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Chapter 1

Introduction

First passage percolation was introduced by Hammersley and Welsh in 1965 as a
model to describe �uid �ows through porous medium. It quickly became a popular
area of probability theory, as one can easily ask very di�cult questions. Many of
these have still remained unsolved despite the growing interest from mathematicians,
physicists and biologists. The main setup is the following: we have a given graph,
usually we like to consider the lattice Zd. We denote the set of nearest neighbor
edges by E. We place independent, identically distributed, non-negative random
variables with a distribution law µ on each edge e ∈ E, which is called the passage
time of e, and denoted by τ(e). We think about it as the time needed to traverse
e. Based on this, we can de�ne the passage time of any �nite path Γ of consecutive
edges as the sum of the passage times of contained edges:

τ(Γ) =
∑
e∈Γ

τ(e).

Using this de�nition, we might de�ne the passage time between any two points, or
in other words the T -distance of any two points x, y ∈ Rd

T (x, y) = inf
Γ
τ(Γ),

where the in�mum is taken over all the paths connecting x′ to y′, where x′ and y′

are the unique lattice points such that x ∈ x′ + [0, 1)d, y ∈ y′ + [0, 1)d. The term
"distance" is appropriate here: one can easily show that T : Zd × Zd → R is a
pseudometric, that is an "almost metric" in which the distance of distinct points
might be 0.

In brief, this is the probabilistic setup. In the sequel when we recall results
related to this theory, for the sake of brevity we will often omit the precise technical
conditions, such as conditions about the �niteness of certain moments or the value of
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the distribution function in the in�mum of its support. Instead of it we will simply
refer to "some mild conditions" about the distribution function and cite the source
of the result. For the reader interested in the details the recently published book [2]
is also warmly recommended.

The topological setup was introduced by the author in papers [10] and [11], which
works form the content of this thesis. Roughly, instead of non-negative random
variables on each edge, we consider some A ⊆ R≥0. To exclude trivialities, let A
have at least two elements. The passage time of any edge will be an element of A,
and passage times of paths and between points are de�ned as in the probabilistic
setup. Formally, the space of con�gurations is Ω = ×e∈EA. To de�ne topology, we
equip A by its usual subspace topology inherited from R, and equip Ω = ×e∈EA
with the product topology. If there might be ambiguity, we will write Tω and τω
for the passage times in the ω ∈ Ω con�guration. We call this model ordinary
topological �rst passage percolation, as in Chapter 3 we will de�ne Hilbert �rst
passage percolation, which is a possible generalization of the concept. By simply
saying topological �rst passage percolation, we always mean the ordinary one.

Primarily we are interested in the classical questions of the probabilistic setup
which might make sense in the topological setup as well. Clearly estimates on
variances of certain passage times have no direct analogues. On the other hand,
quite a few results of probability theory are 0-1 laws, whose meaning is roughly
that the model typically has certain properties. That is, with probability 1 certain
events occur. Such questions can also be examined in the topological setup, once
we have de�ned another notion of "smallness" which can be de�ned in terms of
topology without having any measure on the space. This is how we arrive to the
basic concepts of Baire category:

De�nition 1.0.1. Let X be a topological space. We say that A ⊆ X is nowhere
dense if for any nonempty open set U ⊆ X there exists a nonempty open set V ⊆ U
such that A ∩ V = ∅.

De�nition 1.0.2. Let X be a topological space. We say that A ⊆ X is meager (or
of �rst category) if there exists a sequence (An)∞n=1 of nowhere dense sets such that
A =

⋃∞
n=1 An. We say that A is of second category if it is not of �rst category.

Finally, A is residual if its complement is of �rst category.

For example, if the underlying topological space is X = R, then Z or the triadic
Cantor set is nowhere dense. Meanwhile, Q is dense and meager, as a countable set,
and R \ Q is residual. We also use the terminology that a property is generic (or
typical) if it holds in a residual subset of the topological space.

By de�nition, it is plain to see that the empty set and subsets of a meager set
are also meager. Moreover, if An is meager for n ∈ N, then

⋃∞
n=1An is meager. Due

to these properties, we say the meager sets form a σ-ideal. The most famous and
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important example of such is the σ-ideal of sets of measure zero in a measure space.
However, the σ-ideal of meager sets also prove to be useful in numerous occasions
and hence it is widely examined in many situations.

It is worth mentioning at this point that in the literature it is rather usual
to introduce restrictions on the space in which we examine residuality. Notably,
we would like to think about meager sets as small, negligible sets, but this way
of thinking might be quite far from truth: an extreme example to display this
phenomenon is that if X = Q, the whole space is meager. To this end, one can
introduce the notion of Baire spaces: we say that X is a Baire space if the interior
of any meager set is empty. Due to Baire's category theorem, we know that a
complete metric space is always a Baire space, and in many cases Baire category is
considered in complete metric spaces exclusively. If the space in question is not a
Baire space, residuality might be meaningless. However, our arguments are mostly
correct even without this assumption, thus we will not restrict our observations to
Baire spaces unless it is truly needed.

Now we can formulate what kind of questions we will investigate: we will consider
0-1 laws of the probability model and examine what is the generic behavior of the
topological model in these situations. We will see that certain classical almost sure
events, as the existence of �nite geodesics have residual counterparts, while the
notion of the limit shape or time constants gets as chaotic as possible.
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Chapter 2

Ordinary topological �rst passage

percolation

2.1 A note on negative passage times

Before going into further depths of topological �rst passage percolation, it is useful
to say a few words about what happens if we allow negative passage times. In this
case, it is plain to see that apart from a nowhere dense set of Ω, the passage time
between any two points would be −∞. To verify this, we declare at this point how
we will think about the topology on Ω. The most convenient way for us is to consider
cylinder sets as the basis of the topology, that is the basis sets are of the form

U = ×e∈EUe,

where each Ue is open in A and with at most �nitely many exceptions Ue = A. We
say that Ue is the projection of U to the edge e.

Using this, we can easily verify our previous claim. We need that if U is a
nontrivial open set of Ω, then there exists a nontrivial open set V ⊆ U such that on
V , the passage time between any two points is −∞. It clearly su�ces to show this
for a cylinder set U , which is rather straightforward: as there are only �nitely many
edges for which U has nontrivial projection, we can choose an edge e with trivial
projection. Then we de�ne V to have the same projections everywhere as U , except
for e, where the projection contains only negative values. Then in any con�guration
in V , the passage time between two lattice points x, y is −∞: indeed, we can take
paths of arbitratily low passage time by going to one of the vertices of e from x on
a �xed route, then go along it back and forth as many times as we wish, and then
�nally go to y on a �xed route. The �rst and the last part of this path has a �xed
passage time in a given con�guration, while the middle term can be arbitrarily low.
Thus apart from a nowhere dense set of Ω, the passage time between any two lattice
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points is −∞ indeed, and it quickly yields the same for any two points.

One may wonder what happens if we allow negative passage times, but we only
permit self-avoiding paths, except for that the starting and the ending point of a path
may coincide. This restriction clearly rules out our previous argument, however, we
might expect that passage times are still −∞ in a considerably large set if d ≥ 2. (If
d = 1, we have only one possible path between any two vertices, thus in a reasonably
small open set there are vertices whose T -distance is quite well determined. As a
consequence, it is something we are not interested in.) The following theorem shows
that the above expectation is true.

Theorem 2.1.1. Suppose that A contains a negative value, and we de�ne T (x, y) by
considering the in�mum only for the paths which might contain only their starting
point and endpoint twice. Then generically we have T (x, y) = −∞ for any two
points x, y.

Proof. As the passage time between any two non-lattice points equals the passage
time between certain lattice points, it su�ces to prove that in a residual subset of
Ω we have T (x, y) = −∞ for any two lattice points x, y. Denote the subset where
this holds by S. Furthermore, let us denote the set of con�gurations satisfying
T (x, y) < −n for some n ∈ N by S(x, y, n). Using this notation, we have

S =
⋂

x,y∈Zd, n∈N

S(x, y, n),

which is a countable intersection. As a consequence, it su�ces to prove that each
S(x, y, n) is residual. By de�nition, this is equivalent to Q(x, y, n) = Ω \ S(x, y, n)
is meager. In fact, we will prove that Q(x, y, n) is nowhere dense. Fix U to be a
cylinder set. Let us denote the set of edges belonging to nontrivial projections of
U by EU = {e1, e2, ..., ek}. By shrinking the projections Ue1 , ..., Uek , we can achieve
that all of them are bounded in R. Denote these new projections by U ′ei , i = 1, ..., k,
and the cylinder set de�ned by them by U ′. Then for any con�guration in U ′, the
sum of passage times over the edges e1, ..., ek is bounded by a constant C.

Let a ∈ A be negative. Note that we might construct a self-avoiding path from
x to y of arbitrarily large `1 length, or in other words, of arbitrarily large number
of edges. Indeed, we can go arbitrarily far along the direction of one axis, and then
if we forget about these edges, the remaining graph is still connected as d ≥ 2.
Thus we might consider a path Γ from x to y with length m for large enough m.
We determine m later. Now we de�ne V ⊆ U ′ to have the same projections as U ′,
except for the edges in Γ \ EU : here we de�ne the projections to be a subset of
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(−∞, a
2
). In V , we can bound the passage time of Γ as it follows:∑

e∈Γ

t(e) =
∑

e∈Γ\EU

t(e) +
∑

e∈Γ∩EU

t(e) ≤ (m− k)
a

2
+ C < −n,

ifm is large enough, as a
2
< 0 and k, C are �xed. Thus the con�gurations in V cannot

be in Q(x, y, n), yielding Q(x, y, n) is nowhere dense, which is what we wanted to
prove.

2.2 Finite geodesics

As it was proved in [12] for d = 2 and any distribution, and in [8] for arbitrary d
under mild conditions on the distribution, with probability 1 there exists an optimal
path between any two lattice points, which is called a geodesic. Furthermore, if the
probability distribution function is continuous, geodesics are unique with probability
1. As the next theorem displays, these properties have their respective topological
analogues. The underlying idea is also similar: geodesics do not tend to use too
many edges.

Theorem 2.2.1. Generically there exists a geodesic between any two lattice points.
Furthermore, if A has no isolated points then generically these geodesics are unique.

Proof. Consider the �rst statement. We will prove that for given x, y ∈ Zd, apart
from a nowhere dense set of Ω, there exists a geodesic between x and y. As there
are countably many such pairs, it would be su�cient. The idea of the proof is that
usually the paths with reasonably low passage times lie in a bounded set containing
x and y, thus if we are interested in T (x, y), we have to consider only �nitely many
paths, hence the in�mum is the minimum.

To verify our claim, �x lattice points x, y and a cylinder set U . Let us denote
the set of edges belonging to nontrivial projections of U by EU = {e1, e2, ..., ek}. As
in the proof of Theorem 2.1.1, we can construct a smaller cylinder set by shrinking
the projections Ue1 , ..., Uek , such that all of these projections are bounded in R. We
denote again these new projections by U ′ei , i = 1, ..., k, and the cylinder set de�ned
by them by U ′. Then for any con�guration in U ′, the sum of passage times over the
edges e1, ..., ek is bounded by a constant C. Choose an a ∈ A such that a > 0. We
will �x an n ∈ N later. Consider all the edges with `1 distance at most n from x.
Denote their set by E∗. If n is large enough, there is an optimal `1 path from x to y
using only edges in E∗. We will de�ne V ⊆ U ′ as a cylinder set which has nontrivial
projections to the edges in EU ∪ E∗. Concerning the edges in EU , we de�ne V to
have the same projections as U ′, meanwhile for the edges in E∗ \ EU , we require
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that the projections of V equal (a − ε, a + ε) ∩ A, where 0 < ε < a. Consider now
any con�guration in V , and take a path Γ from x to y with `1-length |x− y|, using
only edges in E∗. Then its passage time is at most Ck + |x − y|(a + ε) = C1, a
constant independent from the actual con�guration in V . Meanwhile if we consider
any path from x to y which uses an edge which is not in E∗ its passage time is at
least (n − k)(a − ε) for any con�guration in V , as it has to use at least n edges to
leave E∗, and apart from the at most k edges in EU they have passage time at least
a − ε. However, for large enough n, this passage time eventually surpasses C1. As
a consequence, if we de�ne E∗ and then V using this n, we will know that for any
con�guration in V , the paths leaving E∗ have passage times higher than the passage
time of Γ. Hence in the de�nition of T (x, y), we have to consider only the paths
connecting x, y which use only edges in E∗. There are �nitely many of them, thus in
fact the in�mum is the minimum, yielding we have a geodesic between x, y in V . As
a consequence, as we claimed, there exists a geodesic between x and y apart from a
nowhere dense set of Ω.

What remains to prove is the uniqueness part. It su�ces to prove that for given
lattice points x, y, apart from a nowhere dense set there is a unique geodesic between
x and y. Fix a cylinder set U . By the previous argument, we know that there exists
of a cylinder set V ⊆ U such that in V , there is a geodesic between x and y. We
will shrink this cylinder set further to arrive at a cylinder set W in which there is
always a unique geodesic between x and y. In order to do so, de�ne for each path
Γ connecting x and y the number τ(Γ, V ) as the in�mum of passage times of Γ
for con�gurations in V . Let τ(V ) = infΓ τ(Γ, V ). By the de�nition of V , this is
determined by �nitely many paths from x to y in fact, as for any con�guration in V ,
the too long paths have too large passage times. Thus τ(V ) equals a minimum, and
in the sequel, we might focus only on these paths. Let Γ0 be one of the paths for
which τ(Γ0, V ) = τ(V ). It would be nice to have a unique path with this property:
from this point, the construction of W would be more or less straightforward. We
claim that for an appropriate V ′ ⊆ V we can have τ(Γ0, V

′) = τ(V ′) = τ(V ) while
for any Γ 6= Γ0 we have τ(Γ, V ′) > τ(V ′). Indeed, if we de�ne V ′ to have the
same projections as V to the edges contained by Γ0, we immediately have our �rst
requirement. Furhermore, if Γ 6= Γ0 with τ(Γ, V ) = τ(V ), there is at least one
edge e ∈ Γ \ Γ0. We will shrink the projection to this edge: as A has no isolated
points, we can choose some nonempty V ′(e) ⊆ V (e) ∩ A with higher in�mum than
inf V (e), which results in τ(Γ, V ′) > τ(Γ, V ) ≥ τ(V ′). Repeating the same step for
each Γ 6= Γ0 with τ(Γ, V ) = τ(V ) (which means only �nitely many steps) we obtain
some V ′ with the above property.

In the �nal step we will only shrink the projections of V ′ to the edges in Γ0.
As τ(Γ, V ′) > τ(Γ0, V

′) for any Γ0 6= Γ, and there are only �nitely many paths we
are interested in by now, for some ε > 0 we have τ(Γ, V ′) > τ(Γ0, V

′) + ε. We will
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shrink the projections of V ′ to the edges in Γ0 based on this bound. Namely, if Γ0

contains the edges e′1, ..., e
′
m, and the in�mum of V ′(e′i) is ai, we will de�ne W (ei) as(

ai, ai + ε
m

)
∩ A. Then as

τ(Γ0, V
′) ≥

m∑
i=1

ai,

we have that for any con�guration ω ∈ W the passage time of Γ0 is at most

τω(Γ0) ≤
m∑
i=1

(
ai +

ε

m

)
≤ τ(Γ0, V

′) + ε < τ(Γ, V ′) ≤ τω(Γ)

for any Γ 6= Γ0, as a con�guration in W is also in V ′, hence τ(Γ, V ′) ≤ τω(Γ). Thus
for any con�guration in W , the unique geodesic from x to y is Γ0. This concludes
the proof.

