋃

m=1

∞
⋂

N=m

{

ω :
1
N

N−1

∑
n=0

f (σnω) ≥ t∗
}

.

In the sequel for ease of notation we will use
{

1
N ∑

N−1
n=0 f (σnω) ≥ t∗

}

instead of17

{

ω : 1
N ∑

N−1
n=0 f (σnω) ≥ t∗

}

. The union in (5.10) is the union of a growing sequence18

of sets, thus the dimension is simply the limit of dimH Am, where19

Am =
∞
⋂

N=m

{

1
N

N−1

∑
n=0

f (σnω) ≥ t∗
}

.

Now we focus on estimating the dimension of this set. To this end, we would like to20

count the cylinder sets of length N + L − 1 which intersect
{

1
N ∑

N−1
n=0 f (σnω) ≥ t∗

}

21

for large N, as they give a cover of Am for any N ≥ m. (We are concerned with22

cylinders of length N + L− 1 instead of the ones with length N as the first N + L− 123

coordinates affect ∑
N−1
n=0 f (σnω).) For our purposes it suffices to choose N such that24

L|N + L − 1, as we can diverge to infinity with N even under this restriction and25

we need an upper estimate of the dimension.26

The number of blocks consisting of at least L consecutive 1s is at most N+L−1
L . If27

L ≥ 2, and there are i such blocks, the number of ways to place them among the28

N + L − 1 coordinates is at most (N+L−1
2i ), since the placement of each block can be29

uniquely specified by the coordinates for which the first and the last coordinates30

of the block occupy. (We note that it is indeed an upper estimate: this expression31
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does not deal with the length of the blocks, neither with the fact that blocks are1

separated from each other with at least one intermediate coordinate.) Moreover, if2

L ≥ 5, then for the largest possible value of i, that is for i = N+L−1
L we still have3

2i = 2 · N + L − 1
L

<
N + L − 1

2
.

Thus the number of ways we can arrange the blocks of at least L consecutive 1s is4

at most5

(5.11)

N+L−1
L

∑
i=0

(

N + L − 1
2i

)

≤
(

N + L − 1
L

+ 1
)

·
(

N + L − 1
2 · N+L−1

L

)

≤ (N + L − 1) ·
(

N + L − 1
2 · N+L−1

L

)

,

as the binomial coefficients are increasing until the middle ones.6

We should also give a bound on the number of ways we can choose the other7

coordinates. Since 1
N ∑

N−1
n=0 f (σnω) ≥ t∗, we know that most of the coordinates8

belong to one of the above blocks. More specifically, in the first N coordinates9

there are at most β∗N not covered by them, as otherwise the number of terms in10

∑
N−1
n=0 f (σnω) with f (σnω) = a exceeds β∗N, which yields that11

1
N

N−1

∑
n=0

f (σnω) < β∗a + (1 − β∗)b = t∗.

Thus a raw upper estimate for the number of the ways we can choose the remaining12

coordinates in order to have an N + L − 1-cylinder intersecting13

{

1
N

N−1

∑
n=0

f (σnω) ≥ t∗
}

is 2β∗N · 2L−1, where the last factor is simply the number of ways we can choose the14

last L − 1 coordinates.15

Combining the results of the preceding two paragraphs yields that16

{

1
N

N−1

∑
n=0

f (σnω) ≥ t∗
}

is covered by at most17

(N + L − 1) ·
(

N + L − 1
2 · N+L−1

L

)

· 2β∗N+L−1

many cylinders of diameter 2−(N+L−1). By using the standard (a
b) ≤

(

ae
b

)b bound18

on the binomial coefficients, we can relax this upper bound to19

(5.12) (N + L − 1) ·
(

eL

2

)2· N+L−1
L

· 2β∗N+L−1 = k ·
(

eL

2

)
2k
L

· 2β∗k · 2(1−β∗)(L−1),

where k = N + L − 1. Notice that for large enough L (and consequently, large20

enough k) we have21

2
ε
2 >

k
√

k

(

eL

2

)
2
L

,
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as both factors on the right tend to 1. Fix L to be sufficiently large in order to1

guarantee this. Consequently, (5.12) can be estimated from above by2

(5.13) 2(β∗+ ε
2 )k · 2(1−β∗)(L−1).

