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Abstract We combine functional analytical and graph theoretical methods in
order to study flows in networks. We show that these flows can be described by a
strongly continuous operator semigroup on a Banach space. Using Perron-Frobenius
spectral theory we then prove that this semigroup behaves asymptotically periodic.

1 Introduction

Networks have been studied widely in recent years with motivations from and
applications to classical natural sciences (electro-circuits, chemical processes, neu-
ral networks, population biology, etc.) as well as to social sciences or even to the
World Wide Web. Much progress has been made in understanding the structure of
these networks, and we refer to M.E.J. Newman [18] for a recent survey on these
developments. However, on p. 224 of [18] he says: “The next logical step after
developing models of network structure, (...) is to look at the behavior of models of
physical (or biological or social) processes going on on those networks. Progress
on this front has been slower than progress on understanding network structure.”
The main goal of the present work is to define an appropriate setting and to find the
tools to investigate such processes on networks.

Several discrete or combinatorial interactions in networks have been treated
in graph theory, mostly with applications to Markov processes (see e.g. [10] and
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ful discussions.
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references therein). We would like to introduce another aspect into (discrete) graph
theory and are interested in so called dynamical graphs. Here the edges do not
only link the vertices but also serve as a transmission media allowing time and
space depending processes between them. Such problems have been studied by,
e.g., S. Nicaise, J. von Below, F. Ali Mehmeti (see [1],[2],[3],[13]) with various
diffusion processes in networks or more general structures.

In this paper, we discuss transport processes or flows in networks. Using spectral
theory and semigroup methods we will be able to describe precisely the asymptotic
behavior of such dynamical graphs. In fact, it turns out that such flows, under appro-
priate assumptions, converge towards a periodic flow whose period is determined
by the structure of the graph (see Theorems 4.5 and 4.10 below). In our approach
we make use of tools and results from various fields such as partial differential
equations, theory of operator semigroups, graph theory and linear algebra.

We describe the flow in a finite network by the following equations:

(F )






∂
∂t
uj (x, t) = cj

∂
∂x
uj (x, t) , x ∈ (0, 1), t ≥ 0,

uj (x, 0) = fj (x) , x ∈ (0, 1), (IC)

φ−
ij uj (1, t) = ωij

∑m
k=1 φ

+
ikuk (0, t) , t ≥ 0, (BC)

for i = 1, ..., n, and j = 1, ..., m.
The network is modelled by a simple, directed, topological graphG having ver-

tices v1, . . . , vn and directed edges (or arcs) e1, . . . , em, normalized as ej = [0, 1] .
The arcs are parameterized contrary to the direction of the flow, i.e., every arc has
its tail at the endpoint 1 and its head at the endpoint 0. We use terminology that is
common to graph theory and refer to any monograph on that subject (see, e.g., [4],
[7], [9] or [10]).

The distribution of material along an edge ej at time t ≥ 0 is described by the
functions uj (x, t) for x ∈ [0, 1]. The constants cj > 0 are the velocities of the
flow on each arc ej .We arrange them into the diagonal matrix

C :=






c1 0
. . .

0 cm




 . (1)

The boundary conditions (BC) depend on the structure of the network and are
described by the following matrices. First we define the outgoing incidence matrix

�− =
(
φ−
ij

)

n×m
with

φ−
ij :=

{
1, vi = ej (1) ,
0, otherwise.
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Accordingly, we call the edge ej an outgoing edge for vi if vi = ej (1) holds.

Respectively, we define the incoming incidence matrix �+ =
(
φ+
ij

)

n×m
with

φ+
ij :=

{
1, vi = ej (0) ,
0, otherwise,

and call the edge ej an incoming edge for vi if vi = ej (0) holds.

Remark 1.1. The matrix

� = �+ −�−

is called the incidence matrix of the directed graph G.

We further define the weighted outgoing incidence matrix�−
w = (

ωij
)

n×m with
entries 0 ≤ ωij ≤ 1 satisfying

ωij = φ−
ij ωij and

m∑

j=1

ωij = 1 for all i = 1, ..., n, j = 1, ..., m. (2)

The entry ωij expresses the proportion of the mass leaving the vertex vi into the
edge ej and we assume that if ej is an outgoing edge of vi then ωij �= 0. The
boundary conditions (BC) together with (2) imply the Kirchhoff law

m∑

j=1

φ−
ij uj (1, t) =

m∑

j=1

φ+
ij uj (0, t) , i = 1, ..., n, (3)

i.e., in each vertex the total outgoing flow is equal to the total incoming flow. This
condition makes sense only if we assume that in every vertex there is at least one
outgoing as well as at least one incoming edge.

The n× n matrix

A := �+ (
�−
w

)�

will play an important role in our studies. Since the nonzero entries of�−
w coincide

with the nonzero entries of �−, the matrix A is actually a weighted (transposed)
adjacency matrix of the graph G. This means that its entry aij is different from
zero if and only if there is an arc from the vertex vj to the vertex vi . Indeed,

(A)ij =
{
ωjk, if vi = ek (0) and vj = ek (1) ,
0, otherwise.

(4)

By condition (2), A is column stochastic.
Analogously, the m×m matrix

B := (
�−
w

)�
�+ (5)
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is the weighted (transposed) adjacency matrix of the line graph, which is roughly the
graph obtained fromGby exchanging the role of the vertices and edges (maintaining
the directions). Therefore, we have

(B)ij =
{
ωki, if ej (0) = ei (1) = vk,
0, otherwise.

Again, the matrix B is column stochastic by (2).
To treat our problem (F )we rewrite it in the form of an abstract Cauchy problem

and prove its well-posedness using semigroup methods with [8] as a standard ref-
erence. We then focus on spectral properties of the generator. This leads in Section
4 to a precise description of the asymptotic behavior of the solutions.

2 Well-posedness

Our first aim is to write the equations (F ) in the form of an abstract Cauchy problem
on a Banach space (see [8, Definition II.6.1]). To this purpose we introduce the state
space of L1-functions on the edges

X :=
(
L1[0, 1]

)m
,

on which we define the operator

Aw :=






c1
d
dx

0
. . .

0 cm
d
dx




 (6)

with (dense) domain

D (Aw) :=
{
v ∈

(
W 1,1 [0, 1]

)m | v(1) ∈ ran(�−
w)

�
}
.