Remark 2.2.2. In the proof we clearly used that A has no isolated points to be
able to nontrivially shrink open sets in A. By a similar argument, one can quickly
check that if A has an isolated point a, then for any two lattice points x, y such that
the line segment [x, y] is not parallel to any of the coordinate axis (i.e. there are
multiple optimal `1 paths from x to y), there exists a cylinder set U such that for any
con�guration in U there are multiple geodesics from x to y. Indeed, we can de�ne
U to have projections containing only a to the set of edges within a given large `1

distance to [x, y], similarly to the de�nition of V in the previous proof. Then it is
easy to see that the geodesics between x and y are precisely the optimal `1 paths,
of which there are more than one.

2.3 In�nite geodesics

We turn our attention to in�nite geodesics, which are self-avoiding paths of in�nitely
many edges such that each of their �nite subpaths are �nite geodesics. We distin-
guish two types of in�nite geodesics: the ones indexed by N, informally which are
in�nite in only one direction, and the ones indexed by Z, informally which are in�-
nite in both directions. We call the former ones geodesic rays while the latter ones
are the geodesic lines.

In the probabilistic setup, one might easily check by K®nig's lemma the almost
sure existence of a geodesic ray, using that with probability 1 there is a geodesic
between any two points. In the topological setup, we can use the same argument to
prove the same in a residual subset of Ω. Namely, denote the �rst coordinate vector
by ξ1 in Rd and observe a �nite geodesic from 0 to nξ1 for n = 1, 2, .... As there
are �nitely many edges having the origin as one of its endpoints, there are in�nitely
many of these paths which start with the same edge, then there are in�nitely many
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of them which continue with the same edge, etc. This way one might verify the
existence of a geodesic ray. Now it is a natural question whether there are more
distinct geodesic rays, where by distinct we mean that they share only �nitely many
edges. In the probabilistic setup it is conjectured that for continuous distributions
there are in�nitely many of them with probability 1. For d=2 and a certain class
of distribution functions this claim was veri�ed in [1]. However, in the topological
setup we encounter a completely di�erent phenomenon, which was displayed by the
following theorems proved in [10]:

Theorem 2.3.1. If d ≥ 2 and supA > 5 inf A then generically there is no more
than one geodesic ray in Zd.

Theorem 2.3.2. For arbitrary A, generically there exists only a bounded number
of distinct geodesic rays in Zd, more precisely, there are no more than 4d2 distinct
geodesic rays.

The proofs were based on quite similar geometric ideas. However, we omit the
proofs here, as in [11] we could give the neat and complete answer to the problem in
the form of a common sharpened version of both Theorem 2.3.1 and Theorem 2.3.2:

Theorem 2.3.3. For arbitrary A, generically there exists exactly one geodesic ray
in Zd if d ≥ 2

Corollary 2.3.4. If d ≥ 2, there can be no geodesic lines, as a geodesic line can be
dissected into two distinct geodesic rays.

We note that d ≥ 2 is obviously necessary in Theorem 2.3.3 and Corollary 2.3.4:
if d = 1, the lattice consists of a single line, which must be a geodesic line.

Proof of Theorem 2.3.3. The outline of the proof is similar to the ones of its weaker
counterparts, however, it relies on a bit more elaborate geometric construction.

As earlier, �rst we will prove that if x is a �xed lattice point then apart from a
meager subset of Ω there is no more than one geodesic ray starting from x. Clearly
it su�ces to prove this claim for x = 0. Let F (0) denote the set of con�gurations
in which there are at least two distinct geodesic rays starting from the origin. Then
F (0) =

⋃∞
m=1 Fm(0) where Fm(0) stands for the set of con�gurations in which there

are at least two distinct geodesics starting from the origin such that they have at
most m edges in common. We claim that for any m we have that Fm(0) is a nowhere
dense set in Ω, which would verify our preliminary statement about the meagerness
of F (0).

Fix U to be a cylinder set, and denote the set of edges belonging to nontrivial
projections of U by EU = {e1, e2, ..., eN}. We can simply construct a smaller cylinder
set U ′ by shrinking the projections Ue1 , ..., UeN , such that all of these projections are
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bounded in R. Then for any con�guration in U ′, the sum of passage times over
the edges e1, ..., eN is bounded by a constant C. The novelty appears at this point:
instead of considering concentric hypercubes centered at the origin, we take a skew
construction. More precisely, let K1 = [−p, p]d and K2 = [−q′, q]× [−r, r]d−1 where
p, q, q′, r ∈ N and p is chosen such that the edges in EU are in the interior of K1. The
values q < r < q′ are to be �xed later. Let us denote the set of edges in K2 which are
not in the interior of K1 by E∗. We will de�ne V ⊆ U ′ as a cylinder set which has
nontrivial projections to the edges in EU ∪E∗. The underlying concept is borrowed
from the proof given for the case supA < 5 inf A: for the con�gurations in V we
would like to have essentially one (and the same) geodesic from the boundary ∂K1

to the boundary ∂K2, notably the line segment connecting pξ1 and qξ1 (in general
ξi denotes the ith coordinate vector). By this we mean that for any lattice points
x1 ∈ ∂K1 and x2 ∈ ∂K2, a geodesic Γ from x1 to x2 eventually arrives in pξ1, and
then it goes along the line segment [pξ1, qξ1]. It would be su�cient: any geodesic
ray starting from the origin eventually leaves K1 and K2, and a geodesic ray is a
geodesic between any two of its points, the previous properties would guarantee that
any geodesic ray starting from the origin would go along the line segment [pξ1, qξ1].
However, that would mean that our con�guration cannot be in Fm(0) for q− p > m
as there would not exist at least two distinct geodesics starting from the origin such
that they have at most m edges in common.

Let us make the above argument rigorous. Fix a < b in A. Moreover, �x ε > 0
and λ > 1 such that (a + ε)λ < b − ε holds. Finally, for later usage de�ne a small
value εe for each edge e ∈ E such that

∑
e∈E εe < ε. We will have small passage

times on the edges of ∂K1, ∂K2, and along the line segment [pξ1, qξ1] to guarantee a
path with considerably low passage time between any two points of ∂K1 and ∂K2.
We call these edges cheap. Meanwhile on other edges between the two boundaries
(e.g. the expensive edges) we would like to have considerably larger passage times.
Thus for every cheap edge e we de�ne the relatively open set

Ve = (a− εe, a+ εe) ∩ A,

and for any expensive edge we de�ne

Ve = (b− εe, b+ εe) ∩ A.

By this, we have de�ned V . Now consider any con�guration in V . For technical
convenience we will prove the following claim, which is formally stronger than what
we stated before: if x1 ∈ ∂K1∪ [pξ1, (q−1)ξ1], while x2 ∈ [(p+1)ξ1, qξ1]∪∂K2, then
there is no geodesic from x1 to x2 which uses expensive edges. Proceeding towards
a contradiction, assume the existence of x1, x2, and a geodesic Γ which refutes this
claim. As any subpath of a geodesic is also a geodesic, by passing to a suitable
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subpath we can assume that Γ uses expensive edges only. Hence the passage time
of Γ can be estimated from below by

τ(Γ) ≥ |x2 − x1|b− ε ≥ |x2 − x1|(b− ε).

We will arrive at a contradiction by constructing a cheaper Γ′ from x1 to x2 which
does not use expensive edges. In the following we will separate cases based on the
position of x2. The �gure below displays how we will construct Γ′ with the desired
properties in one of the cases and it also helps understanding the other constructions.
If x2 ∈ [pξ1, qξ1], we have a simple task. Indeed, in this case Γ can be replaced by a

Figure 2.1: The case when x2 ∈ ∂K2 is on the facet containing −q′ξ2 and d = 2.

path Γ′ which is not longer in `1, and instead of using expensive edges only, it uses
cheap edges exlusively. Thus τ(Γ′) < τ(Γ) clearly holds.

Now assume that x2 is on the same facet of ∂K2 as qξ1. We separate two subcases:

• x1 ∈ [pξ1, (q − 1)ξ1]. In this case there exists an `1-optimal path from x1 to
x2 which consists of cheap edges exclusively. Choose such a path to be Γ′, it
contains |x2 − x1| edges. The passage time of Γ′ can be estimated from above
by

τ(Γ′) ≤ |x2 − x1|a+ ε ≤ |x2 − x1|(a+ ε).

Comparing the bounds gives

|x2 − x1|(b− ε) ≤ |x2 − x1|(a+ ε).
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However, as a + ε < b− ε, it is clearly impossible, thus we have handled this
case.

• x1 ∈ ∂K1. In this case we de�ne Γ′ by joining together two shorter paths Γ1

and Γ2. The path Γ1 will run on ∂K1 from x1 to pξ1 such that it uses as few
edges as it is possible. Consequently, |Γ1| ≤ 2dp. Meanwhile the path Γ2 will
go from pξ1 to x2 such that it is `1-optimal and uses cheap edges exclusively.
(By the choice of the facet containing x2 it is clearly possible.) Now by the
triangle inequality we have

|Γ2| ≤ |x2 − x1|+ 2dp.

Using the estimate for the number of edges in Γ1 and Γ2 we can obtain an
upper bound for the passage time of Γ′:

τ(Γ′) ≤ (|x2 − x1|+ 4dp)a+ ε ≤ (|x2 − x1|+ 4dp)(a+ ε).

Comparing the bounds gives

|x2 − x1|(b− ε) ≤ (|x2 − x1|+ 4dp)(a+ ε).

As (a+ ε)λ < b− ε now we can obtain after division

λ|x2 − x1| ≤ |x2 − x1|+ 4dp,

or equivalently,

|x2 − x1| ≤
4dp

λ− 1
.

However, |x2 − x1| ≥ q − p necessarily holds. Hence if q is chosen to be
su�ciently large compared to p we get a contradiction, which concludes this
case.

Assume now that x2 lies on a facet of K2 neighboring the one containing qξ1. In
this case we construct Γ′ by joining at most three paths Γ1,Γ2,Γ3: if x1 ∈ ∂K1 we
de�ne Γ1 in order to reach pξ1 as in the second subcase of the previous case. Next
we use Γ2 to reach qξ1 using the edges of [pξ1, qξ1]. Finally, we de�ne Γ3 to reach x2

so that it is optimal in `1 and uses only the edges of ∂K2. The �rst two parts use
at most 2dp+ q − p edges, while we can get a simple upper estimate for the length
of Γ3 using the triangle inequality, notably

|Γ3| ≤ |x2 − x1|+ 2dp+ q − p.
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Consequently, we have

|Γ′| ≤ |x2 − x1|+ 4dp+ 2q − 2p.

As all these edges are cheap, we deduce the following bound:

τ(Γ′) ≤ (|x2 − x1|+ 4dp+ 2q − 2p)a+ ε ≤ (|x2 − x1|+ 4dp+ 2q − 2p)(a+ ε).

Comparing to the lower bound given for τ(Γ) we gain

|x2 − x1|(b− ε) ≤ (|x2 − x1|+ 4dp+ 2q − 2p)(a+ ε).

Given the ratio bound on a+ ε and b− ε it yields

λ|x2 − x1| ≤ |x2 − x1|+ 4dp+ 2q − 2p.

Thus, simple rearrangement yields

|x2 − x1| ≤
4dp+ 2q − 2p

λ− 1
.

The right hand side expression is already �xed, while for the left hand side we have
|x2 − x1| ≥ r− q. Thus if r is chosen so that it is su�ciently large compared to the
already �xed q, then we get a contradiction, which concludes this case.

The �nal case to consider is when x2 is on the same facet of K2 as −q′ξ1. In this
case we de�ne Γ′ as the union of at most four shorter paths Γ1,Γ2,Γ3,Γ4. Concerning
Γ1 and Γ2 we resort to the previous case in order to get to qξ1 from x1, using at most
2dp + q − p cheap edges. Then we de�ne Γ3 to be the line segment [qξ1, qξ1 + rξ2],
thus we reach a facet neighboring to the one containing x2 using r + 2dp + q − p
cheap edges. Finally we de�ne Γ4 to reach x2 so that it is optimal in `1 and uses
only the edges of ∂K2. By the triangle inequality we have

|Γ4| ≤ |x2 − x1|+ r + 2dp+ q − p,

and hence
|Γ′| ≤ |x2 − x1|+ 2r + 4dp+ 2q − 2p.

As all these edges are cheap, we deduce the following bound:

τ(Γ′) ≤ (|x2−x1|+ 2r+ 4dp+ 2q−2p)a+ ε ≤ (|x2−x1|+ 2r+ 4dp+ 2q−2p)(a+ ε).

Comparing to the lower bound given for τ(Γ) we gain

|x2 − x1|(b− ε) ≤ (|x2 − x1|+ 2r + 4dp+ 2q − 2p)(a+ ε).

13



By the ratio bound on a+ ε and b− ε it yields

λ|x2 − x1| ≤ |x2 − x1|+ 2r + 4dp+ 2q − 2p.

Simple rearrangement yields

|x2 − x1| ≤
2r + 4dp+ 2q − 2p

λ− 1
.

The right hand side expression is already �xed, while for the left hand side we have
|x2 − x1| ≥ q′ − p. Thus if q′ is chosen so that it is su�ciently large compared to
r, then we get a contradiction, which concludes this case, and also the proof of the
fact that F (0) is meager.

The �nal step of the proof does not di�er at all from the �nal step of the proof
given for the case 5 inf A < supA. Namely, let F ⊆ Ω be the set of con�gurations
in which there are at least two geodesic rays. Moreover, let F (x) be the set of
con�gurations in which there are at least two distinct geodesic rays with starting
point x, and Fm be the set of con�gurations in which there exist two disjoint geodesic
rays with starting point in the cube [−m,m]d. Then

F =

(⋃
x∈Zd

F (x)

)
∪

(
∞⋃
m=1

Fm

)

holds: if there exist at least two geodesic rays they are either disjoint or have a
common point x, and in the latter case we have two geodesic rays starting from x
if we forget about the initial parts of these geodesics. Furthermore, we know that
each of the sets F (x) are meager by our argument up to this step. Thus if we could
obtain that each Fm is nowhere dense, that would conclude the proof. However,
having seen the proof of the �rst part we do not have a di�cult task as we can
basically repeat that argument. Indeed, in that proof we showed that for a given
cylinder set U one can construct boxes K1, K2 and another cylinder set V ⊆ U
such that for con�gurations in V any geodesic from ∂K1 to ∂K2 goes along the line
segment [pξ1, qξ1]. Thus if we choose p > m during the construction we will obtain
that none of the con�gurations in Fm can appear in V as in V there cannot be two
disjoint geodesic rays starting from [−m,m]d, given they all meet in pξ1. Thus Fm
is nowhere dense indeed, which concludes the proof of the theorem.

Theorem 2.3.3 implies that geodesic rays starting from any two distinct points
meet after a �nite number of edges, which is a rather interesting, extraordinary
behavior. It is useful to think a bit about how we should imagine the unique geodesic
ray then, what it looks like. It is tempting to imagine a picture in which it has some
asymptotic direction. However, using similar techniques to the one seen in the proof,
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one can easily verify that generically the unique geodesic ray intersects any path of
in�nite length in�nitely many times. Consequently, it is more appropriate to think
about it as an in�nite path which looks somewhat spiralic in the long run.

Remark 2.3.5. We note that in each case of the proof, in the estimates we only
needed that the Γ′ we construct is optimal in `1 between its endpoints amongst
paths contained by ∂K1 ∪ [pξ1, qξ1]∪ ∂K2, while Γ does not use any edge contained
by this set. We will refer back to this remark in the proof of Theorem 3.4.1.

2.4 The behavior of
T (0,µx)
µ|x|

In this section we revisit an old basic result of �rst passage percolation, that is
the existence of the time constants. More explicitly, if we consider any vector x,
then under mild conditions on the distribution, the function T (0,tx)

t
has an almost

sure limit in ∞ which is usually denoted by µ(x). One may wonder if it also holds
in a large subset of Ω in the topological setup. The following theorem shows the
converse. For a vector x ∈ Rd we denote by |x| the `1 norm of x, that is the sum of
the absolute values of the coordinates of x.

