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Simultaneous observability of networks of beams and strings

Eszter Sikolya

abstract: In this paper we investigate a finite system of vibrating beams and
strings. We obtain results on simultaneous observability by observing a common
endpoint.
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1. Introduction

Consider a system of N vibrating beams with fixed endpoints, one of which is
common to all of them. Denoting by lj the lengths of the beams, we study the
following uncoupled system:

uj,tt + uj,xxxx = 0 in (0, lj)× R,

uj (0, ·) = uj (lj , ·) = 0 in R,

uj,xx (0, ·) = uj,xx (lj , ·) = 0 in R,

uj (·, 0) = uj0, uj,t (·, 0) = uj1 in (0, lj) ,

j = 1, . . . , N.

(1)

Assume that we can measure the total force

f :=
N∑

j=1

uj,x (0, ·)

exerced on the beams at the common endpoint during some time. Investigating the
observability of the problem, our question is whether this information is sufficient
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in order to identify all initial data? This problem was first studied for vibrating
strings in the case N = 2 in [7] and for arbitrary N in [2], and for beams in [2] in
the case N = 2.

Recall (see e.g. [10]) that for every initial data

(uj0, uj1)
N
j=1 ∈

N∏
j=1

(
H1

0 (0, lj)×H−1 (0, lj)
)

in the natural energy space, there exists a unique solution satisfying

uj ∈ C
(
R;H1

0 (0, lj)
)
∩ C1

(
R;H−1 (0, lj)

)
, j = 1, . . . , N,

(well-posedness) and that

uj,x ∈ L2
loc (R) , j = 1, . . . , N,

(hidden regurality). See, e.g., Lasiecka and Triggiani [8] and [9] for results of such
type. Moreover, the linear maps

(uj0, uj1) 7−→ uj,x (0, ·)

are continuous with respect to these topologies. It follows that for every bounded
interval I there exists a constant c such that∫

I

|f (t)|2 dt ≤ c

N∑
j=1

(
‖uj0‖2H1

0 (0,lj)
+ ‖uj1‖2H−1(0,lj)

)
(2)

for all initial data.
Now our question is whether the linear map

(uj0, uj1)
N
j=1 7−→ f |I (3)

is one-to-one? If yes, we can ask whether the inverse linear map is also bounded,
that is, whether the inverse inequality to (2) holds true. It would mean that there
exists another constant c′ such that

N∑
j=1

(
‖uj0‖2H1

0 (0,lj)
+ ‖uj1‖2H−1(0,lj)

)
≤ c′

∫
I

|f (t)|2 dt (4)

for all initial data.

2. Statement of the theorem and starting idea of the proof

Let us begin with a simple but important observation: if there exist two beams
with commeasurable lengths, then the map (3) is not one-to-one for any interval
I. Indeed, if for example

l1
l2

=
p

q



Simultaneous observability 3

with two positive integers p and q, then the formulae
u1 (x, t) := sin pπx

l1
exp

(
ip2π2t/l21

)
,

u2 (x, t) := − sin qπx
l2

exp
(
iq2π2t/l22

)
,

uj (x, t) := 0, j = 3, . . . , N,

define a nonzero solution of (1) with suitable initial data for which f vanishes
identically on R. Thus we cannot hope positive results unless

lj
lk

is irrational for all j 6= k. (5)

Remark 1 The set of excluded N-tuples (l1, ..., lN ), where at least one of the frac-
tions lj

lk
is rational, has zero measure. Consequently, the complement set of admis-

sible N-tuples is dense in (0,∞)N .

The following result can be obtained.

Theorem 1 Let I be an arbitrarily short bounded interval and s < 1. Then for
almost all N -tuples (l1, . . . , lN ) of positive real numbers statisfying (5) there exists
a constant c = c (|I| , s) such that

N∑
j=1

(
‖uj0‖2Hs(0,lj)

+ ‖uj1‖2Hs−2(0,lj)

)
≤ c

∫
I

|f (t)|2 dt (6)

for all initial data.

Corollary 1A The map (3) is one-to-one for almost all set of N-tuples (l1, ..., lN )
satisfying (5).

The starting idea of the proof is the following. The solution of (1) is given by
the formulas

uj (x, t) =
∑

0 6=k∈Z
bjk sin

kπx

lj
exp

ik |k|π2t

l2j
, j = 1, . . . , N,

with suitable complex coefficients depending on the initial data, and

f (t) =
N∑

j=1

∑
0 6=k∈Z

kπbjk

lj
exp

ik |k|π2t

l2j
=:

∞∑
n=−∞

bneiλnt (7)

by rearranging the exponents k |k|π2l−2
j into an increasing sequence (λn) and de-

noting the corresponding coefficients kπbjkl−1
j by bn. It follows from (5) that

λn 6= λm if n 6= m.
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A straightforward computation shows that the estimate (6) is equivalent to the
inequality ∑

n

|λn|s−1 |bn|2 ≤ c

∫
I

|f (t)|2 dt. (8)

In the following section we present some results concerning this type of esti-
mates.

