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Chapter 1

Introduction

The notion of Baire functions was introduced by René-Louis Baire in his doctoral
thesis (see [2]). This theory proved to be an interesting subject and has been studied
subsequently in real analysis, general topology, and descriptive set theory. First, let
us recall the de�nition of Baire classes and take a glance at a few examples.

If X is a topological space and Y is a metric space, we say that a function
f : X → Y is of Baire class 1, if it is the pointwise limit of a sequence of continuous
functions.

For example, let us �x x ∈ R. If we consider the sequence (fn)∞n=1, where each
fn : R → R is de�ned by fn(t) = e−n|x−t|, we can easily see that limn→∞ fn(t) = 0
for any t 6= x and limn→∞ fn(x) = 1. It yields that the characteristic function of
any real number is a Baire-1 function.

Thus we de�ned functions of Baire class 1. Higher Baire classes obtained recur-
sively: a function is of Baire class α for some countable ordinal α if it is the pointwise
limit of a sequence of functions of lower Baire classes. It is useful to note that if
Y = R, then the functions of each Baire class form a linear space. According to this
remark and using the simple fact seen in the example above, we can immediately
deduce that the Dirichlet function, that is the characteristic function of the set of
rational numbers, is Baire-2, as the sum of a series of Baire-1 functions.

In this thesis, we will examine a few questions concerning graphs of Baire func-
tions. The main mo�vation of this research was the article of E. S. Thomas and the
article of Agronsky, Ceder, and Pearson (see [1] and [9]): in the former one a char-
acterization of bounded real-valued Baire-1 functions was given using their graph,
in the latter this result was generalized for the case of not necessarily bounded
real-valued Baire-1 functions de�ned on a metric space.

In the second section of this work, we will present our research published in [6].
We show an application of the aforementioned results by investigating a property
of graphs of Baire-1 and Baire-2 functions. The problem is the following: if T is
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a given subset of [0, 1] × R, when does there exist a Baire-1 or Baire-2 function
f : [0, 1]→ R such that the accumulation points of its graph are exactly the points
of T? We answer these questions in two steps in both cases. It is easier to understand
the theorems and the proofs if we also require f to be bounded, thus we start with
this case. During this process we will mostly use elementary methods, which will
end up in a bit complicated proofs.

In the third section, we will present our results published in [7], in which we di-
rectly focused on the results of [1] and generalized them in two senses. On one hand,
we state analogous theorems concerning higher Baire classes. On the other hand,
we attempt to do so with less strict conditions about the domain and codomain. In
order to prove these results, we will use selection theorems such as Michael's selec-
tion theorem. Finally, we will show that the theory of selection theorems provide a
simple and elegant way for handling some of the problems seen in the second section,
even in much more general settings.
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Chapter 2

The Accumulation Problem

2.1 Notation

Throughout this part we use the following notation: the graph of the real function
f is denoted by gr(f). If f is a real function, the set of accumulation points of
gr(f) is Lf . The vertical line given by the equation x = r is denoted by vr. If H is
a subset of R2, and r is a real number, the intersection of vr and H is denoted by
H(r). For simplicity, if (r, y) ∈ H, we say that y ∈ Hr. The open ball with center
r and radius ε is B(r, ε). We use this notation for one-dimensional neighborhoods
in R, and also for two-dimensional neighborhoods in R2. We clarify this ambiguity
by making clear if the center is a point of R or of R2. The interval [0, 1] is denoted
by I. The cardinality of a set H is #(H). The diameter of a set H is diam(H).
Finally, if a set A ⊆ I is the subset of the domain of f , and a ∈ A, sometimes we
refer to the point (a, f(a)) as a point of gr(f) above A.

2.2 Preliminary Results

In the introduction we have already mentioned the result of Agronsky, Ceder, and
Pearson. This theorem will be a very useful tool for us, so it is appropriate to recall
it. We need the following de�nition:

De�nition 2.2.1. An open set S ⊆ R2 is an open strip if for every r ∈ R the set
S(r) is an open interval.

In [1], a characterization of Baire-1 functions was given in Theorem 2.2 by using
this de�nition. At this point, we only formulate a special case of this theorem:

Proposition 2.2.2. Let f : I → R be a function. It is Baire-1 if and only if there
is a sequence (Sn) of open strips such that ∩∞n=1Sn = gr(f).
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As we will see, this theorem is a truly useful tool if our goal is to show that a certain
function is Baire-1. Besides that we will also apply the following lemma, which
handles a variant of the accumulation problem.

Lemma 2.2.3. For a given closed set T ⊆ I × R, there exists a countable set A ⊆ I
such that there is a function f : A→ R satisfying Lf = T .

Proof. Let Ti = (I × [−i, i]) ∩ T for all i ∈ N. Then every Ti is compact. Let us
consider an open ball of radius one around each point of T1. These open balls cover
T1, hence it is possible to choose a �nite covering. Let us take a point in each chosen
open ball such that the x coordinates of these points are pairwise di�erent. Let us
denote the set of these points by H1, and the set of their x coordinates by A1.

Now, similarly, let us consider open balls with radius 1
2
around each point of T2

and choose a �nite covering, then �nally take points in these chosen neighborhoods
and de�ne H2 and A2 analogously. We can continue this procedure by induction: in
the nth step we consider the 1

n
-neighborhoods of the points of Tn, and we de�ne the

�nite sets Hn and An using these open balls.
Let A = ∪∞n=1An and H = ∪∞n=1Hn. These are countable sets. Let f be the

function that assigns to every x ∈ A the y coordinate of the chosen point above x.
Then this point of the graph is clearly a point of H. We would like to prove that
Lf = T for this function f . We do this by verifying two containments.

(i) T ⊆ Lf . Let us consider any point P of T . By de�nition, P ∈ Tk for a suitable
k positive integer. Thus for every n larger than k there exists a point xn ∈ An
such that the distance of (xn, f(xn)) and P does not exceed 1

n
. Therefore,

there exists a sequence of distinct points in gr(f) that converges to P , hence
T ⊆ Lf .

(ii) Lf ⊆ T . Let us consider any point P of Lf . Since it is an accumulation point
of gr(f), there exists a sequence (pn) in gr(f) converging to P and containing
each of its terms only once. Now if k is given, for su�ciently large n the point
pn is in Hm with m ≥ k. It means that the distance of pn and T does not
exceed 1

k
. Thus there are points of T arbitrarily close to the sequence (pn).

Therefore, the limit of (pn) is in T , since T is closed. Hence P ∈ T and Lf ⊆ T .

Remark 2.2.4. The above proof shows that there are only �nitely many points of
the graph gr(f) that are more than ε apart from T for a given ε > 0. Later we will
use this slightly stronger result.
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2.3 Functions of Baire class 2

As we have promised, we consider the bounded case �rst. It is obvious that if
Lf = T , then T must be a compact set, being bounded and closed. There is another
condition needed: T (x) is never empty for x ∈ I. Indeed, if (xn) is a sequence that
converges to x, (xn 6= x), the sequence formed by the points (xn, f(xn)) is a bounded
sequence in R2, and its limit is in T , thus T (x) 6= ∅.

We point out that until this point we have not used the Baire-2 property of the
function f . Despite that, as we will see, these conditions are also su�cient:

Theorem 2.3.1. Suppose T ⊆ I × R. There exists a bounded Baire-2 function
f : I → R such that Lf = T if and only if

• T is compact,

• T (x) is nonempty for x ∈ I.

Proof. Before beginning the formal proof, we give a short sketch. First, we construct
a function f0 such that f0(x) ∈ T (x) for every x ∈ I. After this step, we apply
Proposition 2.2.2 to prove that f0 is a Baire-1 function. Finally, we use Lemma
2.2.3 to modify f0 on a countable set A to obtain a bounded Baire-2 function f such
that Lf = T .

Put f0(x) = max(T (x)) for every x ∈ I. Since T (x) is nonempty, this de�nition
makes sense. The function f0 is Baire-1; this is a well-known fact since f0 is upper
semicontinuous and every upper semicontinuous function is Baire-1. Nevertheless,
it is useful to �nd a direct proof which uses Proposition 2.2.2 to understand better
how this theorem works.

We de�ne a nested sequence of open strips, (Sn). First, we construct a subset
S ′n of Sn, that is the union of certain neighborhoods of points of gr(f0). Let the
radius of such an open ball be εx,n, where εx,n satis�es the following three conditions:
εx,n ≤ 1

n
and εx,n ≤ εx,n−1 for every n ≥ 2. It is obviously possible. Moreover, we

have a bit more complicated so-called overlapping condition related to the projection
of the open balls B((x, f0(x)), εx,n) to the x-axis. Speci�cally:

∀x ∈ I,∀n ∈ N,∀r ∈ R, r ∈ B(x, εx,n) we have f0(r)− f0(x) <
1

n
.

Such εx,n can be chosen. If not, then there is a sequence (xk) that converges to x
and f0(xk) ≥ f0(x) + 1

n
for every k. In this case (f0(xk)) is a bounded sequence, so

it has a convergent subsequence. As a consequence, the sequence (xk, f0(xk)) has a
limit point in the plane whose �rst coordinate is x, and whose second coordinate is
larger than f0(x) = max(T (x)) by at least 1

n
. Since T is closed, it is a contradiction.

Thus for every n ∈ N and x ∈ I, we can choose some εx,n satisfying all three of our
conditions. By taking the union of the neighborhoods B((x, f0(x)), εx,n), we obtain
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an open set S ′n containing gr(f0) for every n. Also S ′n ⊆ S ′n−1 for every n ≥ 2, since
S ′n is the union of open balls with the same centers and smaller radii. However, it
is not su�cient for us: our aim is to construct open strips. But this problem can
be solved easily. Speci�cally, there is a simple way to extend an arbitrary open set
H ′ to an open strip H: for every x, let H(x) = (inf(H ′(x)), sup(H ′(x)). Figure
2.1 demonstrates such an extension, in a case where H ′ is the union of a few open
disks: H is the open set bounded by the dashed lines. It is plain to see that the set
H made this way is an open strip which contains H ′. We also use this method to
construct Sn(x) by extending S ′n(x). The property Sn ⊆ Sn−1 is obviously preserved
during the extension.