Theorem 2.4.1. Fix any nonzero vector x. Then generically for any λ with

inf A ≤ λ ≤ supA

there exists a sequence (µk)
∞
k=1 with µk →∞ such that

lim
k→∞

T (0, µkx)

µk|x|
= λ.

Before proving Theorem 2.4.1, it is worth mentioning that a sequence of the form
T (0,µkx)
µk|x|

cannot have a limit smaller than inf A or larger than supA, regardless of

which con�guration we observe. Indeed, choose µ large and let us denote by p(µ, x)
the lattice point with the property µx ∈ p(µ, x) + [0, 1)d, that is the lattice point
which was used to de�ne the passage time T (0, µx). Then we have |p(µ, x)− µx| < d.
Thus we have

(µ|x| − d) inf A ≤ T (0, µx) ≤ (µ|x|+ d) supA,

where we obtain the �rst inequality by considering any path from 0 to p(µ, x) and
the second one by considering a path between these points with minimal `1-length.
A simple rearrangement veri�es our claim. It shows that in Theorem 2.4.1 the λs
we consider are the only ones which we have to observe.
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Proof of Theorem 2.4.1. By a simple rescaling it is easy to see that it su�ces to
prove the statement for x ∈ Rd with |x| = 1. Indeed, if for a given λ the sequence of
coe�cients µk yields the given limit for the point x

|x| then the sequence of coe�cients

µk|x| will be �ne for the point x. In the spirit of this remark let us �x x ∈ Rd with

|x| = 1. We say that T (0,µx)
µ

is a normalized passage time in the direction of x.

Let us denote by S the set of con�gurations that are "bad" for us, namely the
subset of Ω in which there exists some (�nite or in�nite) λ with inf A ≤ λ ≤ supA

such that there is no sequence (µk)
∞
k=1 with µk →∞ such that limk→∞

T (0,µkx)
µk

= λ.
In this case, there is surely such a �nite λ, thus in our further arguments we think
about S this way. Our aim is to express S as a countable union of sets which are
easier to handle and prove that these sets are nowhere dense. Having this purpose in
mind, we will denote by S(λ, δ,M) the set of con�gurations in which for any µ > M

we have that the distance of T (0,µx)
µ

and λ is larger than δ. The following equation
clearly holds:

S =
⋃

inf A<λ<supA

⋃
δ>0

⋃
M>0

S (λ, δ,M) .

Indeed, by the de�nition of convergence if there is no appropriate sequence of coe�-
cients for a given λ ∈ (inf A, supA) then there exists a neighborhood of it such that
T (0,µx)

µ
is not in this neighborhood for large enough µ. However, by basic separability

arguments on the real line we have that it further equals

S =
⋃

λ∈Q,inf A<λ<supA

⋃
n∈N

⋃
m∈N

S

(
λ,

1

n
,m

)
,

which is a decomposition we pursued.

Having this knowledge it su�ces to prove that all the sets S
(
λ, 1

n
,m
)
are nowhere

dense. In order to prove this, �x λ, n,m, and �x real numbers a, b with

inf A ≤ a < λ < b ≤ supA.

(This step has importance only if A is unbounded, and its sole technical role is that
we cannot calculate with supA in this case, thus it needs to be replaced by a �nite
quantity.)

Clearly it su�ces to prove our claim for large enough n, as for �xed λ and m
the sequence S

(
λ, 1

n
,m
)
is growing as n tends to in�nity. Thus without loss of

generality it su�ces to consider the case when a+ 1
n
< λ < b− 1

n
.

As usual, �x U to be a cylinder set, and denote the set of edges belonging
to nontrivial projections of U by EU = {e1, e2, ..., ek}. As in the proof of Theorem
2.1.1, we can construct a smaller cylinder set by shrinking the projections Ue1 , ..., Uek ,
such that all of these projections are bounded in R. Again, we denote these new
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projections by U ′ei , i = 1, ..., k, and the cylinder set de�ned by them by U ′. Then for
any con�guration in U ′, the sum of passage times over the edges e1, ..., ek is bounded
by a constant C. Our goal is to �nd a cylinder set V ⊆ U ′ and some µ > m such
that the distance of T (0,µx)

µ
and λ is at most 1

n
for any con�guration in V . We state

that for suitably large µ it is possible to �nd such V . Consider a large µ > 1, its
exact value is to be determined later.

Now �x a path Γ0 with minimal `1-length from the origin to p(µ, x). Roughly
we would like to de�ne V such that it has nontrivial projections to the edges in EU
and to the edges in a large box K containing 0 and p(µ, x). (The size of K is also
to be �xed later.) Concerning the edges in Γ0 \ EU , we would like to de�ne the
projections so that the passage time of Γ0 is close to λµ, by having projections close
to a or b with a suitable frequency. For the other edges in K we would like to have
projections close to b in order to guarantee that the passage time between 0 and
p(µ, x) is not reduced too much by another path.

Rigorously speaking, choose µ su�ciently large so that |p(µ, x)| = N1 + N2 for
some positive integers satisfying

aN1 + bN2

|p(µ, x)|
∈
(
λ− 1

4n
, λ+

1

4n

)
.

As |p(µ, x)| can be arbitrarily large and the length of the interval we aim at is �xed,
it is simple to see that we can choose µ,N1, N2 to satisfy this relation. Moreover, as
the distance of |p(µ, x)| and µ is bounded by d, for suitably large µ this yields

aN1 + bN2

µ
∈
(
λ− 1

2n
, λ+

1

2n

)
. (2.1)

Now we choose N1 edges of Γ0, and for the ones not in EU , we require V to have
projection (a− εe, a+ εe) ∩ A to any such edge e, such that the sum of these εes is
at most 1

4n
. These are the cheap edges. We proceed similarly for all the other edges

in K: for the ones not in EU , we require V to have projection (b − εe, b + εe) ∩ A
to any such edge e, such that the sum of these εes is at most 1

4n
. These are the

expensive edges, and by the choice of n, they are bounded away from the cheap
ones. As the number of edges in EU is �xed and N1, N2 can grow arbitrarily large
for large |p(µ, x)|, the projection to the majority of the edges in Γ0 will be either
cheap or expensive. We �x K now: de�ne it such that any path leaving K contains
at least |p(µ, x)| expensive edges.

Now our only remaining task is to estimate the passage time between 0 and
p(µ, x) for con�gurations in V . Our aim is to verify that we have

T (0, p(µ, x)) ∈
[
µ

(
λ− 1

n

)
, µ

(
λ+

1

n

)]
, (2.2)
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which would follow from

τ(Γ) > µ

(
λ− 1

n

)
(2.3)

for any path Γ from 0 to p(µ, x) and

τ(Γ0) < µ

(
λ+

1

n

)
. (2.4)

In order to check (2.3), consider now any path Γ from 0 to p(µ, x). If Γ leaves K, it
contains at least N1 +N2 expensive edges, which results in

τ(Γ)

µ
≥
b(N1 +N2)− 1

4n

µ
>
aN1 + bN2 − 1

4n

µ
> λ− 1

n
,

by (2.1), µ > 1 and the condition on the expensive edges. Thus we have (2.3) for
these paths. Assume now that Γ stays in K. Then |Γ| ≥ |p(µ, x)|, and at most k
edges of Γ is in EU . Thus Γ has at least N1 + N2 − k edges which are either cheap
or expensive. As amongst these at most N1 are cheap, we have the following lower
bound on the passage time of Γ if we forget about the edges in EU ∩Γ and consider
the trivial lower estimates for the number and passage times of cheap and expensive
edges:

τ(Γ)

µ
≥
aN1 + b(N2 − k)− 1

4n

µ
> λ− 1

n
,

by (2.1) for large enough µ as bk
µ
tends to 0. It veri�es (2.3) for any path from 0

to p(µ, x), hence it remains to show (2.4). However, it can be done similarly. We
know that Γ0 contains at most N1 cheap edges, N2 expensive edges, and the sum of
passage times on the edges in EU ∩ Γ is bounded by C for any con�guration in V .
Thus we have

τ(Γ)

µ
≤
aN1 + bN2 + 1

4n
+ C

µ
< λ+

1

n
,

by (2.1) for large µ, which veri�es (2.4), and concludes the proof.

2.5 The behavior of
B(t)
t

In probability theory, a fundamental result related to the existence of time constants
is the Cox�Durrett shape theorem. Let us denote by B(t) the ball of radius t centered
at the origin in the pseudometric T , that is the subset of Rd we might reach from the
origin in time t. A truly interesting result of the theory (see [5]) is that there exists
a so-called limit shape Bµ, which has the property that as t tends to in�nity, with

probability one B(t)
t

tends to Bµ in some sense. Moreover, Bµ depends only on the
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distribution µ. Various works can be found in the literature based on this theorem
about the speed of this convergence for example. We might ask if a similar statement
holds generically in the topological setup. The results of this section point out it
is quite far from the truth: along suitable sequences (tn) we might obtain di�erent

sets as the Hausdor� limit of B(tn)
tn

simultaneously. To make the discussion simpler,
we introduce the following de�nition:

De�nition 2.5.1. We say that K is a limit set of the percolation in some con�g-
uration, if there exists a sequence (tn) with tn → +∞ such that B(tn)

tn
→ K in the

Hausdor� metric.

Let us denote by Dr the `1 closed ball of radius r centered at 0, and let KdA be
the set of connected compact sets in Rd satisfying

D 1
supA
⊆ K ⊆ D 1

inf A
,

where the leftmost set is replaced by {0} if supA = ∞, and the rightmost set is
replaced by Rd if inf A = 0. Furthermore, we say that K ∈ PdA if K ∈ KdA, if for
each x ∈ K there is a "topological path" in K of `1-length at most 1

inf A
from 0 to

x. (From now on, we use the terms path and topological path in order to clearly
distinguish paths in graph theoretical sense and paths in topological sense.) Its

closure in KdA with respect to the Hausdor� metric is denoted by PdA. Moreover, it

is worth mentioning that PdA also equals the closure of Pd,−A , which is the set of Ks
satisfying that there exists αK > 0 such that for each x ∈ K there is a topological
path in K of `1-length at most 1

inf A
− αK from 0 to x. This remark proves to be

technically helpful.

First let us note that if K is a limit set then K ∈ KdA. This claim can be veri�ed
similarly as the necessity of the conditions of Theorem 2.4.1. For example even if
every passage time would be inf A, which yields that B(t) is as large as can be for

each t, the limit of B(t)
t

would be D 1
inf A

, and not larger. The connectedness of K
is also obvious as this property is conserved by taking Hausdor� limit. What is a
bit more di�cult and intriguing that the limit sets are also in the smaller family
PdA. If inf A = 0, we have PdA = KdA, thus it does not require further explanation.
Consider the general case, and proceeding towards a contradiction assume the con-
verse. Denote by B̃(t) the subgraph of Zd which is accessible from the origin in
time t. Then as the Hausdor� distance of B(t) and B̃(t) is uniformly bounded by a

constant dependent only on the dimension, we have that B̃(tn)
tn

also converges to K

in Hausdor� distance. However, we know that B̃(tn) is a connected subgraph of Zd,
and each of its points is accessible from the origin using a path with `1-length

tn
inf A

.

Thus any point of B̃(tn)
tn

is accessible from the origin using a topological path, which
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stays in the set, and has `1-length at most 1
inf A

. It immediately yields that

B̃(tn)

tn
∈ PdA.

As a consequence, K ∈ P d
A also holds and K is the Hausdor� limit of the sets B̃(tn)

tn
,

a contradiction. Hence K ∈ PdA holds indeed if K is a limit set.
We also note that if d = 1, then KdA = PdA. To conclude the list of our initial

observations about PdA, we point out that it contains certain natural classes of sets,
even if inf A 6= 0. First of all, it is quite obvious that it contains all the convex sets
of KdA. Moreover, it contains the star domains of KdA with respect to the origin. We
also mention a less natural class: we introduce the notion of star domains in `1 sense.
The set S ⊆ Rd is a star domain with respect to x0 ∈ S in `1 sense (or generalized
star domain with respect to x0), if for any x ∈ S there is a topological path from x0

to x in S with `1-length |x − x0|. In other words, each of the coordinate functions
of the topological path are monotone. We denote the subset of KdA containing the
generalized star domains with respect to 0 by Kd,∗A . Then Kd,∗A ⊆ PdA also holds.

Now our aim is to prove the following theorem which completely characterizes
the generic behavior of limit sets if inf A = 0, or supA =∞:

Theorem 2.5.2. Assume that inf A = 0, or supA =∞. Then generically we have
that K is a limit set if and only if K ∈ PdA.

In the following we will prove this theorem through a few steps. Denote by Pd,−A,0
the set that contains those sets of Pd,−A which can be expressed as the closure of a
connected open set. It is easy to see that Pd,−A,0 is dense in Pd,−A . Indeed, if K ∈ Pd,−A ,
denote by K(r) the set of points which are in D 1

inf A
and at most r apart from K

in `1. Then for su�ciently small r the relation K(r) ∈ Pd,−A holds: for any point
x ∈ K(r) we might choose x′ ∈ K within distance r. Then there is a topological path
from the origin to x′ in K of `1-length at most 1

inf A
− αK , which can be continued

by a line segment of `1-length r to x. (Here we use the fact that D 1
inf A

is convex.)

Moreover, K(r) is the closure of a connected open set: by the compactness of K, it
is simply the closure of K0(r), the set of points which are in D 1

inf A
and less than r

apart from K in `1. Consequently, Pd,−A,0 = PdA also holds. Thus if we could verify

the modi�ed statement of Theorem 2.5.2 which we obtain by replacing PdA by Pd,−A,0 ,
that would be su�cient. We also recall that instead of the desired convergence of
B(tn)
tn

, it su�ces to prove the same for B̃(tn)
tn

.

Now by a standard argument about the separability of Pd,−A,0 it su�ces to prove

that for a given set K ∈ Pd,−A,0 we can �nd a suitable sequence of times in a residual

subset of Ω. (We know that Pd,−A,0 is separable as it is a subspace of the separable KdA,
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which is a metric space.) Our proof will rely on constructing cylinder sets in which
we have a large control on B̃(t). In other words, we desire to construct subgraphs of
Zd which are close to tK. To formalize this idea, we will need the following lemma:

Lemma 2.5.3. Let K ∈ Pd,−A,0 and ε > 0 �xed. Denote by Gn the embedded graph

whose vertices are the vertices of Zd

n
in K, and edges are those nearest neighbor

edges which lie entirely in K. Then for in�nitely many n the graph Gn has a con-
nected subgraph Hn such that it contains all the vertices and edges in D 1

supA
, satis�es

dH(K,Hn) < ε, and to all of its vertices there is a path from the origin of `1-length
smaller than 1

inf A
.

If inf A = 0, we have Pd,−A,0 = KdA,0, and the last condition on Hn is tautological.
In this neater form, we �nd this lemma interesting in its own right as a nice exercise
of a course in analysis. (It is likely to be known in some form, but we could not �nd
a reference for it.)

Proof of Lemma 2.5.3. As intK is a connected open set, the points with rational
coordinates in intK form a dense subset of K. Let us consider now a open ball of
radius ε centered at each point with rational coordinates in intK. These balls give
an open cover of the compact set K, thus we might choose a �nite cover. Denote
the centers of these balls by v1, ..., vm. The coordinates of these points might have
only �nitely many distinct denominators. Thus if n is chosen as a common multiple
of them, Hn can contain all these points, which guarantees dH(K,Hn) < ε. What
remains to show that is for large enough such n, it is possible to choose a connected
Hn satisfying the condition about the lengths of paths such that it contains the
points v1, ..., vm, and the vertices and edges in D 1

supA
.