Before proceeding we explain the condition appearing in the definition ofD (Aw) .
The nonzero elements in the i-th row of the matrix�−

w correspond to the arcs with
tail vi , and in each column of�−

w there is exactly one nonzero entry. Therefore, the
condition

v(1) = (�−
w)

�d for some d ∈ C
n (7)

implies for fixed j that

vj (1) = ωij di if ωij �= 0.

Note, that the index i is uniquely defined by j and the conditionωij �= 0. Ifωik �= 0
for some other k, 1 ≤ k ≤ m, then (7) implies again

vk (1) = ωikdi,
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that is,

vj (1)

ωij
= vk (1)

ωik
.

This means that values of v on the arcs with the same tail are related by the corre-
sponding weights.

The boundary conditions (BC) will now be added using two boundary opera-
tors L and M (see [5] where this terminology is explained and used in an abstract
framework). To that purpose we call

∂X := C
n

the boundary space, that is the space of flow mass in the vertices, and introduce
first the outgoing boundary operator L : X → ∂X:

L := �− ⊗ δ1, D(L) :=
(
W 1,1 [0, 1]

)m
,

where δ1 is the point evaluation at 1.

Remark 2.1. The operator L is surjective from D (Aw) to ∂X.

Proof. It suffices to observe that D (Aw) contains all constant functions v satis-
fying the boundary condition (7), i.e., v ≡ (�−

w)
�d for some d ∈ ∂X, and that

�− (
�−
w

)� = 1 where 1 denotes the n× n identity matrix. 	

The incoming flow will be taken into account by the incoming boundary oper-

ator M : X → ∂X,

M := �+ ⊗ δ0, D(M) :=
(
W 1,1 [0, 1]

)m
, (8)

where δ0 is the point evaluation at 0.Observe that the equationLv = Mv expresses
the Kirchhoff law (3) for each vertex.

After these preparations we are ready to introduce the operator corresponding
to the problem (F ) .

Definition 2.2. On the Banach space X = (
L1 [0, 1]

)m
we define the operator

D (A) := {v ∈ D (Aw) | Lv = Mv} , (9)

Av := Awv.

A simple calculation shows that the conditions appearing in the domain ofA in
(9) are equivalent to (BC), hence the Cauchy problem

{
u̇ (t) = Au (t) , t ≥ 0,

u (0) = u0
(10)

with u0 = (
fj

)

j=1,...,m is an abstract version of our original problem. By standard
semigroup theory (see [8, Theorem II.6.7]) this problem is well-posed if and only
if A generates a strongly continuous semigroup (T (t))t≥0 on X. In this case, the
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solutions of (10) have the form u(t) = T (t)u0 yielding solutions also for (F ). To
show the generator property we will use the Phillips theorem and the following
notion from the theory of positive semigroups on Banach lattices (see [16, Section
C-II.1]).

Definition 2.3. An operator A on a Banach lattice X is called dispersive if for
every v ∈ D(A) one has Re 〈Av, φ〉 ≤ 0 for some φ ∈ X′+ such that ‖φ‖ ≤
1 and 〈v, φ〉 = ‖v+‖.

In order to check this property for our operator A we use a new, equivalent
lattice norm on X defined as:

‖f ‖c :=
m∑

k=1

∫ 1

0

1

ck
|fk(s)| ds. (11)

Lemma 2.4. The operator (A,D (A)) is dispersive on the Banach lattice (X, ‖·‖c).
Proof. Let v ∈ D (A). Define φ = (φk)k=1,...,m by

φk (s) :=
{ 1

ck
, vk (s) > 0,

0, else.

Observe that φ ∈ (L∞[0, 1])m , hence it is in X′, and it satisfies all the conditions
in the Definition 2.3 for the new norm defined in (11). Since the operator A is real,
it suffices to prove that

〈Av, φ〉 ≤ 0.

From the definition of A and φ we obtain

〈Av, φ〉 =
m∑

k=1

∫ 1

0
ckv

′
k(s)φk(s)ds =

m∑

k=1

∫ 1

0
ckv

′
k(s)

1

ck
χ{vk>0}ds

= 〈
[v(1)]+ − [v(0)]+ , 1Rm

〉

Rm
,

where 1Rm denotes the constant 1 vector in R
m. Furthermore, for v ∈ D (A) we

have Lv = Mv and v (1) ∈ ran
(
�−
w

)� which implies

�−v (1) = �+v (0) ,
v (1) = (

�−
w

)�
d

for some d ∈ ∂X = C
n. Since �− (

�−
w

)� = 1 where 1 denotes the n× n identity
matrix, we have

�− (
�−
w

)�
d = d = �+v (0)

and

v (1) = (
�−
w

)�
d = (

�−
w

)�
�+v (0) = Bv (0) .
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Here, B is the positive column stochastic matrix defined in (5). Continuing the
above estimate and using the positivity of B we obtain

〈Av, φ〉 = 〈
[Bv(0)]+ − [v (0)]+ , 1Rm

〉

Rm

≤ 〈
B [v(0)]+ − [v (0)]+ , 1Rm

〉

Rm
=

〈
[v(0)]+ ,B�1Rm − 1Rm

〉

Rm
= 0

because of the column stochasticity of B. 	


Based on this property, we can show that the operator A generates a C0-semi-
group of positive operators on the Banach latticeX. We refer to [16] and [8, Section
VI.1.b] for a thorough treatment of these semigroups.

Proposition 2.5. The operator (A,D(A)) generates a positive bounded semigroup
(T (t))t≥0.

Proof. Since
(
W 1,1 [0, 1]

)m
is dense in

(
L1[0, 1]

)m
, a simple calculation shows

thatD(A) is dense inX. It is easy to see that the operator (A,D (A)) is also closed.
As we will see in Corollary 3.4, its resolvent set contains R+. Since it is disper-
sive on (X, ‖·‖c), the Phillips Theorem (cf. [16, Theorem C-II.1.2]) assures that it
generates a positive semigroup (T (t))t≥0 with

‖T (t)‖ ≤ R

r
‖T (t)‖c ≤ R

r
,

where from (11) follows

r := min

{
1

ck
: k = 1, ..., m

}

,

R := max

{
1

ck
: k = 1, ..., m

}

.