Figure 2.1: Extending an open set into an open strip

To apply Proposition 2.2.2, we have to verify that S = ∩∞n=1Sn = gr(f0). It is clear
that S contains gr(f0) since S ′n contains every point of gr(f0) for all n. We have to
show that S has no other points. Proceeding towards a contradiction, let us assume
that there exists a point x ∈ I and y 6= f0(x) such that (x, y) ∈ S. We distinguish
two cases.

a) The case y > f0(x). Since (x, y) ∈ Sn for every n, the set S ′n has a point (x, zn)
above (x, y). The sequence (zn) is obviously bounded, hence it has a limit point
z ≥ y. But S ′n is formed by open balls whose centers are the points of gr(f0) ⊆ T
and whose radii are not larger than 1

n
. Thus (x, z) ∈ T as T is closed. So T has

a point whose �rst coordinate is x and whose second coordinate is larger than
f0(x) = max(T (x)), a contradiction.

b) The case y < f0(x). By a similar argument to the previous one, we might
notice that S ′n has a point (x, zn) below (x, y) for every n. Let k ∈ N satisfy
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y < f0(x)− 1
k
. Then if n ≥ 2k, amongst the open balls forming S ′n we might �nd

a ball that intersects vx and for its center (xn, f0(xn)) the inequality f0(xn) <
f0(x) − 1

2k
holds. But by de�nition, it is impossible: this neighborhood must

satisfy the overlapping condition, thus it cannot intersect vx, a contradiction.
Hence f0 is a function of Baire class 1.

Using Lemma 2.2.3, we modify f0 on a countable set A, so that the accumulation
set of the new points above A is T . We denote this altered function by f . Then it
is a bounded Baire-2 function. Nevertheless, if we consider now the whole graph,
Lf = T remains true, since every point of the graph above I \ A is in T . Therefore
other accumulation points cannot occur.

In the following, we turn our attention to the not necessarily bounded Baire-2
functions. In this case the conditions are more complicated and the proof is a bit
more di�cult. However, we give a similar characterization.

We approach the problem by �nding out some necessary conditions. During that
process, we use only that f : I → R, as we did earlier in our previous theorem. It
is easy to see that T must be closed in this case, too. But it is not true at all
that Lf (x) = T (x) must be nonempty for every x ∈ I. For instance, let f be the
function that vanishes in 0, and elsewhere its value is 1

x
. Then Lf (0) is empty.

Nevertheless, we may suspect that T (x) cannot be empty in any set C. Our lemma
is the following:

Lemma 2.3.2. If f : I → R and C = {x ∈ I : Lf (x) = ∅}, then C is countable.

Proof. Proceeding towards a contradiction, let us assume that C is uncountable.
Put Cn = {x ∈ C : |f(x)| < n} for every n ∈ N. Then C = ∪∞n=1Cn, and there
exists an uncountable Cn. As a consequence, it contains one of its limit points, c.
Thus there exists a sequence (ci) in Cn (ci 6= c) that converges to c. Since (f(ci))
is bounded, it has a convergent subsequence, therefore Lf (c) cannot be empty, a
contradiction.

We state that these necessary conditions are also su�cient, namely:

Theorem 2.3.3. Suppose T ⊆ I × R. There is a Baire-2 function f : I → R such
that Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I such that T (x) is nonempty for x ∈ I \ C.
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Proof. The concept of the proof is similar to our proof given for the bounded case.
We begin by the construction of a function f0 and then we prove that it is a Baire-1
function. The desired function f will be obtained by modifying f0 on a countable
set using Lemma 2.2.3.

We start by observing that C is a Gδ set. Suppose c ∈ C. Since T is closed, it
has a Bc,n neighborhood for every n ∈ N such that for all x ∈ Bc,n distinct from c,
the absolute value of every element of T (x) is larger than n. Otherwise T (c) would
not be empty. Then for a given n, the set Bn = ∪c∈CBc,n is an open set containing
C. On the other hand, clearly ∩∞n=1Bn = C. Hence the set C is Gδ, as we wanted
to show.

Now, we begin the construction of our function. The easier part is its de�nition
on C. We consider an enumeration of the countable set C = {c1, c2, ...} and we
let f0(cn) = n for every n. However, the de�nition of f0 in I \ C cannot be as
straightforward as it was in our previous proof. Namely, it is possible that T (x) has
no maximum. Therefore we have to be more careful.

For every n ∈ N, let

Un = {x ∈ I : ∃r ∈ T (x), |r| ≤ n}.

As T is closed, it is easy to see that each Un is closed, too. It is also obvious that
Un ⊆ Un+1 and ∪∞n=1Un = I \ C. Thus, for every x ∈ I \ C there is a smallest nx
such that x ∈ Unx . Using this property, we may de�ne f0(x) as the largest element
of T (x), whose absolute value does not exceed nx. We can do so since T (x) is closed
and it has such an element. The inequalities nx − 1 < |f0(x)| ≤ nx are also true,
as otherwise x would be the element of Um for some m < nx. (Or, if nx = 1, then
0 = nx − 1 ≤ |f0(x)| ≤ nx = 1.)

Now, we have de�ned f0 on I. We would like to use Proposition 2.2.2 to show
that f0 is Baire-1. In order to do this, we construct the open strip Sn for every
n. First, we de�ne the open set S ′n constisting of some balls B((x, f0(x)), εx,n). We
select εx,n so that εx,n ≤ 1

n
and εx,n ≤ εx,n−1 for every n ≥ 2, as we did earlier.

Nevertheless, as we de�ned f0 di�erently in certain sets, our further conditions
should be case-speci�c: we handle separately the case x ∈ C and the case x ∈ I \ C.

(i) The case x ∈ C. It means that x = ck for some k. Let

En = ∪x∈CB((x, f0(x)), εx,n),

and Fn be its projection onto the x-axis, that is Fn = ∪x∈CB(x, εx,n). Let us
choose these neighborhoods such that ∩∞n=1Fn = C. It is possible since C is
a Gδ set. Furthermore, we also demand that B(ck, εck,n) does not contain the

8



points c1, ..., cn, with the exception of ck. We remark that these conditions
imply ∩∞n=1En equals the graph of f0|C.

(ii) The case x ∈ I \ C. Let us make some remarks concerning this complementary
set. Let V1 = U1, and for n ≥ 2, let Vn = Un \ Un−1. Then the set Vn is Fσ for
every n, as the di�erence of closed sets. Consequently, there exist closed sets
Vn,i for every n and i such that Vn = ∪∞i=1Vn,i. We can take an enumeration
W1,W2, ... of the sets Vn,i. Let x ∈ Vk. We can suppose that the εx,n are chosen
so that B(x, εx,n) does not contain the points c1, c2, ..., cn. Furthermore, we can
suppose that B(x, εx,n) does not intersect the sets W1,W2, ...,Wn, except for
those which contain x. Finally, we have a special overlapping condition, namely
that f0(r) − f0(x) < 1

n
for every r ∈ B(x, εx,n) ∩ Vk. One can prove that this

condition can be satis�ed as we proved it last time, in the bounded case. It
is worth mentioning that if f0(x) < 0, then (x,−(k − 1)) cannot be a limit
point of a sequence of points in gr(f0) above I \ C. Since T is closed, if such
a sequence would exist, then (x,−(k − 1)) ∈ T . But it means that x ∈ Uk−1,
hence x /∈ Vk.

Now the open set S ′n is de�ned for each n. As in the bounded case, our next step
is making strips of these open sets: let Sn(x) = (inf(S ′n(x)), sup(S ′n(x))) for every
x ∈ I. Set ∩∞n=1Sn = S and similarly ∩∞n=1S

′
n = S ′. We are going to show that

S = gr(f0). Since gr(f0) ⊆ S is obvious, we can focus on proving S ⊆ gr(f0), or
equivalently, proving that S has no point outside of gr(f0). We examine the relation
of these sets independently for every x ∈ I: our goal is S(x) ⊆ gr(f0)(x). We
distinguish the same cases which we distinguished during the construction of S ′n(x):

a) The case x ∈ C, that is, x = ck for some k. Let us consider the set S ′n(x). If
n ≥ k, amongst the open neighborhoods forming S ′n there can be only one that
intersects vx: the neighborhood of (x, f0(x)). Thus for su�ciently large n the
equality S ′n(x) = Sn(x) holds, and S ′n(x) contains only one open interval whose
radius is 1

n
. Hence if n converges to in�nity, we �nd that the only element of

S(x) is f0(x). Therefore S(x) ⊆ gr(f0)(x).

b) The case x ∈ I \ C. It means x ∈ Vk and x ∈ Wm for some k and m. Let us con-
sider S ′n(x). We would like to �nd out for which r the open ball B((r, f0(r)), εr,n)
can intersect vx. It is clear that for su�ciently large n a neighborhood around
a (ci, f0(ci)) cannot do so as the intersection of these open balls are exactly the
graph of f0|C. Furthermore, if n ≥ m, then the neighborhood chosen around
(r, f0(r)) can intersect vx if and only if r ∈ Wm. Indeed, we have chosen these
neighborhoods such that they do not intersectW1,W2, ...,Wn, unless those which
are containing r. Thus if n is large enough, vx can be intersected by a certain
B((r, f0(r)), εr,n) only if r ∈ Wm. Only these places are relevant if we want to �nd
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out what S(x) is. But how did we de�ne Wm? It is a subset of Vk thus the values
of f0 inWm are between k−1 and k. It is important to us that f0 is bounded here,
and f0(x) = max(Tk(x)) for each element of Wm, where Tk = (I × [−k, k]) ∩ T ,
as in Lemma 2.2.3. Therefore, in the relevant places we de�ned f0 as we would
have done in Theorem 2.3.1, if we had regarded Tk instead of T . Consequently,
in this case one can conclude the proof of S(x) ⊆ gr(f0)(x) as it was done there.

After these observations, the conclusion of the proof is clear. We use Lemma 2.2.3
as we did just before and alter the function on a countable set A, such that Lf = T
for the resulting function f . Then f is obviously a Baire-2 function.

By proving this theorem we �nished our characterization of accumulation points
of Baire-2 functions. On the other hand, our proofs clari�ed that for any ordinal
number α larger than 2 the Baire-α functions are not interesting concerning our
question. Namely, the accumulation set of the graph of a Baire-α function is also
the accumulation set of a Baire-2 function. This fact explains why we examine only
the Baire-1 and Baire-2 functions.

