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Chapter 1

NONLINEAR STATIONARY
PROBLEMS

1 Introduction

The aim of these lecture notes is to give a short itroduction to the theory of
monotone type operators, and by using this theory to consider abstract station-
ary and evolution equations with operators of this type. Then the abstract the-
ory will be applied to “weak” solutions of nonlinear elliptic, parabolic, functional
parabolic, hyperbolic and functional hyperbolic equations of “divergence type”.
By using the theory of monotone type operators, it is possible to treat several
types of nonlinear partial differential equations (not only semilinear PDEs) and
to prove global existence of solutions of time dependent problems. However,
there are a lot of problems in physics, chemistry, biology etc. the mathematical
models of which are nonlinear PDEs but the monotone type operators can not
be applied to them. These equations need particular treatment. (see, e.g. [13],
18], [22], [23], [36], [38], [52], [65], [67]).

The lecture notes are based mainly on the theory of second order linear par-
tial differential equations (see, e.g., [67], [27]), some fundamental notions and
theorems of functional analysis (see, e.g., [42], [66], [92], [8]) and the theory of
ordinary differential equations (see, e.g., [88], [I9], [35]). The importance of lin-
ear and nonlinear partial differential equations in physical, chemical, biological
etc. applications is well known (see, e.g., the above references). The classical
results on linear and quasilinear second order partial differential equations can
be found in the monographs [28], [31], [37], [44], [51], [43], [49] and also in the
books [7], [27], [60], [62], [64], [67], [89].

Partial functional differential equations arise in biology, chemistry, physics,
climatology (see, e.g., [13], [18], [21]-[23], [36], [38], [52], [65], [91] and the
references therein). The systematic study of such equations from the dynamical
system and semigroup point of view began in the 70s. Several results in this
direction can be found in the monographs [60], [89], [9I]. This approach is
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6 CHAPTER 1. NONLINEAR STATIONARY PROBLEMS

mostly based on arguments used in the theory of ordinary differential equations
and functional differential equations (see [24], [32]-[34], [58], [59]).

In the classical work [50] of J.L. Lions one can find the fundamental results on
monotone type operators and their applications to nonlinear partial differential
equations. Further important monographs have been written by E. Zeidler [93]
and H. Gajewski, K. Groger, K. Zacharias [30], S.Fucik, A. Kufner in [29]. A
good summary of further results on monotone type operators, based on degree
theory (see, e.g., [20]) and its applications to nonlinear evolution equations is
in the works [§] and [57] of V. Mustonen and J. Berkovits. By using the theory
of monotone type operators one obtains directly the global existence of weak
solutions, also for higher order nonlinear partial differential equations, satisfying
certain conditions which are more restrictive (in some sense) than in the case
of the previous approach.

It turned out that one can apply the theory of monotone type operators (e.g.
pseudomonotone operators) to nonlinear elliptic variational inequalities, further,
to nonlinear parabolic and certain hyperbolic functional differential equations
and systems to get existence and uniqueness theorems on weak solutions and
results on qualitative properties of weak solutions, including, e.g., “strongly
nonlinear” and “non-uniformly” parabolic equations.

In Chapter 1 we shall consider nonlinear stationary problems and as par-
ticular cases nonlinear elliptic differential equations, functional equations and
variational inequalities. In Chapter 2 first order evolution equations and as
particular cases nonlinear parabolic differential equations, functional parabolic
equations will be considered. Finally, in Chapter 3 second order nonlinear evo-
lution equations and certain nonlinear hyperbolic equations will be treated. In
each chapter the “general” results are illustrated by examples.

In this section we shall give a motivation of the abstract stationary problem
and we shall formulate it, by using the definition of the “weak” (“generalized”) so-
lution to boundary value problems for nonlinear elliptic equations of “divergence
type”.