Hence3
{

1
N

N−1

∑
n=0

f (σnω) ≥ t∗
}

can be covered by at most 2(β∗+ ε
2 )k · 2(1−β∗)(L−1) many cylinders of diameter 2−k for4

any k with L|k. It immediately yields5

Hβ∗+ ε
2

2−k

({

1
N

N−1

∑
n=0

f (σnω) ≥ t∗
})

≤ 2(1−β∗)(L−1)

where N = k − L + 1 as before. However, this set contains Am for large enough6

k, N, thus7

Hβ∗+ ε
2

2−k (Am) ≤ 2(1−β∗)(L−1).

As k, N can be arbitrarily large, it shows that in fact8

Hβ∗+ ε
2 (Am) ≤ 2(1−β∗)(L−1)

and consequently,9

dimH(Am) ≤ β∗ +
ε

2
= β + ε.

Consequently, by our initial observations10

S f (t) ≤ β + ε,

as stated. �11

We do not know whether there is a PCC function with finite one-sided deriva-12

tives at the endpoints of the spectrum. The following theorem might make one13

believe that the answer to this question is negative:14

Theorem 5.2.4. Assume that f ∈ PCC(Ω) and S f is continuous. Then ∂−S f (α
∗
f ,max) =15

−∞, while ∂+S f (α
∗
f ,min) = ∞.16

Proof. Choose k such that f ∈ PCCk(Ω). By symmetry, it clearly suffices to prove17

∂−S f (α
∗
f ,max) = −∞. Consider the directed graph G = (V, E) defined in the proof18

of Lemma 3.2.2, and the set C of its cycles. By that reasoning it is clear that there19

exist cycles with distinct weight averages as otherwise for any infinite path Γ we20

would get the same weight average in limit, which means that the ergodic averages21

have the same limit for all configurations, hence S f cannot be continuous. More-22

over, as G is connected as a directed graph, the graph of cycles GC is also connected,23

in which the vertices are the elements of C, and two of them are connected if they24

have a common vertex. This, together with our previous observation implies that25

we can choose cycles C and C′ such that they have a common vertex v, the cycle C26

has maximal weight average amongst the elements of C, while C′ does not. Now27

consider the set of infinite paths in G denoted by Hβ which consists of the paths28

which start from v, and can be partitioned into finite pieces Γ1, Γ2, ... such that each29
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Γi equals either C or C′, and the density d ({i : Γi = C}) = β. Then it is obvious to1

see that the weight average along any Γ ∈ Hβ tends to2

β · 1
|C| ∑

e∈C

f (e) + (1 − β) · 1
|C′| ∑

e∈C′
f (e) = βα∗

f ,max + (1 − β)α′ ,

where α′ < α∗
f ,max by the choice of C′. Thus if we take the corresponding config-3

uration ω(Γ), and in the ergodic averages we shift the indexing again by one, we4

see that5

1
N

N−1

∑
n=0

f (σnω(Γ)) → βα∗
f ,max + (1 − β)α′.

That is, if Ωβ denotes the set of ω(Γ)s for which Γ ∈ Hβ, we have6

(5.14) Ωβ ⊆ E f (βα∗
f ,max + (1 − β)α′).

However, the dimension of Ωβ is easy to estimate from below using the following7

mapping: for ω(Γ) ∈ Ωβ define h(ω(Γ)) = h1h2... by8

hi :=

{

1 if Γi = C

0 if Γi = C′.

Now h is a Hölder-mapping. Note that the starting point of Γ determines the9

first k coordinates of ω(Γ), and then going along C (resp. C′) determines the next10

|C| (resp. |C′|) coordinates. By reversing this argument, if K = max{|C|, |C′|},11

the first k + mK coordinates of ω(Γ) uniquely determine the cycles Γ1, ..., Γm in the12

decomposition of Γ. In other words, the first m coordinates of h(ω(Γ)) are uniquely13

determined by the first k + mK coordinates of ω(Γ). From this, one easily obtains14

that h is a Hölder-1/K mapping.15

Moreover, by the definition of Hβ and Ωβ, it is clear that h(Ωβ) equals the set of16

configurations in which the density of 1s equals β. Thus by Example 2.2.1, we can17

deduce that18

dimH(h(Ωβ)) = −β log(β) + (1 − β) log(1 − β)

log 2
.