2.4 Functions of Baire class 1

First, we focus again on the bounded case. Since Baire-1 functions are also Baire-2
functions, the conditions we found earlier recur in this case: T should be compact
and T (x) should be nonempty, if x ∈ I. Nevertheless, it is clear, that these conditions
are not su�cient. Namely, if Lf = T and for a given x the set T (x) has multiple
elements, then f is discontinuous at x. But a Baire-1 function cannot have an
arbitrary set of discontinuities: it must be a meager Fσ set. Thus if D = {x :
#(T (x)) > 1}, then D should be a meager Fσ set. As we will see, these conditions
su�ce. However, before the statement of the actual theorem, let us notice that if
we require T to be closed, then it is redundant to require D to be Fσ. Indeed, let
Dn = {x : diam(T (x)) ≥ 1

n
} for each n ∈ N. Then it is easy to see that these sets

are closed and their union is D. (Moreover, each Dn is nowhere dense, otherwise
some of them would contain an interval, and D cannot do so.) Consequently, D is
an Fσ set. Using this fact, our theorem is simply the following:

Theorem 2.4.1. Suppose T ⊆ I×R. There is a bounded Baire-1 function f : I → R
such that Lf = T if and only if

• T is compact,

• T (x) is nonempty, if x ∈ I,

• the set D = {x : #(T (x)) > 1} is meager.
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Proof. Let us begin the proof by the construction of f . First, we use Lemma 2.2.3
to de�ne f on a countable set A such that the accumulation set of the graph of
f |A coincides with T . We can suppose that A is disjoint from D. Indeed, in any
neighborhood of any point x ∈ I there are in�nitely many points of I \D, since D
is meager. Thus we have de�ned f on A. On the other hand, on I \A let us de�ne
f as we did it in the bounded Baire-2 case: let f(x) = max(T (x)). For this f , we
have Lf = T , and obviously f is bounded.

We would like to apply Proposition 2.2.2 to f . We use the usual method: we
de�ne the open set S ′n for each n, which is the union of open balls around points
of the graph with εx,n radius, and then we extend these sets to open strips. The
conditions concerning εx,n will be case-speci�c, except for the usual size conditions.

(i) The case x ∈ A = {a1, a2, ...}. Then x = ak for some k. Our �rst condition
on εx,n is that B(x, εx,n) must not contain the points a1, a2, ..., an, except for
ak. The second condition is related to the overlapping of D. Since D is a
meager Fσ set, we can choose D1, D2, ... nowhere dense closed sets such that
D = ∪∞n=1Dn. Moreover, none of these sets contains x since x ∈ A and the
sets A and D are disjoint. Therefore, the condition "B(x, εx,n) and ∪ni=1Di are
disjoint" can also be satis�ed.

(ii) The case x ∈ I \ A. First, in order to stay away from the set A, the open
ball B(x, εx,n) must not contain the points a1, a2, ..., an. The second condition
is identical to the overlapping condition of the bounded Baire-2 case: if r ∈
B(x, εx,n) \ A, then f(r)− f(x) < 1

n
.

We have �nished the construction of the open set S ′n, and now, we can extend it to
obtain the open strip Sn by taking the in�mum and the supremum along each vx.
Our goal is to prove that the intersection S of the sets Sn is gr(f). Of course, the
challenging part is the veri�cation of S ⊆ gr(f). Let us consider S(x) for each x.
We separate three cases by the location of x:

a) The case x ∈ A, that is x = ak. If n ≥ k, then amongst the neighborhoods
forming S ′n there can be only one that intersects vx, namely, the open ball centered
at (x, f(x)). Therefore, Sn(x) = S ′n(x), and

Sn(x) = (f(x)− εx,n, f(x) + εx,n) ⊆
(
f(x)− 1

n
, f(x) +

1

n

)
.

This fact immediately implies that the only element of S(x) is f(x).

b) The case x ∈ D. It means that x ∈ Dk for some k. Thus if n ≥ k, the neigh-
borhoods B((ak, f(ak)), εak,n) cannot intersect vx. Therefore, if n is su�ciently
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large, if we want to describe Sn(x), we have to deal only with the points in I \A.
But above I \ A we de�ned f and the neighborhoods forming S ′n as we de�ned
f0 and S ′n in the proof of Theorem 2.3.1. Consequently, the proof given there for
S(x) = gr(f0)(x) for any x ∈ I works.

c) The case x ∈ I \ (A ∪D). Proceeding towards a contradiction, we assume that
S(x) has an element y distinct from f(x). Then S ′n(x) has a point zn for each n
such that |f(x)− zn| ≥ |f(x)− y|. By de�nition, the set gr(f) is bounded, thus
it is obvious that there exists some K ∈ R such that for any n and x, the S ′n(x)
has no element larger than K. It implies that the sequence (zn) is bounded.
Therefore, it has a convergent subsequence whose limit is some z ∈ R. For this
limit z the inequality |f(x) − z| ≥ |f(x) − y| also holds, thus f(x) 6= z. Since
there is a point of gr(f) whose distance from (x, zn) does not exceed 1

n
, the point

(x, z) is also an accumulation point of gr(f), thus (x, z) ∈ Lf , a contradiction.
Namely, for our f the equation Lf = T holds, however, the only element of T (x)
is f(x) 6= z ∈ Lf (x).

Therefore S = gr(f), thus we can apply Proposition 2.2.2. Hence f is a bounded
Baire-1 function, such that Lf = T .

As we have characterized the bounded Baire-1 functions, now we might focus on
the most challenging problem appearing in this part: the characterization of the not
necessarily bounded Baire-1 functions. However, as we will see, during the proof we
will apply the same ideas. Following the usual scheme, we begin by thinking about
necessary conditions concerning T .

The conditions we found during the examination of the general Baire-2 case
obviously recur: T is a closed set and T (x) = ∅ can hold only on a countable subset
of I. As T is closed, this subset is Gδ. Of course we need more than these simple
conditions. We have to pay attention to the fact that a Baire-1 function cannot
have an arbitrary set of discontinuities: it must be a meager Fσ set, and at points of
continuity, #(Lf (x)) = 1, thus #(T (x)) = 1. However, we must be careful. In the
bounded case, the property #(Lf (x)) = 1 already guaranteed that f is continuous
at x, or f has a removable discontinuity at x. But in this case, it is not true at
all: for instance, if f(x) = 1

2x−1 for x > 1
2
, and f(x) = 0 for x ≤ 1

2
, then although

Lf
(
1
2

)
= 0, it does not imply that f is continuous at 1

2
or it has a removable

discontinuity there. Therefore, we must pay attention to the in�nite limits. If we
embed T into I × R and take its closure T , then we have to demand that this T
can intersect the extended vertical lines in multiple points only above a meager Fσ
set. However, the additional Fσ condition is unnecessary since we supposed that T
is closed. Indeed, if Dn = {x : diam(T (x)) ≥ 1

n
}, then these sets are nowhere dense

closed sets and their union is D, hence D is Fσ.
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If we collect all of these remarks, we gain a more complicated system of conditions
than the ones in the previous cases. We show that it is su�cient.

Theorem 2.4.2. Suppose T ⊆ I × R. There is a Baire-1 function f : I → R such
that Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I, such that T (x) is nonempty for x ∈ I \ C,

• the set D = {x : #(T (x)) > 1} is meager.

Proof. We de�ne f on a countable set A, such that the accumulation set of the
graph of f restricted to A equals T . We do so using the method given in Lemma
2.2.3. It is easy to see that we can construct such a set A disjoint from C and D.

Now let us focus on I \A. We de�ne f on this set as we de�ned f0 in the proof
of Theorem 2.3.3. First, if C = {c1, c2, ...}, then f(cn) = n for each n ∈ N. Besides
that we also de�ne Un as we did it in (??). These are closed sets in this case, too,
though not necessarily disjoint from A. At places which are not in A let us de�ne
f as we de�ned f0 after (??): if x ∈ Un, let f0(x) be the largest element of T (x)
which has absolute value not exceeding n. Now we are ready with the construction
of f and Lf = T clearly holds: if we consider only the points of the graph above A,
it is true by de�nition, furthermore, sequences containing in�nitely many points of
the graph above C cannot converge, and points of the graph above I \ (A ∪ C) are
in T . Thus every accumulation point of gr(f) is also the accumulation point of the
graph of f |A, and the set of these accumulation points is T . (We note that C might
intersect D, a concern that we will address later.)

We would like to apply Proposition 2.2.2 to f by giving the open sets S ′n formed
by neighborhoods of points of gr(f) and extending them to open strips. Again,
we separate some cases. We also use our familiar notation: A = {a1, a2, ...}, C =
{c1, c2, ...}, and D = ∪∞n=1Dn, where Dn is a nowhere dense, closed set for each n.

(i) The case x ∈ C, x = ck. Here, we de�ne our neighborhoods with εx,n radius
quite comfortably, namely, we can de�ne the sets En and Fn as we did it in (i)
of the proof of Theorem 2.3.3 and repeat the conditions used there. Hence we
can choose these open balls such that ∩∞n=1Fn = C, and B(ck, εck,n) does not
contain the points c1, ..., cn, with the exception of ck. We also require that this
neighborhood is disjoint from {a1, a2, ..., an}. We remark that these conditions
imply ∩∞n=1En equals the graph of f0|C.

(ii) The case x ∈ A. We evoke the conditions of (i) of the proof of Theorem 2.4.1.
Namely, B(x, εx,n) does not intersect the closed sets D1, D2, ..., Dn, and it does
not contain a1, a2, ..., an, with the exception of x. Furthermore we give the
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following additional condition: these neighborhoods have to stay away from
C, thus they must not contain c1, c2, ..., cn.

(iii) The case x ∈ I \ (A ∪ C). We evoke the condition system of (ii) of the proof
of Theorem 2.3.3. We de�ne the sets Vn and Wn as we did there: V1 = U1, and
Vn = Un \ Un−1 for n ≥ 2. Then any set Vn is Fσ. Let W1,W2, ... be an enu-
meration of the closed sets forming them. Now if x ∈ Vk, we require B(x, εx,n)
to be disjoint from c1, c2, ..., cn, and also disjoint from the sets W1,W2, ...,Wn,
except for those containing x. Furthermore, of course, we give an overlapping
condition: f0(r)−f0(x) < 1

n
for each r ∈ B(x, εx,n)∩Vk. These are exactly the

conditions we used in (ii) of the proof of Theorem 2.3.3. The only additional
condition is the following: B(x, εx,n) must not contain the points a1, a2, ..., an.