First we recall the definition of the weak solution to the linear elliptic equa-
tion of the form

- Z Dj(a;xDru) + cu = f in the bounded domain  C R" (1.1)
k=1

(D; = di) with the Dirichlet boundary condition

5
uloq = @. (1.2)

Assuming that u is a sufficiently smooth (for simplicity, e.g. u € C?(Q)) solution
of , and 012 is sufficiently smooth (e.g. C* or in some sense piecewise
C! surface), multiply by a test function v € C}(Q2) and integrate over €,
by using Gauss’s theorem, we obtain

i /Qajk(DkU)(Djv)Jr/chvz/va. (1.3)

jk=1
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Assuming ajg,c € L®(2) and f € L?(1Q), holds for arbitrary element v
of the Sobolev space HE () (See, e.g. [67].) Therefore, weak solution of the
Dirichlet problem , is defined as a function u € H(Q), satisfying
for all v € H(Q) and the boundary condition where u|gq means the
trace of u € H'(Q). In the particular case when ¢ = 0, the weak solution of
(1.3) is a function u € HE ().

Thus every classical solution u € C?(Q) of , is a weak solution and
it is not difficult to show that if u is a weak solution and it is sufficiently smooth
(e.g. u € C%(Q)), then u is a classical solution, too. The details of the above
arguments can be found e.g. in [67], [44].

The weak solution of the nonlinear equation of “divergence form”

- Z Djla;(z,u(x), Du(z))] + ao(z, u(x), Du(z)) = f(z) for all z € @ (1.4)

j=1

(Du = (Dyu, ..., D,u)) with the Dirichlet boundary condition is defined
in a similar way. Assume that u is a classical (sufficiently smooth) solution of
. Multiply the equation by a test function v € C§(£) and integrate
over (). By Gauss’s theorem we obtain

Q

Z/Qaj(x,u(x),Du(x))Djv(:v)dx+/ao(x,u(x),Du(m))v(:E)dx: (1.5)

/Qf(ac)v(x)dx

Later we shall see that if the functions a; satisfy a certain growth condition (see
later Condition As) then for an arbitrary element u of the Sobolev space W1(Q)
(1 < p < o0) (see the definition e.g. in [67], [I], [93]) we have a;(x,u.Du) €
L(Q) where 1/p + 1/¢ = 1. Consequently, holds for all test functions
v € Wy P(Q) because W, () is the closure of CI(Q) with respect to the norm
of W1P(Q).

Thus, similarly to the linear case, the weak solution of , (1.2) is defined
as a function u € WP(Q) satisfying for all v € Wy (Q) and (1.2) where
ulpq denotes the trace of u € W1P(Q) on 9Q. In the particular case ¢ = 0 the
weak solution is a function u € WyP(Q) satisfying for all v € W, P().
Similarly to the linear case, a sufficiently smooth function  is a classical solution
if and only if it is a weak solution.

Assume that the functions a; fulfil the above mentioned growth condition
such that a;(z,u, Du) € LI(Q) for all u € W, ?(Q). Then equation , ie.
the fact that u is a weak solution (in the case ¢ = 0) can be interpreted in the
following way. Denote the left hand side of by (A(u),v), i.e.

(A(u),v) = Z/Qaj(x,u(m),Du(m))Djv(x)dx—i— (1.6)
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/ao(%u(x),Du(;v))v(x)dx.
Q

For a fixed u € W, ?(Q), (A(u),v) is a linear continuous functional applied
to v € Wy P(Q), i.e. A(u) belongs to the dual space of V. = W,?(Q). Thus,
according to , we have a (nonlinear) operator A : V' — V*. Further, by
using the notation

(F,v}z/gf(m)v(x)d:a (1.7)

we have F' € V* if f € LI(Q).
Summarizing, in the case ¢ = 0 one may write (1.5)) in the abstract form

A(u) = F (1.8)

where A : V' — V* is a nonlinear operator and F' is a given element of V*.

In Sectionwe shall show that in the case V = W1P(Q2) equation is an
abstract form of weak formulation of with a Neumann type homogeneous
boundary condition.

In the next section we shall formulate and prove existence and uniqueness
theorems regarding , by using the theory of monotone type operators.

