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Abstract. We study diffusion and wave equations in networks. Combining semi-
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the network. We conclude by describing asymptotic behavior of solutions to the
diffusion problem.
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1. Introduction

In this paper we continue the study of dynamical processes in networks using semigroup
methods. While [KS4] and [MS] studied flow and transport processes, the aim of the
present paper is to combine variational and semigroup methods in order to obtain the
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well-posedness of initial value problems associated with diffusion and wave equations.
We thus consider first- and second-order problems

u̇ j (t, x) = (cj u
′
j )
′(t, x) and ü j (t, x) = (cj u

′
j )
′(t, x), t ≥ 0, x ∈ (0, 1),

where cj (·) and uj (t, ·) are functions on parameterized edges ej of a finite network. The
node conditions in (2.1) and (3.1) below impose continuity and Kirchhoff laws in the
ramification vertices. Problems of this kind have already been treated by many authors
both from the mathematical and physical communities—among others, we mention the
earlier articles of Lumer [L], Ali Mehmeti [Al1], Roth [R], von Below [B1], Nicaise
[Ni1], Exner [E], Cattaneo [Ca], Kottos and Smilansky [KS3], Kostrykin and Schrader
[KS1], and Kuchment [Ku], as well as the monographs [Ni4], [Al3], and [LLS], and the
proceedings [ABN].

Since the pioneering work of Beurling and Deny in the 1950s, variational methods
have been greatly developed. In combination with the theory of strongly continuous
semigroups of operators, they provide a powerful tool to discuss properties of solutions
to many parabolic and hyperbolic problems; see [D], [Ar], and [O]. While L2-techniques
like the lemma of Lax–Milgram have been used in most of the above-mentioned papers,
our paper seems to be the first applying variational methods to obtain positivity, ultra-
contractivity, and stability for network equations in a general L p-context. This is the
main aim of Sections 2 and 3. We remark that positivity of the semigroup governing the
diffusion problem with much more general nodal conditions has been characterized, by
algebraic methods, in [KS2].

We then proceed to study the qualitative behavior of the solutions. To that purpose we
obtain in Section 4 a characteristic equation for the spectrum of the generator and describe
the appropriate eigensolutions. We reprove some results from [B1], [Ni1], [Ni3], and [B3]
in our setting with slight generalizations. We see that the spectrum is determined by the
structure of the network and corresponds to the spectrum of the Laplacian matrix known
from graph theory; see [Mo1]. We give an explicit connection between the two spectra
and show the impact of this to our problem. This relates to the well-known question: “Can
one hear the shape of a drum?,” first addressed by Kac in [Ka]. Concerning differential
operators on graphs, the analogous question “Can one hear the shape of a network?”
has been formulated and answered in the negative by von Below in his contribution
to [ABN]. Quite surprisingly, the same question was raised at the same time in the
almost homonymous paper [GS] by Gutkin and Smilansky. They answered it in the
positive, by studying the Schrödinger operator on a finite, simple graph with rationally
independent arc lengths and imposing some further assumptions on matching conditions
at the vertices. In graph theory, however, it is well known that there are many graphs
sharing the same spectrum; see [DH]. Also in our case, the spectrum itself does not
determine the network.

In Section 5 we study the asymptotic behavior of solutions to the diffusion prob-
lem. To our knowledge this topic has not yet been properly treated by other authors. We
show that the solutions always converge toward an equilibrium with rate of convergence
depending on the structure of the network. This is discussed for special classes of net-
works. In similar contexts, convergence to equilibria has already been discussed, e.g.,
in [BN].
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2. The Wave Equation on a Network

We consider a finite connected network, represented by a finite graph G with m edges
e1, . . . ,em and n vertices v1, . . . , vn . We assume that all the vertices have degree at
least 2, i.e., that each vertex is incident to at least two edges. Furthermore, we assume
that G is simple, that is, it has no multiple edges or loops. We normalize and parameterize
the edges on the interval [0, 1]. The structure of the network is given by the n×m matrices
�+ := (ϕ+i j ) and �− := (ϕ−i j ) defined by

ϕ+i j :

{
1, if ej (0) = vi ,

0, otherwise,
and ϕ−i j :

{
1, if ej (1) = vi ,

0, otherwise.

We refer to [KS4] for terminology. The n × m matrix � := (ϕi j ) defined by

� := �+ −�−

is known in graph theory as the incidence matrix of the graph G. Further, let �(vi ) be
the set of all the indices of the edges having an endpoint at vi , i.e.,

�(vi ) := {
j ∈ {1, . . . ,m}: ej (0) = vi or ej (1) = vi

}
.

For the sake of simplicity, we denote the value of the functions cj (·) and uj (t, ·) at 0
or 1 by cj (vi ) and uj (t, vi ), if ej (0) = vi or ej (1) = vi , respectively. With an abuse of
notation, we also set u′j (t, vi ) = cj (vi ) := 0 whenever j /∈ �(vi ). When convenient, we
shall also write the functions uj in vector form, i.e., u = (u1, . . . , um)

.
We start with the second-order problem

ü j (t, x) = (cj u
′
j )
′(t, x), t ∈ R, x ∈ (0, 1), j = 1, . . . ,m, (2.1a)

uj (t, vi ) = u	(t, vi ), t ∈ R, j, 	 ∈ �(vi ), i = 1, . . . , n, (2.1b)

m∑
j=1

ϕi jµj cj (vi )u
′
j (t, vi ) = 0, t ∈ R, i = 1, . . . , n, (2.1c)

uj (0, x) = fj (x), x ∈ (0, 1), j = 1, . . . ,m, (2.1d)

u̇ j (0, x) = gj (x), x ∈ (0, 1), j = 1, . . . ,m, (2.1e)

on the network. Note that cj (·) and uj (t, ·) are functions on the edge ej of the network,
so that the right-hand side of (2.1a) reads in fact as

(cj u
′
j )
′(t, ·) = ∂

∂x

(
cj
∂

∂x
uj

)
(t, ·), t ∈ R, j = 1, . . . ,m.