	


Observe that in the special case when the velocities on the arcs are all equal, in the
above proof holds r = R and we even obtain contractions.

Corollary 2.6. If ci = c for all i = 1, ..., m, then the semigroup (T (t))t≥0 is
contractive.

This gives the desired result for our original problem.

Corollary 2.7. The problem (F ) is well posed.
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3 Spectral properties

In order to obtain (in Section 4) qualitative properties of the solutions of (F ) , or
of the semigroup generated by A, we now start a careful analysis of the spectrum
of A. To that purpose we use a perturbation method as proposed in [17] and first
introduce the operator

A0 := Aw |kerL

with domain

D(A0) = {v ∈ D (Aw) : Lv = 0}.
This means that we consider homogeneous boundary conditions where the right
hand side of (BC) is equal to zero. In fact, the domain of A0 is simply

D (A0) =
(
W

1,1
0 [0, 1]

)m =
{
v ∈

(
W 1,1 [0, 1]

)m
: v (1) = 0

}
.

The corresponding Cauchy problem
{
u̇ (t) = A0u (t) , t ≥ 0,

u (0) = u0,
(12)

is well-posed since (A0,D(A0)) generates the nilpotent translation semigroup on
X given by

(T0(t)f )i(s) =
{
fi(s + ci t), s + ci t ≤ 1,
0, otherwise.

(13)

The resolvent of A0 exists for every λ ∈ C and can be computed as

(R(λ,A0)f ) (s) =
∫ 1

s

ελ (s − τ + 1) C−1f (τ)dτ, s ∈ [0, 1] , f ∈ X, (14)

with

ελ(s) := diag

(

exp

(
λ

ci
(s − 1)

))

i=1,...,m
, s ∈ [0, 1] (15)

and C defined in (1). In order to compute the spectrum of the generator A we use
operator matrix techniques as developed by A. Rhandi [20] and R. Nagel [17] and
extend A to an operator on the product space

X := X × ∂X.

To that purpose we first consider the operator matrix

A0 :=
(
Aw 0
−L 0

)

, D (A0) := D(Aw)× {0}n ,
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whose part on the closure of its domain

D (A0) = D(Aw)× {0}n = X × {0}n =: X0

can be identified with (A0,D(A0)).
Using ideas of Greiner [11] we are able to compute the resolvent of A0. To

that purpose we observe that the conditions of [11, Lemma 1.2] are fulfilled (use
Remark 2.1), henceD(Aw) = D(A0)⊕ker(λ−Aw) andL |ker(λ−Aw) is invertible
for any λ ∈ ρ(A0) = C. We denote its inverse by

Dλ := (
L |ker(λ−Aw)

)−1 : ∂X → ker (λ− Aw) .

Lemma 3.1. For every λ ∈ C, the resolvent of A0 is given by

R (λ,A0) =
(
R (λ,A0) Dλ

0 0

)

. (16)

Here the operator Dλ has the form

Dλ = ελ(�
−
w)

�, (17)

that is

(Dλd) (x) = ελ(x) · (�−
w)

�d for any d ∈ ∂X, x ∈ [0, 1],

and ελ(x) is defined in (15).

Proof. A simple calculation shows that the inverse of (λ− A0) is given by the
operator matrix in (16). To show (17) we set Nλ := ελ(�

−
w)

� and compute

LNλ = �−(�−
w)

� = 1,

where 1 denotes the n× n identity matrix. We also need to show that

NλL |ker(λ−Aw)= Iker(λ−Aw).

Observe, that the kernel of the operator λ− Aw is spanned by the vectors v (x) =(

aie
λ
ci
(x−1)

)

i=1,...,m
satisfying (7). This means that

v (1) = (ai) = (�−
w)

�d for some d ∈ ∂X,
i.e., by (15),

v = ελ(�
−
w)

�d = Nλd for some d ∈ ∂X.
Hence,

Lv = d and NλLv = Nλd = v,

which implies (17). 	
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In the next step we introduce a perturbing matrix

B :=
(

0 0
M 0

)

, D (B) := D (M)× ∂X.

Adding B to A0 we obtain an operator on X given by

D (A) := D (A0) = D (Aw)× {0}n ,
A := A0 + B =

(
Aw 0
M − L 0

)

.

Remark 3.2. The part of the operator matrix A in X0 is

D
(A |X0

) = D (A)× {0}n , (18)

A |X0 =
(
A 0
0 0

)

.

Hence it can be identified with the operator A on X.

The extension of the operator A to the operator matrix A helps to determine
the spectrum of A using a simple perturbation argument. As a result, σ (A) can be
determined by a “characteristic equation” in ∂X = C

n. This is based on the fact
that for every λ ∈ C, the product MDλ is well-defined and yields an operator on
∂X – that is a n× n matrix.

Proposition 3.3. LetA and A be the operators defined above onX and X , respec-
tively. Then the following assertions hold.

1. For every λ ∈ C we have

λ ∈ σ (A) ⇐⇒ λ ∈ σ (A) ⇐⇒ 1 ∈ σ (MDλ) .
2. For λ ∈ σ (A) and d ∈ ∂X the following properties are equivalent.

(a) MDλd = d (b) DλM (Dλd) = Dλd

(c) ADλd = λDλd (d) A(
Dλd

0

) = λ
(
Dλd

0

)

3. For every λ ∈ ρ (A) = ρ (A) the resolvents of A and A are

R(λ,A) =
(
IX +Dλ (1 −MDλ)

−1M
)
R (λ,A0) (19)

and

R(λ,A) =
(
R(λ,A) Dλ (1 −MDλ)

−1

0 0

)

.

Proof. Since ρ(A0) = C, for every λ ∈ C we can decompose

λ− A = λ− A0 − B = (I − BR (λ,A0)) (λ− A0) . (20)
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Observe that λ−A is invertible if and only if I −BR (λ,A0) is invertible, and
in this case its inverse is

R(λ,A) = R(λ,A0) (I − BR (λ,A0))
−1 .

By Lemma 3.1, we have

I − BR (λ,A0) =
(

IX 0
−MR (λ,A0) 1 −MDλ

)

. (21)

It is easy to see that this operator matrix is invertible if and only if 1 − MDλ is
invertible, and in this case

(I − BR (λ,A0))
−1 =

(
IX 0

(1 −MDλ)
−1MR (λ,A0) (1 −MDλ)

−1

)

.