As K ∈ Pd,−A , there are topological paths γ1, ...γm : [0, 1] → intK from 0 to
v1, ...vm with `1-length less than 1

inf A
. As each of the sets γi ([0, 1]) are compact and

contained by intK, it is possible to choose r > 0 such that their neighborhoods of
radius r are also contained by intK. Moreover, by the de�nition of `1-length we
might choose points on γi ([0, 1]) such that they can be connected by a broken line
Li with pieces parallel to the coordinate vectors, and its length is also less than

1
inf A

. Furthermore, by the existence of r, if we choose a suitably �ne partition of
γi ([0, 1]), we might have Li ∈ intK. For the sake of simplicity, denote the vertices
of Li by 0 = p1, ..., pk = vi. Now for β > 0 �xed, we can choose n so large that
Zd

n
has vertices closer than β in `1 to any vertex of Li. Denote such vertices of Zd

n

by 0 = q1, ..., qk = vi. Also if n is large enough, if we consider the smallest lattice
hypercubes of Zd

n
crossed by Li, they are still in intK, and q1, ..., qk might be chosen

to be the vertices of these cubes. Thus using the edges of these cubes we can �nd
a path Γi,n in Gn from 0 to vi, which stays in intK, and optimal in `1 between any
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vertices qj and qj+1. Hence we can deduce by triangle inequality that

|Γi,n| =
k−1∑
j=1

|qjqj+1| ≤
k−1∑
j=1

|pjpj+1|+ 2
k∑
j=1

|pjqj| ≤ |Li|+ 2kβ.

As k is �xed and β can be arbitrarily small, it guarantees that for large enough n the
length |Γi,n| is less than inf A. We can de�ne Hn for in�nitely many n appropriately

based on this argument: we require it to contain all the vertices and edges of Zd

n
in

D 1
supA

, it is clearly connected and all the vertices are accessible by a path of `1-length

less than 1
inf A

. Furthermore, we require it to contain the vertices v1, ..., vm and the
paths Γi,n, which does not mess up the condition about the distance of vertices from
the origin, and guarantees the bound on the Hausdor� distance.

Proof of Theorem 2.5.2. By our previous remarks, it su�ces to prove that if K ∈
Pd,−A,0 , then in a residual subset of Ω there exists a suitable sequence tn → ∞ with
B̃(tn)
tn
→ K. Denote the set of con�gurations not having this property by F (K).

Then by the de�nition of convergence, F (K) can be expressed as a countable union
as follows:

F (K) =
∞⋃
i=1

∞⋃
m=1

F

(
K,

1

i
,m

)
,

where F (K, ε, µ0) stands for the set of con�gurations in which for any µ > µ0 we
have

dH

(
K,

B̃(µ)

µ

)
> ε.

Verifying that F
(
K, 1

i
,m
)
is nowhere dense for each i,m would conclude the proof.

Clearly it su�ces to do so for large enough i,m.
As usual, �x U to be a cylinder set, and denote the set of edges belonging

to nontrivial projections of U by EU = {e1, e2, ..., ek}. As in the proof of Theorem
2.1.1, we can construct a smaller cylinder set by shrinking the projections Ue1 , ..., Uek ,
such that all of these projections are bounded in R. Again, we denote these new
projections by U ′ei , i = 1, ..., k, and the cylinder set de�ned by them by U ′. Then for
any con�guration in U ′, the sum of passage times over the edges e1, ..., ek is bounded
by a constant C. Our goal is to �nd a cylinder set V ⊆ U ′ and some µ > m such

that the Hausdor� distance of B̃(µ)
µ

and K is at most 1
i
for any con�guration in V .

We distinguish the cases based on the value of inf A and supA. The idea will be
the same in the three cases, but the realization will vary.

(i) Assume �rst that inf A = 0 and supA =∞, as technically it is the easiest. We
pursue µ as a large enough n ∈ N for which n > C and which satis�es Lemma
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2.5.3 with ε = 1
2i
. Now we try to choose V such that for any con�guration

in V , the set B̃(n) is close to nHn, which is a subgraph of Zd. For this aim,
denote the edge set of nHn by E(nHn). For any edge e ∈ E(nHn) \ EU we
de�ne Ve to be [0, εe) ∩ A, where the εes are small enough to have a smaller
sum than n − C. Furthermore, for any further edge e leaving the graph nHn

or neighboring to one of the edges in EU , we de�ne Ve to have strictly larger
elements than n. By the �rst part of the de�nition nHn ⊆ B̃(n) obviously
holds. Furthermore, B̃(n) may di�er from nHn in only the edges of EU , which
yields that their Hausdor� distance is at most k. As a consequence, since the
Hausdor� distance of nHn and K is at most n

2i
, by triangle inequality we have

that

dH

(
K,

B̃(n)

n

)
≤ 1

2i
+
k

n
≤ 1

i
,

if n is large enough. It concludes the proof in this case.

(ii) If inf A = 0 and A is bounded, the proof relies on the same concept, but our
task is a bit more di�cult. We choose n as in (i), and look for V with a similar
property. If n is large enough, we have EU ⊆ nHn. Choose N ∈ N with
N supA > C. For an edge e in D n

supA
−N , which is not contained by EU , we

de�ne Ve to be (supA − εe, supA) ∩ A, where the εes are small enough, they
are to be �xed later. Thus these are expensive edges. For any other edge e of
E(nHn) \EU we stick to the de�nition in (i): Ve = [0, εe) ∩A, here εe is small
again, these are cheap edges. Finally, for any further edge e with distance at
most 2N from the graph nHn, we de�ne Ve to be (supA−εe, supA)∩A, hence
these are expensive edges again. Now if we consider any point x ∈ nHn, there
is a path Γ to it from the origin which might use the edges of EU , and uses at

most
[

n
supA

−N
]
expensive edges. All the other edges in Γ are cheap. Thus

by the de�nition of N , if we choose the εes to have small enough sum, the
passage time of Γ is bounded by n for any con�guration in V , which results in
x ∈ B̃(n). Furthermore, if a point x is further from nHn than 2N , any path
from 0 to x uses more than n

supA
expensive edges, which yields that if the εes

have small enough sum, x /∈ B̃(n). As a consequence, the Hausdor� distance
of B̃(n) and nHn is at most 2N , which is �xed. The �nal step is the same
triangle inequality as in (i).

(iii) Assume inf A > 0 and supA = ∞. We might attempt to copy the argument
of (i). The only di�culty is that we have to replace the projections [0, εe) ∩A
by (inf A, inf A + εe) ∩ A. Now by the last condition on Hn in Lemma 2.5.3,
for any of vertex x of nHn there exists a path Γ from 0 to x with `1-length
less than n

inf A
. Thus if C < N inf A, we might obtain that for any such x with
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|x| < n
inf A
− N , the passage time of Γ is at most n for a good choice of εe.

This means that B̃(n) contains all the points of nHn for any con�guration in
V , except for possibly those ones which are closer to ∂D n

inf A
than N . On the

other hand, B̃(n) cannot contain a point which is further from nHn than k.
Thus the Hausdor� distance of nHn and B̃(n) can be bounded by N + k, and
the proof might be �nished using the triangle inequality.

One may wonder what happens in the case when A is bounded away both from
0 and +∞. If d = 1, it does not require much e�ort to show that generically any
K ∈ KdA = PdA is a limit set. However, if d ≥ 2, one faces di�culties as PdA is not
the family of limit sets anymore:

Proposition 2.5.4. For suitable A, there exists K ∈ PdA which is not a limit set.

Proof. Let A = {1, 2}, and let K = D 1
2
∪ [0, ξ1]. Then K ∈ PdA clearly holds, as

K is a star domain with respect to 0. We state there is no con�guration in Ω and
a sequence (tn)∞n=1 tending to in�nity with B(tn)

tn
→ K. Assume the converse: there

exists such a con�guration and such a sequence of times. Then by the condition
B(tn)
tn
→ K, there exists a sequence of points xn = tnξ1 + o(tn)vn, where |vn| = 1,

and a path Γn from 0 to xn with passage time τ (Γn) = tn+o(tn). (Here o(tn) denotes

a sequence of quantities which satis�es o(tn)
tn
→ 0 as n→∞.) This guarantees that

Γn contains at most o(tn) edges with passage time 2. Moreover, for large enough n,
these paths cross the boundary of D 1

2
tn

at some point yn. Denote the piece of Γn
from 0 to yn by Γ′n. As Γ′n also contains at most o(tn) edges with passage time 2, it
is simple to check that it guarantees

T (0, yn) ≤ τ (Γ′n) =
tn
2

+ o(tn).

Without loss of generality, we can assume that each yn lies in the upper half-plane.
Based on the previous inequality, for arbitrary �xed α > 0 we have

T (0, yn + [αtn](ξ1 + ξ2)) ≤ T (0, yn) + T (yn, yn + [αtn](ξ1 + ξ2))

≤
(

1

2
+ 4α

)
tn + o(tn),

(2.5)

if we estimate the second passage time of the middle expression by 4αtn, which is a
valid upper bound by the choice of A and the `1 distance of the two points observed.
For large n and small enough α, it is strictly smaller than tn, thus we have that
zn = yn + [αtn](ξ1 + ξ2) is in B(tn). Moreover, for large enough n, the Euclidean
distance of zn from both the �rst coordinate axis and ∂D 1

2
tn

is at least αtn
2
. Thus
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the distance of zn
tn

from K is at least α
2
for large n. On the other hand, the sequence(

zn
tn

)∞
n=1

is in D1, thus it has a convergent subsequence with limit z ∈ D1 with

distance at least α
2
from K. However, z is contained by the Hausdor� limit of Btn

tn
by zn ∈ Btn , which is K, a contradiction.

This proposition shows that in the cases not handled by Theorem 2.5.2, we need
to modify the statement itself. Requiring convexity might be an attractive idea,
as one might feel that in the example above the failure is somewhat caused by the
lack of it, however, it is not complicated to construct con�gurations in which Bt

t

tends to a concave shape. Thus it is not the proper way to completely overcome this
di�culty. However, in [10] we did not even manage to prove that the convex sets of
KdA are limit sets. The proof of this conjecture was one of the main results of [11]:

Theorem 2.5.5. Let A be arbitrary. Then generically any convex K ∈ KdA is a
limit set.

From now on our goal is to prove Theorem 2.5.5. In the following we will assume
that A is bounded away both from 0 and +∞ since the other cases are covered by
Theorem 2.5.2 as the convex sets of KdA are in PdA. What we gain by this assumption
is that we circumvent certain technical di�culties, however, we note that some of
the de�nitions and results could be generalized to these extremes.

We start our investigations by introducing two families of metrics in Rd:

De�nition 2.5.6. Let f be a nonnegative, measurable function. The pseudometric
df,`1 induced by f is de�ned by

df,`1(x, y) = inf
Γ:x→y

∫
Γ

f(t)ds,

where the arc length is considered in `1, and we consider piecewise linear topological
paths with �nitely many pieces upon taking in�mum.

We note that we mean piecewise linearity in the usual general sense, that is we
do not require the pieces to be parallel to the coordinate axes.

De�nition 2.5.7. We call a pseudometric ρ on Rd a percolation metric with support
A if there exists a measurable function f : Rd → A so that ρ = df,`1.

In the sequel we omit `1 from the subscript as we are only concerned with `1

based metrics, and unless it may cause ambiguity we will not write out the su�x
"with support A" either. The family of sets arising as closed unit balls of percolation
metrics, centered at the origin, will be denoted by Wd

A. As A is bounded away from
both 0 and +∞, the elements of Wd

A are compact sets, each of them is the closure
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of its interior. Moreover, each percolation metric with support A is a proper metric
indeed. The closure of Wd

A in KdA is denoted by Wd
A.

The following theorem is simple to prove and displays how percolation metrics
are related to the limit of sequences of the type B(tn)

tn
:

Theorem 2.5.8. Assume that B(tn)
tn
→ K in the Hausdor� metric in some con�gu-

ration for a sequence tn diverging to +∞. Then K ∈ Wd
A.

Remark 2.5.9. Due to our earlier remarks, this theorem yields Wd
A ⊆ PdA.

Proof of Theorem 2.5.8. Consider the subgraph B̃(tn) of Zd accessible in time tn

from the origin. We obviously have B̃(tn)
tn
→ K by assumption. Now we de�ne

fn as follows: in the relative interior of an edge of the graph Zd

tn
we de�ne fn to

have the same value as the passage time of the corresponding edge in Zd. (In the
endpoints this de�nition would not give a unique value, but the value on a discrete
set will not have any importance anyway.) For any remaining point x ∈ Rd we set
fn(x) = supA. We state that the Hausdor� distance of the closed unit ball Bn of

dfn and B̃(tn)
tn

converges to 0: as Bn ∈ Wd
A that would conclude the proof. As the

containment B̃(tn)
tn
⊆ Bn is obvious, we only have to examine how far a point of Bn

can lie from the graph B̃(tn)
tn

. We also note that the value of fn only matters in D 1
inf A

,
as Bn ⊆ D 1

inf A
necessarily holds.

First let us notice that if x is a vertex of Zd

tn
then in the de�nition of dfn(0, x) it

su�ces to consider topological paths which are also paths in the graph Zd

tn
. Indeed,

by de�nition for any ε > 0 there exists a topological path Γ from the origin to x so
that we have ∫

Γ

fn(t)ds < dfn(0, x) + ε.

Our aim is to show that there exists a Γ′ which is a path in the graph Zd

tn
and the

integral of fn on Γ′ does not exceed the integral of fn on Γ. If Γ itself is such a path
then we are done. Moving towards a contradiction, assume that there is a point x
and a path Γ connecting the origin to x which is not such a path, and there is no such
Γ′. Let N(Γ) be the number of pieces of Γ in the graph Zd

tn
, where by such pieces we

mean largest connected components in one of the edges of Zd

tn
. Meanwhile let M(Γ)

be the number of complementary components of Γ. Now choose a contradictory
x, Γ so that M(Γ) is minimal, and amongst these one for which N(Γ) is minimal.

As Γ is not a path in the graph Zd

tn
, we can choose line segments [y, y′] and [z, z′]

so that they are consecutive pieces in the above sense, that is they are respectively
contained by some edges ey

tn
, ez
tn
, and the subpath Γ1 of Γ between y′ and z might

hit the graph Zd

tn
in a discrete set only. Now choose Γ′ to be a modi�cation of Γ:
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from the origin to y and from z to x we do not alter Γ, but we replace some of
the remaining parts based on the relation between τ(ey) and τ(ez) and the relative
position of these edges. Notably, unless ey is an orthogonal translated image of ez,
it is simple to check that there is an `1-optimal topological path Γ′1 from y′ to z

which is in fact a path in the graph Zd

tn
. Moreover, as Γ1 does not hit the graph

Zd

tn
, we know fn = supA in Γ1 almost everywhere, while it is at most supA in Γ′1.

Hence, if we de�ne Γ′ as the topological path gained from Γ by replacing Γ1 with
Γ′1, we reduce the dfn-length, thus Γ′ also has to be a contradictory topological path
from the origin to x. (Or it is already a path in the graph, which would also be a
contradiction.) However, we reduced M(Γ) by one, which contradicts the choice of
x, Γ. Thus we have a contradiction in the case when ey cannot be obtained from ez
by an orthogonal translation.

Let us consider the other case. Let us also assume τ(ey) ≤ τ(ez), in the other case
we can use the same argument by symmetry. In this case we proceed the following
way: we project orthogonally z′ to ey

tn
to gain z∗, and we gain Γ′ by replacing the

subpath of Γ from y to z′ by [y, z∗] ∪ [z∗, z′]. Now

|y − z∗| ≤ |y′ − y|+ |z′ − z|,

hence by τ(ey) ≤ τ(ez) we have that the integral of fn on [y, z∗] ⊆ Γ′ cannot exceed
the integral of fn on [y, y′]∪ [z, z′] ⊆ Γ. On the other hand, the part of Γ′ connecting
the edges ey

tn
and ez

tn
is `1-optimal, hence the integral of fn here cannot exceed the

integral of fn on the corresponding part of Γ, either. Consequently,
∫

Γ′ fn ≤
∫

Γ
fn,

thus Γ′ also has to be a contradictory topological path from the origin to x. (Or it
is already a path in the graph, which would also be a contradiction.) However, we
eliminated the piece [z, z′] of Γ, hence we reduced N(Γ) by one while not increasing

M(Γ). (Except for the case when z∗, z′ are both vertices of the graph Zd

tn
, that is

[z∗, z′] is the union of a few consecutive edges, but in this case, we reduce M(Γ) by
the previous step.) It contradicts the choice of x, Γ. Thus the claim of the previous
paragraph holds.