Hence as h was Hölder-1/K:19

dimH(Ωβ) ≥ −β log(β) + (1 − β) log(1 − β)

K log 2
.

Thus by (5.14):20

S f (βα∗
f ,max + (1 − β)α′) ≥ −β log(β) + (1 − β) log(1 − β)

K log 2
.

Consequently, also using that by continuity of S f we have S f (α
∗
f ,max) = 0 we infer21

S f (α
∗
f ,max)− S f (βα∗

f ,max + (1 − β)α′)

α∗
f ,max − (βα∗

f ,max + (1 − β)α′)
≤ β log(β) + (1 − β) log(1 − β)

(1 − β)(α∗
f ,max − α′)K log 2

However, the right hand side can be estimated from above by omitting the negative22

first term, and after simplifying by 1 − β we see that it tends to −∞ as β → 1.23

Hence the same holds for the left hand side, showing that ∂−S f (α
∗
f ,max) = −∞. �24
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Given Theorem 5.2.4, it seems to be reasonable to look for a function verifying1

the statement of Theorem 5.2.1, which is not in PCC(Ω). Hence we need to “iterate"2

the idea used in Lemma 5.2.2.3

Proof of Theorem 5.2.1. We define f to be a more elaborate variant of the function4

appearing in Lemma 5.2.2. More specifically, we will define a strictly increasing5

sequence (tj) with terms in (0, 1) such that tj → 1, and we will also define a6

strictly increasing sequence (Lj) of positive integers, to be fixed later and chosen7

recursively. We can suppose that L1 > 5.8

Now we let f (ω) = tj if ω starts with a block of 1s of length at least Lj, but9

less than Lj+1. Moreover, f (ω) = −tj if ω starts with a block of 0s of length at10

least Lj, but less than Lj+1. Finally, let f (1∞) = 1 and f (0∞) = −1 for the constant11

sequences, and let f (ω) = 0 for any remaining ω. Due to symmetry, it is clear12

that
∫

f = 0, and it is straightforward to check continuity. It remains to prove13

that the relevant derivatives are finite. By symmetry again, it suffices to verify14

∂−S f (α
∗
f ,max) > −∞. To this end, we will use an argument similar to the one seen15

in the proof of Lemma 5.2.2. The importance of the actual choice of the sequence16

(tj) is limited to technicalities, in the following we will choose tj = 1 − 2−j.17

As in (5.10), we can deduce18

E f (tj+1) ⊂
∞
⋃

m=1

∞
⋂

N=m

{

1
N

N−1

∑
n=0

f (σnω) ≥ tj

}

.

This union is the union of a growing sequence of sets, thus the dimension is simply19

the limit of dimH Am, where20

Am =
∞
⋂

N=m

{

1
N

N−1

∑
n=0

f (σnω) ≥ tj

}

.

In order to estimate this dimension, we first introduce an auxiliary function, which21

is easier to examine. Explicitly, we let f j = 0, if f ≤ 0, and we let f j = 1 if f ≥ tj.22

In any other case we let f j = f . Then f j ≥ f , consequently23

Am,j =
∞
⋂

N=m

{

1
N

N−1

∑
n=0

f j(σ
nω) ≥ tj

}

contains Am. Thus it suffices to estimate the dimension of Am,j. The argument is24

similar to the one in the proof of Lemma 5.2.2. We would like to count the cylinder25

sets of length N + Lj − 1 which intersect
{

1
N ∑

N−1
n=0 f j(σ

nω) ≥ tj

}

for large N, as26

they give a cover of Am,j for any N ≥ m. In order to avoid the inconvenience caused27

by integer parts, we will only consider Ns with certain divisibility properties, as28

before.29

First of all, the number of blocks consisting of at least Lj consecutive 1s is at most30