Hence, λ ∈ σ(A) if and only if 1 ∈ σ(MDλ). From these identities we also obtain
the formula for the resolvent of A. Its upper-left part is obviously the resolvent of
A, since A is the part of A on X× {0}n, and from our computations follows that it
can be written in the form given in (19). Thus the assertions 1. and 3. are proved.

From our setting it follows that A (and so A) have compact resolvent – see [8,
II.4.30 (4)]. Therefore they have only point spectrum, see [8, Corollary IV.1.19].
Let now 0 �= u ∈ D(A) be an eigenvector of A corresponding to the eigenvalue
λ. This is obviously true if and only if uX ∈ D(A) is the appropriate eigenvector
of A and u∂X = 0, where we denote by uX resp. u∂X the projection of u onto the
space X resp. ∂X. By (20) we obtain the equivalence

Au = λu ⇐⇒ (I − BR (λ,A0)) ((λ− A0)u) = 0.

By (21), this is equivalent to the conditions

((λ− A0)u)X = 0X and (22)

((λ− A0)u)∂X is an eigenvector of MDλ with eigenvalue 1. (23)

Condition (22) is equivalent to the fact that uX ∈ ker (λ− Aw) that is

uX = Dλd for some d ∈ ∂X.
By (23), LuX = LDλd = d is the corresponding eigenvector of MDλ. It is easy
to check that this is true if and only ifDλd is the appropriate eigenvector ofDλM .

	

We can express the matrix MDλ appearing in the characterization of σ (A) in

terms of graph matrices:

MDλ = (
�+ ⊗ δ0

) (
ελ(�

−
w)

�
)

= �+Eλ(�−
w)

� =: Aλ,

where

Eλ := ελ(0) = diag

(

e
− λ
ci

)

i=1,...,m
.
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The matrix obtained in this way has entries

(Aλ)ij =
{

e
− λ
ck ωjk, if vi = ek (0) and vj = ek (1) ,

0, else.
(24)

Clearly, A0 = A the column stochastic matrix defined in (4). This yields the
following characteristic equation for the spectrum of A. In particular, it shows
that ρ (A) �= ∅ since ‖Aλ‖1 < 1 for Reλ > 0.

Corollary 3.4. For every λ ∈ C we have

λ ∈ σ (A) ⇐⇒ det (1 − Aλ) = 0. (25)

In particular,

λ ∈ ρ(A) for Reλ > 0. (26)

Corollary 3.5. The spectral bound

s (A) := sup {Reλ : λ ∈ σ(A)} (27)

of (A,D (A)) satisfies

s (A) = 0 ∈ σ (A) .
Proof. By (25) and (26) we only have to prove that 1 ∈ σ (A0) ,which is true since
A0 is column stochastic. 	


If the velocities of the flow on all the arcs are equal, the matrix Eλ becomes

scalar and Aλ = e−
λ
c A a scalar multiple of the weighted (transposed) adjacency

matrix A defined in (4).

Corollary 3.6. If ci = c for i = 1, . . . , m, then we have

λ ∈ σ (A) ⇐⇒ e
λ
c ∈ σ (A) . (28)

The following technical condition on the velocities allows us to prove more on
the structure of σ(A) and to relate it to the spectrum of the semigroup (T (t))t≥0.

(LDQ) The set {c1, ..., cm} is linearly dependent over Q, i.e. ci/cj ∈ Q, 1 ≤
i, j ≤ m.

Let us investigate the characteristic equation ( 25) in the case when condition(
LDQ

)
holds. This implies that there exists a real number c such that li := c/ci ∈ N

for every i = 1, ..., m. Therefore

(Aλ)ij =
{ (

e−
λ
c

)lk
ωjk, if vi = ek (0) and vj = ek (1) ,

0, else,

hence the characteristic equation det (1 − Aλ) becomes a polynomial in e−
λ
c , i.e.,

det (1 − Aλ) = q
(
e−

λ
c

)
(29)

for some polynomial q. This immediately leads to the following result on the spec-
trum of A.
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Lemma 3.7. Suppose that the condition
(
LDQ

)
is fulfilled. Then the eigenvalues

of A lie on finitely many vertical lines.

Proof. By (25) and (29) the zeros of q
(
e−

λ
c

)
are exactly the eigenvalues of A,

hence the statement follows. 	

Now we are able to pass from the spectral properties of the generator to those

of the semigroup (see [8, Chapter IV.3] for the general situation).

Proposition 3.8 (Circular Spectral Mapping Theorem). Suppose that the condition(
LDQ

)
holds. Then the semigroup (T (t))t≥0 satisfies the so called circular spectral

mapping theorem, that is

 · et0σ(A) =  · σ (T (t0)) \ {0} for every t0 ≥ 0,

where  denotes the unit circle.

The subsequent proof is based on a result of Greiner and Schwarz [12, Corollary
1.2] and the following result on almost periodic functions (for definitions and result
see [6] and [19]).

Lemma 3.9. Let h be an analytic almost periodic function in the strip S(a,b) =
{z ∈ C : a < Re z < b} and h (z) �= 0. Then 1/h (z) is analytic and almost peri-
odic in any strip S[a1,b1] ⊂ S(a,b). Moreover, if h (z) = ∑∞

j=1 aj e
zrj , rj ∈ R, then

1/h (z) = ∑∞
l=0 ble

zsl for suitable bl, sl ∈ R in any strip S[a1,b1].

Proof of the circular spectral mapping theorem. The inclusion

 · et0σ(A) ⊆  · σ (T (t0)) \ {0}
is the spectral inclusion theorem (see [8, Theorem IV.3.6]) that holds for all
C0-semigroups. Clearly, for t0 = 0 the opposite inclusion also holds. If t0 > 0,
we have to prove that for the elements λ ∈ ρ (A) for which the entire vertical line
Re λ+ iR is contained in ρ (A) , we also have

et0(Re λ+iR) =  · et0λ ⊆ ρ (T (t0)) ∪ {0}.
In order to show this we use Greiner’s criterion from [12, Corollary 1.2]. Take an
element et0λ0 ∈  · et0λ. We then have to prove that λ0 + i (2π/t0)Z ⊆ ρ (A) and
that the sequence

SN := 1

N

N−1∑

j=0

j∑

k=−j
R (λ0 + i (2π/t0) k, A) , N ∈ N, (30)

is bounded in L (X). The first fact is obvious from the assumption. To prove the
boundedness of (SN)N∈N, we use ideas from the proof of [12, Theorem 3.1]. By
(17) and (19), the resolvent of A looks like

R (λ,A) = Dλ (1 −MDλ)
−1MR (λ,A0)+ R (λ,A0)

= ελ
(
�−
w

)�
(1 − Aλ)

−1MR (λ,A0)+ R (λ,A0) .
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For the sake of simplicity, we write

Rλ := R (λ,A0) ,

λk := λ0 + i (2π/t0) k.