Thus we have constructed the open set S ′n for each n. We extend it in the usual
way to form the open strip Sn. Our goal is to verify that their intersection S equals
gr(f). The challenging part is to show that S contains no points distinct from gr(f).
Let us consider S(x) and S ′(x) for each x. We separate four cases by the location
of x:

a) The case x ∈ C, x = ck. This is obvious: if n ≥ k, the only chosen neighbor-
hood that intersects vx amongst the ones forming S ′n(x) is the neighborhood of
(x, f(x)), and thus S ′n(x) = Sn(x). Therefore, Sn(x) is an interval whose diame-
ter does not exceed 2

n
and contains f(x). Thus the only element of S(x) is f(x),

as we wanted to show.

b) The case x ∈ A, x = ak. We can simply repeat our previous argument: for
su�ciently large n, there is only one chosen neighborhood that intersects vx, and
since the diameters of these neighborhoods converge to 0, the only element of
S(x) is f(x).

c) The case x ∈ D \ C. It means x ∈ Dk for some k ∈ N. Now, if n ≥ k,
the neighborhood B((x′, f(x′)), εx′,n) for x′ ∈ A cannot intersect vx. It is also
true that for su�ciently large n, the neighborhood B((x′, f(x′)), εx′,n) for x′ ∈ C
cannot intersect vx, since these neighborhoods are nested and their intersection is
the graph of f |C. Hence it is enough to consider the graph of f above I \(A∪C).
At these places we de�ned f and the open balls forming S ′n as we de�ned f0 and
the open balls forming S ′n during the proof of Theorem 2.3.3. Consequently, case
b) of the proof of Theorem 2.3.3 can be used to prove S(x) = gr(f)(x).

d) The case x ∈ I \ (A ∪ C ∪D). Proceeding towards a contradiction, let us sup-
pose that S(x) contains some y ∈ R, where y 6= f(x). It means that for every
n we can choose a point zn in S ′n(x), such that |f(x) − zn| ≥ |f(x) − y|. Since
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zn ∈ S ′n(x), the point (x, zn) is in one of the open balls forming S ′n. Here, if n is
su�ciently large, then this ball is centered at a point of the graph above I \ C.
Indeed, if n is large enough, the neighborhoods around points of the graph above
C cannot intersect vx by de�nition. Now, the sequence (zn) has a limit point
z in R. Obviously, for this z the inequality |f(x) − z| ≥ |f(x) − y| also holds,
thus f(x) 6= z. However, if n is su�ciently large, there is a point of the graph
not above C whose distance from (x, zn) does not exceed 1

n
. Consequently, there

is a sequence (pn) of points of the graph above I \ C such that (pn) converges
to (x, z). Without loss of generality, we might assume that the elements of this
sequence are all distinct. Since these points are not above C, they are above A
or they are also elements of T . Nevertheless, if n is su�ciently large, for any
given ε > 0, a point pn that is above A cannot be farther than ε from a point
of T , as we noted in Remark 2.2.1. This fact immediately implies (x, z) ∈ T , a
contradiction, since the only element of T (x) is f(x) by our assumptions.

Hence S = gr(f), therefore we might apply Proposition 2.2.2. Thus f is a Baire-1
function satisfying Lf = T .

2.5 A remark about T

Before the end of the second section, we would like to point out something in con-
nection with our theorems about the not necessarily bounded functions. Namely,
amongst the conditions of the last theorem there was one condition about T . How-
ever, T = Lf does not necessarily hold for the function we constructed.

For instance let T be the following closed set: let C = { 1
n

: n ∈ N}∪{0}, c1 = 0,
and for n ≥ 2, let cn = 1

n−1 . For each point x in I \ C let T (x) = {− 1
d(x,C)

}, where
d(x,C) is the distance of x from C. Then it is easy to see that this set T satis�es
the conditions of Theorem 2.4.2 with regards to the not necessarily bounded Baire-1
functions. It is also true, that T (0) = {−∞}. Now, let us consider f , speci�cally
Lf (0). We recall that in our construction f(cn) = n. It implies Lf (0) = {−∞,+∞}.
It means that although Lf (0) = T (0) = ∅, T (0) 6= Lf (0). Thus the sets we examined
earlier are equal, but these extended sets are not.

This example raises two new questions: if we regard our theorems about the
not necessarily bounded Baire-1 and Baire-2 functions and we do not change the
conditions, is it possible to construct a function f in each of these cases that satis�es
Lf = T and Lf = T simultaneously? However, we might answer these questions
easily:

Proposition 2.5.1. Suppose T ⊆ I × R.

15



• If there exists a Baire-2 function satisfying Lf = T , then it can be chosen such
that Lf = T also holds.

• If there exists a Baire-1 function satisfying Lf = T , then it can be chosen such
that Lf = T also holds.

Proof. We will appropriately modify the functions we have constructed in the proofs
of Theorem 2.3.3 and Theorem 2.4.2. It is clear that for those functions T ⊆ Lf
holds. Indeed, for any point t ∈ T there are points of gr(f) arbitrarily close to t.
Thus if we consider a point (x,∞) of T , then it is also an accumulation point of
gr(f). Hence if Lf 6= T , then T is a proper subset of Lf .

For those functions it is also clear that if Lf has a point p which is not in T ,
then it is an accumulation point of the graph of f |C. Namely, if we take a sequence
(pn) in gr(f) which converges in I × R and contains only �nitely many points of
gr(f) above C, then after a while every term of this sequence is above A or in T .
The terms above A will get arbitrarily close to a point of T if n is su�ciently large.
Thus if we have a point in Lf which is a limit point of such a sequence, then it is
also a point of T . Hence if Lf has a point outside T , then there exists a sequence
in the graph of f |C converging to this point.

It is a problem we can easily handle in both cases by modifying f on C: if
C = {c1, c2, ...}, then let |f(cn)| = n. The sign is determined by whether T contains
(cn,+∞) or (cn,−∞). If both of them occurs, then let f(cn) = n. If we de�ne the
function f on C this way, then Lf clearly does not change, the equality Lf = T
still holds. Indeed, if a sequence of points of gr(f) above C converges to a point in
I×R, then the second coordinate of this point is +∞ or −∞. By symmetry, we can
consider the +∞ case. For a subsequence (cnk

) the sequence (cnk
, f(cnk

)) converges
to some (x,+∞) ∈ I × R. We can suppose that all the numbers f(cnk

) are positive.
Then by de�nition, in the 1

nk
neighborhood of cnk

we might choose a point ak such
that T (ak) has an element larger than nk. We denote this element of T by tk. Now it
is clear that the sequence (tk) is in T and it also converges to (x,+∞). Hence all the
elements of Lf are in T , too. Thus we constructed a function of the corresponding
Baire class satisfying Lf = T and Lf = T simultaneously.
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Chapter 3

Characterizations of Baire Functions

3.1 Motivation and a classical result

First, we would like to recall the complete form of the already cited theorem of [1].
One can easily see that the open strips of X × R can be de�ned the same way as
we did it previously for an arbitrary topological space X. Using this extension, the
authors of [1] proved the following generalized version of Proposition 2.2.2 in fact:

Proposition 3.1.1. Let X be a metric space and let f : X → R be a function.
It is Baire-1 if and only if there is a sequence (Gn)∞n=1 of open strips such that
∩∞n=1Gn = gr(f).

This is the theorem we would like to generalize in the two aforementioned senses.
As it is well-known, the Baire functions and Borel sets have a strong relationship.

In this work, we use the following classi�cation of the Borel sets of a topological space
X:

De�nition 3.1.2. A set A is of additive class 1, (A ∈ Σ1), if and only if it is open.
For any countable ordinal greater than zero, A is of multiplicative class α, (A ∈ Πα),
if and only if its complement is in Σα. Finally, A is of additive class α, (A ∈ Σα),
for α > 1 if and only if there is a sequence of sets A1, A2, ... such that each Ai is in
Παi

for some αi < α and
⋃∞
i=1Ai = A.

It is useful to remark that the behaviour of the Borel hierarchy can be a bit
chaotic in general topological spaces. To be more precise, we prefer if the higher
Borel classes contain the lower ones, that is for 0 < β < α < ω1, every set in Πβ or Σβ

is also in Πα and Σα. However, this property does not hold necessarily: for example
if we regard the co�nite topology over any uncountable set, we can immediately see
that none of the nontrivial open sets is in Σ2. The following result is well-known
and can be easily obtained by trans�nite induction: if X has the property that any
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open set is in Σ2 (or equivalently, any closed set is in Π2) then every set in Πβ or Σβ

is also in Πα and Σα for any 0 < β < α < ω1. The spaces satisfying this requirement
are called Gδ or perfect spaces and their de�ning property can be regarded as a
separation axiom: the closed sets can be separated from their complements using
only countably many open sets. It can be easily checked that all the metrizable
spaces are perfect spaces, which is a fact we will use in this work.

Another important remark is that in the later referred [3], [4], and [5], and in
several further articles and books other types of notation are used for Borel classes,
causing a subtle ambiguity with our recent work. In particular, in many papers the
elements of Σ0 are the open sets instead of the elements of Σ1, and the higher Borel
classes are de�ned from this starting point the same way we did in De�nition 3.1.2.
It is worth mentioning that this translation of the indices only leads to a di�erence
in the case of �nite ordinals as in the de�nition of Σω we consider the same unions.

Let us return to the aforementioned relationship of Borel sets and Baire classes.
The following fact is well-known (see [4]), however, as it is short and useful to prove,
we will not omit the proof and formulate it as a proposition:

Proposition 3.1.3. Let f : X → Y be a Baire-α function where X is a topological
space, Y is a metric space, and α is a countable ordinal. Then for any open set
G ⊆ Y the set f−1(G) ⊆ X is a Σα+1 set, or in other words, f is a Borel-(α + 1)
mapping.

Proof. We proceed by trans�nite induction. For α = 0 the proposition states that
for continuous functions the inverse image of an open set is open which is true by
de�nition. What remains to discuss is the inductive step. Let us assume α ≥ 1 and
we already know the statement for smaller ordinals, and let (fk)

∞
k=1 be a sequence

of functions from lower Baire classes whose pointwise limit is f , namely let fk be
Baire-αk where αk < α. If α is a successor ordinal, we might assume αk = α − 1.
Let us denote the neighborhood of radius ε > 0 of a closed set F by B(F, ε), which
is clearly an open set. Then we may construct the following decomposition of G into
closed sets (Fn)∞n=1:

G =
∞⋃
n=1

Y \B
(
Y \G, 1

n

)
=
∞⋃
n=1

Fn.