2 Existence and uniqueness theorems

First we formulate some basic definitions for (possibly nonlinear) operators A :
V' — V*. Denote by V a real Banach space and V* its dual space.

Definition 2.1. Operator A : V. — V* is called bounded if it maps bounded
sets of V' into bounded sets of V*.

Definition 2.2. Operator A:V — V* is said to be hemicontinuous if for each
fized uy,us,v € V the function

A= (A(ur + Aug),v), X €R is continuous.

Definition 2.3. Operator A :V — V* is said to be monotone if
(A(u1) — A(ug),uy — uz) > 0 for all uy,us € V.

If for uy # us
<A(U1) — A(UQ), Uy — U2> > 0,

A is said to be strictly monotone.

Definition 2.4. A bounded operator A : V — V* is said to be pseudomonotone

if
(uj) = v weakly in'V, limsup(A(u;),u; —u) <0 (2.1)

Jj—oo
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imply

lim (A(u;),u; —w) =0 and (A(u;)) — A(uw) weakly in V*.

Jj—oo

(2.2)

Proposition 2.5. Let V be a reflexive Banach space. Assume that A:V — V*

s bounded, hemicontinuous and monotone. Then A is pseudomonotone.

Proof. Assume . Since A is monotone,
(Aus) — Alu),uy — ) > 0,

hence

(Aug), uj —u) > (A(u),uj — u).

By (2.1), we have
lim (A(u),u; —u) =0,

j—roo
thus , , imply
leIgO(A(uj),uj —u) = 0.
In order to show the second part of consider
w=(1-XNu+ v
with arbitrary v € V and A > 0. Since A is monotone,

(A(ug) — A(w), uj —w) >0,

whence

(A(uy), uj = u) + (A(ug), u = w) = (A(w), uj —u) = (A(w),u —w) >0

or equivalently

(A(uy), uj—u)+ (A(ug), Mu—)) = (A(w), uj; —u) = (A(w), A(u—v)) > 0. (2.7)

By (2.1),
lim (A(w),u; —u) =0

Jj—o00

and so (2.5), (2.7) imply

liminf(A(u;), Nu — v)) > (A(w), AM(u — v)),

j—o0

thus, due to A >0

liminf(A(u;),u —v) > (A(w),u —v) = (A((1 — Nu+ \v),u — v).

J]—00

(2.8)
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Since A is hemicontinuous, as A — +0 we obtain from ([2.8)

lim inf (A(u;), (u - v) > (A(w), (u—v)). (2.9)

J—00

The sequence (A(u;)) is bounded in V*, so there is a subsequence (A(u;,)) of
(A(u;)) which is weakly convergent to some x € V*, thus from (2.9)) we obtain

(x,u—v) > (A(u),u —v). (2.10)

As (2.10) holds for arbitrary v € V, it follows x = A(u). Thus the second part
of holds for a subsequence of (u;). We show that it must hold for the
whole sequence, by using the following trick.

Cantor’s trick Assume the contrary. Then there exist ¢g > 0, a subse-
quence (4;) of (u;) and v € V such that

[(A(t;) — A(u),v)| > 0. (2.11)

Applying the above argument to the sequence (%;) (instead of (u;)), we obtain
a subsequence (;, ) of (u;) for which

(A(aj,)) = A(u) weakly in V*
which contradicts to (2.11). O
Definition 2.6. Operator A:V — V* is called demicontinuous if

(uj) — u strongly in 'V implies (A(u;)) — A(u) weakly in V*.

Proposition 2.7. If a bounded operator A : V. — V* is pseudomonotone then
A is demicontinuous.

Proof. Assume that (u;) — u strongly in V. Then
[(A(u), uj — w)| < [|A(w))llv+[lu; —ully =0
because ||A(u;)|v+ is bounded. Since A is pseudomonotone,

(A(uj;)) = A(u) weakly in V*.

Definition 2.8. Operator A:V — V* is called belonging to (S)4 if
(uj) = u weakly in V, limsup(A(u;),u; —u) <0

imply (u;) — u strongly in V.

