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Abstract We combine functional analytical and graph theoretical methods in
order to study flows in networks. We show that these flows can be described by a
strongly continuous operator semigroup on a Banach space. Using Perron-Frobenius
spectral theory we then prove that this semigroup behaves asymptotically periodic.

1 Introduction

Networks have been studied widely in recent years with motivations from and
applications to classical natural sciences (electro-circuits, chemical processes, neu-
ral networks, population biology, etc.) as well as to social sciences or even to the
World Wide Web. Much progress has been made in understanding the structure of
these networks, and we refer to M.E.J. Newman [18] for a recent survey on these
developments. However, on p. 224 of [18] he says: “The next logical step after
developing models of network structure, (...) is to look at the behavior of models of
physical (or biological or social) processes going on on those networks. Progress
on this front has been slower than progress on understanding network structure.”
The main goal of the present work is to define an appropriate setting and to find the
tools to investigate such processes on networks.

Several discrete or combinatorial interactions in networks have been treated
in graph theory, mostly with applications to Markov processes (see e.g. [10] and
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references therein). We would like to introduce another aspect into (discrete) graph
theory and are interested in so called dynamical graphs. Here the edges do not
only link the vertices but also serve as a transmission media allowing time and
space depending processes between them. Such problems have been studied by,
e.g., S. Nicaise, J. von Below, F. Ali Mehmeti (see [1],[2],[3],[13]) with various
diffusion processes in networks or more general structures.

In this paper, we discuss transport processes or flows in networks. Using spectral
theory and semigroup methods we will be able to describe precisely the asymptotic
behavior of such dynamical graphs. In fact, it turns out that such flows, under appro-
priate assumptions, converge towards a periodic flow whose period is determined
by the structure of the graph (see Theorems 4.5 and 4.10 below). In our approach
we make use of tools and results from various fields such as partial differential
equations, theory of operator semigroups, graph theory and linear algebra.

We describe the flow in a finite network by the following equations:

Dujx,t)y = cjfuj(x,t), x e, 1),t>0,
(F) uj(x,00 = fi(x), xe 1), (C)
¢yuj (L) = oy Y ¢k (0,0, =0, (BC)

fori =1,..,n,and j =1, ..., m.

The network is modelled by a simple, directed, topological graph G having ver-
tices vy, ..., v, and directed edges (or arcs) ey, . .., €y, normalized ase; = [0, 1].
The arcs are parameterized contrary to the direction of the flow, i.e., every arc has
its zail at the endpoint 1 and its head at the endpoint 0. We use terminology that is
common to graph theory and refer to any monograph on that subject (see, e.g., [4],
[71, [9] or [10]).

The distribution of material along an edge e; at time ¢ > 0 is described by the
functions u; (x, t) for x € [0, 1]. The constants c; > 0 are the velocities of the
flow on each arc e;. We arrange them into the diagonal matrix

The boundary conditions (BC) depend on the structure of the network and are
described by the following matrices. First we define the outgoing incidence matrix

® = (4;) with
t nxm

. { Lvi=e;(D),

0, otherwise.
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Accordingly, we call the edge e; an outgoing edge for v; if v; = e; (1) holds.

Respectively, we define the incoming incidence matrix ®+ = (¢l‘; ) with
nxm

¢+ — 11Vi=ej (0)5
i 0, otherwise,

and call the edge e; an incoming edge for v; if v; = e; (0) holds.
Remark 1.1. The matrix

d=0t -
is called the incidence matrix of the directed graph G.

We further define the weighted outgoing incidence matrix &, = (a),~ /)n om With
entries 0 < w;; < 1 satisfying

m
wij = o and Y o =1foralli=1,..,n, j=1,.,m 2)
j=1

The entry w;; expresses the proportion of the mass leaving the vertex v; into the
edge e; and we assume that if e; is an outgoing edge of v; then w;; # 0. The
boundary conditions (BC) together with (2) imply the Kirchhoff law

Zd)i;uj(l,t):Zqﬁ:;uj(O,t), i=1,..n, (3)
j=1 j=1

i.e., in each vertex the total outgoing flow is equal to the total incoming flow. This
condition makes sense only if we assume that in every vertex there is at least one
outgoing as well as at least one incoming edge.

The n x n matrix

will play an important role in our studies. Since the nonzero entries of @, coincide
with the nonzero entries of ®~, the matrix A is actually a weighted (transposed)
adjacency matrix of the graph G. This means that its entry a;; is different from
zero if and only if there is an arc from the vertex v; to the vertex v;. Indeed,

“)

(A)--— Wik, ifvi:ek(O) andvj:ek(l),
=1 o, otherwise.

By condition (2), A is column stochastic.
Analogously, the m x m matrix

B:= () &F 5)
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isthe weighted (transposed) adjacency matrix of the line graph, which is roughly the
graph obtained from G by exchanging the role of the vertices and edges (maintaining
the directions). Therefore, we have

wyi, ifej(0) =¢ (1) = v,
0, otherwise.

B)i; = {

Again, the matrix B is column stochastic by (2).

To treat our problem (F') we rewrite it in the form of an abstract Cauchy problem
and prove its well-posedness using semigroup methods with [8] as a standard ref-
erence. We then focus on spectral properties of the generator. This leads in Section
4 to a precise description of the asymptotic behavior of the solutions.