One can easily check that our decomposition implies that f(x) = limk→∞ fk(x) ∈ G
holds if and only if there is an n such that fk(x) ∈ Fn for all large enough k. Indeed,
as Fn is closed, if there is such an n, then the sequence (fk(x)) cannot converge out
of Fn ⊆ G hence f(x) ∈ G. Conversely, if f(x) ∈ G, it has a neighborhood of radius
ε for suitable positive ε in G. By convergence, for large enough k the point fk(x) is
in the neighborhood of f(x) of radius ε

2
, thus fk(x) ∈ B

(
Y \G, ε

2

)
for large enough
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k. Choosing n such that 1
n
< ε

2
gives us a suitable n in our statement, thus it proves

the other direction of our equivalence.
This equivalence yields the following equation:

f−1(G) = {x : f(x) ∈ G} =
∞⋃
n=1

∞⋃
m=1

∞⋂
k=m

{x : fk(x) ∈ Fn} .

Now, for any set {x : fk(x) ∈ Fn} the inductive hypothesis can be used: fk(x) is
Baire-αk thus the inverse image of any open set is Σαk+1, hence the inverse image
of the closed set Fn is in Παk+1. Indeed, the inverse image of the complement is
the complement of the inverse image, and the complement of Fn is open, while the
complement of its inverse image is in Σαk+1 whose complement is in Παk+1. Now if
α is a successor ordinal, these sets in Παk+1 are in Πα as αk + 1 = α. Otherwise, if
α is a limit ordinal the sets in Παk+1 are in Πα by de�nition: the same unions can
be regarded. Hence if we take the intersection of sets of these type, for all k ≥ m,
we will still have a Πα set for any ordinal. Finally if we take the countable union of
such sets (that is, for all n and m) we will obtain a Σα+1 set as the inverse image of
the open set G.

We will use this theorem several times in the followings.

3.2 The characterization of Baire-1 functions

In order to generalize the result of [1], which we referred to as Proposition 3.1.1,
let us revisit the proof given there. In one of the directions of the equivalency, we
have to construct open strips to a given function. The key of its proof is Proposition
3.1.3, more precisely its special case about X → R Baire-1 functions. As we have
seen, it holds in much more general settings. What about the other direction? The
concept is that through each open strip, one can "lead" a continuous function, thus
their pointwise limit is hopefully the graph lying in the intersection. Hence these
continuous functions should be constructed. For the X = [0, 1] case, the authors
of [1] used a somewhat elementary method. However, for the case when X was an
arbitrary metric space, they used Michael's Selection Theorem (see [8], stated as
Proposition 3.2.3 here). In order to draw up this classical result of Michael, we need
two de�nitions:

De�nition 3.2.1. A topological space X is paracompact if it is Hausdor� and each
of its open coverings admits a locally �nite re�nement.

De�nition 3.2.2. A multifunction F : X → Y is lower hemicontinuous, if the
inverse image of any open set G ⊆ Y under F , that is the set of points x ∈ X for
which F (x) has a nontrivial intersection with G, is also open.
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Michael's selection theorem states the following:

Proposition 3.2.3. Let X be a paracompact topological space, Y a Banach space,
and F : X → Y a multivalued, lower hemicontinuous multifunction wih nonempty,
closed, convex values. Then there exists a continuous selection f : X → Y of F .

This fact might lead us to the idea to regard the Baire-1 functions de�ned on a
paracompact topological space X with values from a Banach space Y instead of R
as this selection theorem holds in this more general situation. Furthermore, if Y is a
Banach space, we can easily �nd a natural counterpart of the notion of open strips
in X × Y :

De�nition 3.2.4. We say that an open set G ⊆ X × Y is an open strip if the
vertical section G(x) = G ∩ ({x} × Y ) is convex for all x ∈ X.

Thus we can formulate the following generalization of Proposition 3.1.1:

Theorem 3.2.5. Let f : X → Y be a function where X is a paracompact topological
space and Y is a Banach space. Then f is Baire-1 if and only if there is a sequence
(Gn)∞n=1 of open strips such that ∩∞n=1Gn = gr(f) and diam(Gn(x)) → 0 for each
x ∈ X as n tends to in�nity.

We might realize that we have a previously unseen condition concerning the
diameter of the vertical sections. Its importance is to be discussed later, by the time
we have seen in the proof where we used it.

Proof of Theorem 3.2.5. The proof is similar to the one given in [1] for the more
speci�c case, with some suitable modi�cations. First, let us assume that f is Baire-
1, hence there is a sequence of continuous functions (fn)∞n=1 with pointwise limit
f . Let us notice that the set

{
x : ‖fn(x)− f(x)‖ < 1

k

}
is in Σ2. Indeed, if we let

gn(x) = fn(x)−f(x), it is also a Baire-1 function, and the set we are interested in is
g−1n {y : ‖y‖ < 1

k
}, which is the inverse image of an open ball. Applying Proposition

3.1.3 yields that
{
x : ‖fn(x)− f(x)‖ < 1

k

}
is in Σ2 as we stated. As a consequence,

it can be written as the countable union of closed sets A(n, k, i) ⊆ X:{
x : ‖fn(x)− f(x)‖ < 1

k

}
=
∞⋃
i=1

A(n, k, i).

We will de�ne the subsets H(n, k, i) of X × Y as follows:

H(n, k, i) =

{
(x, y) : x ∈ A(n, k, i), ‖y − fn(x)‖ ≥ 1

k

}
.
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We show thatH(n, k, i) is closed. In order to prove it, let us write it as an intersection
of two sets which are easier to handle:

H(n, k, i) = [A(n, k, i)× Y ] ∩
{

(x, y) : ‖y − fn(x)‖ ≥ 1

k

}
.

The �rst one of these sets on the right hand side is clearly closed in X × Y as
A(n, k, i) was closed in X, hence it su�ces to prove that the second set on the right
hand side is also closed. Let us de�ne the following function hn : X × Y → R+,
where R+ denotes the nonnegative hal�ine:

hn(x, y) = ‖y − fn(x)‖.

Our claim is that the continuity of fn implies the continuity of hn. To prove this, we
need to show that the inverse image of an open setG ⊆ R+ under hn is open inX×Y .
Thus let us assume hn(x0, y0) ∈ G for some (x0, y0) ∈ X × Y , which yields for some
ε > 0 its neighborhood of radius ε is the subset of G, that is B (hn(x0, y0), ε) ⊆ G.
We need that hn(x, y) is also in G if (x, y) is an element of a suitable neighborhood
U of (x0, y0). We state this holds if we regard the following neighborhood:

U = f−1n

(
B
(
fn(x0),

ε

2

))
×B

(
y0,

ε

2

)
By the continuity of fn it is indeed a neighborhood of (x0, y0) as f−1n

(
B
(
fn(x0),

ε
2

))
is an open subset of X. Furthermore, if (x, y) ∈ U , by the triangle inequality we
have

‖y − fn(x)‖ ≤ ‖y − y0‖+ ‖y0 − fn(x0)‖+ ‖fn(x0)− fn(x)‖ < ε+ ‖y0 − fn(x0)‖,

and

‖y− fn(x)‖ ≥ −‖y − y0‖+ ‖y0 − fn(x0)‖ − ‖fn(x0)− fn(x)‖ > −ε+ ‖y0− fn(x0)‖,

which implies hn(x, y) ∈ B (hn(x0, y0), ε) ⊆ G.
Thus hn is continuous indeed, yielding

{
(x, y) : ‖y − fn(x)‖ ≥ 1

k

}
= h−1n

([
1
k
,∞
))

is
a closed set of X × Y . By our previous remarks it implies that H(n, k, i) is also
closed.

The set of such sets H(n, k, i) is countable thus we can take an enumeration
H1, H2, ... of them. Let us denote by G∗j the complement of Hj in X × Y , that is
an open set. Furthermore, one can easily check that G∗j is an open strip, that is
the G∗j(x) vertical section is convex for each j ∈ N and x ∈ X. Indeed, by the
construction of G∗j , this vertical section is either the complete space Y or the ball
of radius 1

k
centered at fn(x) for some k ∈ N and x ∈ X. However, balls are convex
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in Banach spaces, hence G∗j is an open strip. It implies Gj =
⋂j
l=1G

∗
l is also an

open strip. Furthermore, the sequence (Gj)
∞
j=1 is nested and diam(Gj(x)) tends to

0 for each x ∈ X. Indeed, when we constructed Gj, we took the intersection of the
complements of some sets H(n, k, i). A vertical section of this complement is either
the entire Y or a ball with diameter 2

k
. But as all x ∈ X appears in A(n, k, i) for

any k, for some i and large enough n, this implies that diam(Gj(x)) ≤ 2
k
for large

enough j. As a consequence, diam(Gj(x)) → 0. Hence if we could verify that the
intersection of the open strips (G∗j)

∞
j=1 equals gr(f), that would conclude the proof.

But the proof of this fact is quite straightforward, we can check two inclusions.
First, (x, f(x)) ∈ G∗j for any j ∈ N and x ∈ X, implying gr(f) ⊆

⋂∞
j=1Gj. In order

to show this, let us recall that the complement of G∗j is Hj = H(n, k, i) for some
n, k, i ∈ N. We need (x, f(x)) /∈ H(n, k, i). Proceeding towards a contradiction, let
us assume (x, f(x)) ∈ H(n, k, i), yielding x ∈ A(n, k, i). Then by the de�nition of
A(n, k, i), the inequality ‖fn(x) − f(x)‖ < 1

k
holds. However, ‖f(x) − fn(x)‖ ≥ 1

k

by the de�nition of H(n, k, i), a contradiction. Thus gr(f) ⊆
⋂∞
j=1Gj. For the

other inclusion, it su�ces to prove that for any x ∈ X and y ∈ Y distinct from
f(x), we have (x, y) ∈ H(n, k, i) for suitable n, k, i ∈ N. In order to verify this,
choose k such that 1

k
< ‖y−f(x)‖

2
and n such that ‖fn(x) − f(x)‖ < 1

k
. As f is the

pointwise limit of (fn)∞n=1, it is possible. Then by de�nition there exists i such that
x ∈ A(n, k, i). Furthermore, ‖y− fn(x)‖ ≥ ‖y− f(x)‖ − ‖fn(x)− f(x)‖ > 1

k
by the

triangle-inequality, implying (x, y) ∈ H(n, k, i), which concludes the proof. Thus⋂∞
j=1(Gj) = gr(f), we �nished the proof of this direction.