So, SN has the form

SN = 1

N

N−1∑

j=0

j∑

k=−j

(
ελk

(
�−
w

)� (
1 − Aλk

)−1
MRλk + Rλk

)
.

We can now estimate its L1-norm by

‖SN‖1 ≤
∥
∥
∥
∥
∥
∥

1

N

N−1∑

j=0

j∑

k=−j
ελk

(
�−
w

)� (
1 − Aλk

)−1
MRλk

∥
∥
∥
∥
∥
∥

1

+
∥
∥
∥
∥
∥
∥

1

N

N−1∑

j=0

j∑

k=−j
Rλk

∥
∥
∥
∥
∥
∥

1

:= ‖UN‖1 + ‖VN‖1 .

For the estimation of the term ‖VN‖1 first observe that Rλ is the resolvent of the
generator of a strongly continuous nilpotent semigroup, as we have seen in (13).
For any semigroup (T (t)) and generator A the following formula holds:

R (λ,A)
(
1 − e−λtT (t)

) =
∫ t

0
e−λsT (s)ds for λ ∈ ρ(A), t ≥ 0.

Take any t > 0 such that for all i : ci t > 1. Then from (13) follows that T0(t) = 0.
Using the above formula we obtain that

VN = 1

N

N−1∑

j=0

j∑

k=−j
R (λ0 + i(2π/t0)k, A0)

= 1

N

N−1∑

j=0

j∑

k=−j

∫ t

0
e−i(2π/t0)kse−λ0sT0(s)ds =

∫ t

0
σN(2πs/t0)e

−λ0sT0(s)ds

= t0

2π

∫ 2πt
t0

0
σN(v)e

−λ0 t0v
2π T0

(
t0v

2π

)

dv,

where

σN (u) = 1

N

N−1∑

j=0

j∑

k=−j
e−iuk for u ∈ R.

An elementary computation shows that

σN (u) = 1

N

1 − cosNu

1 − cos u
, (31)
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hence σN is periodic with period 2π, and

σN (u) ≥ 0 and
∫ 2π

0
σN (u) du = 2π. (32)

Choosing t = l · t0 for an appropriate 1 ≤ l ∈ N, it follows that

‖VN‖1 ≤ l · t0 · C

with C := sup
{∥
∥e−λ0sT0(s)

∥
∥ : 0 ≤ s ≤ t

}
. This estimate is independent of N,

hence we only have to continue with ‖UN‖1 .

According to Lemma 3.7, our assumption implies that the zeros of h (λ) :=
det (1 − Aλ) lie on finitely many vertical lines, hence h (λ) �= 0 on a strip S(α,β)
containing λ0. In the case when

(
LDQ

)
holds, h(λ) has the form (29), hence is a

finite linear combination of exponential functions. Therefore we can apply Lemma
3.9 for h(λ), and using the well-known formula for the entries of the inverse matrix,
we have that for λ ∈ S(α,β)

(1 − Aλ)
−1 =

∞∑

l=0

Ble
λsl

for suitable Bl ∈ Mn(R), sl ∈ R, and this series converges absolutely. Continuing
the estimate of ‖UNf ‖1, we obtain by using (8 ), (14), and (15)

‖UNf ‖1 =
m∑

p=1

∫ 1

0

∣
∣
∣
∣
∣
∣

1

N

N−1∑

j=0

j∑

k=−j

(

ελk (s)
(
�−
w

)�
∞∑

l=0

Ble
λksl�+

×
∫ 1

0
ελk (1 − t) C−1f (t) dt

)

p

∣
∣
∣
∣
∣
ds

=
m∑

p=1

∫ 1

0

∣
∣
∣
∣
∣
∣

∞∑

l=0

1

N

N−1∑

j=0

j∑

k=−j
ε λk
cp

(s) eλksl

×
∫ 1

0

((
�−
w

)�
Bl�

+ελk (1 − t) C−1f (t)
)

p
dt

∣
∣
∣
∣ ds,

with

ε λk
cp

(s) := e
λk
cp
(s−1)

, p = 1, ..., m.

In order to proceed we introduce the m×m matrix

�l := (
�−
w

)�
Bl�

+ =
(
ψlij

)

m×m

and obtain for the p-th coordinate
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∥
∥(UNf )p

∥
∥

1
=

∫ 1

0

∣
∣
∣
∣
∣
∣

∞∑

l=0

1

N

N−1∑

j=0

j∑

k=−j
ε λk
cp

(s) eλksl

×
∫ 1

0

m∑

h=1

ψlp,hε λk
ch

(1 − t)
1

ch
fh (t) dt

∣
∣
∣
∣
∣
ds

=
∫ 1

0

∣
∣
∣
∣
∣

∞∑

l=0

m∑

h=1

ψlp,he
λ0sl

×
∫ 1

0

1

N

N−1∑

j=0

j∑

k=−j
e
λk(s−1)
cp e

i 2π
t0
ksl e

− λk t

ch
1

ch
fh (t) dt

∣
∣
∣
∣
∣
∣
ds

=
∫ 1

0

∣
∣
∣
∣
∣

∞∑

l=0

m∑

h=1

ψlp,he
λ0sl

∫ 1

0

1

ch
e
λ0(s−1)
cp

− λ0 t
ch

× σN



2π

(
1−s
cp

− sl + t
ch

)

t0



 fh (t) dt

∣
∣
∣
∣
∣
∣
ds

≤
∞∑

l=0

m∑

h=1

∣
∣
∣ψ

l
p,he

λ0sl

∣
∣
∣

∫ 1

0
|fh (t)|

×
∫ 1

0

1

ch

∣
∣
∣
∣e

λ0(s−1)
cp

− λ0 t
ch

∣
∣
∣
∣ σN




2π

(
1−s
cp

− sl + t
ch

)

t0



 dsdt

=
∞∑

l=0

m∑

h=1

∣
∣
∣ψ

l
p,he

λ0sl

∣
∣
∣

∫ 1

0
|fh (t)|

×
∫ 2π

t0

(
1
cp

−sl+ t
ch

)

2π
t0

(
−sl+ t

ch

)
t0cp

2π

1

ch

∣
∣
∣
∣e

−λ0

(
t0v
2π +sl− t

ch

)
− λ0 t
ch

∣
∣
∣
∣ σN(v)dvdt.