The functions c1, . . . , cm are the weights of the edges, and throughout this section
we assume that 0 < cj ∈ H 1(0, 1), j = 1, . . . ,m. They represent the different speeds of
propagation along each edge of the network G. Equation (2.1b) represents the continuity
of the values attained by the system at the vertices. The coefficients µj , j = 1, . . . ,m,
are strictly positive constants that influence the distribution of impulse happening in the
ramification nodes according to the Kirchhoff-type law (2.1c).
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We now introduce weighted incidence matrices�+
w := (ω+i j ) and�−

w := (ω−i j ) with
entries

ω+i j :=
{
µj cj (vi ), if ej (0) = vi ,

0, otherwise,

and

ω−i j :=
{
µj cj (vi ), if ej (1) = vi ,

0, otherwise.

With these notations, (2.1b) can be rewritten as

∃d ∈ Cn s.t. (�+)d = u(t, 0) and (�−)d = u(t, 1), t ∈ R, (2.2)

while the Kirchhoff law (2.1c) becomes

�+
wu′(t, 0) = �−

wu′(t, 1), t ∈ R.
We are now in the position to rewrite our system in form of a second-order abstract

Cauchy problem. First we consider the (complex) Hilbert space

X2 :=
m∏

j=1

L2(0, 1;µj dx)

endowed with the natural inner product

( f, g)X2 :=
m∑

j=1

∫ 1

0
f j (x)gj (x)µj dx, f =




f1
...

fm


 , g =




g1
...

gm


 ∈ X2.

Observe that X2 is isomorphic to (L2(0, 1))m with equivalence of norms. Moreover,
X2 is in fact a Hilbert lattice whose positive cone consists of m copies of the positive
cone of L2(0, 1;µj dx) ≈ L2(0, 1). On X2 we define an operator

A :=




d

dx

(
c1

d

dx

)
0

. . .

0
d

dx

(
cm

d

dx

)


 (2.3)

with domain

D(A) := { f ∈ (
H 2(0, 1)

)m
: �+

w f ′(0) = �−
w f ′(1) and

∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)}. (2.4)

With this notation, we can finally rewrite (2.1) in form of a second-order abstract
Cauchy problem


ü(t) = Au(t), t ∈ R,
u(0) = f,

u̇(0) = g,

(2.5)
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on X2. By means of variational techniques, we are going to show that A enjoys several
nice properties. We follow the techniques of [D] and [ABHN, Section 7.1].

Lemma 2.1. Consider the sesquilinear form

a( f, g) :=
m∑

j=1

∫ 1

0
µj cj (x) f ′j (x)g

′
j (x) dx

on the Hilbert space X2 with domain

D(a) = V := { f ∈ (H 1(0, 1))m : ∃d ∈ Cn s.t. (�+)d = f (0)

and (�−)d = f (1)}.

Then a is densely defined and has the following properties:

• (symmetry) a( f, g) = a(g, f ) for all f, g ∈ D(a),
• (positivity) a( f, f ) ≥ 0 for all f ∈ D(a),

• (closedness) V is complete for the form norm ‖ f ‖a :=
√

a( f, f )+ ‖ f ‖2
X2

,

• (continuity) |a( f, g)| ≤ M‖ f ‖a‖g‖a for some M > 0 and all f, g ∈ D(a).

Proof. It is apparent that V is a linear subspace of X2. Observe that
(
C∞

c (0, 1)
)m ⊂ V .

It follows that V is dense in X2, as by definition L2(0, 1) is the closure of C∞
c (0, 1) in

the L2-norm. By assumption, the weights cj are strictly positive, so that in particular a

is symmetric and also positive, since

a( f, f ) =
m∑

j=1

∫ 1

0
µj cj (x)| f ′j (x)|2 dx ≥ 0 for all f ∈ V .

Furthermore, V becomes a Hilbert space whenever equipped with the inner product

( f, g)V :=
m∑

j=1

∫ 1

0

(
f ′j (x)g

′
j (x)+ f j (x)gj (x)

)
µj dx, f, g ∈ V,

since V is a closed subspace of
(
H 1(0, 1)

)m
. Set

c := min
1≤ j≤m

min
x∈[0,1]

cj (x), C := max
1≤ j≤m

max
x∈[0,1]

cj (x).

Then one has

(c ∧ 1)‖ f ‖2
V ≤ ‖ f ‖2

a ≤ (C ∨ 1)‖ f ‖2
V , f ∈ V,

so that the form norm ‖ · ‖a is equivalent to the norm ‖ · ‖V . Since V is complete with
respect to ‖ · ‖V , the closedness of a follows at once.
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Finally, a is continuous. To see this, take f, g ∈ V and observe that

|a( f, g)| ≤ C
m∑

j=1

∣∣∣∣
∫ 1

0
µj f ′j (x)g

′
j (x) dx

∣∣∣∣
≤ C

m∑
j=1

‖ f ′j ‖L2(0,1;µj dx)‖g′j‖L2(0,1;µj dx)

≤ C

2

(
m∑

j=1

‖ f ′j ‖2
L2(0,1;µj dx)

)1/2 ( m∑
j=1

‖g′j‖2
L2(0,1;µj dx)

)1/2

≤ C

2 · (c ∧ 1)
‖ f ‖a‖g‖a,

by the Cauchy–Schwartz inequality.

Definition 2.2. From the form a we can obtain a unique operator (B, D(B)) in the
following way:

D(B) := { f ∈ V : ∃g ∈ X2 s.t. a( f, h) = (g, h)X2 , ∀h ∈ V },
B f := −g.

We say that the operator (B, D(B)) is associated with the form a.

Lemma 2.3. The operator associated with the form a is (A, D(A)) defined in (2.3)–
(2.4).