For the other direction, let us assume gr(f) =
⋂∞
j=1Gj where for each j the set

Gj is an open strip. We can also assume that their sequence is nested as the �nite
intersection of open sets is open and any intersection of convex sets is convex. Thus
Gj+1 ⊆ Gj for any j. Let us de�ne Fj as it follows:

Fj =
⋃
x∈X

Gj(x),

where the overline means the closure. Hence Fj stands for the closure by coordinates.
Regard it as a multivalued function de�ned on X with range 2Y , whose values
are naturally the vertical sections of the set. Then this multivalued function has
nonempty closed, convex values. Furthermore, we can easily show that Fj is lower
hemicontinuous: let us assume V ∩ Fj(x) is nonempty for some open set V of
Y and x ∈ X. Since Fj(x) is the closure of the open set Gj(x), we have V ∩
Gj(x) is nonempty. Let y ∈ Y be one of its elements. As Gj is open, it contains
a neighborhood of (x, y). This neighborhood intersects X × {y} in a set whose
projection to X is open and suitable for us in the de�nition of lower hemicontinuity
as one can easily check. Thus Fj : X → 2Y is a lower hemicontinuous function with
nonempty closed, convex values. By the Michael selection theorem there exists a
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continuous selection fj : X → Y in Fj. Furthermore, as the intersection of the sets
Fj(x) is only f(x) and their diameter tends to 0, we obtain fj(x)→ f(x). Hence f
is the pointwise limit of continuous functions, meaning f is Baire-1.

Let us return to the condition concerning the diameters of the vertical sections.
This condition was used in the proof of the second direction, where we desired
to verify the pointwise convergence of the sequence (fn)n∈N. What we would like
to emphasize that this diameter condition is vital and can be found implicitly in
the more speci�c form of the theorem, too. We formulate the relevant fact as
a proposition, since the author of this thesis �rmly believes this result has been
published already but has yet to see a source:

Proposition 3.2.6. Let E be a �nite dimensional Banach space and (Cn)∞n=1 is
a nested sequence of closed convex sets such that

⋂∞
n=1Cn equals a point p. Then

diam(Cn)→ 0.

Proof. Proceeding towards a contradiction, let us assume diam(Cn) > d > 0 for
all n ∈ N. Then Cn must contain a point pn such that ‖p − pn‖ > d

2
as it easily

follows from the triangle inequality. As Cn is convex and it contains p and pn, it also
contains the [p, pn] segment, and on this segment a point xn satisfying ‖p−xn‖ = d

2
.

Now the points xn all lie on the boundary of the ball with centre p and radius
d
2
. By a consequence of Riesz's lemma, in our �nite dimensional space this set is

compact, hence the sequence (xn)∞n=1 has an accumulation point on this boundary.
Let us denote it by x. As Cn is closed for each n ∈ N and their sequence is nested,
it implies x ∈ Cn. As a consequence, x ∈

⋂∞
n=1Cn = {p}, which is clearly a

contradiction as the distance of x and p is d
2
.

This proposition implies that if we work with a �nite dimensional Banach space,
it is unnecessary to have the additional limit condition concerning the diameters of
the vertical sections. However, one can easily construct counterexamples to Propo-
sition 3.2.6 if we permit in�nite dimensional spaces. For instance, let us consider `1

which is a Banach space, and let Cn be the subspace of those sequences whose �rst
n coordinates equal zero. Then these sets are closed, convex, and their intersection
contains only the zero vector, meanwhile the diameters are not even �nite.

By this, we have given the characterization of Baire-1 functions in more general
settings, thus we have achieved one of our goals.

3.3 Higher Baire classes

We wish to give a similar characterization for higher Baire classes. We hope that
by suitably generalizing the concept of open strips to higher Borel classes we can
obtain an analogous result.
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Let us introduce Fréchet spaces:

De�nition 3.3.1. A topological vector space Y is a Fréchet space if it is locally
convex and completely metrizable with a translation invariant metric.

Brie�y, it is a generalization of Banach spaces: the metric does not have to be
induced by a norm. However, convexity makes sense in Fréchet spaces, too. Thus
the open strips of X × Y , where Y is Fréchet space, can be de�ned word by word
the same way as they have been when Y was a Banach space. The concept of open
strips can be extended in a straightforward way:

De�nition 3.3.2. Let X be a topological space and Y be a Fréchet space. We say
that a Σα set S ⊆ X × Y is a Σα-strip if the vertical section S(x) = S ∩ ({x} × Y )
is convex for all x ∈ X.

Concerning the characterization of higher Baire classes, we might have the con-
jecture that a function f : X → Y is Baire-α for a countable ordinal α if and only if
its graph is the intersection of a sequence of Σα-strips. However, we still need to �nd
out what further conditions we need about X and Y . In order to have an idea, let
us focus on how we could start the proof. We have to regard two directions: on one
hand, we have to construct strips to a given function, on the other hand, we would
like to "thread" functions from lower Baire classes through each strip. Of these
directions, the �rst one was based on a much more general fact. This motivates
the conception that �rst, we should consider this direction independently: maybe
we need fewer restrictions concerning X and Y . Our next theorem re�ects on this
question:

Theorem 3.3.3. Let f : X → Y be a Baire-α function where X is a topological
space, Y is a metric space and let α be a countable ordinal. Then there exists a
sequence (Gn)∞n=1 of Σα sets in X×Y such that ∩∞n=1Gn = gr(f) and diam(Gn(x))→
0 for each x ∈ X as n tends to in�nity. Furthermore, if Y is a Fréchet space, these
Σα sets can be chosen to be Σα strips.

Proof. The proof has a similar structure to the proof of Theorem 3.2.5, we just have
to be more careful with the sets in higher Borel classes and make some slight, but
necessary changes. As f is Baire-α, there is a sequence of functions (fn)∞n=1 with
pointwise limit f , where fn is Baire-αn for some αn < α, and if α is a successor
ordinal, we can assume αn = α − 1. Proposition 3.1.1 easily yields that the set{
x : dY (fn(x), f(x)) < 1

k

}
is in Σα+1. To verify this, we show that if the functions

g1, g2 : X → Y are Baire-α, then the function ρg1,g2 : X → R+ de�ned by ρg1,g2(x) =
dY (g1(x), g2(x)) is also Baire-α. We proceed by trans�nite induction: if α = 0,
that is our functions are continuous, then our claim can be proven as the similar
statement in the proof of Theorem 3.2.5. Furthermore, if we have α > 0, then g1
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is the pointwise limit of the functions (g1,n)∞n=1 and g2 is the pointwise limit of the
functions (g2,n)∞n=1, such that these functions are in lower Baire classes. Thus by the
continuity of the metric dY , we have

ρg1,g2(x) = lim
n→∞

dY (g1,n(x), g2,n(x)) = lim
n→∞

ρg1,g2,n(x).

However, the induction hypothesis easily yields that each of the functions ρg1,g2,n are
in lower Baire classes than Baire-α. Thus ρg1,g2 is a Baire-α function, as we stated.
As a consequence, {

x : dY (fn(x), f(x)) <
1

k

}
= ρ−1g1,g2

([
0,

1

k

))
is in Σα+1 by Proposition 3.1.3, as we consider the inverse image of an open set in
R+ under a Baire-α function. Thus it can be written as the countable union of Πα

sets A(n, k, i) ⊆ Y : {
x : dY (fn(x), f(x)) <

1

k

}
=
∞⋃
i=1

A(n, k, i).

We de�ne the subsets H(n, k, i) of X × Y as follows:

H(n, k, i) =

{
(x, y) : x ∈ A(n, k, i), dY (y, fn(x)) ≥ 1

k

}
.

We state H(n, k, i) is in Πα. The proof of this claim starts with the same reformu-
lation, that is we write H(n, k, i) as the intersection of two simpler sets:

H(n, k, i) = [A(n, k, i)× Y ] ∩
{

(x, y) : dY (y, fn(x)) ≥ 1

k

}
.

The �rst one of these sets on the right hand side is clearly in Πα inX×Y as A(n, k, i)
was in Πα in X, hence it su�ces to prove that the second set on the right hand side
is also in Πα. Let us de�ne the following function hn : X × Y → R+:

hn(x, y) = dY (y, fn(x)) .

One can easily prove by trans�nite induction on αn that if fn is Baire-αn then hn is
also Baire-αn: the initial case αn = 0, where fn is continuous, can be veri�ed exactly
as we did it in the proof of Theorem 3.2.5, we only have to replace the norms of
the di�erences in the inequalities with the respective distances. Now if fn is the
pointwise limit of a sequence of functions (φn,m)∞m=1 from lower Baire classes, then
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hn is the pointwise limit of the sequence of functions dY (y, φn,m(x))∞m=1, and for
these functions the inductive hypothesis can be used. Hence hn is Baire-αn, yielding{

(x, y) : dY (y, fn(x)) ≥ 1
k

}
is in Παn+1, and as a consequence, it is also in Πα, as we

can separate the cases of successor and limit ordinals as in the proof of Proposition
3.1.3. Thus H(n, k, i) is in Πα.

At this point, we can proceed exactly as we did in the proof of Theorem 3.2.5.
We can take an enumeration H1, H2, ... of the sets H(n, k, i) and de�ne Gj as (X ×
Y )\

⋃j
l=1Hl. Then these sets are in Σα and their intersection is gr(f). Furthermore,

if Y is a Fréchet space, these sets are also Σα strips as balls are convex sets in Fréchet
spaces.

3.4 The other direction

Our goal is to verify the converse of the previous theorem in certain settings, thus
giving the characterization of Baire functions between as general spaces as it is
possible. As we will see, it is a more di�cult task.

A possible line of thought has already been sketched in the previous section: we
would like to "thread" functions from lower Baire classes through Σα-strips. Let
us observe that it is another selection problem, just like the one handled by the
Michael selection theorem! The only change is that we are interested in Baire-α
selections instead of continuous ones. This problem is surprisingly complicated,
giving such topological classi�cation of Baire classes seems rather di�cult. What
is a more "popular" topic, that is the theory of measurable selections. A classical
result concerning this problem is the theorem of Kuratowski and Ryll-Nardzewski
published in [5]. We cite only a special case:

Proposition 3.4.1. Let X be a metric space and let Y be a separable complete
metric space. Assume α ≥ 1 is a countable ordinal and let Ψ : X → 2Y be a
multifunction with nonempty closed values such that Ψ−1(G) is in Σα for each open
subset G of Y . Then Ψ admits a Borel class α selection, that is a mapping f : X →
Y such that the inverse image of any open set of Y is in Σα.