3. Preliminary results

Let (λn) be a strictly increasing sequence of real numbers satisfying the following
uniform gap condition:

∃γ > 0 ∀n : λn+1 − λn ≥ γ. (9)

We have the following theorem due to Ingham [6].

Theorem 2 Assume (9). If I is a bounded interval of length |I| > 2π/γ, then
there exist two positive constants c1 and c2 such that

c1

∑
|bn|2 ≤

∫
I

∣∣∣∑ bneiλnt
∣∣∣2 dt ≤ c2

∑
|bn|2 (10)

for all square summable sequences of complex numbers bn.

An optimal condition for the length of I satisfying the above inequalities was given
by Beurling. This is expressed by the so-called upper density of the sequence (λn) ,
a notion due to Pólya (see [11]).

Definition 3.1 Let us denote by n+ (r) the maximal possible number of elements
of (λn) contained in an interval of length r > 0. Then the limit

lim
r→∞

n+ (r)
r

exists and is equal to

D+ = D+((λn)) := inf
r>0

n+ (r)
r

.

We call D+ the upper density of the sequence (λn).

The result of Beurling [4] is as follows.

Theorem 3 Assume (9) again.
(a) If I is a bounded interval of length |I| > 2πD+, then the inequalities (10) hold
true.
(b) If |I| < 2πD+, then the first inequality of (10) does not hold true (with a
constant independent of the choice of (bn)).
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In our original problem on the observability of beams we have

{λn} =

{
k |k|π2

l2j
: 0 6= k ∈ Z, j = 1, . . . , N

}
,

whence
D+ = 0.

Indeed, for each fixed j, an interval of length r contains at least
(√

rl2j/π2
)
− 1 and

at most
(√

rl2j/π2
)

+ 1 elements of the sequence
(
k |k|π2/l2j

)
k∈Z . Hence

n+ (r)
r

→ 0 as r →∞.

It is thus tempting to apply Beurling’s theorem which would also yield the condition

|I| > 2πD+ = 0.

But there is a serious obstacle in our case: the uniform gap condition (9) is not
satisfied if N ≥ 2. Therefore we have to generalize our condition.

Let (λn)+∞n=−∞ again be a strictly increasing sequence of real numbers. The
following result in [3] establishes a connection between the assumptions of Ingham
and Beurling.

Lemma 3.1 Let x be a positive number satisfying x > 2πD+. Then there exists a
real number γ′ > 0 and an integer M ≥ 1 such that

x >
2π

γ′

and
λn+M − λn ≥ Mγ′ for all n. (11)

Fixing such a γ′ and M , we introduce the divided differences of the close exponential
functions.

Definition 3.2 Fix a number 0 < γ′′ ≤ γ′. We say that λm, . . . , λm+k−1 is a chain
of close exponents belonging to γ′′ if

λn+1 − λn < γ′′, n = m, . . . ,m + k − 2,

but
λm − λm−1 ≥ γ′′ and λm+k − λm+k−1 ≥ γ′′.

It follows from the property (11) and from the choice of γ′′ that k ≤ M, and that
every λn belongs to a unique chain.
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For each chain λm, . . . , λm+k−1 let us denote by em (t) , . . . , em+k−1 (t) the di-
vided differences of the exponential functions exp (iλmt) , . . . , exp (iλm+k−1t), de-
fined by the formula

en (t) := (it)n−m
∫ 1

0

∫ s1

0

. . .

∫ sn−m−1

0

exp (i (sn−m · [λn − λn−1] + · · ·+ s1 · [λm+1 − λm] + λm) t) dsn−m . . . ds1

(12)

for n = m, . . . ,m + k − 1. In particular we have em (t) = exp (iλmt). If λm, . . . , λn

are pairwise distinct, then we have the more familiar expressions

en (t) =
n∑

p=m

 n∏
q=m
q 6=p

(λp − λq)


−1

exp (iλpt) . (13)

We recall the following result of [3].

Theorem 4 If |I| > 2πD+ and (λn)+∞n=−∞ satisfies (11), then there exist two
constants c1 and c2 such that, using the above notation, we have

c1

∑
|an|2 ≤

∫
I

∣∣∣∑ anen (t)
∣∣∣2 dt ≤ c2

∑
|an|2

for every sequence (an)+∞n=−∞ of complex numbers.