Proof. Denote by (B, D(B)) the operator associated with a. We first show that A ⊂ B.
Take f ∈ D(A). Then for all h ∈ V

a( f, h) =
m∑

j=1

∫ 1

0
µj cj (x) f ′j (x)h

′
j (x) dx

=
m∑

j=1

[
µj cj f ′j h j

]1

0
−

m∑
j=1

∫ 1

0
µj (cj f ′j )

′(x)hj (x) dx . (2.6)

Using the incidence matrix � = �+ −�−, the first term above can be written as

m∑
j=1

[
µj cj f ′j h j

]1

0
=

m∑
j=1

n∑
i=1

µj cj (vi )(ϕ
−
i j − ϕ+i j ) f ′j (vi )hj (vi ).

Observe now that the condition

∃d ∈ Cn s.t. (�+)d = h(0) and (�−)d = h(1)

in the definition of V implies that h is continuous in the vertices, i.e., there exist
d1, . . . , dn ∈ C such that hj (vi ) = di for all j ∈ �(vi ), i = 1, . . . , n. Summing up
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and using the other condition �+
w f ′(0) = �−

w f ′(1) in D(A) we obtain that

a( f, h) =
n∑

i=1

di

m∑
j=1

(ω−i j − ω+i j ) f ′j (vi )︸ ︷︷ ︸
=0

−
m∑

j=1

∫ 1

0
(cj f ′j )

′(x)hj (x)µj dx

= −(A f, h)X2 ,

which makes sense because A f ∈ X2. The proof of the inclusion A ⊂ B is completed.
To check the converse inclusion B ⊂ A take f ∈ D(B). By definition, there exists

g ∈ X2 such that
m∑

j=1

∫ 1

0
µj cj (x) f ′j (x)h

′
j (x) dx = a( f, h) = (g, h)X2

=
m∑

j=1

∫ 1

0
gj (x)hj (x)µj dx (2.7)

for all h ∈ V , hence in particular for all h j ∈ V of the form

h j =




0
...

hj
...

0


← j th row, hj ∈ H 1

0 (0, 1).

From this it follows that (2.7) in fact implies∫ 1

0
µj cj (x) f ′j (x)h

′
j (x) dx

=
∫ 1

0
gj (x)hj (x)µj dx for all j = 1, . . . ,m, hj ∈ H 1

0 (0, 1).

By definition of weak derivative this means that cj · f ′j ∈ H 1(0, 1) for all j = 1, . . . ,m.
Since 0 < cj ∈ H 1(0, 1), it follows that in fact f ′j ∈ H 1(0, 1) for all j = 1, . . . ,m. We

conclude that f ∈ (
H 2(0, 1)

)m
. Moreover, integrating by parts as in (2.6) we see that

if (2.7) holds for some h ∈ V , then

n∑
i=1

di

m∑
j=1

(ω−i j − ω+i j ) f ′j (vi ) = 0,

where di is the joint value attained at the vertex vi by all hj , j ∈ �(vi ). Since h ∈ V is
arbitrary, this means that

m∑
j=1

(ω−i j − ω+i j ) f ′j (vi ) = 0 for all i = 1, . . . , n,
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that is, �+
w f ′(0) = �−

w f ′(1). Therefore f ∈ D(A) and

−
m∑

j=1

∫ 1

0
µj (cj f ′j )

′(x)hj (x) dx =
m∑

j=1

∫ 1

0
gj (x)hj (x)µj dx

holds for all h ∈ V . This implies that A f = −g, and the proof is complete.

We are now able to use some well-known results on sesquilinear forms (see [ABHN],
[D], and [O]) in order to obtain nice properties of our operator A.

Proposition 2.4. The operator (A, D(A)) defined in (2.3)–(2.4) is self-adjoint and
dissipative. Thus, it generates a cosine operator function with associated phase space
V × X2.

Proof. By Lemmas 2.1 and 2.3 we are in the situation described in Section 7.1 of
[ABHN] for H = X2, V = D(a), (· | ·)V = a(·, ·), ω = 1, and A = AH . Thus the
claim follows by Proposition 7.1.1 of [ABHN], Example 7.1.2 of [ABHN], and the fact
that self-adjoint operators are unitarily equivalent to multiplication operators. (See also
the remark at p. 413 in [ABHN].)

We can now state the main result of this section. This generalizes the well-posedness
and regularity results in [Al1], [Al2], [B2], and [CF], where only the case of constant or
smooth coefficients c1, . . . , cm was considered.

Theorem 2.5. The problem (2.1) is well-posed, i.e., for all f ∈ V and g ∈ X2 it
admits a unique mild solution that continuously depends on the initial data. If further
cj ∈ C∞[0, 1], j = 1, . . . ,m, and the initial conditions f,g ∈ (

C∞
c [0, 1]

)m
, then the

solution is of class (C∞[0, 1])m .

Proof. It is well known (see e.g. Corollary 3.14.12 of [ABHN]) that

u(t) := C(t, A)f+ S(t, A)g, t ∈ R,

yields the unique mild solution to (2.5) for all initial data (f,g) in the phase space,
where we denote by (C(t, A))t∈R and (S(t, A))t∈R the cosine and sine operator functions
generated by A, respectively. The assertion about regularity of solutions follows directly
from basic properties of cosine and sine operator functions.

3. The Heat Equation on a Network

We now consider again the same network G and, under the same assumptions and with
the same notations of Section 2, we turn our attention to the first-order problem


u̇ j (t, x) = (cj u′j )

′(t, x), t ≥ 0, x ∈ (0, 1), j = 1, . . . ,m,

uj (t, vi ) = u	(t, vi ), t ≥ 0, j, 	 ∈ �(vi ), i = 1, . . . , n,∑m
j=1 µjϕi j cj (vi )u′j (t, vi ) = 0, t ≥ 0, i = 1, . . . , n,

uj (0, x) = fj (x), x ∈ (0, 1), j = 1, . . . ,m.

(3.1)
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This equation describes a diffusion process that takes place in a network and c1, . . . , cm ∈
C1[0, 1] are (variable) diffusion coefficients or conductances. Again, we are imposing
continuity and Kirchhoff-type conditions in the ramification nodes (controlled by some
constants µ1, . . . , µm).