2 Well-posedness

Our first aim is to write the equations (F') in the form of an abstract Cauchy problem
on a Banach space (see [8, Definition I1.6.1]). To this purpose we introduce the state
space of L'-functions on the edges

X = (Ll[o, 1])'",

on which we define the operator
Ay = (6)

with (dense) domain
D (Ay) = [v c (W“ [0, 1])m | v(l) e ran(cb;)T}.

Before proceeding we explain the condition appearing in the definition of D (Ay,) .
The nonzero elements in the i-th row of the matrix ®; correspond to the arcs with
tail v;, and in each column of @ there is exactly one nonzero entry. Therefore, the
condition

v(l) = (@;)Td for some d € C" @)
implies for fixed j that
Vj (1) = a),-jdi ifa)ij 75 0.

Note, that the index i is uniquely defined by j and the condition w;; # 0.If w;x # 0
for some other k, | < k < m, then (7) implies again

v (1) = wid;,
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that is,

v (1) (1)
wij wik

This means that values of v on the arcs with the same tail are related by the corre-
sponding weights.

The boundary conditions (BC) will now be added using two boundary opera-
tors L and M (see [5] where this terminology is explained and used in an abstract
framework). To that purpose we call

0X :=C"
the boundary space, that is the space of flow mass in the vertices, and introduce
first the outgoing boundary operator L : X — 0X:

L:=o @5, D)= (W“ [0, 1])m,

where §; is the point evaluation at 1.

Remark 2.1. The operator L is surjective from D (Ay) to 9X.

Proof. Tt suffices to observe that D (A,,) contains all constant functions v satis-
fying the boundary condition (7), i.e., v = (<I>;)Td for some d € 90X, and that

D~ (@;)T = 1 where 1 denotes the n x n identity matrix. |

The incoming flow will be taken into account by the incoming boundary oper-
ator M : X — 90X,

M=ot ®8. DM):= <W1’1 [0, 1])m , (8)

where &g is the point evaluation at 0. Observe that the equation Lv = Mv expresses
the Kirchhoff law (3) for each vertex.

After these preparations we are ready to introduce the operator corresponding
to the problem (F) .

Definition 2.2. On the Banach space X = (L1 [0, 1])m we define the operator
D(A):={ve D(Ay) | Lv = Mv}, ©)]
Av = Ayv.

A simple calculation shows that the conditions appearing in the domain of A in
(9) are equivalent to (BC), hence the Cauchy problem

u@)=Au(@), t=>0,

u (0) = ug (10)

,,,,,

semigroup theory (see [8, Theorem I1.6.7]) this problem is well-posed if and only
if A generates a strongly continuous semigroup (T (¢));>¢ on X. In this case, the



144 M. Kramar, E. Sikolya

solutions of (10) have the form u(¢) = T (¢)u yielding solutions also for (F). To
show the generator property we will use the Phillips theorem and the following
notion from the theory of positive semigroups on Banach lattices (see [16, Section
C-1L.1]).

Definition 2.3. An operator A on a Banach lattice X is called dispersive if for
every v € D(A) one has Re (Av, ¢) < 0O forsome ¢ € X'_suchthat|¢| <
Land (v, ¢) = [[v*].

In order to check this property for our operator A we use a new, equivalent
lattice norm on X defined as:

m 1 ]
1fl, = kg/o ~ 1)l ds. (11

Lemma 2.4. The operator (A, D (A)) is dispersive on the Banach lattice (X, ||-|| ).

Proof. Letv € D (A). Define ¢ = (di)g=1.._m by

0, else.

i (5) :={ L e >0

Observe that ¢ € (L*°[0, 1])"", hence it is in X’, and it satisfies all the conditions
in the Definition 2.3 for the new norm defined in (11). Since the operator A is real,
it suffices to prove that

(Av, ¢) <0.

From the definition of A and ¢ we obtain

m 1 m 1 1
(Av, ¢) = Z/ kv ()pr(s)ds = Z/ kv ($) — X(ve>0)dS
k=1 0 k=1 0 Ck

= ([vI* = O], Ign)p ,

where 1rm denotes the constant 1 vector in R"”. Furthermore, for v € D (A) we
have Lv = Mv and v (1) € ran (QD;)T which implies

O v (l) =dH v (0),
v(l) = (®;) d

for some d € 30X = C". Since &~ (<I>;)T = 1 where 1 denotes the n x n identity
matrix, we have

o (0,) d=d =" (0)
and

v() = (@) d= () ®Tv(0) =Bv(0).
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Here, B is the positive column stochastic matrix defined in (5). Continuing the
above estimate and using the positivity of B we obtain

(Av, ¢) = ([Bv(O)]" — [v O], Irn)gn
= (BLOI" — v O 1wl = (0O BT lan — 1) =0

because of the column stochasticity of B. O

Based on this property, we can show that the operator A generates a Cp-semi-
group of positive operators on the Banach lattice X. We refer to [16] and [8, Section
VI.1.b] for a thorough treatment of these semigroups.