From definitions [2.4] immediately follows
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Proposition 2.9. If A : V — V* is bounded, demicontinuous and belongs to
(S)4 then A is pseudomonotone.

Definition 2.10. Operator A :V — V* is called coercive if

Remark 2.11. If the linear operator A is strictly positive in the sense that it
satisfies
(Au, u) > cf|ul®

with some constant ¢ > 0 then A is coercive.

Now consider the equation
A(u) =F (2.12)

with an arbitrary F' € V* where A : V. — V* is a given (possibly nonlinear)
operator. First we prove an existence theorem when A is pseudomonotone. As
a consequence, we shall obtain an existence and uniqueness theorem when A is
strictly monotone.

Theorem 2.12. Let V' be a reflexive separable Banach space. Assume that
AV — V* is bounded, pseudomonotone and coercive. Then for arbitrary
F € V* there exists a solution u € V' of equation .

The proof of this theorem is based on Galerkin’s method and on the following
lemma.

Lemma 2.13. (“acute angle lemma”) Let g : R™ — R™ be a continuous function
and suppose: there exists p > 0 such that

(9(€):&)rn > 0 for [§] = p. (2.13)
Then there exists &y € R™ such that
9(0) =0, [&| < p. (2.14)

Proof. We prove by contradiction. Assume that (2.14) is not true. Then g(&) #
0 for |¢] < p and thus
9(&)

h(€) = *va 1€l <p

is a continuous function mapping the closed ball B, = {£ € R™ : |¢] < p} into
itself, because |h(£)| = p. By Brouwer’s fixed point theorem h has a fixed point
& ie.

h(E) =& 1] =p.
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Then
(h(€), € mn = €2 = p* > 0
which is impossible since by (2.13))

oen /o 9€&) L\ _ P .

O

Proof of Theorem[2.13. Since V is separable, there exists a system z1, 2o, ... of
linearly independent elements of V' such that their linear combinations are dense
in V. Denote by V,,, the set of linear combinations of z1, z9, ..., Zm.

First by using Galerkin’s approximation method, we construct the “m-th
approximation” wu,, € V, of the solution u € V' of such that

(Alum), zj) = (Fyzj), 7=1,...,m, (2.15)

or equivalently

(A(um),v) = (F,v), forv €V, (2.16)
In order to do this, we apply Lemma to the function g = (91,92, -, 9m),
defined by

g](§1a7§m):<A(€lzl++£mzm)azj>_<F,Z]>a €€Rm7 ]:177m

Since A is bounded and pseudomonotone, A is demicontinuous by Proposition
which implies that the functions g; are continuous. Further, introducing
Z;"Zl &jzj by y and assuming y # 0, we have

(9(8),E)rm = Zgj(ﬁ)ﬁj = <A(Z szj)vzszj> - <FaZ§ij> =

(Aly)y) _ (Fry) > [(AW),)
lyllv >
lyllv lyllv lyllv
Operator A is coercive, hence

- ||F|V*] lyllv-

(A(y),y)

= —|—OO’
lyll—oe  [lyllv

thus the right-hand side is positive if ||y||v is sufficiently large, which is satisfied
if [¢] is sufficiently large. So by Lemma [2.13 there exists & € R™ such that
g(&) =0, i.e. we have a solution wu,, of (2.15]).

If V is of finite dimension, Theorem [2.12]is proved. Consider the remaining
case when V is of infinite dimension. Then we have a sequence (u,,) of elements
satisfying . The coercivity of A implies that (u,,) is a bounded sequence
in V. Indeed, assuming that (u,,) is not bounded, we would have a subsequence
(tm, ) such that

Hm ([, [lv = oo,
k—oc0
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which is impossible because by (2.16)

(A(umy)s Uy )

0= <A<umk)7umk> - <F7umk> >
[t [l

= F[lv+ | lum, lv = 400
as k — oo since A is coercive.

The operator A : V' — V* is bounded thus the sequence (A(uy,)) is bounded
in V*. Since V is reflexive, there are u € V, x € V* and a subsequence (ty,, )

of (u,) such that
(Um, ) — u weakly in V (2.17)

and
(A(tm,)) — x weakly in V*. (2.18)

Now we show that x = F. Due to (2.16]), for arbitrary fixed finite linear
combination v of z1, 22, ...