It is already known that such a problem is well posed in an L2-context; see [B2].
Moreover, at least for the case of constant weights c1, . . . , cm and µ1 = · · · = µm = 1
the heat kernel has been computed in [Ni2], thus yielding well-posedness in other L p-
spaces. We show by variational methods that the semigroup governing (3.1) is L∞-
contractive, and hence we can extend the well-posedness result to an L p-context by
interpolation in the general case of variable diffusion coefficients. In particular, the
analyticity of the L p-semigroups seems to be a new result. Also observe that, by the
bounded perturbation theorem, this also yields well-posedness for the Cauchy problem
associated to the analogous cable equation; see [Ni3].

Let

X p :=
m∏

j=1

L p(0, 1;µj dx), p ∈ [1,∞].

We have already seen in Proposition 2.4 that A is a self-adjoint and dissipative operator
on X2. By the spectral theorem, this shows that A generates a contractive, analytic
semigroup of angle π/2, and in particular the first-order abstract Cauchy problem{

u̇(t) = Au(t), t ≥ 0,

u(0) = f,

is well posed in X2. In fact, much more can be said.

Lemma 3.1. The semigroup (T2(t))t≥0 on X2, associated with a, is sub-Markovian,
i.e., it is real, positive, and contractive on X∞.

Proof. By Proposition 2.5, Theorem 2.7, and Corollary 2.17 of [O], we need to check
that the following criteria are verified for the domain V of a:

• f ∈ V ⇒ f ∈ V and a(Re f, Im f ) ∈ R,
• f ∈ V, f real-valued ⇒ | f | ∈ V and a(| f |, | f |) ≤ a( f, f ),
• 0 ≤ f ∈ V ⇒ 1 ∧ f ∈ V and a(1 ∧ f, ( f − 1)+) ≥ 0.

It is clear that k ∈ H 1(0, 1) if k ∈ H 1(0, 1). Further, if k is real-valued, then
|k| ∈ H 1(0, 1) and |k|′ = signk · k ′, and if 0 ≤ k, then 1 ∧ k ∈ H 1(0, 1) with
(1 ∧ k)′ = k ′1{k<1} and ((k − 1)+)′ = k ′1{k>1}.

By definition, the subspace V contains exactly those functions on the network that
are continuous in the vertices (see (2.2)). Take any f ∈ V . By definition we have
f j = ( f )j , 1 ≤ j ≤ m. It follows from the above arguments that f ∈ (H 1(0, 1))m , and
one can see that the continuity of the values attained by f in the vertices is preserved
after taking the complex conjugate f . Hence, f ∈ V . Moreover, a(Re f, Im f ) is the
sum of m integrals. Recall that the weights are real-valued, positive functions. Since all
the integrated functions are real-valued, it follows that a(Re f, Img) ∈ R. Thus, the first
criterion has been checked.
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Moreover, if f is a real-valued function in V , then | f j | = | f |j , 1 ≤ j ≤ m, and one
sees as above that | f | ∈ V . In particular, || f |′|2 = | f ′|2, and it holds that

a(| f |, | f |) =
m∑

j=1

∫ 1

0
µj cj (x)| f ′j (x)|2 dx = a( f, f ).

This shows that the second criterion applies.
Finally, take 0 ≤ f ∈ V . Then

1 ∧ f = 1 ∧




f1
...

fm


 =




1 ∧ f1
...

1 ∧ fm


 ,

with all the functions 1 ∧ f j ∈ H 1(0, 1), hence 1 ∧ f ∈ (
H 1(0, 1)

)m
. Again, the

continuity of f in the vertices imposes the same property to the function 1 ∧ f , i.e.,
1 ∧ f ∈ V . Further, it holds that

a(1 ∧ f, ( f − 1)+) =
m∑

j=1

∫ 1

0
µj cj (1 ∧ f j )

′(x)(( f j − 1)+)′(x) dx

=
m∑

j=1

∫ 1

0
µj cj f ′j (x)1{ f j<1}(x) f ′j (x)1{ f j>1}(x) dx = 0.

We have also checked the third criterion, thus the claim follows.

Lemma 3.2. The semigroup (T2(t))t≥0 on X2 associated with a is ultracontractive. In
particular, it satisfies the estimate

‖T2(t) f ‖X∞ ≤ Mt−1/4‖ f ‖X2 for all t ∈ (0, 1], f ∈ X2, (3.2)

for some constant M .

Proof. The form norm ‖ · ‖a on V is equivalent to the norm ‖ · ‖V ; see the proof of
Lemma 2.1. Thus, by Theorem 6.3 and the following remark in [O] it suffices to show
that it holds that

‖ f ‖X2 ≤ M‖ f ‖1/3
V · ‖ f ‖2/3

X1
for all f ∈ V,

for some constant M . Recall the Nash inequality

‖k‖L2(0,1) ≤ M1(‖k ′‖L2(0,1) + ‖k‖L1(0,1))
1/3 · ‖k‖2/3

L1(0,1)

≤ M1‖k‖1/3
H 1(0,1) · ‖k‖2/3

L1(0,1), (3.3)

which is valid for all k ∈ H 1(0, 1) and some constant M1; see Theorem 1.4.8.1 of [Ma].
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Take finally f ∈ V and observe that by (3.3)

‖ f ‖2
X2
=

m∑
j=1

‖ f j‖2
L2(0,1;µj dx) ≤ M2

1

m∑
j=1

‖ f j‖2/3
H 1(0,1;µj dx) · ‖ f j‖4/3

L1(0,1;µj dx)

≤ M2

(
m∑

j=1

‖ f j‖H 1(0,1;µj dx)

)2/3

·
(

m∑
j=1

‖ f ‖L1(0,1;µj dx)

)4/3

≤ M2‖ f ‖2/3
V · ‖ f ‖4/3

X1
,

using the Hölder inequality. Thus, the claim follows.

The following now holds by Theorems 1.4.1, 1.6.4, and 2.1.5 of [D] and Theo-
rem 3.13 of [O].