Proposition 2.5. The operator (A, D(A)) generates a positive bounded semigroup
(T'(1))s=0-

Proof. Since (W!1 [0, 11)" is dense in (L'[0, 11)", a simple calculation shows
that D(A) is dense in X. Itis easy to see that the operator (A, D (A)) is also closed.
As we will see in Corollary 3.4, its resolvent set contains R . Since it is disper-
sive on (X, ||-||.), the Phillips Theorem (cf. [16, Theorem C-II.1.2]) assures that it
generates a positive semigroup (7 (¢)),> with

R R
ITOI = —ITOll = —,
r r

where from (11) follows

O

Observe that in the special case when the velocities on the arcs are all equal, in the
above proof holds » = R and we even obtain contractions.

Corollary 2.6. If c; = c for all i = 1,...,m, then the semigroup (T (t));>0 is
contractive.

This gives the desired result for our original problem.

Corollary 2.7. The problem (F) is well posed.
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3 Spectral properties

In order to obtain (in Section 4) qualitative properties of the solutions of (F), or
of the semigroup generated by A, we now start a careful analysis of the spectrum
of A. To that purpose we use a perturbation method as proposed in [17] and first
introduce the operator

Apg = Ay lkerL
with domain
D(Ag) ={ve D(Ay) : Lv =0}.

This means that we consider homogeneous boundary conditions where the right
hand side of (BC) is equal to zero. In fact, the domain of Ag is simply

D (Ag) = (Wol’l [0, 1])m = [v c (W“ [0, 1])m v (1) = 0}.

The corresponding Cauchy problem

{ i) = Aou (), t>0, 12

u (0) = up,

is well-posed since (Ag, D(Ag)) generates the nilpotent translation semigroup on
X given by

fils+cit), s+cit <1,
0

R otherwise. (13)

(To (1) f)i(s) = {

The resolvent of Ag exists for every A € C and can be computed as

1
(R(A, Ag) f) (s) :/ es—17+ l)C*If(t)dr, sel0,1], feX, (14
with

€,(s) := diag (exp (; (s — 1))) , sel0,1] (15)
i i=l,...m

.....

and C defined in (1). In order to compute the spectrum of the generator A we use
operator matrix techniques as developed by A. Rhandi [20] and R. Nagel [17] and
extend A to an operator on the product space

X=X x 0X.

To that purpose we first consider the operator matrix

Ag = (f‘z 8) . D (Ag) = D(Ay) x {0}",
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whose part on the closure of its domain

D (A) = D(Ay) x {0)" = X x {0} =: &,

can be identified with (Ag, D(Ap)).

Using ideas of Greiner [11] we are able to compute the resolvent of 4y. To
that purpose we observe that the conditions of [11, Lemma 1.2] are fulfilled (use
Remark 2.1), hence D(A,,) = D(Ag) @ker(A —Ay) and L |ker(r—4,,) 18 invertible
for any A € p(Ap) = C. We denote its inverse by

-1
D). := (L lker—Ay))  :0X — ker (A — Ay).

Lemma 3.1. For every A € C, the resolvent of Ay is given by

R (A, Ag) D
R()\,Ao)z( (0 0) ok)' (16)
Here the operator D, has the form
Dy = ()", (17)

that is
(Dyd) (x) = €,(x) - (D) " d forany d € X, x € [0, 1],
and €, (x) is defined in (15).

Proof. A simple calculation shows that the inverse of (A — Ap) is given by the
operator matrix in (16). To show (17) we set N, := GA(QQ)T and compute

LN, =& (&) =1,
where 1 denotes the n x n identity matrix. We also need to show that
Ny L lker(o—Ay)= Iker(i—Ay)-

Observe, that the kernel of the operator A — Ay, is spanned by the vectors v (x) =

Ao
(a,-e"i (x 1)> satisfying (7). This means that
1

i=1,...,m
v (1) = (a;) = (@) d forsomed € dX,
i.e., by (15),
v = e,\(CDQ)Td = N,d forsomed € 0X.
Hence,
Lv=dand N, Lv=N,d =v,

which implies (17). |
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In the next step we introduce a perturbing matrix

Py— 00 [y—
B:= (M0>, D (B) := D (M) x 3X.

Adding B to Ay we obtain an operator on X’ given by
D (A) := D (Ag) = D (Ayp) x {0}",

L [ Aw 0
A.—AQ+B—<M_LO>.

Remark 3.2. The part of the operator matrix A in Xy is

D (A lx,) =D (A) x {0}", (18)
Alx, = (13 8)

Hence it can be identified with the operator A on X.

The extension of the operator A to the operator matrix A helps to determine
the spectrum of A using a simple perturbation argument. As a result, o (A) can be
determined by a “characteristic equation” in X = C". This is based on the fact
that for every A € C, the product M D, is well-defined and yields an operator on
dX —thatis an x n matrix.

Proposition 3.3. Let A and A be the operators defined above on X and X, respec-
tively. Then the following assertions hold.

1. For every ) € C we have
reEog(A) e rco(A) < 1leco(MD,).
2. For . € 0 (A) and d € 30X the following properties are equivalent.
(@) MD,d=d (b) D) M (Dyd)= D,d

© ADd=2Did (@) A% ="
3. For every A € p (A) = p (A) the resolvents of A and A are

R(A, A) = <1X 4+ D, (1—MD;)"! M) R (%, Ao) (19)
and
—1
RO A) = <R(AO’ A D= MD3) )

Proof. Since p(Ap) = C, for every A € C we can decompose

A—A=xr—-Ao—B=(T—-BR(*, Ap)) (A — Ayp). (20)
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Observe that A — A is invertible if and only if Z — BR (), Ap) is invertible, and
in this case its inverse is

RO, A) = R(:, Ag) (Z — BR (A, Ap)) L.