This theorem is a truly powerful tool if our goal is to construct Borel mappings.
However, it is not exactly what we wish to do: we need Baire functions. We have
already noted that these classes of functions have a strong relationship, for example
Proposition 3.1.3 guarantees that a Baire-α function de�ned on a topological space
with metric codomain is a Borel-α mapping. We have to be careful though, as the
converse does not hold in general: for instance if X is a connected topological space
with at least two points, and Y is the two point discrete space {0, 1}, then the
characteristic function of a single point of X is Borel-2, but not Baire-1, as all the
continuous functions from X to Y are constants. As our aim is to use Proposition
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3.4.1 in as general setting as it is possible, it would be bene�cial to know some results
concerning conditions yielding the equivalence of Baire-α functions and Borel-(α+1)
mappings. We can recall a special form of Theorem 8 of [3] (in that paper, every
space is assumed to be perfect):

Proposition 3.4.2. Let X be a perfect Suslin space and Y be a metric space. If
X is metrizable and Y is a locally convex topological linear space then the family of
Baire-α functions coincides with the family of Borel-(α + 1) mappings.

Thus by applying Propositions 3.4.1 and 3.4.2 simultaneously, we can have a
su�cient condition for the existence of Baire-β selections for each β countable or-
dinal, as long as the domain and codomain satisfy the conditions of both of these
theorems. However, the existence of these selections is only a tool for us: we use it
in order to verify that a given function is Baire-α, as the pointwise limit of Baire
functions from lower classes. Hence this concept can be directly applied only if α is
a successor ordinal. This fact leads to the main result of this thesis:

Theorem 3.4.3. Let f : X → Y be a function where X is a metrized Suslin space,
Y is a separable Fréchet space. Then f is Baire-α for some successor countable
ordinal α if and only if there is a nested sequence (Gn)∞n=1 of Σα strips in X × Y
such that

• ∩∞n=1Gn = gr(f),

• diam(Gn(x))→ 0 for each x ∈ X as n tends to in�nity,

• the projection of (X × U) ∩Gn to X is in Σα for each open subset U of Y .

Remark 3.4.4. : In other words, the last condition states that for the multifunction
naturally assigned to Gn by taking its vertical sections, we have that the inverse
image of each open set is in Σα. Practically, this condition lets us apply Proposition
3.4.1. The main di�culty of the proof is the direction in which we construct strips,
namely the veri�cation of this criterion.

Proof of Theorem 3.4.3. For the direction in which we assume that f is Baire-α, we
can refer to the proof of Theorem 3.3.3, the only detail we have to check that is
the third condition is also satis�ed. In general, let us denote the projection of a set
C ⊆ X × Y to X by π(C), and let us denote the projection of (X×U)∩Gn to X for
the sake of simplicity by π∗n(U). Let us de�ne the sets A(n, k, i) and H(n, k, i), and
then the sequences (Hj)

∞
j=1 and (Gj)

∞
j=1 as we did in that proof. Namely, if (fn)∞n=1

is the sequence of functions from lower Baire classes with pointwise limit f , then{
x : dY (fn(x), f(x)) <

1

k

}
=
∞⋃
i=1

A(n, k, i),where A(n, k, i) ∈ Πα,
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H(n, k, i) = [A(n, k, i)× Y ] ∩
{

(x, y) : dY (y, fn(x)) ≥ 1

k

}
,

(Hj)
∞
j=1 is the enumeration of these sets H(n, k, i), and

Gj = (X × Y ) \
j⋃
l=1

Hl =

j⋂
l=1

(X × Y ) \Hl.

Our goal is to prove that π∗j (U) is in Σα for each open subset U of Y . Assume that
Gj can be decomposed as the following:

Gj = (X × Y ) \
j⋃
l=1

H(nl, kl, il) =

j⋂
l=1

(X × Y ) \H(nl, kl, il).

Now we can divide each (X×Y )\H(nl, kl, il) into two parts with disjoint projections
to X:

(X × Y ) \H(nl, kl, il) = [(X \ A(nl, kl, il))× Y ] ∪ [(A(nl, kl, il)× Y ) \H(nl, kl, il)]

= Vl,1 ∪ Vl,2,

yielding

Gj =

j⋂
l=1

(X × Y ) \H(nl, kl, il) =

j⋂
l=1

(Vl,1 ∪ Vl,2).

By distributivity, we can replace this intersection of unions by a union of intersec-
tions:

j⋂
l=1

(Vl,1 ∪ Vl,2) =
⋃

(θ1,...θj)∈{1,2}j

j⋂
l=1

Vl,θl .

What is intriguing about this expression, that is the projections of the sets
⋂j
l=1 Vl,θl

to X are clearly disjoint as two such intersection di�ers in at least one θ-coordinate,
and the projections π(Vl,1) and π(Vl,2) are disjoint. As a consequence, the projection
of the union ⋃

(θ1,...θj)∈{1,2}j

j⋂
l=1

Vl,θl

to X equals the union of the projections, hence

π∗j (U) = π ((X × U) ∩Gj) =
⋃

(θ1,...θj)∈{1,2}j
π

(
(X × U) ∩

j⋂
l=1

Vl,θl

)
. (3.1)
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We would like to show that this set is in Σα. Let us consider one of these sets

π

(
(X × U) ∩

j⋂
l=1

Vl,θl

)

and take a closer look at
⋂j
l=1 Vl,θl . Amongst these sets, certain ones are of the type

Vl,1, others are of the type Vl,2. Let us denote the set of indices belonging to the
�rst type by J1, and the set of indices belonging to the second type by J2, yielding

π

(
(X × U) ∩

j⋂
l=1

Vl,θl

)
= π

(
(X × U) ∩

⋂
l∈J1

Vl,1 ∩
⋂
l∈J2

Vl,2

)
.

In this expression, Vl,1 = [(X \ A(nl, kl, il))× Y ] for l ∈ J1, meaning Vl,1 contains
the whole space Y above X \ A(nl, kl, il). As a consequence, one can easily verify
that

π

(
(X × U) ∩

⋂
l∈J1

Vl,1 ∩
⋂
l∈J2

Vl,2

)
=
⋂
l∈J1

(X \ A(nl, kl, il)) ∩ π

(
(X × U) ∩

⋂
l∈J2

Vl,2

)
.

Let us recall the de�niton of Vl,2:

π

(
(X × U) ∩

⋂
l∈J2

Vl,2

)
=

{
x : x ∈

⋂
l∈J2

A(nl, kl, il), U ∩
⋂
l∈J2

BY

(
fnl

(x),
1

kl

)
6= ∅

}
.

Let us denote U∩
⋂
l∈J2 BY

(
fnl

(x), 1
kl

)
byM(U, J2, x). Using the previous identities,

we can reformulate (3.1), yielding π∗j (U) equals the following:

⋃
J1,J2

(⋂
l∈J1

(X \ A(nl, kl, il)) ∩

{
x : x ∈

⋂
l∈J2

A(nl, kl, il),M(U, J2, x) 6= ∅

})
. (3.2)

Now we will show that the condition x ∈
⋂
l∈J2 A(nl, kl, il) might be omitted from

this expression for each J1, J2 without changing the union. This omission extends
each of the sets

⋂
l∈J1

(X \ A(nl, kl, il)) ∩

{
x : x ∈

⋂
l∈J2

A(nl, kl, il),M(U, J2, x) 6= ∅

}

29



to ⋂
l∈J1

(X \ A(nl, kl, il)) ∩ {x : M(U, J2, x) 6= ∅} , (3.3)

however, as we will show the increment is contained by other sets of the union in
(3.2), yielding this union remains the same. Indeed, as J runs over the subsets of
J2, the sets ⋂

l∈J

(X \ A(nl, kl, il)) ∩
⋂

l∈J2\J

A(nl, kl, il)

give a natural partition of X. As a consequence, the set in (3.3) can be expressed
as it follows, by taking the intersection with each of the elements of this partition
and then forming their union:

⋃
J⊆J2

 ⋂
l∈J∪J1

(X \ A(nl, kl, il)) ∩
⋂

l∈J2\J

A(nl, kl, il) ∩ {x : M(U, J2, x) 6= ∅}

 . (3.4)

Replacing M(U, J2, x) by M(U, J2 \ J, x) is equivalent to taking the intersection of

the sets BY

(
fnl

(x), 1
kl

)
only for l ∈ J2 \ J instead of J2. Thus this replacement

clearly extends the set in (3.4), and the condition
⋂
l∈J2\J A(nl, kl, il) can be moved

inside
{
x : U ∩

⋂
l∈J2 BY

(
fnl

(x), 1
kl

)
6= ∅
}
, yielding the set in (3.4) is contained by

⋃
J⊆J2

 ⋂
l∈J1∪J

(X \ A(nl, kl, il)) ∩

x : x ∈
⋂

l∈J2\J

A(nl, kl, il),M(U, J2 \ J, x) 6= ∅


 .

Now we may notice that each of the unioned sets in this expression appears in the
union in (3.2), which veri�es our statement: we can make the omissions for any J1
and J2 without changing the union there. In other words, π∗j (U) is also the union
of these modi�cated sets, that is

π∗j (U) =
⋃
J1,J2

(⋂
l∈J1

(X \ A(nl, kl, il)) ∩ {x : M(U, J2, x) 6= ∅}

)
.

As it is a �nite union, it su�ces to prove about each of the unioned sets that they
are in Σα, that is⋂

l∈J1

(X \ A(nl, kl, il)) ∩ {x : M(U, J2, x) 6= ∅} ∈ Σα.

The sets X \A(nl, kl, il) are also in Σα, therefore it would be su�cient to prove the
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same about M(U, J2, x) =
{
x : U ∩

⋂
l∈J2 BY

(
fnl

(x), 1
kl

)
6= ∅
}
. The intersection

which we regard in this set is the intersection of a �nite collection of open sets,
hence it is also open. Furthermore, U is separable as a subspace of the separable
space Y . Thus it contains a countable dense set {u1, u2, ...}. As a consequence,

U ∩
⋂
l∈J2 BY

(
fnl

(x), 1
kl

)
6= ∅ holds if and only if there exists some ut for t ∈ N such

that ut ∈
⋂
l∈J2 BY

(
fnl

(x), 1
kl

)
, thus{

x : U ∩
⋂
l∈J2

BY

(
fnl

(x),
1

kl

)
6= ∅

}
=
∞⋃
t=1

{
x : ut ∈

⋂
l∈J2

BY

(
fnl

(x),
1

kl

)}
.

For some x ∈ X, the relation ut ∈ BY

(
fnl

(x), 1
kl

)
holds if and only if fnl

(x) ∈

BY

(
ut,

1
kl

)
by symmetry. Hence

∞⋃
t=1

{
x : ut ∈

⋂
l∈J2

BY

(
fnl

(x),
1

kl

)}
=
∞⋃
t=1

⋂
l∈J2

{
x : fnl

(x) ∈ BY

(
ut,

1

kl

)}

=
∞⋃
t=1

⋂
l∈J2

S(t, l).