Corollary 3.3. The semigroup (T2(t))t≥0 extends to a family of compact, contractive,
positive one-parameter semigroups (Tp(t))t≥0 on X p, 1 ≤ p ≤ ∞. Such semigroups are
strongly continuous if p ∈ [1,∞), and analytic of angleπ/2−arctan(|p − 2|/2√p − 1)
for p ∈ (1,∞).

Moreover, the spectrum of Ap is independent of p, where Ap denotes the generator
of (Tp(t))t≥0, 1 ≤ p ≤ ∞.

The estimate on the analyticity angle of (Tp(t))t≥0 is not sharp; see [Mu] for details.

Remark 3.4. Consider the part Ã of A in (C[0, 1])m , whose domain is given by

D( Ã) = { f ∈ (C2(0, 1))m : �+
w f ′(0) = �−

w f ′(1) and

∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)}.
Define

C(G) := { f ∈ (C[0, 1])m : ∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)},

which can be looked at as the space of all continuous functions on the graph G. It is easy

to see that D( Ã) = C(G). By Corollary 3.3 Ã has positive resolvent, and it follows by
Theorem 3.11.9 of [ABHN] that its part in C(G) generates a positive strongly continuous
semigroup.

In the next lemma we show that the generators of the semigroups in the spaces X p,
1 ≤ p ≤ ∞ (see Corollary 3.3), have in fact the same form as in X2, with appropriate
domain.

Lemma 3.5. For all p ∈ [1,∞] the generator Ap of the semigroup (Tp(t))t≥0 is given
by the operator defined in (2.3) with domain

D(Ap) =
{

f ∈
m∏

j=1

W 2,p(0, 1;µj dx): �+
w f ′(0) = �−

w f ′(1) and

∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)

}
.
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Proof. We prove the claim for p > 2. We have already remarked that X p ↪→ Xq for
all 1 ≤ q ≤ p ≤ ∞. Moreover, it follows by the ultracontractivity of (T2(t))t≥0 (see
Lemma 3.2) that X p is invariant under (T2(t))t≥0 for all p > 2 because if f ∈ X p then
f ∈ X2, and by (3.2),

‖T2(t) f ‖X p ≤ C · ‖T2(t) f ‖X∞ ≤ C · Mt−1/4‖ f ‖X2 ≤ C ′ · Mt−1/4‖ f ‖X p .

Thus, by Proposition II.2.3 of [EN] the generator of (Tp(t))t≥0 is the part of A in X p. A
direct computation yields the claim.

For 1 ≤ p < 2 the claim can be proven by duality, mimicking the proof of
Lemma 4.11 of [Mu].

Theorem 3.6. The first-order problem (3.1) is well posed on X p, p ∈ [1,∞), as well
as on C(G), i.e., for all initial data f ∈ X p or f ∈ C(G) problem (3.1) admits a unique
mild solution that continuously depends on the initial data.

Such a solution is bounded in the time as well as (if p > 1) in the space variables. If
further f ∈ X p, 1 < p <∞, and cj ∈ C∞[0, 1], j = 1, . . . ,m, then the solution u(t, ·)
is of class (C∞[0, 1])m for all t > 0, and in particular the problem is solved pointwise
for t > 0.

Proof. The well-posedness and boundedness results follow from the fact that the oper-
ators Ap generate ultracontractive analytic semigroups. If cj ∈ C∞[0, 1], j = 1, . . . ,m,
then we can show as in the proof of Theorem 2.5 that D(A∞p ) ⊂ (C∞[0, 1])m for all
p ∈ [1,∞]. Since the semigroup (Tp(t))t≥0 is analytic, 1 < p < ∞, it maps X p into
D(A∞p ), and the claim follows.

4. A Characteristic Equation

Having proved that the Cauchy problem (3.1) is well posed, we want to study the quali-
tative behavior of its solutions. To this end we investigate the spectrum of the generator
(A, D(A)). Since by Corollary 3.3 the spectra of all Ap on X p, 1 ≤ p ≤ ∞, coincide, it
suffices to study the operator A = A2 on X2. Hence, we are interested in the spectrum
of the operator

A :=




c1
d2

dx2
0

. . .

0 cm
d2

dx2


 (4.1)

with domain

D(A) :=
{

f ∈
m∏

j=1

(
H 2(0, 1);µj dx

)
: �+

w f ′(0) = �−
w f ′(1) and

∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)

}
. (4.2)
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Recalling properties of (A, D(A)) already yields some information on its spectrum.

Lemma 4.1. The spectrum of (A, D(A)) lies on the negative real line and consists of
eigenvalues only. Moreover, s(A) = 0 ∈ σ(A).

Proof. First note that 1 ∈ D(A) and A1 = 0, thus A is not invertible and 0 ∈ σ(A).
Since A generates a contractive semigroup (cf. Proposition 2.4), s(A) = 0. It follows
from Exercise II.4.30(4) of [EN] that, since D(A) is contained in

(
H 2(0, 1);µj dx

)m
,

the resolvent of A is compact. Therefore the operator A only has point spectrum.
Recall that by Proposition 2.4 the operator A is self-adjoint, hence all its eigenvalues are
real.

From now on we assume that all the weights ci , i = 1, . . . ,m, are constant. Our
aim is to find a “characteristic equation” for the spectrum of A. In particular, we will be
able to connect the eigenvalues of the operator A to the eigenvalues of the Laplacian or
admittance matrix of the corresponding graph. This is the n × n matrix

L := D − A, (4.3)

where A is the standard 0–1 adjacency matrix of the graph and D the diagonal matrix of
vertex degrees. It is well known that its spectrum reveals many properties of the graph,
hence it is used in many applications (see e.g. [Ch], [Me], and [Mo2]).

We further define the generalized weighted adjacency matrix of the graph G in the
case 0 < λ �= cj l2π2, j = 1, . . . ,m, l ∈ Z, as

(AC(λ))ik :=




0, if �(vi ) ∩ �(vk) = ∅,
µj√

cj
sin−1

√
λ

cj
, if j ∈ �(vi ) ∩ �(vk).