By Lemma 3.1, we have

Iy 0
I_BR()"AO)_<—MR()\,A0) 1—MDA>' 2D
It is easy to see that this operator matrix is invertible if and only if 1 — M D, is
invertible, and in this case

—1 Ix 0
@ —=BR(4. Ay~ = ((1 —MD;)""MR(x, Ag) (1— MDA)_I) ‘

Hence, A € 0(A) if and only if 1 € o (M D,,). From these identities we also obtain
the formula for the resolvent of A. Its upper-left part is obviously the resolvent of
A, since A is the part of A on X x {0}", and from our computations follows that it
can be written in the form given in (19). Thus the assertions 1. and 3. are proved.

From our setting it follows that A (and so .A) have compact resolvent — see [8,
11.4.30 (4)]. Therefore they have only point spectrum, see [8, Corollary IV.1.19].
Let now 0 £ u € D(A) be an eigenvector of A corresponding to the eigenvalue
A. This is obviously true if and only if ux € D(A) is the appropriate eigenvector
of A and uyx = 0, where we denote by uy resp. uyx the projection of u onto the
space X resp. dX. By (20) we obtain the equivalence

Au = Au &< (Z — BR (%, Ap)) (A — Ap)u) = 0.
By (21), this is equivalent to the conditions

(A —Apwy =0yand  (22)
(A — Ap)u),x is an eigenvector of M D, with eigenvalue 1. (23)

Condition (22) is equivalent to the fact that uy € ker (A — A,,) that is
uyxy = D;d forsomed € 0X.

By (23), Lux = LD,d = d is the corresponding eigenvector of M D, It is easy
to check that this is true if and only if D, d is the appropriate eigenvector of D) M.
O

We can express the matrix M D, _appearing in the characterization of o (A) in
terms of graph matrices:

MD; = (0 @) ()T ) = ST EL (@) = Ay,
where

Ej i= €,(0) = diag (e‘$>

i=1,....m
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The matrix obtained in this way has entries

i _
(Ap)ij = { 8 f @)k ;flsvé.Z er (0) andv; =er (1), (24)

Clearly, Ag = A the column stochastic matrix defined in (4). This yields the
following characteristic equation for the spectrum of A. In particular, it shows
that p (A) # @ since [|A,|l; < 1 for Rea > 0.

Corollary 3.4. For every A € C we have
A€o (A) < det(1—-A4A;)=0. (25)
In particular,
A € p(A) for Rer > 0. (26)
Corollary 3.5. The spectral bound
s (A) :=sup{Rer: L €c(A)} 27
of (A, D (A)) satisfies
s(A)=0€0(A).

Proof. By (25) and (26) we only have to prove that 1 € o (Ag) , which is true since
Ay is column stochastic. O

If the velocities of the flow on all the arcs are equal, the matrix E; becomes

scalar and A = e~ ¢ A a scalar multiple of the weighted (transposed) adjacency
matrix A defined in (4).

Corollary 3.6. If c; = cfori =1, ..., m, then we have
Aea(A) e et ea (A). (28)
The following technical condition on the velocities allows us to prove more on
the structure of o (A) and to relate it to the spectrum of the semigroup (T (£)),>0.
(LDg) The set {ci, ..., cp} is linearly dependent over Q, ie. ¢;/c; € Q,1 <
i, ] <m.
Let us investigate the characteristic equation ( 25) in the case when condition

(L D@) holds. This implies that there exists a real number ¢ such that/; :=c/c; € N
for every i = 1, ..., m. Therefore

A

I )
(A = (e_?) wjr, ifvi=1¢e;(0) andv; = e (1),
! , else,

hence the characteristic equation det (1 — A,) becomes a polynomial in e ¢, e,

det(1—Ay) =g (e—%) (29)

for some polynomial ¢g. This immediately leads to the following result on the spec-
trum of A.
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Lemma 3.7. Suppose that the condition (L DQ) is fulfilled. Then the eigenvalues
of A lie on finitely many vertical lines.

Proof. By (25) and (29) the zeros of g (e_%) are exactly the eigenvalues of A,
hence the statement follows. |

Now we are able to pass from the spectral properties of the generator to those
of the semigroup (see [8, Chapter IV.3] for the general situation).

Proposition 3.8 (Circular Spectral Mapping Theorem). Suppose that the condition
(L DQ) holds. Then the semigroup (T (1)), satisfies the so called circular spectral
mapping theorem, that is

[ =T .0 (T (1)) \ {0} for every 1o > 0,
where T" denotes the unit circle.

The subsequent proof is based on a result of Greiner and Schwarz [12, Corollary
1.2] and the following result on almost periodic functions (for definitions and result
see [6] and [19]).