Using the above properties (31) and (32) of the function σN(u) we obtain that

∥
∥(UNf )p

∥
∥

1
≤ Cλ0,p

t0cp

2π
�1/t0cp�2π

∞∑

l=0

m∑

h=1

∣
∣
∣ψ

l
p,he

λ0sl

∣
∣
∣ ‖f ‖1

= Cλ0,pt0cp�1/t0cp�
∞∑

l=0

m∑

h=1

∣
∣
∣ψ

l
p,he

λ0sl

∣
∣
∣ ‖f ‖1

with

Cλ0,p := max
1≤h≤m

{
1

ch
sup

s,t∈[0,1]

∣
∣
∣
∣e

−λ0

(
1−s
cp

+ t
ch

)∣
∣
∣
∣

}

and �x� ∈ Z meaning the upper integer part of x ∈ R.
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Summing up for p = 1, ..., m and using the definition of ψlp,h we obtain

‖UNf ‖1 ≤ Cλ0

∞∑

l=0

m∑

h=1

m∑

p=1

∣
∣
∣
∣

((
�−
w

)�
Bl�

+
)

p,h
eλ0sl

∣
∣
∣
∣ ‖f ‖1

≤ Cλ0m

∞∑

l=0

∥
∥
∥
(
�−
w

)�
Bl�

+
∥
∥
∥

∣
∣eλ0sl

∣
∣ ‖f ‖1

≤ Cλ0m

∥
∥
∥
(
�−
w

)�∥
∥
∥

∥
∥�+∥

∥

( ∞∑

l=0

‖Bl‖
∣
∣eλ0sl

∣
∣

)

‖f ‖1 ,

with

Cλ0 := max
1≤p≤m

Cλ0,pt0cp�1/t0cp�.

This completes the proof since the estimate is independent of N ∈ N. 	


4 Asymptotic behavior

The Circular Spectral Mapping Theorem and the fact that σ (A) lies on finitely
many vertical lines imply that the spectrum σ (T (t)) lies on finitely many circles.
In particular, the largest of these circles is just the unit circle  (see Corollary
3.5). By general semigroup theory, this immediately allows a decomposition of the
semigroup and a description of its asymptotic behavior.

Proposition 4.1. Suppose that condition
(
LDQ

)
holds. Then the following asser-

tions are true.

1. The space X can be decomposed as X = X1 ⊕ X2, where X1, X2 are closed,
(T (t))t≥0-invariant subspaces. Furthermore, the operators S(t) := T (t) |X1 ,
t ≥ 0, form a bounded C0-group on X1.

2. The semigroup
(
T (t) |X2

)

t≥0 is uniformly exponentially stable, hence

‖T (t)− S(t)‖ ≤ Me−εt for some constants M ≥ 1, ε > 0.

Proof. Using Theorem 3.8, denote the second largest circle in σ(T (t)) by  · et ·s
with s < 0. Take any ε > 0 such that α := s + ε < 0, then the spectrum of the
rescaled semigroup (T̃ (t)) := (e−αtT (t)) does not intersect the unit circle. Hence
we can use [8, Theorem V.1.17] for (T̃ (t)) and obtain a decomposition that has the
desired properties for the original semigroup. 	


If we now take into account also the positivity of the semigroup (see Proposition
2.5), we can describe its asymptotic behavior even more precisely. The following
property of positive semigroups on Banach lattices is crucial for this discussion (see
[16, Definition C-III.3.1]). We state its definition only in the case of L1-spaces.

Definition 4.2. A positive semigroup on L1(�,µ), µ a σ -finite measure, with gen-
erator A is irreducible if for all λ > s(A) – the spectral bound, defined in (27) –
and f > 0, the resolvent satisfies (R(λ,A)f ) (s) > 0 for almost all s ∈ �.
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In the next step we relate the irreducibility of our semigroup onX to the strong
connectedness of the underlying graph.

Definition 4.3. A directed graph is called strongly connected if for every two ver-
tices in the graph there are paths connecting them in both directions.

According to [14, Theorem IV.3.2], a directed graph is strongly connected if
and only if the corresponding adjacency matrix is irreducible. This leads to the
irreducibility of our semigroup.

Lemma 4.4. Let the graphG be strongly connected. Then the semigroup (T (t))t≥0
is irreducible.

Proof. It suffices to show that for λ > 0 and f > 0 the resolvent R(λ,A)f is
a. e. strictly positive. By Proposition 3.3 this means that for 0 < f ∈ X

R (λ,A0) f +Dλ (1 −MDλ)
−1MR (λ,A0) f > 0 a.e. (33)

Take an arbitrary λ > 0. First note that, due to (14), R (λ,A0) f ∈ X is strictly
positive everywhere except on the largest interval (1−ε, 1] for which f |(1−ε,1]= 0.
ApplyingM to it we obtain a vector d ∈ R

m of positive numbers (see (8)). Observe
that under our assumptions the matrixMDλ = Aλ is positive and irreducible. From
the form (24) follows that r (Aλ) ≤ ‖Aλ‖ < 1. Therefore the matrix (1 −MDλ)

−1

is strictly positive (see [21, Proposition I.6.2]). So the vector (1 −MDλ)
−1 d ∈ C

m

has only positive coordinates. ApplyingDλ to it we obtain a vector of positive mul-
tiples of exponential functions which is also strictly positive. Adding it to the vector
of positive functions R (λ,A0) f, we finally obtain (33). 	