By DC(λ)we denote the n×n diagonal matrix (again for 0 < λ �= cj l2π2, j = 1, . . . ,m,
l ∈ Z) defined as

DC(λ) := diag

( ∑
j∈�(vi )

µj√
cj

cot

√
λ

cj

)
i=1,...,n

.

Finally, we define the generalized weighted Laplacian matrix as

LC(λ) := DC (λ)− AC(λ).

We now express the above matrices using the weighted incidence matrices. For this
purpose we define diagonal matrices

Sin x := diag

(
sin

x√
c1
, . . . , sin

x√
cm

)
,

Cos x := diag

(
cos

x√
c1
, . . . , cos

x√
cm

)
,

Cot x := Sin−1 x · Cos x, and

C := diag(1/
√

c1, . . . , 1/
√

cm).
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Lemma 4.2. For 0 < λ �= cr l2π2, r = 1, . . . ,m, l ∈ Z we have

AC(λ) = �+
w · C · Sin−1

√
λ · (�−) +�−

w · C · Sin−1
√
λ · (�+) and

DC(λ) = �+
w · C · Cot

√
λ · (�+) +�−

w · C · Cot
√
λ · (�−).

We are now able to describe the spectrum of our operator A in terms of spectral
values of LC(λ). Similar results have already been obtained in much the same way as in
[B1], [Ni1]–[Ni3], [B3], and [Ca] for the cases µj = 1 and/or cj = 1.

Theorem 4.3. For the spectrum of the operator (A, D(A)), defined in (4.1)–(4.2), we
obtain

σ(A) = {0} ∪ σC ∪ σL,

where

σC ⊆ {−ci k
2π2: k ∈ Z\{0}, i = 1, . . . ,m} and

σL = {−λ ∈ R−: λ �= ci k
2π2, detLC(λ) = 0}.

Furthermore:

(1) λ = 0 ∈ σ(A) is always an eigenvalue of (geometric and algebraic) multiplicity
1 with an eigenvector f (x) ≡ 1, the constant 1 function.

(2) −λ ∈ σL is an eigenvalue of A with corresponding eigenvector

f (x) = Cos
√
λx · (�+)d + Sin−1

√
λ · Sin

√
λx

·((�−) − Cos
√
λ · (�+))d,

where d ∈ kerLC(λ), and so the multiplicity m(−λ) of this eigenvalue is equal
to dim kerLC(λ);

(3) −ci k2π2 ∈ σC is an eigenvalue of A if and only if there exist b ∈ Cm and
d ∈ Cn such that whenever j ∈ �(vr ) ∩ �(vs), j ∈ {1, . . . ,m}, we have




dr = (−1)
√
(ci/cj )kds, if

√
ci

cj
k ∈ Z,

bj = sin−1
√

ci

cj
kπ · dr − cot−1

√
ci

cj
kπ · ds, otherwise.

(4.4)

These vectors further satisfy the equation

�−
w · C · Sin

√
ci kπ · (�+)d = (�−

w · C · Cos
√

ci kπ −�+
w · C) · b. (4.5)

If the eigenvector exists, then it has the form

f (x) = Cos
√

ci kπx · (�+)d + Sin
√

ci kπx · b.
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Proof. By Lemma 4.1, we need to solve the equation

A f = −λ f for f ∈ D(A) and λ ≥ 0.

We distinguish three cases.

Case 1: Assume that λ �= ci k2π2 for all k ∈ Z, i = 1, . . . ,m. In this case the eigen-
functions of A are of the form

f (x) = Cos
√
λx · a + Sin

√
λx · b for some a, b ∈ Cm .

From the continuity assumption in the domain of A (see (4.2))

∃d ∈ Cn s.t. (�+)d = f (0) and (�−)d = f (1)

we obtain

f (x) = Cos
√
λx · (�+)d + Sin−1

√
λ · Sin

√
λx · ((�−) − Cos

√
λ · (�+))d

for some d ∈ Cn . The other condition �+
w f ′(0) = �−

w f ′(1) in the domain D(A) (i.e.,
the Kirchhoff law) yields that f ∈ ker (λ− A) if and only if the vector d ∈ Cn satisfies

�+
w · C · Sin−1

√
λ · ((�−) − Cos

√
λ · (�+))d

= �−
w · C · (Cot

√
λ · ((�−) − Cos

√
λ · (�+))− Sin

√
λ · (�+))d.

Observe now that, by Lemma 4.2, the following two terms are the previously defined
diagonal matrix

�+
w · C · Cot

√
λ · (�+) +�−

w · C · Cot
√
λ · (�−) = DC(λ),

while rearranging the remaining terms yields the weighted adjacency matrix

�+
w · C · Sin−1

√
λ · (�−) +�−

w · C · (Sin−1
√
λ · Cos2

√
λ+ Sin

√
λ) · (�+)

= �+
w · C · Sin−1

√
λ · (�−) +�−

w · C · Sin−1
√
λ · (�+) = AC(λ).

Summing up, the condition for d ∈ Cn becomes

(AC(λ)− DC(λ)) d = 0, that is d ∈ kerLC(λ).

Case 2: λ = 0. The eigenfunctions of A, corresponding to λ = 0, are of the form

f (x) = x · a + b for some a, b ∈ Cm .

We repeat the above procedure and the conditions in the domain (2.4) yield

f (x) = (�+)d − x ·�d for d ∈ ker�w�
 with �w = �+

w −�−
w.
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Since our graph is connected, the multiplicity of 0 in σ(�w�
) is 1 (see Lemma 1.7(iv)

of [Ch] or Proposition 2.3 of [Mo2]). It is easy to see that the corresponding eigenvector
equals d = 1 := (1, . . . , 1). Now compute

f (x) = (�+)1− x ·�1 ≡ 1 for all x .

Case 3: λ = ci k2π2 for some k ∈ Z\{0} and some i ∈ {1, . . . ,m}. We proceed as
before while some care need to be taken with zero entries that arise. Before applying the
inverse of Sin

√
λ, the continuity condition in (4.2) implies

f (x) = Cos
√

ci kπx · (�+)d + Sin
√

ci kπx · b,

where b satisfies the equation

Sin
√

ci kπ · b = (
(�−) − Cos

√
ci kπ · (�+)

)
d. (4.6)

Since the i th entry on the left-hand side equals 0, the vector d should satisfy the condition

dp = (−1)kdq for i ∈ �(vp) ∩ �(vq).