Lemma 3.9. Let h be an analytic almost periodic function in the strip Su.p) =
{zeC:a <Rez <b}and h(z) # 0. Then 1/h (z) is analytic and almost peri-
odic in any strip Sia, ;] C S(a,b). Moreover, if h (z) = Ziil aje’i, r; € R, then
1/h(2) = Zfio be™ for suitable by, s; € R in any strip Sja, ]

Proof of the circular spectral mapping theorem. The inclusion
- e cT o (T (1)) \ {0)

is the spectral inclusion theorem (see [8, Theorem IV.3.6]) that holds for all
Co-semigroups. Clearly, for fo = 0 the opposite inclusion also holds. If 7y > O,
we have to prove that for the elements A € p (A) for which the entire vertical line
Re A + iR is contained in p (A), we also have

et()(Re)»+iR) =T. et())\. C p(T (1)) U {0}

In order to show this we use Greiner’s criterion from [12, Corollary 1.2]. Take an
element ¢/0*0 e I . ¢0* We then have to prove that A9 +i (27 /t9) Z < p (A) and
that the sequence

N—1
1
Sy = 5 J;‘) kX_:j R (ho+i(2n/to)k, A), N €N, (30)

is bounded in £ (X). The first fact is obvious from the assumption. To prove the
boundedness of (Sy)yen, We use ideas from the proof of [12, Theorem 3.1]. By
(17) and (19), the resolvent of A looks like

R(x, A) = D; (1— MD;)"' MR (, Ag) + R (», Ag)
=6 (7)) 1=A)"MR(, Ag) + R (A, Ag).
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For the sake of simplicity, we write

R, := R (A, Ao),
A= ho+ 1 QRr/ty) k.
So, Sy has the form

N-1

Sy = % Z Z' (qk (@7)" (1—Ay) " MR, + R,\k) .

We can now estimate its L'-norm by

N—-1 j
Isvl < 1= 303 6 (@3)T (1- As) ™ MRy,
/:Ok:— 1
1N—l J
5 2= 2 Ruf =N+ VAL
j=0 k=—j

1

For the estimation of the term ||V ||; first observe that R, is the resolvent of the
generator of a strongly continuous nilpotent semigroup, as we have seen in (13).
For any semigroup (7 (#)) and generator A the following formula holds:

t
RMA)(1—e™T@) = / e M T (s)ds for A € p(A), t > 0.
0

Take any ¢ > 0 such that for all i : ¢;# > 1. Then from (13) follows that Tp(¢) = 0.
Using the above formula we obtain that

N—-1 j
1
Vv =— > > R(h+iQmr/t)k, Ao)
N
J=0 k=—j
1 N-1 t . 1
= — Z / e_’(zﬂ/"’)kse_)‘osTo(s)ds=/ on (s /19)e 0 Ty(s)ds
N 4 Jo 0
J=0 k=—j
1 ot A 1
1 —Aplgv v
= 2" onwe = T (= ) dv,
2 0 27'[

where

N-1 j
1 .
oy (u) = ~ E E e " foru € R.

J=0 k=—j
An elementary computation shows that

) = 11—cosNu 31)
oy (u _—
N N 1—cosu
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hence oy is periodic with period 27, and

2w
oy (u) > 0 and / oy (u)du = 2m. (32)
0

Choosing t = [ - tp for an appropriate 1 </ € N, it follows that
Vnlly =1-10-C

with C := sup {||e™*Ty(s)| : 0 < s <t} . This estimate is independent of N,
hence we only have to continue with ||Uy||; .

According to Lemma 3.7, our assumption implies that the zeros of i (1) :=
det (1 — A,) lie on finitely many vertical lines, hence & (A) # 0 on a strip S(u, g)
containing Ag. In the case when (LDQ) holds, 4 (1) has the form (29), hence is a
finite linear combination of exponential functions. Therefore we can apply Lemma
3.9 for h(A), and using the well-known formula for the entries of the inverse matrix,
we have that for A € Sy, g)

o0
(1—-A)~'= Z B

for suitable B; € M,,(R), s; € R, and this series converges absolutely. Continuing
the estimate of ||Uy f||;, we obtain by using (8 ), (14), and (15)

||UNf||1 = Z/ Z Z (6)% (S) ZBe}‘ksqu"'

Jj=0 k=—j

ds

x / e, (1 —t)C_lf(t)dt>

p

[} N— J
—z/ >y zze;,mw
0 j=0 k= r

k=—j

1
x/ ((cp;)T BidTe;, (1—t)c*‘f(t)) dt| ds
0 p

with

M

1
e () : —eLP(Y )
cp

,p=1,...,m.
In order to proceed we introduce the m x m matrix
T
V= (®,) BT = (%lj)
mxm

and obtain for the p-th coordinate
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J
Z €1 () et

. Cp
=—j

1 m 1
X /0 Zl/fj)hexk a- t)gfh(t)dt ds

h=1 h
1|00 m
_ L koS
= [ I e
1=0 h=1
1 N1 J M=l 1—ks/
x/ NZZ@ e fh(t)dt ds
0 J=0 k=—j
1| m 11 Aos—1) Aot
— [ v [
0 ’ 0 Ch
1=0 h=1

1—s
27 ( I — 8 a)
X ON 0 fn (t)dt|ds
o0 m
o0
< Y [uh e / i )]
=0 h=1
1—
1 AgGs—1)  Agr 21 (C—ps — 5+ ctT)
X — e ©r h | oN dsdt
0 Ch fo

/ 1X0]

tgv t Aot
e‘“’(ﬁ*s"a)‘ﬁ

oo m
— 2 2 :‘ M08!
h=1

W(flp ’+fh) focp i

oy (v)dvdt.
Floes) 2o

Using the above properties (31) and (32) of the function oy (1) we obtain that

[N, = Crop 2L rl/rocpwznzz\w o £y

=0 h=1

o0 m
= CrppltocyT1/10c,1 33 ’wﬁ,,hem

=0 h=1

(WAl

with

1—s t
e‘“(ﬁ’“a)

|

1
Cyyp:= max {— su
0P 1<h<m | cp s,te[(I)),l]

and [x] € Z meaning the upper integer part of x € R.