N+Lj−1
Lj

, which is an integer for infinitely many N. Thus the number of ways we31
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can arrange the blocks of at least Lj consecutive 1s is at most1

(5.15)

N+Lj−1

Lj

∑
i=0

(

N + Lj − 1
2i

)

≤
(

N + Lj − 1
Lj

+ 1

)

·
(N + Lj − 1

2 · N+Lj−1
Lj

)

≤ (N + Lj − 1) ·
(N + Lj − 1

2 · N+Lj−1
Lj

)

,

using Lj ≥ L1 > 5, as in (5.11). We call these blocks j-blocks.2

The novelty of cylinder counting in this proof compared to the previous one is3

that we have to take into account the blocks responsible for the values of f j between4

0 and tj−1. As 1
N ∑

N−1
n=0 f j(σ

nω) ≥ tj, in the first N coordinates there are at most5

1−tj

1−tj−1
N = N

2 not covered by the j-blocks, as otherwise the number of terms in6

∑
N−1
n=0 f (σnω) with f (σnω) ≤ tj−1 is too large and we have 1

N ∑
N−1
n=0 f (σnω) < tj.7

Thus beside the already placed j-blocks, there are at most
1−tj

1−tj−1
N + Lj − 1 = N

2 +8

Lj − 1 coordinates remaining, which might contain some (j − 1)-blocks of at least9

Lj−1 consecutive 1s. By a similar estimate to (5.15) we find that the number of10

possible arrangements of these (j − 1)-blocks is at most11

(5.16)

N
2 +Lj−1

Lj−1

∑
i=0

(N
2 + Lj − 1

2i

)

≤
(

N
2 + Lj − 1

Lj−1
+ 1

)

·
(N

2 + Lj − 1

2 ·
N
2 +Lj−1

Lj−1

)

≤
(N

2
+ Lj − 1

)

·
(N

2 + Lj − 1

2 ·
N
2 +Lj−1

Lj−1

)

,

using Lj−1 ≥ L1 > 5.12

Suppose that j0 ∈ {0, ..., j − 1}. Proceeding recursively, by the same argument we13

can conclude that the union of the (j − i)-blocks taken for i = 0, 1, ..., j0 − 1 cover all14

but at most
1−tj

1−tj0
N = N

2j0
of the first N coordinates. Thus beside these blocks there15

are at most N
2j0

+ Lj − 1 coordinates remaining, which yields similarly to (5.16) that16

the number of possible arrangements of the (j − j0)-blocks is at most17

(5.17)
( N

2j0
+ Lj − 1

)

·
(

N
2j0

+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)

< (N + Lj − 1) ·
(

N
2j0

+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)

.

We can use this bound for j0 = 0, 1, ..., j − 1. (We note that for infinitely many18

values of N each number appearing in the above binomial coefficients is an integer.)19

Finally, there can be coordinates which are not contained by any such block. At20

most (1 − tj)N of them in the first N coordinates, and arbitrarily many of them in21

the last Lj − 1 coordinates. Thus they can be chosen at most 2(1−tj)N+Lj−1 different22

ways. Hence the number of cylinders which intersect
{

1
N ∑

N−1
n=0 f j(σ

nω) ≥ tj

}

can23
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be bounded by taking the product of the estimates in (5.17), and multiplying it by1

2(1−tj)N+Lj−1. Hence
{

1
N ∑

N−1
n=0 f j(σ

nω) ≥ tj

}

can be covered by at most2

(5.18) (N + Lj − 1)j · 2(1−tj)N+Lj−1 ·
j−1

∏
j0=0

(

N
2j0

+ Lj − 1

2 ·
N

2j0
+Lj−1

Lj−j0

)

many cylinders of diameter 2−(N+Lj−1). Observe that the j0 = 0 case in (5.18)3

includes the estimate (5.15). By the standard estimate of binomial coefficients we4

can estimate it further from above by5

(5.19) (N + Lj − 1)j · 2(1−tj)N+Lj−1
j−1

∏
j0=0

(

eLj−j0

2

)2·
N

2j0
+Lj−1

Lj−j0 .