Moreover, if for any other j ∈ {1, . . . ,m} we have
√
(ci/cj )k ∈ Z, then also

dr = (−1)
√
(ci/cj )kds for j ∈ �(vr ) ∩ �(vs).

For each of these cases we have no conditions on bj . If on the other hand
√
(ci/cj )k /∈ Z,

(4.6) yields

bj = Sin−1
√

ci

cj
kπ · dr − Cot−1

√
ci

cj
kπ · ds, j ∈ �(vr ) ∩ �(vs).

Furthermore, the condition�+
w f ′(0) = �−

w f ′(1) in the domain D(A) (i.e., the Kirchhoff
law) implies that above vectors d and b have to satisfy (4.5).

We emphasize that the condition (3) in the above theorem is not always satisfied,
therefore the spectrum of our operator A strongly relies on the underlying graph and on
the weights cj .

From now on we assume cj = 1, j = 1, . . . ,m. In this case we are able to connect
the spectrum of the operator A to the spectrum of yet another matrix known in graph
theory. The transition matrix is defined as

P := D−1
A

and is studied in connection with random walks on graphs (see e.g. Section 5.2 of [Mo2]
or Section 1.5 of [Ch]). The matrix P is always a positive, symmetric, row stochastic
matrix with eigenvalues

σ (P) = {α1, . . . , αn} where − 1 ≤ αn ≤ . . . ≤ α2 < α1 = 1.



Methods for Waves and Diffusion in Networks 235

By Claim 5.3 of [Mo2], 1 is a simple eigenvalue whenever G is connected (what we
assumed at the beginning) and −1 is an eigenvalue if and only if G is bipartite (see also
Lemma 1 in Section 5 of [B1]). It turns out that an important subset of the spectrum
depends on the fact of whether or not the graph G is bipartite. This property means that
the set of vertices can be divided into two disjoint subsets V1 and V2 such that any edge
of G has one endpoint in one and the other endpoint in the other subset. Note that G is
bipartite if and only if it does not have any odd cycle.

The following characteristic equation has already been proved by von Below [B1].
We state and sketch the proof in our context for the convenience of the reader.

Theorem 4.4. Let (A, D(A)) be the operator defined in (4.1)–(4.2), with cj = 1,
j = 1, . . . ,m. Then for the spectrum of A we have

σ(A) = {0} ∪ σp ∪ σk,

where

σp = {−(2lπ ± arc cosα)2: α ∈ σ(P)\{−1, 1} and l ∈ Z}

and

σk = {−k2π2: k ∈ Z\{0}}.

For the multiplicities of the eigenvalues we have:

(1) m(0) = 1;
(2) m(−λ) = dim ker(cos

√
λ · I − P) for −λ ∈ σp;

(3) m(−k2π2) = m − n + 2, if G is bipartite;
(4) m(−4l2π2) = m − n + 2 and m(−(2l + 1)2π2) = m − n, if G is not bipartite.

Proof. We use Theorem 4.3 for C = I . For the spectral point λ = 0 the state-
ment follows directly from Theorem 4.3. Assume first that λ �= k2π2 for any k ∈ Z.
Then

LI (λ) = sin−1
√
λ(cos

√
λ · D − A),

and the characteristic equation becomes

−λ ∈ σ(A) ⇐⇒ det(cos
√
λ · D−A)=0 ⇐⇒ det(cos

√
λ · I−P)=0

for the transition matrix D−1
A = P. The last equivalence says that

−λ ∈ σ (A) ⇐⇒ cos
√
λ ∈ σ (P) ⇐⇒ λ = (2lπ ± arc cosα)2

for some α ∈ σ (P), −1 < α < 1, and l ∈ Z. Since dim ker(cos
√
λ · D − A) =

dim ker(cos
√
λ · I − P), statement (2) also follows by Theorem 4.3(2).
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Now, let λ = k2π2 for some k ∈ Z\{0}. Observe that condition (4.4) in Theo-
rem 4.3(3) becomes

dr = (−1)kds whenever �(vr ) ∩ �(vs) �= ∅.

If k is even this condition is always fulfilled for d = c · 1 for any c ∈ R. Because the
network is assumed to be connected, there is no other solution. For odd k we can always
choose d = 0. However, we can find a nonzero d only in the case G does not have any
odd cycles, that is, when G is bipartite—hence, when its set of vertices can be divided
into two disjoint subsets V1 and V2 such that any edge of G has one endpoint in one and
the other endpoint in the other subset. If this holds, the coordinates of d can be chosen in
such a way that at the places of vertex indices belonging to V1 we set c and at the places
of vertex indices belonging to V2 we set −c, c ∈ R. By connectivity these are again all
possible solutions.

Since sin kπ = 0 and cos kπ = (−1)k , the other condition (4.5) in Theorem 4.3(3)
becomes

(�+
w − (−1)k�−

w)b = 0.

Using the proof of Theorem 5(17) of [B1] we obtain (3) and (4).

5. Stability Results for the Diffusion Problem

In the last section we were interested in the asymptotic behavior of solutions to the prob-
lem (3.1). By Corollary 3.3, the corresponding semigroup Tp(t)t≥0 on X p =
(L p(0, 1);µj dx)m , 1 ≤ p < ∞, has many nice properties: it is contractive, com-
pact, positive. These properties already yield norm convergence of the solutions to an
equilibrium (see Corollary V.2.15 of [EN]).

From the connectedness of our graph, used in the proof of Theorem 4.3(1), we obtain
another useful property of the semigroup.

Proposition 5.1. The semigroup (Tp(t))t≥0 on X p, p ∈ [1,∞), is irreducible.