Spectral properties and asymptotic periodicity of flows in networks 155

Summing up for p = 1, ..., m and using the definition of wﬁ,,h we obtain

IUNFI < Capg D DD

=0 h=1 p=1

oo
< Cpgmy_ H (0,) Bo+
=0

((@;)T Blcb+>p’h e)»osl

L1

le*! | 11 711

o
< G | (@) | |o*] (Z 1Bl |em|) £
=0

with

Cyy = lg})afxm Cio,plocp1/tocp].
This completes the proof since the estimate is independent of N € N. O
4 Asymptotic behavior

The Circular Spectral Mapping Theorem and the fact that o (A) lies on finitely
many vertical lines imply that the spectrum o (7 (¢)) lies on finitely many circles.
In particular, the largest of these circles is just the unit circle I' (see Corollary
3.5). By general semigroup theory, this immediately allows a decomposition of the
semigroup and a description of its asymptotic behavior.

Proposition 4.1. Suppose that condition (L DQ) holds. Then the following asser-
tions are true.

1. The space X can be decomposed as X = X1 @ X3, where X1, X» are closed,
(T (t));>o-invariant subspaces. Furthermore, the operators S(t) := T (t) |x,,
t > 0, form a bounded Cy-group on X.

2. The semigroup (T(t) | Xz) >0 s uniformly exponentially stable, hence

T @) — S@)|| < Me™® for some constants M > 1, & > 0.

Proof. Using Theorem 3.8, denote the second largest circle in o (T'(£)) by " - e
with s < 0. Take any ¢ > O such that @ := s + ¢ < 0, then the spectrum of the
rescaled semigroup (T(z)) = (e~¥T(¢)) does not intersect the unit circle. Hence
we can use [8, Theorem V.1.17] for (T(t)) and obtain a decomposition that has the
desired properties for the original semigroup. O

If we now take into account also the positivity of the semigroup (see Proposition
2.5), we can describe its asymptotic behavior even more precisely. The following
property of positive semigroups on Banach lattices is crucial for this discussion (see
[16, Definition C-III.3.1]). We state its definition only in the case of L'-spaces.

Definition 4.2. A positive semigroup on L' (2, 1), 11 a o -finite measure, with gen-
erator A is irreducible if for all A > s(A) — the spectral bound, defined in (27) —
and f > 0, the resolvent satisfies (R(A, A) f) (s) > 0 for almost all s € Q2.
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In the next step we relate the irreducibility of our semigroup on X to the strong
connectedness of the underlying graph.

Definition 4.3. A directed graph is called strongly connected if for every two ver-
tices in the graph there are paths connecting them in both directions.

According to [14, Theorem IV.3.2], a directed graph is strongly connected if
and only if the corresponding adjacency matrix is irreducible. This leads to the
irreducibility of our semigroup.

Lemma 4.4. Let the graph G be strongly connected. Then the semigroup (T (t)),>0
is irreducible.

Proof. 1t suffices to show that for A > 0 and f > O the resolvent R(A, A) f is
a. e. strictly positive. By Proposition 3.3 this means that for0 < f € X

R(., Ao) f+ Dy (1 —MD;)"" MR (x, Ag) f > 0 ace. (33)

Take an arbitrary A > 0. First note that, due to (14), R (A, Ag) f € X is strictly
positive everywhere except on the largest interval (1 —e¢, 1] for which f |(1_¢ 1= 0.
Applying M to it we obtain a vector d € R™ of positive numbers (see (8)). Observe
that under our assumptions the matrix M D, = A, is positive and irreducible. From
the form (24) follows that  (A;) < ||Ay|| < 1. Therefore the matrix (1 — M D;)~!
is strictly positive (see [21, Proposition 1.6.2]). So the vector (1 — M D;) 'decm
has only positive coordinates. Applying D, to it we obtain a vector of positive mul-
tiples of exponential functions which is also strictly positive. Adding it to the vector
of positive functions R (A, Ag) f, we finally obtain (33). O

The decomposition from Proposition 4.1 combined with the irreducibility now
leads to a precise description of the asymptotic behavior of (7' (¢)) . We first note
that the Perron-Frobenius theory for positive irreducible semigroups implies that

o0 (A)NiR = iaZ for some a > 0, (34)

where each ik is a simple pole of the resolvent (see [8, Theorem VI.1.12] or [16,
Section C-III]). From the condition (L D@) and from the form of the characteristic
equation (29) follows that there are nonzero spectral points on the imaginary axis,
hence o > 0. Applying then a result of Nagel [15, Theorem 4.3] (combined with
[16, Lemma C-IV.2.12]) we obtain that the semigroup (7 (¢)),>( behaves asymp-
totically as a periodic group on a very concrete function space.