Now let x ∈ Bn arbitrary. Consider the smallest lattice hypercube of Zd

tn
contain-

ing x. Denote an arbitrary vertex of it by x′. Now |x − x′| ≤ dt−1
n , which simply

yields that dfn(x, x′) ≤ dt−1
n supA. Consequently,

dfn(0, x′) ≤ 1 + dt−1
n supA

by the triangle inequality. Thus by the claim of the previous paragraph for any
ε > 0 there exists a path Γ from the origin to x′ so that it is in the graph Zd

tn
and∫

Γ

f(t)ds < 1 + dt−1
n supA+ ε.
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Choose for example ε = dt−1
n supA. Now if we go back on Γ from x′ by k ≤ |Γ|

edges, where k is to be precised later, we get back to a vertex y of Zd

tn
, and the

subpath of Γ from 0 to y guarantees that

dfn(0, y) < 1 + 2dt−1
n supA− kt−1

n inf A = 1 + (2d supA− k inf A)t−1
n .

Thus we can choose k such that the y we obtain satis�es dfn(0, y) < 1, and k is
bounded by

k ≤
⌈

2d supA

inf A

⌉
.

Hence by the de�nition of fn in the graph Zd

tn
we have that y ∈ B̃(tn)

tn
. However, by

the choice of k we have that |x′ − y| ≤
⌈

2d supA
inf A

⌉
t−1
n . Adding it to the upper bound

on |x− x′| we obtain

|y − x| ≤ dt−1
n +

⌈
2d supA

inf A

⌉
t−1
n .

This quantity is a uniform bound: for any n and x ∈ Bn we have such a y ∈ B̃(tn)
tn

.

Thus as we have that B̃(tn)
tn
⊆ Bn, and tn → +∞, we obtain that the elementwise

Hausdor� distance of these sequences tends to 0. Consequently, Bn → K as well.
As Bn ∈ Wd

A, it concludes the proof.

In some sense the above theorem gives a necessary condition on a set K ∈ KdA
being a limit set, however, it would be quite elaborate to check it in any somewhat
complicated case. It is more convenient to think about this result as a kind of
reformulation of the original de�nition, whose signi�cance lies in giving a somewhat
new perspective, which helps in proving Theorem 2.5.5 through the construction
given in the following lemma:

Lemma 2.5.10. If K ∈ KdA is convex, then K ∈ Wd
A.

Proof. It is well-known and easy to check that convex polytopes with rational ver-
tices form a dense subset of convex sets in the Hausdor� metric, and the same
argument shows that convex polytopes with rational vertices of KdA form a dense
subset of convex sets of KdA. Hence it su�ces to prove the lemma for K convex
polytopes with rational vertices. We can also assume that K has no boundary point
in ∂D 1

supA
. First we will further assume that A is an interval, or in other words we

will allow the metric inducing functions to have values in [inf A, supA] instead of A.
Fix ε > 0 rational with ε < 1

supA
and take a �nite ε-net H = {x1, x2, ..., xk} of

the compact set ∂K. These points can be chosen so that each of them has rational
coordinates. By de�nition and assumption we clearly have 1

supA
< |xi| ≤ 1

inf A
. Now
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on the open line segment Ii = (0, xi) let f(x) = |xi|−1, and in the complement of
these line segments let f(x) = supA. We claim that the closed unit ball Bf of df is
in K. As this unit ball obviously contains the points of H (and also the segments
connecting the origin to the points of H), this claim would simply imply that the

Hausdor� distance of Bf and K is at most ε, which would yield K ∈ Wd
A.

First we show that if x ∈ Ii for some i then [0, x] is a df -optimal topological
path. Proceeding towards a contradiction assume that there exists x ∈ Ii for some
i such that there is a shorter topological path Γ in df from 0 to x other than [0, x].
Choose x and Γ so that the number of linear pieces of Γ is minimal. Amongst such
xs and Γs choose x and Γ so that the number of intersected intervals Ij is minimal.
As [0, x] is optimal in `1, we might assume that Γ has a common line segment with
one of the intervals Ij, as otherwise we have |Γ| ≥ |x| and f |Γ ≥ f |[0,x]. Besides that
we can also assume that x is the �rst point of Γ in Ii. Now choose y to be the last
point of Γ in one of the intervals Ij before x. By the choice of Γ we can immediately
yield that the piece of Γ from 0 to y equals Γ1 = [0, y] in fact. Denote the second
part of Γ by Γ2. We know that in Γ1 we have f(t) = |xj|−1 while in Γ2 we have
f(t) = supA. Moreover, in [0, x] we have f(t) = |xi|−1. Consequently,∫

Γ

f(t)ds = |y||xj|−1 + |y − x| supA, (2.6)

while ∫
[0,x]

f(t)ds = |x||xi|−1. (2.7)

By assumption, we have an inequality between these quantities:

|y||xj|−1 + |x− y| supA < |x||xi|−1. (2.8)

Our aim right now is to get a contradiction, which we try to achieve by using the
convexity of K. Note that by K ∈ KdA we know that in the direction of x − y the
shape K contains a segment of `1-length (supA)−1 starting from the origin, and in
the direction of y it contains a segment of `1-length |xj| by de�nition. Thus we have

x− y
|x− y| supA

,
y|xj|
|y|
∈ K. (2.9)

Let us express x as a positive linear combination of these vectors:

x =
x− y

|x− y| supA
· (|x− y| supA) +

y|xj|
|y|
· |y|
|xj|

. (2.10)

The sum of these coe�cients might di�er from 1, thus multiply both of them by the
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same scalar to get a convex combination of the original vectors. The convexity of
K yields that this vector is also in K by (2.9):

x

|x− y| supA+ |y||xj|−1
∈ K. (2.11)

On the other hand, the furthest point of K in the direction of x is the endpoint of
Ii, that is xi = x

|x| |xi|. It means

|xi|
|x|
≥ 1

|x− y| supA+ |y||xj|−1
. (2.12)

Taking the reciprocal of this inequality contradicts (2.8), thus it veri�es the claim
about the df -optimal topological paths to the points of the intervals I1, ..., Ik.

This observation yields that to any x ∈ K there exists a df -optimal topological
path Γ: amongst the ones which do not share segments with any of the intervals
I1, ..., Ik the [0, x] line segment is optimal with df -length |x| supA. On the other
hand, amongst the ones which hit any of these intervals we only have to consider
the ones which are of the form [0, y] ∪ [y, x] for some y ∈ Ij where [x, y] does not
intersect any of these intervals, as our previous observation implies. However, for any
interval Ij there is an optimal Γj of these topological paths by a simple compactness
argument. Hence the df -optimal topological path Γ to x arises as the optimal one
of the path [0, x] and Γ1, ...Γn. This argument also shows that what is the closed
unit ball Bf of df : if the optimal topological path Γ to x with df -length at most 1
does not hit any of the intervals I1, ..., Ik, then we have x ∈ D 1

supA
, that is in K. On

the other hand, assume that Γ = Γj = [0, y] ∪ [y, x] for some y ∈ Ij. Here∫
[0,y]

f(t)ds = |y||xj|−1

and ∫
[y,x]

f(t)ds = |x− y| supA.

As the df -length of the path Γ is at most 1, the sum of these quantities is also at
most 1, consequently

|x− y| ≤ 1− |y||xj|−1

supA
=: ry. (2.13)

Thus we obtain that Bf contains an `1-ball of radius ry around y. However, for
y = 0 this `1 ball is contained by K as it equals D 1

supA
and K ∈ KdA. On the other

hand, for y = xj this `1 ball is trivial, hence it is also contained by K as xj ∈ K.
Consequently, as the function ry is linear in [0, xj] and K is convex, we have that
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the `1-ball of radius ry around y is in K for each y ∈ Ij.
What we conclude by this argument that Bf equals the union of D 1

supA
and all

the `1-balls of radius ry around y taken for each y ∈ Ij. Moreover, all the points of
Bf are in K. We have already seen that it concludes the proof of the lemma in the
case when A is an interval.

Now let us consider the case when A is arbitrary. Let A′ = [inf A, supA]. As
KdA = KdA′ , we have K ∈ KdA′ as well. Hence we can consider the function f we
constructed in the previous case, which induces a metric with unit ball Bf so that
its Hausdor� distance from K is at most ε. We are going to replace f by f̃ so that
f̃ induces a percolation metric df̃ which is almost the same as df , hence its unit ball
Bf̃ is also close to K. As f has values di�ering from supA only in the intervals Ii,
it su�ces to modify f there.

Let s > 0 be small, to be �xed later. We partition each of the intervals Ii into
subintervals of equal length at most si ≤ s, where ε is an integer multiple of each of
the sis. As all the coordinates of xi and ε are rational, we can choose the sis this
way. Such a subinterval Ji will be cut into two further subintervals Ji,1 and Ji,2 with
length si,1 and si,2 so that if f̃ = supA in Ji,1 and f̃ = inf A in Ji,2, then f and f̃
has the same integral in Ji, that is

si|xi|−1 = si,1 supA+ si,2 inf A.

Our long-term goal is to prove that the Hausdor� distance of Bf̃ and K can be
arbitrarily small for su�ciently small s. There are two things to be checked: we
need that K is contained by a small neighborhood of Bf̃ , and the converse. The

�rst one is simple: by construction it is obvious to see that the integral of f and f̃
equals on any line segment Ii, hence Bf̃ contains Ii. However, the intervals Ii form
an ε-net of K which yields that K is contained by the ε-neighborhood of Bf̃ . The
second containment proves to be trickier.

By the choice of f we know that Bf is contained by the ε-neighborhood of K.
Hence it would be su�cient to verify that Bf̃ is contained by a small neighborhood
of Bf . Our �rst step in this direction is verifying the following claim: for small s, if
x ∈ Ii \Dε, then there exists a df̃ -optimal topological path from ∂Dε to x, notably
the line segment J = [xi

′, x] ⊆ Ii, where xi
′ = [0, xi] ∩ ∂Dε. Proceeding towards

a contradiction, assume there is a shorter piecewise linear topological path with
�nitely many pieces Γ in df̃ to some x. Let z be its starting point. Clearly we can
assume that it is the last point of Γ in ∂Dε. Moreover, by an argument similar to the
�rst step of the case when A is an interval, we can assume that Γ = [xj

′, y] ∪ [y, x]
where [xj

′, y] ⊆ Ij for some j 6= i.

First we note that if |J | is very short, that is x is su�ciently close to Dε, then it
cannot be possible. Indeed, the set of points xi

′ form a discrete set, hence between
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such points there is a minimal `1-distance δ. Consequently, |Γ| ≥ δ. Hence if
|J | < δ · inf A

supA
then we surely have that the integral of f̃ on Γ exceeds its integral

on J , a contradiction. Thus we can assume that |J | is larger than this bound
independent from s. Focus only on ss smaller than this bound.

By the de�nition of f̃ it is quite simple to give an upper bound on the integral
of f̃ on J . Explicitly, in J we have that f̃ equals supA and inf A alternately, and
if we have consecutive segments with values supA and inf A, then the integral of f̃
on the union of these segments is the same as the integral of f . Hence the integral
of f̃ might be larger than the integral of f due to the fact that there is one more
line segment in which f̃ has value supA while f has value |xi|−1 on the complete
segment. This segment has length si,1. Consequently, we obtain the following bound∫

J

f̃ ≤
∫
J

f + si,1(supA− |xi|−1). (2.14)

Similarly, we can give a lower bound on the integral∫
[xj ′,y]

f̃ ≥
∫

[xj ′,y]

f, (2.15)

since sj divides ε, and hence the alternating sequence of line segments with value
supA and inf A starts with a complete interval with value supA from xj

′. Conse-
quently, as f̃ equals f almost everywhere in [y, x], we yield∫

Γ

f̃ ≥
∫

Γ

f. (2.16)

Combining (2.14) and (2.16) and the hypothetical inequality between
∫
J
f̃ and

∫
Γ
f̃

we conclude ∫
Γ

f <

∫
J

f + si,1(supA− |xi|−1). (2.17)

We distinguish three cases based on the relation between |xi| and |xj|.

(i) Assume that |xi| < |xj|. As there are �nitely many such js, for such js we can
choose r > 0 such that |xi|−1 > |xj|−1 + r. Considering what we obtained in
the �rst part, we see ∫

[0,xj ′]∪Γ

f ≥
∫

[0,xi′]∪J
f. (2.18)

By (2.17) and (2.18), we have∫
[0,xj ′]

f >

∫
[0,xi′]

f − si,1(supA− |xi|−1), (2.19)
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that is

ε|xj|−1 > ε|xi|−1−si,1(supA−|xi|−1) > ε|xj|−1+εr−si,1(supA−|xi|−1) (2.20)

by the choice of r. However, for small enough s (and consequently, small
enough si,1) it is impossible.

(ii) Assume that |xi| > |xj|. For such js we might choose r > 0 such that |xi|−1 +
r < |xj|−1 for all such j. Now the integral of f̃ on J is at most (|x|− ε)|xi|−1 +
si,1(supA−|xi|−1), while the integral of f̃ on Γ might be estimated from below
by

(|x| − ε)|xj|−1 > (|x| − ε)(|xi|−1 + r).

Comparing these bounds we should have

(|x| − ε)r < si,1(supA− |xi|−1).

In this expression the left hand side has a �xed positive bound as we ruled out
the possibility of |J | = |x| − ε being too small. However, the right hand side
can be arbitrarily small if we choose s small enough, a contradiction.

(iii) Finally, assume |xi| = |xj|. Now by assumption we might choose r > 0 such
that |xi| < supA − r. We know that |y − x| ≥ δ′ for some δ′ > 0 as the
`1-distance between any two distinct segments [xj

′, xj], [xi
′, xi] is positive, and

there are only �nitely many such segments. Hence we can deduce
∫

Γ
f̃ ≥

|J ||xi|−1 + δ′r, as |Γ| ≥ |J |, which is supposed to be smaller then |J ||xi|−1 +
si,1(supA− |xi|−1). However, it cannot hold if we choose s small enough.

Thus we proved the claim: if x ∈ Ii \Dε, then there exists a df̃ -optimal topo-
logical path from ∂Dε to x, notably the line segment J = [xi

′, x] ⊆ Ii, and hence
df̃ (xi

′, x) ≤ df (xi
′, x) + ε, if s is su�ciently small. This observation quickly yields

that for any x ∈ K \Dε we have df̃ (∂Dε, x) ≤ df (∂Dε, x) + ε, as we have that the
df̃ -optimal topological path Γ from ∂Dε to x might have a common line segment

with at most one of the segments [0, xi], thus the integral of f and f̃ on Γ might
only di�er by ε as the two functions only di�er in this piece of Γ.

Given this fact we can also say something about df̃ (0, x) for x /∈ Dε. (Other xs
are contained by Bf̃ anyway.) A path from 0 to x must intersect ∂Dε at some point
y. Thus we may conclude
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df̃ (0, x) ≥ inf
y∈∂Dε

(df̃ (0, y) + df̃ (y, x))

≥ inf
y∈∂Dε

((df (0, y)− ε(supA− inf A)) + (df (y, x)− ε))

= df (0, x)− ε(1 + supA− inf A),

(2.21)

where the second inequality comes from the fact that for points with `1 distance ε
we have that the di�erence of their df and df̃ distance is at most ε(supA− inf A).