Introduce the notation k = N + Lj − 1 again. By factoring out constants depending6

on L1, ..., Lj into a constant denoted by C(L1, ..., Lj), and rearranging (5.19) one can7

obtain that it equals8

(5.20) C(L1, ..., Lj) · kj · 2(1−tj)k
j−1

∏
j0=0

(

eLj−j0

2

)
2k

2j0 Lj−j0 .

This formulation leads us to a suitable choice of Ln: for an arbitrary fixed τ > 0,9

define Ln large enough to guarantee that10

(5.21)
(

eLn

2

)
2

Ln

< 2τ/22n
.

With this choice, (5.20) can be estimated by11

(5.22) C(L1, ..., Lj) · kj · 2(1−tj)k
j−1

∏
j0=0

2τk/22j−j0 ≤ C(L1, ..., Lj) · kj · 2
(1−tj+

τ

2j )k

≤ C(L1, ..., Lj) · 2
(1−tj+

2τ

2j )k,

where the last inequality holds for large enough N, k. It immediately yields12

H
1−tj+

2τ

2j

2−k

({

1
N

N−1

∑
n=0

f j(σ
nω) ≥ tj

})

≤ C(L1, ..., Lj)

where N = k − Lj + 1 as before. However, this set contains Am,j for large enough13

k, N, thus14

H
1−tj+

2τ

2j

2−k (Am) ≤ C(L1, ..., Lj).

As k, N can be arbitrarily large, it shows that in fact15

H1−tj+
2τ

2j (Am) ≤ C(L1, ..., Lj)

and consequently,16

dimH(Am,j) ≤ 1 − tj +
2τ

2j
.
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Consequently, by our initial observations1

S f (tj) ≤ 1 − tj +
2τ

2j
,

that is, using tj = 1 − 2−j we have2

S f (1 − 2−j) ≤ 1 + 2τ

2j
.

Thus if we calculate the left derivative of S f at 1 by going along the sequence tj, we3

find that it is at most −(1 + 2τ) > −∞, which concludes the proof. �4

Remark 5.2.5. We note that as the spectrum is concave, for any function f ∈ C0(Ω)5

such that α∗
f ,min = −1 and α∗

f ,max = 1 we have that the graph of S f is above the6

triangle graph with vertices (−1, 0), (0, 1), (1, 0). On the other hand, it must be7

below the constant 1 function in the interval [−1, 1]. It is natural to ask whether8

these extremes can be attained/approximated. We do not give the complete answer9

for these questions, but make a few observations.10

First of all, Theorem 5.2.1 easily yields that S f can be arbitrarily close to the11

triangle graph: notably for the function f constructed in the previous proof, S f is12

contained by the triangle with vertices (−1, 0), (0, 1 + 2τ), (1, 0) due to concavity.13

Thus the theoretic minimum can be approximated.14

On the other hand, if we would like to construct some f such that S f is con-15

siderably large, we can consider a function similar to the one in Example 2.2.3.16

More explicitly, let f ∈ PCC2k+1(Ω) be such that it takes the value -1 on cylinders17

which contain more 0s than 1s in their first 2k + 1 coordinates, and f (ω) = 1 oth-18

erwise. As in the proof of Example 2.2.3, we can show by Hutchinson’s theorem19

that S f (−1) = S f (1) is at least k
2k+1 . Thus the piecewise linear graph determined20

by the vertices (-1,1/2), (0,1), (1,1/2) can be arbitrarily close to a lower estimate of21

the spectrum, which means that S f is considerably large, even though it is far from22

what we strived for.23

We also provide another example, which displays that S f (α
∗
f ,max) can be arbi-24

trarily close to 1 even for nonconstant functions, if we drop the condition that25

α∗
f ,max = 1. Notably, let f ∈ PCCk(Ω) such that it takes the value −1 if the first26

k coordinates equal 0, while it takes the value 1
2k−1

if these coordinates contain at27

least one 1. Then similarly to the previous argument we have that S f

(

1
2k−1

)

≥ k−1
k .28

It would be interesting to see how large S f (α
∗
f ,max) can be if f ∈ C0(Ω) such that29

α∗
f ,min = −1 and α∗

f ,max = 1.30
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