Theorem 4.5. Suppose that the condition (LDQ) holds and that the graph G is
strongly connected. Then the decomposition X = X1 @ X, from Theorem 4.1 has
the following additional properties.

1. X1 is a closed sublattice of X isomorphic to L' (I") , where T is the unit circle.
2. The group (S(t));>( is isomorphic to the rotation group on L' () with period
T = 27”, where « is defined in (34).
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3. The period t equals

1 1 1
T = —gcd{c(—+~-~~|——);eil,...,eikformacycleinG}, 35)
C Ciy Ciy
where c is any real number such that c/c; € N foralli =1, ...,m.

Proof. We shall prove the theorem in two steps. First we assume that ¢; = ¢ for
i=1,...,m.

By Lemma 4.4, the semigroup (7 (¢)),> is irreducible and by Proposition 2.5
it is positive and bounded. Since s (A) = 0 (see Corollary 3.5) and because of the
compactness of the resolvent, O is a pole of R(A, A). By the above remark, we
also know that there are nonzero spectral points on the imaginary axis. So, all the
conditions of [16, C-1V, Lemma 2.12] and [16, C-IV, Theorem 2.14] are fulfilled,
and we obtain the statements 1. and 2. Observe that because of the existence of the
decomposition in Proposition 4.1, we obtain uniform convergence to the rotation
group (S(1)); 2o

By [16, C-1V, Lemma 2.12 (c)] the period t equals %”, where @ € R is deter-
mined by

c(A)NIR =iaZ.

Due to (28), the peripheral spectrum of A (consisting of the spectral points of A

with absolute value equal r(A) = 1) consists of the points e%, z € Z,i.e., of the
c- %’ = ct-th roots of unity. This number is also known as index of imprimitivity
of the irreducible matrix A — for the definition see [14, Definition III.1.1]. Using
[14, Theorem IV.3.3] we obtain that ¢t is equal to the index of imprimitivity of our
directed graph, i.e., that is the greatest common divisor / of the lengths of all the
cycles in the graph. Observe that the formula (35) holds.

In the case when the velocities ¢; are not all the same, we proceed as follows.
Take any ¢ € R such that [; = f eN,i=1,..., m. We construct a new directed
graph G with /i1 := [ + --- + I, arcs and 7 := n + 71 — m vertices by adding
l; — 1 vertices on the arc e;. We maintain the original direction of the arcs and
we normalize the lengths. Observe, that we can consider a new problem (17 ) on
the new network G with functions ii; and velocities & = ¢,i = 1, ..., i. With
the obvious adjustments of the initial and boundary conditions (I C) and (BC) the
problem (F) is equivalent to the original one. Note that the number of the cycles
in the graphs G and G are the same, only the lengths have changed: if the arcs
€, ---,¢;, form a cycle of length & in the graph G, then the corresponding cycle
in the graph G has length

1 1
l,‘l-‘r"'+lik=C<—+"'+—). (36)

C,'l Cik
Denote by T'the greatest common divisor of the lengths of the cycles in G.We may
now use the first part of our proof for the graph G, obtaining a rotation group with
period T = % Going back to the original graph, we have the same period, which
together with (36) yields the formula (35). |
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In less technical terms the above result can be expressed as follows.

Corollary 4.6. Under the assumptions of Theorem 4.5, the semigroup (T (1)) is
asymptotically periodic with period

1 1 1
T = —gcd{c(—+-~-+—);eil,...,eikformacycleinG},
C Ciy Ciy
where c is any real number such that c/c; € N foralli =1, ..., m.

If the velocities on the edges coincide, the result becomes particularly simple.

Corollary 4.7. If ¢; = 1 foralli = 1,...,m, then the period T of the rotation
group in Theorem 4.5 equals the greatest common divisor of the cycle lengths in
the graph G.

Remark 4.8. Observe that the period does not depend on the weights on the edges.

We finally extend our description of the asymptotic behavior to the case when
the underlying graph is not strongly connected. To do so we consider special parts
of our directed graph.

Definition 4.9. We call a subgraph G, of G an invariant strongly connected com-
ponent if it is strongly connected and there are no outgoing edges of G .

Theorem 4.10. Consider a flow in an arbitrary network modelled by the directed
graph G, and assume that (L DQ) holds. Then the corresponding semigroup behaves
asymptotically as a direct sum of rotation groups on disjoint polygons. The period
of the rotation group on each polygon is given by the modification of the formula
(35) for each invariant strongly connected component of G.

Proof. By Proposition 4.1 we have a spectral decomposition X = X; @& X, of
the state space such that (S(7));>o := (T(t) |X1)z>0 is a bounded Cy-group and

(T(t) |X2) ;>0 18 uniformly exponentially stable. Since the semigroup (7'(7));>0
is bounded (see Proposition 2.5) and the resolvent of its generator is compact, it
follows by [8, Corollary V.2.15] that

X1 =1lin{x € D(A) : 3y € Rsuch that Ax = iyx}.