4. Proof of the theorem

Let us consider the sequence (λn) in our problem, defined in (7). We know from
the previous section that D+ = 0. By Lemma 3.1, for every bounded interval there
exist an integer M ≥ 1 and a positive number γ′ such that the sequence satisfies
the “generalized uniform gap condition” (11). Let us now fix a number 0 < γ′′ ≤ γ′

and a chain of close exponents, λm, . . . , λm+k−1 belonging to γ′′. Define

dm = · · · = dm+k−1 := min {|λp − λq| : m ≤ p < q ≤ m + k − 1} . (14)

Using the definition of the divided differences, since the elements of the sequence
(λn) are pairwise distinct, one can show by (13) that

m+k−1∑
n=m

bneiλnt =
m+k−1∑

n=m

anen (t)

for suitable coefficients an, n = m, . . . ,m + k − 1. Moreover, by (14) there exists a
constant c such that

|bn| dN−1
n ≤ c |an|

for all m ≤ n ≤ m+k−1. Therefore, applying Theorem 4, we obtain the inequality∑
|bn|2 d2N−2

n ≤ c2

c1

∫
I

|f (t)|2 dt.
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In order to obtain the estimate (8), it suffices to show the existence of a constant
c′ such that

c′ |λn|s−1 ≤ d2N−2
n (15)

for all n ∈ Z.
For this we need some classical results on Diophantine approximation (see [5],

Chapter VII., Theorem 1).

Theorem 5 Let φ (q) be a decreasing function of the integer variable q > 0 with
0 ≤ φ (q) ≤ 1/2. Then the set of inequalities

‖qθk‖ < φ (q) , 1 ≤ k ≤ n,

(the ,,norm” is the distance from the set Z) has infinitely many integer solutions
q > 0 for almost no or for almost all n-tuples (θ1, . . . , θn) of real numbers according
to whether ∑

(φ (q))n

converges or diverges.

Let ε > 0, and φ (q) := q−1−ε. Then by Theorem 5 for almost all choices of the
lengths lj and for all ε > 0 we can find cε > 0 such that∣∣∣∣k − r

lj
li

∣∣∣∣ ≥ cεr
−1−ε for all r = 1, 2, . . . (16)

Let p, q ∈ {m, . . . ,m + k − 1} arbitrary, λp := k2π2

l2j
, λq := r2π2

l2i
(for simplicity we

assume that k, r ≥ 0). Since (N − 1) γ′′ >
∣∣∣k2π2

l2j
− r2π2

l2i

∣∣∣, we have k � r. (We write

k � r if k can be estimated by r multiplied by a constant and vice versa). Hence
it follows that

λp � λq � k2 � r2.

Thus for all ε > 0 there exists cε such that

|λp − λq| =

∣∣∣∣∣k2π2

l2j
− r2π2

l2i

∣∣∣∣∣ =
∣∣∣∣kπ

lj
− rπ

li

∣∣∣∣ ∣∣∣∣kπ

lj
+

rπ

li

∣∣∣∣
�

∣∣∣∣k − r
lj
li

∣∣∣∣ · r
≥ cεr

−1−ε · r = cεr
−ε.

(17)

Since all the integers belonging to the lambda’s of the chain are equivalent (see the
above meaning of �), we have

d2N−2
n ≥ (cεr

−ε)2N−2 ≥ c′ε |λn|−ε(N−1)

for all n ∈ Z and for every positive ε. Taking ε = (1− s)/(N − 1), inequality (15)
and hence Theorem 1 follows.
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5. Network of strings and beams

Consider a vibrating system containing strings as well as beams with fixed
endpoints, one common to all of them. That is, we have the following system:



uj,tt − uj,xx = 0 in (0, lj)× R,

uj (0, ·) = uj (lj , ·) = 0 in R,

uj (·, 0) = uj0, uj,t (·, 0) = uj1 in (0, lj) ,

j = 1, . . . , N1,

uj,tt + uj,xxxx = 0 in (0, lj)× R,

uj (0, ·) = uj (lj , ·) = 0 in R,

uj,xx (0, ·) = uj,xx (lj , ·) = 0 in R,

uj (·, 0) = uj0, uj,t (·, 0) = uj1 in (0, lj) ,

j = N1 + 1, . . . , N.

(18)

In order to have an observability estimate, we need again the hypothesis as in
(5) for the system of strings and for the system of beams.

lj
lk

is irrational for j 6= k, j, k ∈ {1, . . . , N1} or j, k ∈ {N1 + 1, . . . , N} . (19)

Moreover, we also need the hypothesis

ljπ

l2k
is irrational for all j = 1, . . . , N1, k = N1 + 1, . . . , N. (20)

Indeed, if e.g.

ljπ

l2k
=

p

q
, j ∈ {1, . . . , N1} , k ∈ {N1 + 1, . . . , N}

with two positive integers p and q, then putting
uj (x, t) := sin qpπx

lj
exp (iqpπt/lj) ,

uk (x, t) := −plk
lj

sin qπx
lk

exp
(
iq2π2t/l2k

)
,

ul (x, t) := 0, l 6= j, k,

we obtain a nonzero solution of (18) with suitable initial data such that f vanishes
identically on R.