On the right hand side, each set S(t, l) is the inverse image of an open set under
fnl

which is Baire-αnl
, where αnl

< α. Thus each S(t, l) is in Σα by Proposition
3.1.3 as X × Y is metrizable, yielding that it is perfect. Hence if we take the �nite
intersection for l ∈ J2 and then the countable union for t = 1, 2, ..., we will still have
a set in Σα and as we have already seen it concludes the proof of the �rst direction.

For the other direction, let us assume gr(f) =
⋂∞
j=1Gj where the set Gj is in

Σα for each j, their sequence is nested, and they satisfy the three conditions of the
theorem. Let us de�ne Fj as it follows:

Fj =
⋃
x∈X

Gj(x),

thus Fj is the closure by coordinates. If we regard it as a multivalued function
de�ned on X with range 2Y , whose values are naturally the vertical sections of the
set, we can easily verify that it satis�es the conditions of Proposition 3.4.1. Indeed,
it has clearly nonempty, closed values, and as the projection of (X×U)∩Gn to X is
in Σα for each open subset U of Y , the inverse image F−1j (U) is in Σα for the open
subsets of Y . Hence Fj has a Borel-α selection fj. As α is a successor ordinal, α− 1
makes sense and Proposition 3.4.2 can be applied, yielding fj is Baire-(α− 1). The
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conclusion is the same as it was in the proof of Theorem 3.2.5: as the intersection of
the sets Fj(x) is only {f(x)} and their diameter tends to 0, fj(x)→ f(x) must hold,
and as a consequence, f is the pointwise limit of Baire-(α − 1) functions, meaning
f is Baire-α.

3.5 Another glance at the accumulation problem

We desire to generalize some of the results presented in the second section using
selection theorems, more precisely the theorem of Kuratowski and Ryll-Nardzewski.
As this theorem is still not able to produce Baire functions directly, we also wish
to use the theorem of Hansell. This idea already restricts the choice of the spaces,
however, we go even further. In the case of [0, 1]→ R functions, the starting point
of our argument was Lemma 2.2.3, which practically stated that we can de�ne a
function on a countable subset satisfying Lf = T , which is a very comfortable
assumption if we wish to manage Borel classes. Roughly speaking, it is based on
the fact that if we modify a Borel set in countably many points, the Borel class
of the altered set is easy to handle. As a consequence, we would like to draw up
generalizations only in those cases when analogous results to Lemma 2.2.3 hold. We
say that a topological space is σ-compact if it is the countable union of compact
subspaces. We might state the following:

Lemma 3.5.1. Let X and Y be σ-compact metric spaces such that X has no isolated
points. For a given closed set T ⊆ X × Y there exists a countable set A ⊆ X such
that there is a function f : A→ Y satisfying Lf = T .

Proof. The product space X × Y is also σ-compact, hence there is an increasing
sequence of compact sets (Cn)∞n=1 with limit X × Y . Then Tn = T ∩ Cn is also a
compact set. We will construct A and f by induction. Let us consider an open ball
of radius one around each point of T1. These balls give an open cover of the compact
set T1 hence it is possible to choose a �nite cover. Let us take a point in each ball
of the �nite cover such that the x coordinates of these points are pairwise di�erent.
As none of the points of X is isolated, it is clearly possible. Denote the set of these
points by F1, and the set of their x coordinates by A1. In the following step, let us
take open balls of radii 1

2
around each point of T2, choose a �nite cover, and take

points in each of these balls with pairwise di�erent x coordinates, which are also
distinct from the points in A1. Let us de�ne A2 and F2 analogously, and continue
this procedure: in the nth step regard the 1

n
-neighborhoods of the points of Tn, and

de�ne the �nite sets Fn and An using these open balls. Now if we let A =
⋃∞
n=1An

and F = ∪∞n=1Fn, these are countable sets, and we may de�ne f to be the function
that assigns to every x ∈ A the y coordinate of the chosen point in F above x. The
equality Lf = T can easily be checked, as in the proof of Lemma 2.2.3.
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We will give the generalization of Theorem 2.3.1 and 2.3.2 using this lemma. We
formalize it in one theorem:

Theorem 3.5.2. Let T ⊆ X × Y , where X is a σ-compact metrizable Suslin space
with no isolated points, and Y is a compact Fréchet space. There exists a Baire-2
function f satisfying Lf = T if and only if T is closed and T ∩ ({x} × Y ) 6= ∅ for
each x ∈ X.

Furthermore, if Y is σ-compact, but not compact, there exists a Baire-2 function
f satisfying Lf = T if and only if T is closed and there is a countable set D ⊆ X
such that T ∩ ({x} × Y ) 6= ∅ for each x ∈ X \D.

Before the proof, we would like to remark that the conditions concerning T are
clearly necessary, even if we do not require f to be Baire-2:

Proposition 3.5.3. In the setting of the �rst case of Theorem 3.5.2, if a subset T of
X ×Y equals Lf for a function f : X → Y , then T is closed and T ∩ ({x}× Y ) 6= ∅
for each x ∈ X.

Furthermore, in the setting of the second case of Theorem 3.5.2, if a subset T of
X×Y equals Lf for a function f : X → Y , then T is closed and there is a countable
set D ⊆ X such that T ∩ ({x} × Y ) 6= ∅ for each x ∈ X \D.

Proof. As Lf is the set of the accumulation points of gr(f), it must be closed in
both cases. On the other hand, in the �rst case, if we consider any x ∈ X, by our
conditions there is a sequence (xn)∞n=1 with elements from X distinct from x and
with limit x. Thus by the compactness of Y , for any f the sequence (f (xn))∞n=1 has
a limit point, implying the sequence (xn, f (xn))∞n=1 has a limit point in {x} × Y .
Hence if T = Lf , the set T has to intersect any vertical line in the �rst case.

In the second case, proceeding towards a contradiction, let us assume the set D
of points in X satisfying T ∩({x}×Y ) = ∅ is uncountable and there exists a function
f : X → Y for which T = Lf holds. As both X and Y are σ-compact, it implies the
existence of compact sets CX ⊆ X and CY ⊆ Y such that CX ∩ D is uncountable
and the cardinality of D∗ = {x : x ∈ CX ∩D, f(x) ∈ CY } is also uncountable.
Thus by the separability of X, the set D∗ contains one of its accumulation points,
d. Therefore there exists a sequence (di) in D∗, (di 6= d) with limit d. Since all
the elements of the sequence (f(di)) are in the compact set CY , it has a convergent
subsequence, therefore Lf (d) cannot be empty, while T (d) is, a contradiction.

However, Theorem 3.5.2 states for such a set T we have a Baire-2 function
satisfying Lf = T , yielding the following:

Corollary 3.5.4. In the setting of any case of Theorem 3.5.2, if a subset T of X×Y
equals Lf for a function f : X → Y , then there exists a Baire-2 function such that
Lf = T .
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Proof of Theorem 3.5.2. Let us regard the �rst case. Consider a metric on X. By
Lemma 3.5.1, there exists a countable set A ⊆ X and a function f0 : A → Y
satisfying Lf0 = T . We wish to extend this function to f : X → Y such that f
is Baire-2 without making Lf larger. In order to do this, de�ne a multifunction
F : X → 2Y the following way:

F (x) =

{
{f0(x)} if x ∈ A

T ∩ ({x} × Y ) if x ∈ X \ A.

As T is closed and its vertical sections are nonempty, F has nonempty closed values.
Furthermore, F−1(G) is in Σ3 for each open subset G of Y . Indeed, T ∩ (X × G)
is a set in Σ2. Next we show that π(T ∩ (X × G)) is also in Σ2. Let us recall that
as X × Y is σ-compact, any closed set is the union of countably many compact
sets, implying any set in Σ2 is also the union of countably many compact sets.
However, the projection of a compact set is obviously compact, thus closed. Hence
π(T ∩ (X × G)) is in Σ2 as we stated. Furthermore, one can easily verify that
F−1(G) and π(T ∩ (X ×G)) can di�er only in the points of A, because if we regard
T as a multifunction whose values are its vertical sections, T and F di�er only
in A. Thus F−1(G) di�ers only in a countable set from a set in Σ2, yielding it
is in Σ3: indeed, a countable set is always in Σ2, thus if we add a countable set
to π(T ∩ (X × G)) we obtain another set in Σ2, while removing a countable set
is equivalent to intersecting with its complement, which is in Π2. Hence the set
we are interested in is the intersection of a set in Σ2 and a set in Π2, which are
both in Σ3 as X is metrizable. As a consequence, the intersection is also in Σ3,
as we stated. Hence F satis�es all the conditions of Proposition 3.4.1, yielding it
admits a Borel-3 selection f . This function f is also Baire-2 since the conditions of
Theorem 3.5.2 satisfy the conditions of Proposition 3.4.2. What remains to show
that is Lf = T . We have already seen T ⊆ Lf as T = Lf0 by the construction of
f0 and Lf0 ⊆ Lf clearly holds. For the other inclusion, we only have to verify that
there is no sequence in gr(f) with limit outside of T . However, in that case there
would be such a sequence in gr (f0) as every point of gr(f) is in the closed set T ,
except for the ones in gr (f0). Nevertheless that would imply Lf0 is already larger
than T , which is a contradiction.

In the second case, we can proceed almost the same way. Let us de�ne f0 on
a countable set A provided by Lemma 3.5.1. As Y is not compact, there exists a
sequence (y1, y2, ...) in Y without any accumulation point. Furthermore, as D \A is
a countable set, we can enumerate its elements, possibly �nitely: (d1, d2, ...). Let us
de�ne the multifunction F : X → 2Y as it follows:
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F (x) =


{f0(x)} if x ∈ A
{yi} if x = di

T ∩ ({x} × Y ) if x ∈ X \ (A ∪D).

The steps of the previous case can be repeated to show that we can apply Propo-
sition 3.4.1 to F without any di�culty, yielding the existence of a Borel-3 selection
f , which is also Baire-2 by Proposition 3.4.2. What is a di�erence from the previous
case, that in the proof of Lf = T we have to take into account those sequences of
points of gr(f) which contain in�nitely many points above D \ A. However, as the
sequence (y1, y2, ...) has no accumulation point in Y , such a sequence cannot have
an accumulation point in X × Y , thus Lf = T , indeed.
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