(A(um, ), v) = (F,v) (2.19)
for sufficiently large k. From (2.18]), (2.19) as k — oo we obtain (x,v) = (F,v)
for any finite linear combination of z, zs, .... Since the finite linear combinations

are dense in V, we find y = F.
Finally, pseudomonotonicity of A implies A(u) = x(= F'). Indeed, according

to (2.17), (um,) — u weakly in V and by (2.16), [2.18)
(Awmy); wmy = u) = (A(tmy ), umy) = (A(um, ), u) = (2.20)
(F,umy) — (Alum, ), u) = (Fyu) — (x,u) =0 as k — oo.
O

Theorem 2.14. Let V' be a reflexive separable Banach space and assume that
AV — V* is bounded, hemicontinuous, monotone and coercive. Then for
arbitrary F € V* there exists a solution u € V of . If A is strictly
monotone then the solution is unique.

Proof. By Proposition A is pseudomonotone, thus Theorem implies the
existence of a solution u € V of (2.12]). Assume that A is strictly monotone and

A(uj) = F for j =1,2.

Then

whence u; = us. O

Definition 2.15. Operator A : V. — V* is said to be uniformly monotone if
there exists a strictly monotone increasing continuous function

a:[0,00) = [0,00) with a(0) =0, Ema =400
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such that

(A(ur) — A(ug),up —u2) > al|lur — uallv)||ur — uz|lv for all uy,us € V.

Remark 2.16. If A is uniformly monotone then it is strictly monotone. Func-
tion @ may be chosen as a(t) = ctP~! with constants ¢ > 0,p > 1.

Remark 2.17. If A is uniformly monotone then
[A(ur) = A(ug)llv+ = a(llur —uzllv), w1, ug €V (2.21)
because
[A(ur) = A(uz)llv+llur — ugllv = (A(ur) = Aluz), ur —u2) >

aflur — uallv)[lur — uz|lv.

If (2.21) holds then operator A is called stable. In this case the solution of the
equation (2.12)) is unique and the solution u of (2.12)) depends continuously on
the right hand side F' € V*, because by (2.21])

lur = uzllv < a™" (|A(u1) — Auz)llv+),
a=!:[0,00) = [0,00) is a continuous function and a~*(0) = 0.

Remark 2.18. According to the proof of Theoremthe sequence (uy, ), con-
structed by Galerkin’s method, contains a subsequence which converges weakly
in V to a solution u of . If the solution of is unique (e.g. if A
is strictly monotone) then also the sequence (u,) must converge to u. Indeed,
assuming the contrary, one gets contradiction, by using Cantor’s trick (see in
the proof of Proposition [2.5)).

If A is uniformly monotone then (u,) — u also with respect to the norm of
V. Indeed, let a(t) = a(t)t which clearly has the same properties as a, further,

a(llun — ullv) = alllun = ullv)lun = ullv < (A(un) = A(u), un —u) =

(A(un), un —u) — (A(u),u, —u) = 0 as u — 0o
by (217, @20), hence

lim ||lu, — ul|ly = 0.
n—oo

3 Application of monotone operators

Now we shall apply Theorem [2.14] to the case when V is a closed linear subspace
of the Sobolev space W'P(Q), containing W, *(Q) (1 < p < 0o, @ C R is a
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bounded domain with sufficiently smooth boundary). Further, the operator
A:V = V* will be given by

:Z/Qaj(x,u(a:),Du(m))Djv(x)da:—l— (3.1)

/ao(x,u(x),Du(x))v(:r)dx, u,v €V
Q

where the functions a; : Q x R"™! — R satisfy conditions which will imply the
assumptions of Theorem
(A1) Assume that the functions a; : Q x R"* — R satisfy the Carathéodory
conditions, i.e. for a.a. fixed z € , the function & — a;(x,&), £ € R*! s
continuous and for each fixed £ € R"*!, 2 +— a;(x,§), x €  is measurable.
(A2) Assume that there exist a constant ¢; and a nonnegative function ky €
L9(Q) (1/p+1/q = 1) such that for a.a, x € 2, each £ € R*+!

laj(x,€)] < cllfP™ + ki ().