The decomposition from Proposition 4.1 combined with the irreducibility now
leads to a precise description of the asymptotic behavior of (T (t)) . We first note
that the Perron-Frobenius theory for positive irreducible semigroups implies that

σ(A) ∩ iR = iαZ for some α ≥ 0, (34)

where each iαk is a simple pole of the resolvent (see [8, Theorem VI.1.12] or [16,
Section C-III]). From the condition

(
LDQ

)
and from the form of the characteristic

equation (29) follows that there are nonzero spectral points on the imaginary axis,
hence α > 0. Applying then a result of Nagel [15, Theorem 4.3] (combined with
[16, Lemma C-IV.2.12]) we obtain that the semigroup (T (t))t≥0 behaves asymp-
totically as a periodic group on a very concrete function space.

Theorem 4.5. Suppose that the condition
(
LDQ

)
holds and that the graph G is

strongly connected. Then the decomposition X = X1 ⊕ X2 from Theorem 4.1 has
the following additional properties.

1. X1 is a closed sublattice ofX isomorphic to L1 () , where  is the unit circle.
2. The group (S(t))t≥0 is isomorphic to the rotation group on L1 () with period
τ = 2π

α
, where α is defined in (34).
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3. The period τ equals

τ = 1

c
gcd

{

c

(
1

ci1
+ · · · + 1

cik

)

; ei1 , . . . , eik form a cycle in G

}

, (35)

where c is any real number such that c/ci ∈ N for all i = 1, ..., m.

Proof. We shall prove the theorem in two steps. First we assume that ci = c for
i = 1, . . . , m.

By Lemma 4.4, the semigroup (T (t))t≥0 is irreducible and by Proposition 2.5
it is positive and bounded. Since s (A) = 0 (see Corollary 3.5) and because of the
compactness of the resolvent, 0 is a pole of R(λ,A). By the above remark, we
also know that there are nonzero spectral points on the imaginary axis. So, all the
conditions of [16, C-IV, Lemma 2.12] and [16, C-IV, Theorem 2.14] are fulfilled,
and we obtain the statements 1. and 2. Observe that because of the existence of the
decomposition in Proposition 4.1, we obtain uniform convergence to the rotation
group (S(t))t≥0.

By [16, C-IV, Lemma 2.12 (c)] the period τ equals 2π
α

, where α ∈ R is deter-
mined by

σ(A) ∩ iR = iαZ.

Due to (28), the peripheral spectrum of A (consisting of the spectral points of A

with absolute value equal r(A) = 1) consists of the points e
iαz
c , z ∈ Z, i.e., of the

c · 2π
α

= cτ -th roots of unity. This number is also known as index of imprimitivity
of the irreducible matrix A – for the definition see [14, Definition III.1.1]. Using
[14, Theorem IV.3.3] we obtain that cτ is equal to the index of imprimitivity of our
directed graph, i.e., that is the greatest common divisor l of the lengths of all the
cycles in the graph. Observe that the formula (35) holds.

In the case when the velocities ci are not all the same, we proceed as follows.
Take any c ∈ R such that li = c

ci
∈ N, i = 1, . . . , m.We construct a new directed

graph G̃ with m̃ := l1 + · · · + lm arcs and ñ := n + m̃ − m vertices by adding
li − 1 vertices on the arc ei . We maintain the original direction of the arcs and
we normalize the lengths. Observe, that we can consider a new problem (F̃ ) on
the new network G̃ with functions ũi and velocities c̃i := c, i = 1, . . . , m̃. With
the obvious adjustments of the initial and boundary conditions (IC) and (BC) the
problem (F̃ ) is equivalent to the original one. Note that the number of the cycles
in the graphs G and G̃ are the same, only the lengths have changed: if the arcs
ei1 , . . . , eik form a cycle of length k in the graph G, then the corresponding cycle
in the graph G̃ has length

li1 + · · · + lik = c

(
1

ci1
+ · · · + 1

cik

)

. (36)

Denote by l̃ the greatest common divisor of the lengths of the cycles in G̃. We may
now use the first part of our proof for the graph G̃, obtaining a rotation group with
period τ̃ = l̃

c
. Going back to the original graph, we have the same period, which

together with (36) yields the formula (35). 	
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In less technical terms the above result can be expressed as follows.

Corollary 4.6. Under the assumptions of Theorem 4.5, the semigroup (T (t))t≥0 is
asymptotically periodic with period

τ = 1

c
gcd

{

c

(
1

ci1
+ · · · + 1

cik

)

; ei1 , . . . , eik form a cycle in G

}

,

where c is any real number such that c/ci ∈ N for all i = 1, ..., m.

If the velocities on the edges coincide, the result becomes particularly simple.

Corollary 4.7. If ci = 1 for all i = 1, . . . , m, then the period τ of the rotation
group in Theorem 4.5 equals the greatest common divisor of the cycle lengths in
the graph G.

Remark 4.8. Observe that the period does not depend on the weights on the edges.

We finally extend our description of the asymptotic behavior to the case when
the underlying graph is not strongly connected. To do so we consider special parts
of our directed graph.

Definition 4.9. We call a subgraph Gp of G an invariant strongly connected com-
ponent if it is strongly connected and there are no outgoing edges of Gp.

Theorem 4.10. Consider a flow in an arbitrary network modelled by the directed
graphG,and assume that

(
LDQ

)
holds.Then the corresponding semigroup behaves

asymptotically as a direct sum of rotation groups on disjoint polygons. The period
of the rotation group on each polygon is given by the modification of the formula
(35) for each invariant strongly connected component of G.

Proof. By Proposition 4.1 we have a spectral decomposition X = X1 ⊕ X2 of
the state space such that (S(t))t≥0 := (

T (t) |X1

)

t≥0 is a bounded C0-group and
(
T (t) |X2

)

t≥0 is uniformly exponentially stable. Since the semigroup (T (t))t≥0
is bounded (see Proposition 2.5) and the resolvent of its generator is compact, it
follows by [8, Corollary V.2.15] that

X1 = lin {x ∈ D(A) : ∃γ ∈ R such that Ax = iγ x} .
Therefore, if t → +∞, the semigroup converges (exponentially) in norm to the
bounded group (S(t))t≥0 acting on the closed subspace generated by the eigenvec-
tors that belong to the imaginary (that is, the boundary) spectrum of A.We want to
prove that this limit is isomorphic to a direct sum of rotation groups with the proper
periods.