Using (2.21), we might �nish the proof swiftly. We have seen that it would be
su�cient to verify that Bf̃ is contained by a small neighborhood of Bf . We state that

it holds for the neighborhood of `1-radius
ε(1+supA−inf A)

inf A
. Indeed, consider x so that

it is not in this neighborhood. Then for any z ∈ ∂Bf we have |z−x| > ε(1+supA−inf A)
inf A

.
Now consider any piecewise linear topological path Γ from 0 to x with last point z
in ∂Bf . By (2.21), as |z| ≥ 1

supA
> ε we obtain∫

Γ

f̃ ≥ df̃ (0, z)+df̃ (z, x) > df (0, z)−ε(1+supA− inf A)+ |z−x| inf A > 1, (2.22)

that is x /∈ Bf̃ . Thus we have that Bf̃ is in the neighborhood of Bf with ra-

dius ε(1+supA−inf A)
inf A

. Consequently, it is in the neighborhood of K with radius
ε(1+supA−inf A)

inf A
+ ε. Thus the Hausdor� distance of K and Bf̃ can be arbitrarily

small, which veri�es K ∈ Wd
A.

Using a construction similar to the one we have just seen, we can prove Theorem
2.5.5.

Proof of Theorem 2.5.5. As in the proof of Lemma 2.5.10, it is su�cient to consider
convex polytopes with rational vertices in KdA, and we can also assume that they have
no boundary point in ∂D 1

supA
. Let ε > 0 be rational and smaller than 1

supA
and let

x1, ..., xk, f̃ be as in the proof of the lemma with dH(K,Bf̃ ) < ε′ := ε(1+supA−inf A)
inf A

+ε.

This original f̃ had value supA everywhere except for certain pieces of the line
segments Ii, where it equaled inf A. These pieces contained a certain λi ratio of
|Ii|. By approximating λi with rational numbers (λi,j)

∞
j=1 and using them for this

ratio, we obtain approximating functions (f̃j)
∞
j=1 so that Bf̃j

converges to Bf̃ in the

Hausdor� metric as the sum of the lengths of line segments where we modify f̃j 6= f̃
can be arbitrarily small. Hence we can assume that f̃ is already de�ned such that
these ratios are rational: each Ii is partitioned into line segments of equal length si,
and each line segment is divided into line segments of rational length si,1 and si,2,
and f̃ has value inf A in the latter ones. We will modify this function in two steps.
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We know that for ε we have that there is a df̃ -optimal path from ∂Dε to any
x ∈ Ii \Dε, notably the line segment [xi

′, x] for xi
′ = [0, xi] ∩ ∂Dε. Moreover, from

(i)-(iii) it is simple to see that for small enough s there is a constant c > 0 such that
this line segment is shorter in df̃ than any other topological path sharing a segment
with another [xj

′, xj] by at least c. We will capitalize on this fact by a bit technical,
but necessary argument. Let θ > 0 be small enough to be �xed later, and consider
the cone Ci with vertex 0 and base Bi = {y : |y| = |xi|, |y−xi| ≤ θ}, that is the union
of all the line segments [0, y] for {y : |y| = |xi|, |y − xi| ≤ θ}. If θ is small enough,
these cones are disjoint. We will de�ne the g modi�cation of f̃ the following way:
if y ∈ Dε, then let g = supA. If y ∈ Ci \Dε, then let g(y) = f̃(x) where x is the
unique point of Ii with |x| = |y|. Apart from these sets we simply let g = f̃ = supA.
By the existence of c we can easily deduce the following claim: for small enough θ
we have that for any x ∈ Ci ∩ ∂Dε there is a dg-optimal topological path from ∂Dε

to x, and this path is completely contained by Ci. Indeed, as there is an `1-optimal
topological path in Ci and apart from these cones we have g = supA, we know that
if there is a shorter topological path Γ in dg from the boundary to some x ∈ Ci
then it must hit another Cj. We can assume that Γ starts from some y ∈ Cj with
i 6= j. However, by choosing θ small we can have an arbitrarily small bound on the
di�erence of the integrals

∫
Γ
f̃ and

∫
Γ
g. Combining this remark with the existence

of c yields our claim, which can be used to give a bound on how large Bg can be
compared to Bf̃ in a manner similar to the concluding step of the proof of Lemma
2.5.10. After these technical manipulations we obtain using small enough θ that
dH(K,Bg) < 2ε′. We will use a further modi�ed version g̃ of g, which is obtained
as follows: focus on a certain Ii \Dε and Ci \Dε. This line segment is divided into
pieces Ii,1,1, Ii,1,2, Ii,2,1, Ii,2,2, ..., Ii,l,1, Ii,l,2 with lengths alternating between si,1 and
si,2. Denote the corresponding slices of Ci by Ci,1,1, Ci,1,2, Ci,2,1, Ci,2,2, ..., Ci,l,1, Ci,l,2.
Consider now any of these line segments, for example [a, b] = Ii,1,1. (For any other
line segment we can proceed the same way.) Here a, b ∈ Qd, hence for all the mt

multiples with t ∈ N of a certain m we have a, b ∈ Zd

mt
. As Ci,1,l contains an open

cylinder with height [a, b], if we choose a large enough such mt we have an `1 optimal

path from a to b which is a path in the graph Zd

mt
. Now if we choose m to be a large

enough common multiple M of all the (�nitely many) ms appearing this way, we

arrive at a Zd

M
for which all the [a, b]s can be replaced by a path in the graph Zd

M

the above way. After all we obtain paths Γi ⊆ Ci for each i which are `1-optimal
from xi

′ to xi. Now in each Γi we will de�ne g̃ to have the same value as g, but
apart from that we let g̃ = supA. This way we obtain g̃ ≥ g, hence Bg̃ ⊆ Bg holds,
which yields that the 2ε′-neighborhood of K necessarily contains Bg̃. However, by
de�nition along the path Γi the integral of g̃ is the same as the integral of f̃ along
[xi
′, xi], which can be arbitrarily close to 1. Consequently, we have that an arbitrarily

large piece of Γi is contained by Bg̃. Hence as the ε′ + θ-neighborhood of
⋃k
i=1 Γi
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contains K, we have the same for the ε′ + θ-neighborhood of Bg̃. Consequently, if
θ < ε′, we have dH(K,Bg̃) < 2ε′. In the following we will use this g̃ which is de�ned
based on the parameters ε,M which are to be �xed later.

Let us return to the statement of the theorem. By separability arguments it
su�ces to prove that for any polytope K with rational vertices and no boundary
points in D 1

supA
, in a residual subset of Ω there exists a suitable sequence tn → ∞

with B(tn)
tn
→ K. Denote the set of con�gurations for which it does not hold by

F (K). Then by the de�nition of convergence, F (K) is expressible as a countable
union as follows:

F (K) =
∞⋃
i=1

∞⋃
l=1

F

(
K,

1

i
, l

)
,

where F (K, δ, µ0) stands for the set of con�gurations in which for any µ > µ0 we
have

dH

(
K,

B̃(µ)

µ

)
> δ.

Consequently, verifying that F (K, δ, l) is nowhere dense for each δ, l would conclude
the proof. Clearly it su�ces to prove it for su�ciently small δ and su�ciently large
l. Having this purpose in mind �x a cylinder set U in Ω with nontrivial projections
Ue1 , ...Uej . We try to �nd a smaller cylinder set V = Vt such that it is disjoint from
F (K, δ, l). Now choose l so large that the edges ei

l
⊆ Dε. Consider the function g̃

de�ned in the �rst step of the proof for some M > l and ε to be �xed later. This
function is constant by de�nition on any edge of Zd

Mt
for t ∈ N, denote this value

by g̃
(
e
Mt

)
. Now for any edge e /∈ {e1, ..., ej}, but intersecting D Mt

inf A
, we will de�ne

Vt,e = (g̃
(
e
Mt

)
−εe, g̃

(
e
Mt

)
+εe)∩A, where the sum of these εes is at most ε inf A. Let

Vt be de�ned by these projections and consider any con�guration ω in it. As in the
proof of Theorem 2.5.8, the passage times in this con�guration determine a function
ft,ω by rescaling, such that the Hausdor� distance of B(Mt)

Mt
and Bft,ω converges to

0 as t → ∞. (Here we use the fact we noted there that Bft,ω depends only on the
values of ft,ω in D 1

inf A
). However, by de�nition the function ft,ω is almost the same

as g̃ in D 1
inf A

: the only di�erences arise due to the existence of the edges e1, ..., ej
and the error term εe for each edge. However, these minor di�erences cannot imply
a signi�cant deviation of the integral on any relevant path in the de�nition of the
sets Bg̃ and Bft,ω : as relevant topological paths has `1-length at most 1

inf A
the error

terms may not yield a di�erence larger than ε in the integral of ft,ω and g̃. On the
other hand, the edges e1

l
, ...,

ej
l
are all in Dε, which is a set with `1-diameter 2ε, hence

they cannot yield a di�erence larger than 2ε(supA − inf A). As depending on the
choice of ε all these quantities can be arbitrarily small, we have that the Hausdor�
distance of Bg̃ and Bft,ω can be arbitrarily small. Consequently, for small enough ε,
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and large enough t we have dH(Bg̃,
B(Mt)
Mt

) < δ
2
. But for small enough ε we also have

dH(Bg̃, K) < δ
2
. That is, we have by triangle inequality

dH

(
K,

B̃(Mt)

Mt

)
< δ,

for some Mt > l. It means that for large enough t we have that Vt is necessarily
disjoint from F (K, δ, l), which yields that this latter set is nowhere dense. We have
seen that it concludes the proof.
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Chapter 3

Hilbert �rst passage percolation

3.1 Motivation and de�nition

The line of research appearing in this chapter was inspired by a question of Kornélia
Héra after a talk of the author given about [10]. Roughly, her question was what
can be said if we consider A ⊆ C instead of A ⊆ [0,+∞): to each edge, we assign
a complex number instead of a nonnegative one, and a passage time of a path
is de�ned to be the absolute value of the sum of the complex numbers along it.
The de�nition of passage time between points is the same. Since we do not use
the complex multiplicative structure, we can think of C as R2, or to treat a more
general case, we can work with a real Hilbert space H and A ⊆ H. The passage
vector v(e) of any edge will be an element of A, while the passage time of the edge
is τ(e) = ‖v(e)‖H. The passage vector v(Γ) of a path Γ is de�ned as the sum of
passage vectors of the contained edges, and the passage time τ(Γ) of the path is the
norm of the passage vector of the path. The passage set between any two points
x, y ∈ Zd is the set S(x, y) of passage vectors of paths connecting them. Finally, the
passage time between any two points x, y ∈ Rd is

T (x, y) = inf
Γ
τ(Γ),

where the in�mum is taken over all the paths connecting x′ to y′, where x′ and y′

are the unique lattice points such that x ∈ x′ + [0, 1)d, y ∈ y′ + [0, 1)d. In other
words,

T (x, y) = inf{‖v‖H : v ∈ S(x, y)}.

We call this setup Hilbert �rst passage percolation or simply Hilbert percolation.

We note here that various generalizations of the probabilistic setup also exist,
originally motivated by the setup with non-i.i.d edge weights. In [4], the general
stationary and ergodic case is considered, and an analogue of the Cox�Durrett the-
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orem is proved for instance. For the most general version known see [3]. As it is
quite involved and not of our direct interest, we do not discuss its details here.

The theory of Hilbert �rst passage percolation is obviously a generalization of the
ordinary topological �rst passage percolation, as in the case H = R and A ⊆ [0,∞)
the new de�nition of passage times coincides with the old one. However, it is useful
to note that if A contains negative values, we face a slight ambiguity as we do
not have this coincidence. Anyway, we should not worry about this phenomenon
as the original topological model collapses in that case and does not deserve much
attention, as we have discussed it in Section 2.1.

When it comes to questions of residuality, it is usual to restrict ourselves to
separable spaces for technical reasons. As a consequence, henceforth we assume
that all the real Hilbert spaces involved are separable.

3.2 Strongly positively dependent case

Our �rst goal is to display that the Hilbert percolation is degenerate for a reasonably
large family of As in the sense that generically most of the passage times are zeros.
To this end, we introduce some notation and de�nitions. In this section, we will
restrict further our scope to �nite dimensional spaces, i.e. H = Rk.

De�nition 3.2.1. Let H ⊆ H. The convex cone generated by H is the smallest
set cone(H) ⊆ H which is closed under linear combinations with nonnegative coe�-
cients. The closed convex cone generated by H is the closure of cone(H) which we
denote by cone(H).

De�nition 3.2.2. Let H ⊆ H. We say that H is strongly positively dependent if
for any x ∈ H we have −x ∈ cone(H).

At �rst sight, one might believe that if A is strongly positively dependent then
the passage time between any two points is 0 for a generic con�guration. However,
a very simple counterexample refutes this idea: if d = 1 and A = {−1, 1} ⊆ R for
example, then clearly the passage time between integers of di�erent parity is odd,
thus cannot be 0. In general we must point out that we do not have paths of any `1-
length between �xed lattice points, which causes technical inconveniences. We can
only construct paths which have length with the same parity as |x−y|. Motivated by
this remark it is useful to introduce the notationM(A) for the submonoid in cone(A)
which contains those linear combinations with nonnegative integer coe�cients in
which the sum of coe�cients is even.

The following theorem displays that in the generic case the model gets trivial if
A is strongly positively dependent and we have enough degree of freedom, that is
d ≥ 2.
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Theorem 3.2.3. Let H = Rk and assume that A ⊆ H is bounded and strongly
positively dependent, moreover, let d ≥ 2. Then generically we have that S(x, y) =
M(A) for any x, y ∈ Zd for which |x− y| is even, and S(x, y) = M(A) + A for any
x, y ∈ Zd for which |x− y| is odd.

Corollary 3.2.4. In the setting of Theorem 3.2.3, generically we have T (x, y) = 0
for any x, y ∈ Zd for which |x−y| is even, while T (x, y) = inf{‖b‖H : b = m+a,m ∈
M(A), a ∈ A} for any x, y ∈ Zd for which |x− y| is odd.

Remark 3.2.5. If d = 1, it is easy to construct counterexamples to the theorem
and to the corollary, due to the fact that for given x, y and e ∈ E the parity of the
times a path Γ from x to y crosses e is completely determined. Consequently, if for
example A = {−1, 0, 1}, while τ([0, 1]) = 1 and τ([1, 2]) = 0, then the passage time
of any Γ from 0 to 2 is odd, thus T (0, 2) ≥ 1 for any con�guration, while it should
be 0 generically according to Corollary 3.2.4 as A is strongly positively dependent.

Proof of Theorem 3.2.3. Let us consider points with even `1-distance, the other case
will simply follow from that. The S(x, y) ⊆ M(A) containment clearly holds as all
the passage vectors between points even distance apart are inM(A). Hence it su�ces
to verify the other containment which follows from M(A) ⊆ S(x, y). For technical
purposes choose a countable dense subset M0 ⊆ M(A). Then we can reduce the
problem to the question whether M0 ⊆ S(x, y) holds. As there are countably many
pairs x, y and M0 is also countable, it is enough to show that for any �xed m ∈M0

and pair x, y we have that m ∈ S(x, y) apart from a nowhere dense set.

In order to verify this claim �x a cylinder set U ⊆ Ω and n ∈ N. It is clearly
su�cient to �nd a smaller cylinder set V ⊆ U such that for any con�guration in V
there exists s ∈ S(x, y) such that ‖m− s‖H < 1

n
:= ε. Let us denote the set of edges

belonging to nontrivial projections of U by EU = {e1, e2, ..., eN}. Fix now a large
hypercubeK centered at the origin which contains all the edges in EU and also x and
y. Now we can de�ne a cylinder set U ′ which has very small projections to the edges
inK. More precisely, we require these projections to have su�ciently small diameter
to guarantee that in U ′ the sum of passage vectors on these edges is in an open set
of diameter ε

2
, regardless of which con�guration we consider. Choose now a vertex

z on ∂K and let Γ be a path crossing each of its edges precisely once from x to y
such that it does not leave K but contains z once. The point z cuts it into two parts
Γ1,Γ2. By the previous note about the diameters, we have that the passage vector
of Γ is in an open set of diameter ε

2
. Let us denote one of these passage vectors by α

for the sake of speci�city, all the others that may arise in another con�guration have
distance at most ε

2
from it. Our aim is to de�ne nontrivial projections on further

edges of a cycle Γ′ starting from z such that the passage vector of Γ∗ = Γ1 ∪ Γ′ ∪ Γ2

is in a neighborhood of m with radius ε, which would conclude the proof of the �rst
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part. As z is a vertex, we will be able to choose Γ′ so that it does not contain any
of its edges twice and Γ′ ∩K = {z}.