Proof. It is enough to prove the statement for p = 2, because the irreducibility is
inherited for the extrapolation semigroups in X p, 1 ≤ p <∞, using Corollary 3.3 and
[Ar, Theorem 7.2.2]. Since X2 is reflexive and (T2(t))t≥0 is bounded, by Example V.4.7
of [EN] we have that the semigroup is mean ergodic (see Definition V.4.3 of [EN]). By
Theorem 4.3(1), we obtain that the corresponding mean ergodic projection P defined by

Px := lim
r→∞

1

r

∫ r

0
T (s)x ds

is the projection 1 ⊗ 1 onto the subspace 〈1〉. Let {0} �= J ⊂ X2 be a closed invariant
ideal for (T (t)), that is, T (t)J ⊂ J , t ≥ 0. Then also P J ⊂ J holds. By definition,
P J ⊂ 〈1〉 and so J contains the closed ideal generated by a constant function—hence
the whole space X2. From this it follows that the semigroup is irreducible.
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Knowing that our semigroup is irreducible we can now show its norm convergence
toward a projection of rank one.

Corollary 5.2. For the semigroup (Tp(t))t≥0 on X p, p ∈ [1,∞), the following hold:

1. The limit P f := limt→∞ Tp(t) f exists for every f ∈ X p.
2. P is a strictly positive projection onto 〈1〉 = KerA, the one-dimensional subspace

of X p spanned by the constant function 1.
3. For every ε > 0 there exists M > 0 such that

‖Tp(t)− P‖ ≤ Me(ε+λ2)t for all t ≥ 0, (5.1)

where λ2 is the largest nonzero eigenvalue of the generator A.

Proof. The first assertion follows from Corollary C-IV.2.10 of [Na] and the second
from C-III.3.5(d) of [Na] and Theorem 4.3. Since P is the residue corresponding to
the spectral value λ1 = 0 and 0 is a first-order pole of the resolvent, estimate (3.2) in
Corollary V.3.2 of [EN] yields the third assertion.

Note that the property of converging to an equilibrium does not depend on the
structure of the network. However, the speed of the convergence toward a projection is
determined by the second largest eigenvalue λ2 of A and thus relies on the network.

Combining graph theory and results about the spectrum of A, obtained in Section 4,
we can now draw some further estimates containing graph parameters for the speed of
convergence in (5.1). Let us demonstrate this for the case when all cj = 1 and the graph
is regular, that is, every vertex has the same degree. This means that

|�(vi )| = γ for all i = 1, . . . , n, and D = γ · I.

Two generic examples of regular graphs are the n-cycle Cn and the complete graph Kn

on n vertices (in the latter, every two vertices are connected by an edge).
In this case the characteristic equation becomes

−λ ∈ σ(A) ⇐⇒ det(cos
√
λ · γ · I − A) = 0 ⇐⇒ cos

√
λ · γ ∈ σ(A);

see the proof of Theorem 4.4 or Section 6 of [B1]. Using the Laplacian of the graph,
defined in (4.3), we obtain for its spectrum

ν ∈ σ (L) ⇐⇒ det (ν · I − (γ · I − A)) = 0 ⇐⇒ −ν + γ ∈ σ(A).
Hence, investigating the spectrum of the generator A, we are looking for λs such that

λ = −
(

2lπ ± arc cos

(
1− ν

γ

))2

, l ∈ Z, (5.2)

where ν ∈ σ (L). The spectrum of L is sometimes also called the spectrum of the graph
and is well investigated in graph theory. In the following we always refer to the survey
paper [Mo1].
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Example 5.3. In the case when G = Cn , the eigenvalues ofL are precisely the numbers

νk = 2− 2 cos

(
2(k − 1)π

n

)
, k = 1, . . . , n,

while for G = Kn we have

ν1 = 0 and νk = n for 2 ≤ k ≤ n.

As explained above we are interested in the second-smallest eigenvalue ν2 ∈ σ (L),
which is also called the algebraic connectivity of the graph; see [Mo1]. It is related to
the classical connectivity parameters of the graph (see below). If we look at (5.2) we can
easily conclude that

λ2 = −
(

arc cos

(
1− ν2

γ

))2

, (5.3)

since the function arc cos is strictly monotone decreasing and assumes its values between
0 and π .

Example 5.4. By increasing the number of vertices n, the convergence gets slower on
the cycle Cn and on the complete graph Kn . In fact, for Cn we have γ = 2, hence by
Example 5.3 we obtain that

λ2 = −
(

arc cos

(
1− (1− cos

2π

n
)

))2

= −4π2

n2
.

For Kn we have γ = n − 1, hence by Example 5.3,

λ2 = −
(

arc cos

(
1− n

n − 1

))2

= −
(

arc cos

(
− 1

n − 1

))2

.

If we have an estimate from below for ν2, using (5.1) and formula (5.3), we obtain
an upper estimate for the convergence speed of the semigroup to the one-dimensional
projection. In [Mo1] we find many estimates for ν2 that use several graph parameters.
As an example we mention:

Definition 5.5. The edge connectivity parameter η = η(G) of the graph G is defined
as the minimum number of edges whose deletion from G disconnects it.

Example 5.6. By Theorem 6.2(b) of [Mo1],

ν2 ≥ 2η
(

1− cos
π

n

)
holds, where η is the edge connectivity parameter of the graph. From this we obtain for
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(5.1) that for every ε > 0 there exists an M > 0 such that

‖Tp(t)− P‖ ≤ Me(ε−(arc cos(1−(2η/γ )(1−cos(π/n))))2)t for all t ≥ 0.

Another estimate can be obtained using the diameter of G.

Definition 5.7. The diameter of G denoted by diam(G) is the largest number of vertices
that must be traversed in order to travel from one vertex to another when paths that
backtrack, detour, or loop are excluded from consideration.

Example 5.8. By (6.10) of [Mo1], we have

ν2 ≥ 4

n · diam(G)
.

Hence, again we can conclude that for every ε > 0 there exists an M > 0 such that

‖Tp(t)− P‖ ≤ Me(ε−(arc cos(1−4/(γ ·n·diam(G))))2)t for all t ≥ 0.
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