To this purpose we first characterize the spectral values iγ ∈ σ(A), γ ∈ R.
Taking into account the characteristic equation (25), we have to investigate in which
case

1 ∈ σ(Aiγ ), γ ∈ R,

holds.
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Observe, that the positive matrix A0 is similar (via a permutation P of the
canonical basis) to a block-triangular matrix, i.e.,

P−1
A0P =







Q0
0 0 . . . 0

B0
1 Q

0
1 . . . 0

. . . . . . . . . . . .

B0
q 0 . . . Q0

q





 , (37)

where the diagonal blocks Q0
1, ...,Q

0
q are irreducible and, if the k0 × k0 matrix

Q0
0 is non-empty, then at least one B0

i is nonzero (see [21, Proposition I.8.8]). This
form is unique up to permutations of the coordinates within each diagonal block
and up to the order of Q0

1, ...,Q
0
q . It is easy to see that since the zero-patterns of

the matrices Aλ coincide for every λ, the same permutation matrix P yields an
analogous block-form

P−1
AλP =







Qλ
0 0 . . . 0

Bλ1 Q
λ
1 . . . 0

. . . . . . . . . . . .

Bλq 0 . . . Qλ
q





 for every λ ∈ C. (38)

We now renumber the vertices of G such that the adjacency matrices Aλ have
the above block-triangular form (38). Clearly, this does not change the spectral
properties we need. From the block-triangular form (38) follows that

σ (Aλ) =
q⋃

p=0

σ
(
Qλ
p

)
for every λ ∈ C.

We will show that the k0 × k0 matrices Qiγ
0 for γ ∈ R do not contribute to the

boundary spectrum ofA.This means that if Aiγ x = x, then the first k0 coordinates
of x have to be equal to 0. Let us first investigate the case γ = 0, hence we assume
A0x = x. To the column stochastic matrix A0 we can apply [21, Corollary of I.8.4]
and obtain that x is contained in the direct sum of the minimal A0-invariant ideals in
C
n. By the proof of [21, Proposition I.8.8] this direct sum is exactly the direct sum

of the ideals spanned by the basis vectors that correspond to the blocksQ0
1, ...,Q

0
q .

Hence we obtain that the first k0 coordinates of x are 0. It means that 1 is not
in the spectrum of the positive matrix Q0

0. Furthermore, because of the column
stochasticity of A0, all the column sums of Q0

0 are less than or equal to 1, hence
r
(
Q0

0

) ≤ 1.The Perron-Frobenius theorem yields (see, e.g., [21, Proposition I.2.3])

that r
(
Q0

0

)
< 1. From the form (24) of the entries of Aλ follows that

∣
∣
∣Q

iγ
0

∣
∣
∣ = Q0

0

and so, r
(
Q
iγ
0

)
≤ r

(
Q0

0

)
< 1. Hence 1 /∈ σ

(
Q
iγ
0

)
for all γ ∈ R and therefore

1 ∈ σ (
Aiγ

) ⇐⇒ 1 ∈
q⋃

p=1

σ
(
Q
iγ
p

)
. (39)
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For each p ∈ {1, ..., q} , the irreducible blockQλ
p is the weighted (transposed)

adjacency matrix of a subgraphGp ofG, which is by [14, Theorem IV.3.2] strongly
connected. From the form (38) of the adjacency matrix of the whole graph G
follows that that there are no outgoing edges of Gp. Hence Gp is an invariant
strongly connected component. This implies that the subspaceXp ⊂ X of all func-
tions having their support on the edges of Gp is invariant under the semigroup
(T (t))t≥0. We can apply Theorem 4.5 to the restricted positive irreducible semi-
group

(
Tp(t)

)

t≥0 := (T (t) |Xp)t≥0. Hence its generator Ap – which is the part of
A in Xp – satisfies

σ(Ap) ∩ iR = iαpZ for some αp ∈ R.

By (25) we conclude the equivalences

1 ∈ σ
(
Q
iγ
p

)
⇐⇒ iγ ∈ σ(Ap) ⇐⇒ γ = αpk for some k ∈ Z (40)

for each γ ∈ R.By Theorem 4.5 the semigroup
(
Tp(t)

)

t≥0 converges exponentially

to a rotation group on a subspace Xp1 of Xp having the form

X
p
1 = lin

{
x ∈ D(Ap) : Apx = iαpkx for some k ∈ Z

}
. (41)

The period of the rotation is given by the formula (35) for the cycles in Gp. Since
X
p
1 ⊂ X1 for each p, we conclude that

Y := X1
1 ⊕ ...⊕X

q
1 ⊆ X1.

We will show that equality holds, in this way proving that the semigroup converges
to a direct sum of rotation groups with the appropriate periods. To this purpose it
suffices to show that if for some γ ∈ R and x �= 0 we have Ax = iγ x, then x ∈ Y.
By Proposition 3.3 we know that

Ax = iγ x ⇐⇒ Aiγ (Lx) = Lx.

Let L(p) := �−
p ⊗ δ1, p = 0, ..., q, where �−

p denotes the matrix obtained from
the rows of �− belonging to the vertices that correspond to the block Qλ

p in the

adjacency matrix. Similarly, let D(p)λ := ελ(�
−
w,p)

� where �−
w,p is obtained from

�−
w in the same way. Since r(Qiγ

0 ) < 1, clearly

L(0)x = 0.

Hence there exists p ∈ {1, ..., q} such that L(p)x �= 0 and

Q
iγ
p L

(p)x = L(p)x.

Again by Proposition 3.3, this is equivalent to the fact that the identity

Ap

(
D
(p)
iγ L

(p)x
)

= iγ
(
D
(p)
iγ L

(p)x
)

(42)
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holds, hence γ = αpk for some k ∈ Z. For p = 1, ..., q we denote

kp :=
{
l, if γ = αpl for some l ∈ Z,

0, otherwise.

A simple calculation shows that

x = Diγ Lx =
q∑

p=0

D
(p)
iγ L

(p)x =
q∑

p=1

D
(p)
iγ L

(p)x.

By (42),

Ap

(
D
(p)
iγ L

(p)x
)

= iαpkp

(
D
(p)
iγ L

(p)x
)
,

and using (41) we obtain that x ∈ Y . 	
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