As α is a passage vector between x and y for some con�guration, we clearly have
α ∈ cone(A). As A is strongly positively dependent, it clearly implies −α ∈ cone(A).
Hence for any Q ∈ N there exists β ∈ cone(A) such that

‖β − (−α)‖H <
ε

8Q
= ε∗, (3.1)

where Q is to be �xed later. By a simple consequence of Carathéodory's theorem
about convex hulls we have that

β =
k∑
i=1

riai, (3.2)

where each coe�cient ri > 0, while ai ∈ A and k is �xed. By (3.2), we can rewrite
(3.1) as ∥∥∥∥∥

k∑
i=1

riai + α

∥∥∥∥∥
H

< ε∗. (3.3)

By the simultaneous version of Dirichlet's approximation theorem we can choose
p1, ..., pk ≥ 0 integers and 1 ≤ q ≤ Q such that∣∣∣∣piq − ri

∣∣∣∣ < 1

qQ
1
k

. (3.4)

Using (3.4) and the triangle inequality we can rewrite the estimate in (3.3) as∥∥∥∥∥
k∑
i=1

pi
q
ai + α

∥∥∥∥∥
H

< ε∗ +
1

qQ
1
k

k∑
i=1

‖ai‖H. (3.5)

Multiplying by 2q and using q ≤ Q and the de�nition of ε∗ yields∥∥∥∥∥
k∑
i=1

2piai + 2qα

∥∥∥∥∥
H

<
ε

4
+

2

Q
1
k

k∑
i=1

‖ai‖H <
ε

3
(3.6)

for well-chosen Q, as A, and hence
∑k

i=1 ‖ai‖H is bounded.

As m ∈ M0 ⊆ M(A), by de�nition it is expressible as an even sum of elements
in A, that is m =

∑2l
j=1 am(j), where each am(j) is in A. Now choose the cycle Γ′

starting from z such that it does not hit K until eventually returning to z, and
contains all its edges precisely once. Moreover, |Γ′| = 2l +

∑k
i=1 2pi + (2q − 1)|Γ|.
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(It is an even number, so it can be done.) On this cycle we can de�ne nontrivial
projections the following way: on the �rst 2l edges, we de�ne nontrivial projections
centered at each am(j) respectively with su�ciently small diameter to be precised
later. On the next 2p1, 2p2, ..., 2pk edges we de�ne nontrivial projections centered
at a1, a2, ...ak respectively with su�ciently small diameter again. Finally, we think
of the last (2q − 1)|Γ| edges as 2q − 1 consecutive copies of Γ, that is we de�ne
nontrivial projections as su�ciently small open subsets of the projections belonging
to the corresponding edges of Γ. These projections together with the ones in the
de�nition of U ′ de�ne V . If we choose the above neighborhoods small enough, we
can guarantee that the passage vector of Γ′ for any con�guration has distance at
most ε

6
from m +

∑k
i=1 2piai + (2q − 1)α. As a consequence, by (3.6) and triangle

inequalities we can deduce

‖v(Γ1 ∪ Γ′ ∪ Γ2)−m‖H <

∥∥∥∥∥
k∑
i=1

2piai + 2qα

∥∥∥∥∥
H

+
ε

6
+
ε

2
< ε (3.7)

for any con�guration in V , which concludes the case when |x − y| is even with the
choice s = v(Γ1 ∪ Γ′ ∪ Γ2) ∈ S(x, y).

In the other case the previous argument might be copied with one essential
change. In this case we want to have passage vectors near vectors of the type
m+ a ∈M(A) +A. Given this, upon de�ning Γ and the projections to the edges of
K, we will proceed the same way as previously, except for this time we will separate
an edge e ∈ Γ \EU and on that we will de�ne the projection of V to be a very small
neighborhood of a. Apart from this edge, Γ uses an even number of edges, thus we
can de�ne Γ′ and V as previously in order to have that v(Γ1 ∪ Γ′ ∪ Γ2) − a is very
close to m in V . Consequently, v(Γ1 ∪Γ′ ∪Γ2) is very close to m+ a. The technical
details are left to the reader.

It would be nice to say something about how common are the strongly positively
dependent sets for example amongst the compact sets equipped with the Hausdor�
metric, whose family shall be denoted by Kd. This is the aim of the following
proposition, which roughly states that the set of such As is not too small, but not
too large either:

Proposition 3.2.6. The set of strongly positively dependent compact sets contains
nontrivial open sets in Kd, and so does its complement.

Proof. For the complement it is very simple to verify the claim: we can consider the
ball of radius 1

2
centered at the singleton {ξ1}. It is good indeed as any set A in this

neighborhood exclusively contains vectors with positive �rst coordinate.
For the set of strongly positively dependent compact sets, our construction relies

on the following remark: if the convex hull conv(A) contains 0 in its interior, then
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A is strongly positively dependent. Indeed, in this case for any a ∈ A we have that
λ(−a) ∈ conv(A) for su�ciently small λ > 0. Consequently, λ(−a) can be written
as a �nite linear combination of elements of A with positive coe�cients, which yields
that −a ∈ cone(A), as stated.

Now consider A = {±ξ1,±ξ2, ...,±ξk} in Kd. Then conv(A) contains 0 in its
interior, as it contains D1, the unit ball centered at the origin in the `1-metric. In
other words, the distance of 0 from ∂(conv(A)) is 1, and 0 is contained by conv(A).
Now consider a small neighborhood GA of A in Kd and an element K of it. We
would like to show that for a su�ciently small neighborhood we have that 0 is in
the interior of conv(K). We know that K contains at least one point very close to
each ±ξi, and if GA is small enough, these points must be distinct. If we replace
K by a subset of it formed by 2k such points, we shrink conv(K), hence it would
be su�cient to verify our claim for the convex hulls of such �nite sets. But such
a convex hull is a polytope, which depends continuously on its vertices. Moreover,
the boundary also depends continuously on the vertices. Consequently, as we know
that the distance of 0 from ∂(conv(A)) is 1, and 0 is in A, we have that the distance
of 0 from ∂(conv(K)) is also positive and 0 is in K if K is chosen from a su�ciently
small neighborhood GA. Thus the set of strongly positively dependent compact sets
contains nontrivial open sets in Kd, indeed.

3.3 Optimal paths and geodesics in Hilbert perco-

lation

In this section we would like to examine the geometric properties of the Hilbert
percolation. In the ordinary topological �rst passage percolation we called a path
geodesic if its passage time equals the passage time between its endpoints, which
was appropriate in the sense that subpaths of geodesics were also of minimal length.
However, as even very simple examples might display, it is not the case anymore:
for instance, let A = {−1, 0, 1} and d = 2, and consider the con�guration in which
we have two neighboring edges with passage vectors -1 and 1 respectively, while the
passage vector of all other edges is 0. In this case, the passage time of the path
of these two edges is 0, hence it is optimal, while its subpaths of length 1 have
passage time 1. However, between any two points the passage time is 0, hence these
subpaths are not optimal. It motivates a separation of de�nitions:

De�nition 3.3.1. A path in Zd is an optimal path, if its passage time equals the
passage time between its endpoints. Moreover, a path is a geodesic, if all of its
subpaths are optimal.

If we would like to have a somewhat tame geometry on the discrete lattice, it
is natural to expect from the model that optimal paths are not self intersecting,
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and in general longer paths have higher passage time. The following lemma gives a
necessary and su�cient condition guaranteeing this property. (We denote by (a, b)
the inner product of a, b ∈ H).
Lemma 3.3.2. We have τ(Γ1) ≤ τ(Γ2) for each paths Γ1 ⊆ Γ2 and each con�gu-
ration if and only if for any a, b ∈ A we have (a, b) ≥ 0. In this case, we call A
positive.

Proof. First assume the existence of a, b ∈ A with (a, b) < 0. Choose n ∈ N so
that 2n(a, b) + ‖b‖2

H < 0. Now consider a con�guration in which there are n + 1
consecutive edges so that the passage time of the �rst n is a, while the last one has
passage time b. Let the �rst n edges form Γ1, and let the union of all these edges
be Γ2. Then the square of the passage time of Γ1 is

τ(Γ1)2 = ‖na‖2
H = n2‖a‖2

H,

which implies by the choice of n

τ(Γ2)2 = ‖na+ b‖2
H = n2‖a‖2

H + 2n(a, b) + ‖b‖2
H < n2‖a‖2

H = τ(Γ1)2.

This denies τ(Γ1) ≤ τ(Γ2), hence we proved one of the directions.
For the other direction assume that for any a, b ∈ A we have (a, b) ≥ 0, and

Γ1 ⊆ Γ2. As we can add edges one by one, it su�ces to prove the claim for Γ2 = Γ1∪e
for an edge e. Now the square of the passage time of Γ1 in any con�guration is

τ(Γ1)2 =

∥∥∥∥∥∥
|Γ1|∑
i=1

ai

∥∥∥∥∥∥
2

H

.

for some ai ∈ A, while the square of the passage time of Γ2 is

τ(Γ2)2 =

∥∥∥∥∥∥a∗ +

|Γ1|∑
i=1

ai

∥∥∥∥∥∥
2

H

= ‖a∗‖2
H + 2

|Γ1|∑
i=1

(a, ai) + τ(Γ1)2 ≥ τ(Γ1)2,

where the last inequality holds by assumption. It concludes the proof.

Now if A is not positive, then in a small neighborhood of the con�guration
constructed in the proof there exist paths Γ1 ⊆ Γ2 with τ(Γ1) > τ(Γ2). Thus if
Ω is a Baire space, then we have τ(Γ1) ≤ τ(Γ2) in the generic case for each paths
Γ1 ⊆ Γ2 if and only if A is positive. Thus in the following we will restrict ourselves
to positive As.

Another natural question motivated by geometry is when we have that all the
optimal paths are geodesics. If d = 1, we clearly have this property as optimal
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paths are not self-intersecting, and if d = 1 there is a unique path with no self-
intersections between any two points. Things get interesting when d ≥ 2, however,
we must realize that such As are terrifyingly rare:

Lemma 3.3.3. Assume that A is positive and d ≥ 2. We have that all the optimal
paths are geodesics in all the con�gurations if and only if A is contained by a ray,
that is for any a, b ∈ A we have a = λb or b = λa for some λ ≥ 0. Moreover, if this
condition does not hold, there are con�gurations in which there are x, y ∈ Zd such
that there is no geodesic between x and y at all.

Proof. If A is contained by a ray we obviously have this property as the passage
time of a path is simply the sum of the passage times of the edges. On the other
hand, assume that A contains a, b so that they are not contained by the same
ray. We can clearly assume ‖a‖H ≥ ‖b‖H. Moreover, by the assumption we have
(a, b) ≤ µ‖a‖H‖b‖H for some 0 < µ < 1, and a, b 6= 0. The proof from this point is
a construction in which we have an optimal path which is not a geodesic.

First consider the case ‖a‖H = ‖b‖H. For this case we can give a very simple
construction, see Figure 3.1. Notably, amongst the paths from X to Y there is a
unique one with optimal `1-length and passage vector a+ a+ b+ b, notably one of
the paths through Z. Consequently, this path is the unique optimal path from X to
Y . However, it cannot be a geodesic, as there is a path from X to Z with passage
vector b + a, hence it has smaller passage time than the path with passage vector
a+ a. Thus there are no geodesics from X to Y at all.

Figure 3.1: The case when ‖a‖H = ‖b‖H.

Consider the other case, when there is a strict inequality between the norms of

45



a and b, that is ‖a‖H > ‖b‖H. For the norm of a and b we can de�ne na < nb such
that both of them are even and the inequalities

na‖a‖H > nb‖b‖H, na‖a‖H ≤ nb(‖b‖H + ε)

simultaneously hold for some ε > 0 to be �xed later. We consider the following
con�guration: on the line segment Γ1 = [0, naξ1] let all the passage vectors be a,
while in the line segment Γ3 = [naξ1, naξ1 + 3nbξ2] let the passage vectors be b.
Moreover, on the line segments

[0,−nb − na
2

ξ2], [−nb − na
2

ξ2, naξ1 −
nb − na

2
ξ2], [naξ1 −

nb − na
2

ξ2, naξ1]

let all the passage vectors be b. (The union of these line segments will be denoted
by Γ2.) Concerning the remaining edges we separate two cases. (See Figure 3.2 for
the discussion belonging to one of them.) Notably, we know that if we consider the
line L = {ta+ ((3nb + na)− t)b : t ∈ R} ⊆ H, then there is a unique t = t0 ∈ R, for
which the norm of pt0 = t0a + ((3nb + na)− t0)b is minimal, that is the orthogonal
projection of the origin to L. If we increase or decrease t gradually from t0, then

Figure 3.2: The de�nition of L, example for the �rst case.

due to the orthogonality of [0, pt0 ] and L, the norm of pt is strictly increasing in
both directions. From this observation we infer that if we consider t = na, then
if we move t towards one of the directions, the norm will strictly increase. Now if
this increase shows up in the direction of (3nb + na)a, then we place the passage
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vector a to all the remaining edges. On the other hand, if this increase appears in
the direction of (3nb + na)b, then we place the passage vector b to all the remaining
edges.

Now let us calculate the square of the passage times of Γ1 and Γ2:

τ(Γ1)2 = n2
a‖a‖2

H, τ(Γ2)2 = n2
b‖b‖2

H.

Consequently, we have τ(Γ1) > τ(Γ2) by the choice of na, nb, hence Γ1 cannot be
optimal. Thus if we have that Γ1 ∪ Γ3 is the only optimal path from the origin
to naξ1 + 3nbξ2, that concludes the proof, as one of its subpaths is not optimal,
consequently, it cannot be a geodesic. In the following we will examine whether
there are other optimal paths between these points and can they be geodesics.

First consider the case in which we placed the passage vector b to all the remain-
ing edges, that is the norm of naa + 3nbb is smaller than the norm of ta + ((3nb +
na) − t)b for any t < na. In this case any path Γ 6= Γ1 ∪ Γ3 uses at least na + 3nb
edges, and at least 3nb + 1 of them has passage vector b. Thus by the assumption
of this case concerning the norms, we certainly have that the norm of the passage
vector of Γ is larger than the norm of naa + 3nbb = v(Γ1 ∪ Γ3). (At this point we
also use the positivity of A: if Γ uses more edges, than na + 3nb, then we reduce
the passage time by forgetting about edges with passage vector a.) Thus this case
is concluded, Γ1 ∪ Γ3 is the only optimal path from the origin to naξ1 + 3nbξ2.