Therefore, if t — +o00, the semigroup converges (exponentially) in norm to the
bounded group (S(¢)),>( acting on the closed subspace generated by the eigenvec-
tors that belong to the imaginary (that is, the boundary) spectrum of A. We want to
prove that this limit is isomorphic to a direct sum of rotation groups with the proper
periods.

To this purpose we first characterize the spectral values iy € o(A), y € R.
Taking into account the characteristic equation (25), we have to investigate in which
case

lea(Ay). v €R,
holds.
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Observe, that the positive matrix Ay is similar (via a permutation P of the
canonical basis) to a block-triangular matrix, i.e.,

030 ...0
0 0
T N @)
0 0
Bq 0 ...Qq

where the diagonal blocks Q. ..., Q) are irreducible and, if the ko x ko matrix
Q8 is non-empty, then at least one Bl.0 is nonzero (see [21, Proposition 1.8.8]). This
form is unique up to permutations of the coordinates within each diagonal block
and up to the order of QO, e Qg. It is easy to see that since the zero-patterns of
the matrices A, coincide for every X, the same permutation matrix P yields an
analogous block-form

0 0 0
B}L Q}»
PlA P = =1 for every A € C. (38)
s s
Bq 0 ... Qq

We now renumber the vertices of G such that the adjacency matrices A, have
the above block-triangular form (38). Clearly, this does not change the spectral
properties we need. From the block-triangular form (38) follows that

q
o (A) = U o (Q;) for every A € C.

p=0

We will show that the ko x ko matrices Q) for y € R do not contribute to the
boundary spectrum of A. This means that if A;,, x = x, then the first ko coordinates
of x have to be equal to 0. Let us first investigate the case y = 0, hence we assume
Aox = x. To the column stochastic matrix Ag we can apply [21, Corollary of 1.8.4]
and obtain that x is contained in the direct sum of the minimal Ag-invariant ideals in
C". By the proof of [21, Proposition 1.8.8] this direct sum is exactly the direct sum
of the ideals spanned by the basis vectors that correspond to the blocks QY ..., QS.
Hence we obtain that the first kg coordinates of x are 0. It means that 1 is not
in the spectrum of the positive matrix Q0 Furthermore, because of the column
stochasticity of Ay, all the column sums of Q0 are less than or equal to 1, hence

r (QY) < 1.The Perron-Frobenius theorem yields (see, e.g., [21, Proposition 1.2.3])

that r (Q()) < 1. From the form (24) of the entries of A, follows that ’Qo = Q0
and so, r <Q6y> <r (Qg) < 1.Hencel ¢ o <Q6y> for all y € R and therefore

1 eo (A <:>1e©( 7). (39)



160 M. Kramar, E. Sikolya

For each p € {1, ..., ¢}, the irreducible block Q;‘7 is the weighted (transposed)
adjacency matrix of a subgraph G, of G, whichis by [14, Theorem I'V.3.2] strongly
connected. From the form (38) of the adjacency matrix of the whole graph G
follows that that there are no outgoing edges of G,. Hence G, is an invariant
strongly connected component. This implies that the subspace X? C X of all func-
tions having their support on the edges of G, is invariant under the semigroup
(T (2))¢>0- We can apply Theorem 4.5 to the restricted positive irreducible semi-
group (T(1)),q := (T (1) |xr);>0. Hence its generator A, — which is the part of
A in XP — satisfies

o(Ap) NiR =ia,Z for some o), € R.

By (25) we conclude the equivalences
leo (Qf,,”) iy co(A,) &y =aykforsomek € Z  (40)

foreach y € R. By Theorem 4.5 the semigroup (Tp (t)) converges exponentially

>0
to a rotation group on a subspace X f of X? having the form

Xf:ﬁ{xeD(Ap):Apx:iapkx forsomekeZ}. 41)

The period of the rotation is given by the formula (35) for the cycles in G,. Since
X {7 C X for each p, we conclude that

Yi=X{ ®..0X] CXi.

We will show that equality holds, in this way proving that the semigroup converges
to a direct sum of rotation groups with the appropriate periods. To this purpose it
suffices to show that if for some y € R and x # 0 we have Ax = iyx, thenx € Y.
By Proposition 3.3 we know that

Ax =iyx < A;,(Lx) = Lx.

Let L®P) = d>; ® 461, p=0,...,q, where CD; denotes the matrix obtained from
the rows of &~ belonging to the vertices that correspond to the block Q}\, in the

adjacency matrix. Similarly, let D)(Lp )= (D, p)T where @, , is obtained from

@, in the same way. Since r(Qf)y) < 1, clearly
LOx =o.
Hence there exists p € {1, ..., ¢} such that L x # 0 and
Q;VL(P)X = Ly
Again by Proposition 3.3, this is equivalent to the fact that the identity

A, (DE;)L(%) —iy (Dl.(J’:)L(p)x) (42)
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holds, hence y = ok for some k € Z. For p =1, ..., g we denote

ko I, ify = apl for some! € Z,
P 710, otherwise.

A simple calculation shows that

q q
— — (p) _ ()
x=DyLx=Y DILPx=%" DLWy

p=0 p=1
By (42),
A, (D,.(;’)L(mx) = iapk, (Dfﬁ)w’)x) 7
and using (41) we obtain that x € Y. 0
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