Concerning the observability of this system, we can prove the following.

Theorem 6 Let I be a bounded interval with |I| > 2(l1 + · · ·+ lN1) and α < 2−N ,
β < 3 − 2N . Then for almost all N -tuples (l1, . . . , lN ) of positive real numbers
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there exists a constant c = c (|I| , α, β) such that

N1∑
j=1

(
‖uj0‖2Hα(0,lj)

+ ‖uj1‖2Hα−1(0,lj)

)
+

N∑
j=N1+1

(
‖uj0‖2Hβ(0,lj)

+ ‖uj1‖2Hβ−2(0,lj)

)
≤ c

∫
I

|f (t)|2 dt

for all initial data.

Remark 2 Similar results were announced without proof in [1], writing that the
proofs are more complicated and will be presented elsewhere. Our proof below, based
on earlier results of Baiocchi et al., is short and elementary.

Proof. We proceed as above. For the solution of the system of strings we have

uj (x, t) =
∑

0 6=k∈Z
bjk sin

kπx

lj
exp

ikπt

lj
, j = 1, . . . , N1,

and for the solution for the system of beams

uj (x, t) =
∑

0 6=k∈Z
bjk sin

kπx

lj
exp

ik |k|π2t

l2j
, j = N1 + 1, . . . , N,

as above. For the total force measured at the common endpoint we have

f (t) =
N1∑
j=1

∑
0 6=k∈Z

kπbjk

lj
exp

ikπt

lj
+

N∑
j=N1+1

∑
0 6=k∈Z

kπbjk

lj
exp

ik |k|π2t

l2j

=:
∞∑

n=−∞
bneiλnt.

It follows from (19) and (20) that

λn 6= λm if n 6= m,

and it is easy to see that we have excluded a set of measure 0 from the N -tuples
(l1, . . . , lN ).

Now, we have to prove the estimate∑
n:

λn=kπ/lj

|λn|2α−2 |bn|2 +
∑
n:

λn=r2π2/l2i

|λn|β−1 |bn|2 ≤ c

∫
I

|f (t)|2 dt.

We introduce the divided differences for the chains of close exponents, see (12) and
(13), and define dn, n ∈ Z, as in (14). Applying Theorem 4, it leads again to the
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following inequalities to be verified for an appropriate constant C:

C |λn|2α−2 ≤ d2N−2
n when λn =

kπ

lj
for some 0 6= k ∈ Z, j ∈ {1, . . . , N1} ,

C |λn|β−1 ≤ d2N−2
n when λn =

r2π2

l2i
for some 0 6= r ∈ Z, i ∈ {N1 + 1, . . . , N} .

(21)

Computing the upper density of the sequence (λn), we obtain that

D+ = (l1 + · · ·+ lN1) /π;

see [3] and apply the result on the system of beams. So the assumption for the
length of I in Theorem 4 follows.

A chain of close exponents can contain exponents corresponding to both the
strings and the beams. If two elements of the chain have the form λp := kπ

lj
,

λq := rπ
li

, then
λp � λq � k � r.

Using Diophantine approximation from Theorem 5 as in (16), we obtain

|λp − λq| ≥ cεr
−1−ε (22)

for every ε > 0. For λp := k2π2

l2j
, λq := r2π2

l2i
we conclude also from (16) that

|λp − λq| ≥ c′ε(r
2)−1−ε (23)

for every ε > 0. For λp := k2π2

l2j
, λq := rπ

li
we can apply Theorem 5 for θk = πli

l2j
as

follows:

|λp − λq| =

∣∣∣∣∣k2π2

l2j
− rπ

li

∣∣∣∣∣ = c

∣∣∣∣∣k2 πli
l2j

− r

∣∣∣∣∣
≥ c′′εr−1−ε � c′′ε (k2)−1−ε

(24)

for all ε > 0.
Using the fact that the exponents belonging to one chain are all equivalent, we

obtain from (22), (23) and (24) that

d2N−2
n ≥ Cε · |λn|(−1−ε)(2N−2) for every ε > 0,

that is
d2N−2

n ≥ Cγ · |λn|γ

for every γ < 2−2N. Since the condition 2α−2 < 2−2N is equivalent to α < 2−N
and β − 1 < 2− 2N is equivalent to β < 3− 2N , the proof of (21) thus Theorem 6
is complete.
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