Consider now the other case, that is the norm of naa+ 3nbb is smaller than the
norm of ta + ((3nb + na) − t)b for any t > na. Assume that there is another path
Γ 6= Γ1 ∪ Γ3 from the origin to naξ1 + 3nbξ2 which is optimal. It must hit the line
segment [−nb−na

2
ξ2, naξ1 − nb−na

2
ξ2]: indeed, otherwise Γ would contain at least na

edges with passage vector a. Now if |Γ| > na + 3nb, it immediately implies that the
passage time of Γ exceeds the passage time of Γ1∪Γ3, a contradiction. On the other
hand, if |Γ| = na + 3nb, the number of edges with passage vector a surely exceeds
na. Hence by the starting assumption of this case concerning the norms, the norm
of the passage vector of Γ is larger than the norm of naa + 3nbb = v(Γ1 ∪ Γ3), a
contradiction. Hence Γ hits the line segment [−nb−na

2
ξ2, naξ1− nb−na

2
ξ2] at some point

x indeed. Denote its �rst part from the origin to x by Γ′ and its second part from x
to naξ1 +3nbξ2 by Γ′′. Assume that Γ′ has an edge which is not contained by Γ2, and
hence its passage vector is a. In this case Γ′ has an entire subpath Γ′0 connecting
points of Γ′, and with edges of passage vector a. However, Γ′0 can be replaced with
an `1-optimal path such that all of its edges have passage vector b. Hence its passage
time is lower than τ(Γ′0), yielding that Γ′0 cannot be optimal. Consequently, Γ has
a subpath which is not optimal, while Γ is optimal, thus Γ cannot be a geodesic.
We can proceed similarly if Γ′′ has an edge which is not contained by Γ2 ∪Γ3. Thus
the only case remaining is that Γ contains all the edges of Γ2 ∪ Γ3, and hence τ(Γ)
is at least τ(Γ2 ∪ Γ3). However, in this case the square of its passage time equals
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(4nb)
2‖b‖2

H, while the square of passage time of Γ1 ∪ Γ3 can be estimated by

τ(Γ1 ∪ Γ3)2 = n2
a‖a‖2

H + 6nanb(a, b) + 9n2
b‖b‖2

H

≤ n2
b(‖b‖H + ε)2 + 6µn2

b‖b‖H(‖b‖H + ε) + 9n2
b‖b‖2

H.
(3.8)

Thus by τ(Γ1∪Γ3)2 > τ(Γ2∪Γ3)2 = (4nb)
2‖b‖2

H we conclude the following inequality

with ε = ‖b‖H
M

:

6n2
b‖b‖2

H < 6µn2
b‖b‖2

H + (2 + 6µ)n2
b‖b‖Hε+ n2

bε
2 =

(
6µ+

(2 + 6µ)

M
+

1

M2

)
n2
b‖b‖2

H.

However, for su�ciently largeM this inequality cannot hold. This is a contradiction,
Γ cannot be optimal in this case. Hence we found that there can be no optimal path
from 0 to naξ1 + 3nbξ2 which is a geodesic. It concludes the proof.

Given these lemmas we can deduce the following aesthetic result roughly stating
that if the geometric structure is tame in the above sense then the Hilbert percolation
we consider is essentially ordinary:

Theorem 3.3.4. Let A ⊆ H such that Ω is a Baire space and let d ≥ 2. Assume
that generically for any Γ′ ⊆ Γ we have that τ(Γ′) ≤ τ(Γ) and there is a geodesic
between any pair of lattice points. Then A is contained by a ray, that is it is linearly
isomorphic to a subset of [0,+∞).

Remark 3.3.5. We note that if for example A ⊆ H is Gδ, then Ω is a Baire space,
hence the above theorem holds in quite natural cases. Indeed, H is obviously Polish
asH is separable, hence A is also Polish due to Alexandrov's theorem. Consequently,
Ω is also Polish, as a countable product of Polish spaces. Thus Ω is Baire due to
Baire's category theorem. (For details, see [9] for instance.)

Proof of Theorem 3.3.4. From the remark following Lemma 3.3.2 we know that A is
positive by the assumption of the theorem. Moreover, from the proof of Lemma 3.3.3
it follows very quickly that if A is not contained by a ray then there are nontrivial
open sets in which there are no geodesics between certain points, as we can consider
su�ciently small neighborhoods of the con�gurations constructed there. However,
as Ω is a Baire space, nontrivial open sets cannot be disjoint from a residual subset
of Ω. Thus A is contained by a ray in fact. It concludes the proof.

3.4 Geodesic rays in Hilbert percolation

In the ordinary topological �rst passage percolation we proved that in the generic
con�guration for any point x there exists a geodesic ray such that x is its starting
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point, and the proof was based on the fact that there exists a �nite geodesic between
any pair of lattice points in the generic con�guration. Given the previous theorem,
it is natural to ask how many distinct geodesic rays may exist generically in the
Hilbert percolation, and whether it is possible that there are no geodesic rays at all.
The following theorem is naturally analogous to Theorem 2.3.3

Theorem 3.4.1. Assume d ≥ 2. If A ⊆ H is nontrivial, that is it has cardinality
larger than 1, then generically there exists at most one geodesic ray.

Proof of Theorem 3.4.1. The case when A is contained by a ray is already covered
by Theorem 2.3.3. Hence we can assume that A is not linearly isomorphic to a
subset of the nonnegative reals. Still, the proof will be quite similar to the proof of
Theorem 2.3.3, hence we will focus on the di�erences this time.

Let a, b ∈ A so that we cannot get one from another by multiplying with a
nonnegative scalar and ‖a‖H ≤ ‖b‖H. Consequently, we might choose 0 < µ < 1
satisfying (a, b) ≤ µ‖b‖2

H. First we will prove that the origin is the starting point
of distinct geodesics in a meager subset only. Let U,U ′, K1, K2, EU , E

∗ be as in
the proof of Theorem 2.3.3 de�ned in terms of the parameters p, q, q′, r to be �xed
later. We will de�ne V ⊆ U ′ as a cylinder set which has nontrivial projections to
the edges in EU ∪ E∗. The underlying concept is the same as in that proof: for the
con�gurations in V we would like to have essentially one (and the same) geodesic
from the boundary ∂K1 to the boundary ∂K2, notably the line segment connecting
pξ1 and qξ1. By this we mean that for any lattice points x1 ∈ ∂K1 and x2 ∈ ∂K2,
a geodesic Γ from x1 to x2 eventually arrives in pξ1, and then it goes along the line
segment [pξ1, qξ1]. It would be su�cient exactly as it was earlier.

We will obtain this property following the same strategy: our purpose is to de�ne
V so that su�ciently many paths in ∂K1 ∪ [pξ1, qξ1] ∪ ∂K2 are cheap while other
paths in K2 \K1 are expensive for con�gurations in V . To this end, we use a slightly
more complicated construction this time, in which we will guarantee paths to be
cheap by having edges with passage vectors a and b alternatingly. To obtain this,
consider the connected subgraph G of Zd in ∂K1 ∪ [pξ1, qξ1] ∪ ∂K2 and its vertex
pξ1. Let G0 be the breadth-�rst search tree rooted at vertex pξ1. By de�nition,
in G0 the unique path from pξ1 to any other vertex x ∈ G is optimal in the graph
distance of G, which is equivalent to being optimal in `1 inside ∂K1∪ [pξ1, qξ1]∪∂K2.
Moreover, as the points of [pξ1, qξ1] are cut vertices of G, that is the deletion of any
of them cuts G into two distinct connected components, it obviously implies that
for any lattice points x ∈ ∂K1 ∪ [pξ1, qξ1) and y ∈ (pξ1, qξ1] ∪ ∂K2, the unique path
from x to y contained by G0 is optimal in G. Now we can de�ne projections to
edges of G0 such that they equal small neighborhoods of a and b and for any such
G-optimal path these projections appear alternatingly. Indeed, for branches rooted
at pξ1 and proceeding towards ∂K2 let us de�ne the projection to the �rst edge to
be a neighborhood of b, and the later ones to be alternatingly neighborhoods of a
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and b. On the other hand, for branches rooted at pξ1 and contained by ∂K1, let us
de�ne the projection to the �rst edge to be a neighborhood of a, and the later ones
to be alternatingly neighborhoods of b and a. It yields indeed that for any lattice
points x ∈ ∂K1∪ [pξ1, qξ1) and y ∈ (pξ1, qξ1]∪∂K2, on the G-optimal path from x to
y contained by G0 the projections equal to neighborhoods of a and b alternatingly.
On any other edge inside K2 \ intK1 let the projection be a small neighborhood of b.
At this point, we think of all of these projections being the singletons {a} and {b}
respectively, which are not necessarily open in A, but might be fattened suitably
later. Then the proof relies on the fact that for any G-optimal path Γ′ of the above
type with |Γ′| ≥ 2 we have

τ(Γ′)2 ≤
∥∥∥∥ |Γ′|+ 1

2
b+
|Γ′| − 1

2
a

∥∥∥∥2

H

≤
(
|Γ′|+ 1

2

)2

‖b‖2
H +

(
|Γ′| − 1

2

)2

‖a‖2
H +

(
(|Γ′|+ 1)(|Γ′| − 1)

2

)
(a, b)

≤ |Γ
′|2 + 1

2
‖b‖2
H +
|Γ′|2 − 1

2
(a, b) ≤ 3

4
|Γ′|2‖b‖2

H +
1

4
|Γ′|2(a, b)

≤ |Γ′|2
(

3

4
+

1

4
µ

)
‖b‖2
H.

(3.9)

Consequently, for λ =
√

3
4

+ 1
4
µ < 1 we have

τ(Γ′) ≤ λ|Γ′|‖b‖H. (3.10)

Now proceeding towards a contradiction assume that there is a geodesic Γ0 from ∂K1

to ∂K2 which does not contain the line segment [pξ1, qξ1]. Similarly to arguments in
the proof of Theorem 2.3.3, by passing to a subpath we can infer the existence of a
geodesic Γ from x1 ∈ ∂K1 ∪ [pξ1, qξ1) to x2 ∈ (pξ1, qξ1]∪ ∂K2 which uses only edges
not contained by ∂K1∪ [pξ1, qξ1]∪∂K2. If |x1−x2| = 1, it is clearly impossible, thus
we may assume |x1 − x2| > 1. Our aim is to show a cheaper path Γ′ contained by
∂K1∪ [pξ1, qξ1]∪∂K2 as that would yield a contradiction. To this end, we construct
Γ′ by a similar method as in the proof of Theorem 2.3.3: in this case, let it be the
unique path from x1 to x2 in G0, which is optimal in G. For this path, we can
use (3.10). Indeed, by this bound, if we want to show τ(Γ′) < τ(Γ) to obtain a
contradiction, we can do a little trick and replace all the passage vectors of edges in
∂K1∪ [pξ1, qξ1]∪∂K2 by λb. As |Γ′| ≥ 2 necessarily, it does not decrease the passage
time of Γ′, and the passage time of Γ does not change at all. Consequently, all the
passage vectors in K2\intK1 are multiples of b, and the ones in ∂K1∪[pξ1, qξ1]∪∂K2

are cheaper than the others. Hence the situation we face is linearly isomorphic to
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the one in the proof of Theorem 2.3.3. Thus for a suitable choice of the parameters
p, q, q′, r we get a contradiction for this speci�c con�guration, τ(Γ′) < τ(Γ), as Γ′ is
a path which is optimal in `1 amongst the paths contained by ∂K1∪ [pξ1, qξ1]∪∂K2,
while Γ does not have any edge in this set, which is su�cient by Remark 2.3.5.
Finally, by taking small enough neighborhoods to be the projections instead of the
singletons this inequality will not fail as there are only �nitely many pairs Γ,Γ′ to
consider. It concludes the proof of the claim that the origin is the starting point of
distinct geodesics only in a meager subset. The statement of the theorem is obtained
from this claim the same way as in the proof of Theorem 2.3.3.

To conclude this section, we provide an example for a closed set A so that there
are no geodesic rays at all generically. (As Ω is a Baire space in this case, it means
indeed that in a large subset of Ω there are no geodesic rays.) Let d = 2, and let
A = {a, b, 2b} = {(1, 0), (0, 1), (0, 2)} ⊆ H = R2. It su�ces to prove that there is no
geodesic ray starting from the origin generically. Fix a cylinder set U . Let us use a
construction similar to the one in the proof of Theorem 2.3.3: �x a cylinder set V
such that there exists K1, K2 as earlier so that any geodesic ray starting from the
origin eventually reaches qξ1 and do not enter intK2 again. More explicitly, in V
the passage vectors of edges in ∂K1 ∪ [pξ1, qξ1] ∪ ∂K2 equal b while of other edges
in K2 \K1 they equal 2b. Now it su�ces to �x a �nite number of further passage
vectors so that in such con�gurations there is no geodesic from qξ1 not entering
intK2: that would mean that there is no geodesic ray starting from the origin. We
do so by �xing some passage vectors in qξ1 + D7 to be a or b as shown in Figure
3.3 (D7 denotes the closed ball with `1 radius 7 centered at the origin): in the �rst
quadrant, the red, decorated edges correspond to passage vector a, while the blue,
simple ones to passage vector b. The passage vectors in the negative half-plane are
obtained by re�ection to the horizontal axis.

Now we claim that there is no geodesic from qξ1 to points with qξ1 + x where
|x| = 6 and has nonnegative �rst coordinate. As we gained the passage vectors
in the negative halfplane by re�ection, it su�ces to prove this claim for x with
nonnegative second coordinate, too. Now it is easy to check that if x = (0, 6) or
x = (6, 0) then there are paths with passage vector 4a + 4b from qξ1 to qξ1 + x.
Meanwhile all the paths with minimal `1-length 6 has passage vector 6a or 6b. But
‖4a + 4b‖ = 4

√
2 < 6 = ‖6a‖ = ‖6b‖. Consequently, the paths with passage vector

4a + 4b are the optimal ones, while none of them is a geodesic as their �rst 2 or
�rst 4 steps cannot be optimal. Thus there is no geodesic to such points. On the
other hand, if both of the coordinates of x are positive, then there are optimal paths
with passage vector 3a + 3b from qξ1 to qξ1 + x. However, their �rst 2 or �rst 4
steps are not optimal as they have not been before. Thus there are no geodesics
to such points either. Consequently, there is no geodesic from qξ1 to points with
qξ1 + x /∈ intK2 where |x| = 6. Thus the origin cannot be the starting point of a
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Figure 3.3: Red decorated edges have passage vector a, while blue simple ones have
passage vector b.

geodesic ray as any such geodesic ray eventually reaches qξ1 and should continue for
an in�nite number of steps as a geodesic outside of intK2, which is impossible by
the previous observation. It yields that there are no geodesic rays at all generically
as we claimed.
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Chapter 4

Concluding remarks and open

problems

In the above chapters we answered several questions, but in the meantime new ones
arose. In the following, we list a few of them.

In Section 2.5 we made considerable progress concerning the asymptotic behavior
of B(t)

t
: we gave complete characterization of the limit sets K = limn→∞

B(tn)
tn

in the
cases inf A = 0 or supA =∞. Moreover, we gave a necessary condition concerning
such limit sets for general A, more explicitly we proved that such a set must be in
Wd

A. The point of view provided by this recognition helped us in proving that all
the convex sets of KdA arise as limit sets. However, on one hand, we could not prove
that this condition is su�cient, and on the other hand, the de�nition of the family
Wd

A is quite unhandy and does not really extend our understanding about the limit
sets in its own right as it is somewhat just a continuous and more general rephrasing
of the de�nition of a limit set.

Question 4.0.1. Is it true that all the sets in Wd
A arise as limit sets? If not, �nd

what is the good family to consider, if yes, try to de�ne it more conveniently.

In Section 3.2 we understood the nature of passage times in the strongly posi-
tively dependent case of the Hilbert �rst passage percolation in the �nite dimensional
case for bounded A. Our argument relied on Dirichlet's approximation theorem,
which has variants for in�nite dimensional spaces, too, but they are insu�cient for
our purposes (see [6]). It would be nice to understand the behavior of the percola-
tion in these cases as well. Moreover, we also capitalized on the boundedness of A,
hence it should also be examined what happens if this condition is dropped.

Question 4.0.2. What can be said about the Hilbert percolation in the strongly
positively dependent case if the space is in�nite dimensional or A is not bounded?
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In Section 3.4 we provided an example for a set A such that there are no geodesic
rays at all generically. The proof heavily relied on the simple structure of A: roughly
we used the fact that there is a con�guration in which qξ1 is not a starting point of
geodesics longer than 5 edges. Now it is reasonable to ask if it is always the case
when A is not linearly isomorphic to a subset of the nonnegative reals.

Question 4.0.3. Is it true that there exists a geodesic ray generically if and only if
A is linearly isomorphic to a subset of [0,+∞)?
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