Proposition 3.1. Assume that conditions (Al), (A2) are satisfied. Then A :
V — V* is bounded and hemicontinuous.

Proof. By (A1) the function z — a;(z, u(z), Du(x)) is measurable for arbitrary
u € V. Further, by (A2)

/ la;(z, u(x), Du(z))|%dz <
Q

const {/| ), Du(z))| P~ 1)qu+/ ki (x qu} < const [||ull}, + 1]

and so Hélder’s inequality implies

n 1/q
V)| < Z [/ |aj(3:,u,Du)|qu} | Djvll L)+ (3.2)
j=1 ¢

1
[ / lao (., u, Dumx] " ollincay < const [l + 1] Jjol-
By it follows that A(u) is a bounded linear operator on V' and
Ay < const [[lulfy/? +1]
thus A : V — V* is bounded.
Now we show that A is hemicontinuous. Consider with fixed uy,us,v € V

the function
A= (A(ur + Aug),v), AeR.
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For the operator A, given by (3.1)) we have

(A(ur + Aug),v) = Z/ a;(x,u1 + Aug, Dui + ADug) D jvdx+
j=1"

/ aop(z,u1 + Aug, Duy + ADug)vdz.
Q
Assume that limg_, A\ = A for a sequence (Ag). Then by (A1) for a.a. z €
klim aj(z, u1+Agug, Dui+AyDug) = a;(x, ur+Aug, Dui+ADus), j=0,1,...,n,
— 00
further, by (A2)
la;(z, w1 + Agug, Dug + AgDug)|? < (3.3)
const[|(u1 + Apusz, Duy + A Du2)|P + k1 (2)9] <
const[|u1|P + |uz|P? + |Duy|P + |Duz|P + ki (x)9)
because (Ag) is bounded. Thus by Young’s inequality

|a;(x, u1 + Agug, Duy + AgDug)Djv| <

const[|u1|? + |uz|? + |Duq [P + [Dug|? + ki (2)?] + const|D;v|?

and similar inequality holds for
|ao(x, ur + Agug, Dug + A Dus)v|.
Thus by (3.3) Lebesgue’s dominated convergence theorem implies

lim (A(u; + Agug),v) = (A(ug + Aug), v)

k—oc0

which completes the proof of Proposition [3.1 O

Now we formulate assumptions which, clearly, imply that operator A, defined
by (3.1) is monotone and coercive.
(A3) Assume that for a.a. z € Q, all £,&* € R*T!

n

> laj(@,6) — a;(,€))(& — €) > 0.

Jj=0

(A4) Assume that there exist a constant c; > 0 and ko € L'(Q) such that
for a.a. x € Q, all £ € R**1

n

Y ai(@,6)& = ealél — ka(a).

Jj=0
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Remark 3.2. Assumption (A4) implies that for any u € V,

(A4w.0) > ealully = [ Fa(o)de (3.4)

Now we formulate particular cases when (A3) and (A4) are fulfilled. First
observe that (A1)—(A4) are satisfied in the simple case:

aj(z, &) = aj(z,&), j=0,1,..,n (3.5)

where the Carathéodory function a; satisfies the following conditions for all j,
a.a. x €
& — aj(z, ;) is monotone nondecreasing, (3.6)

Bilg P~ <ley(z, &) < Bal&GP7, & e R (3.7)
with some positive constants Bl,ﬂg Thus, by Theorem [2.14] there exists a

solution u € V of equation (2.12)) if (3 . . hold.

Proposition 3.3. Assume that the functions a; satisfy (Al), for a.e. x € Q,
the functions & — a;(x,€) are continuously differentiable and the matriz

(8%(%5)

) is positive semidefinite. (3.8)
OEk 4,k=0

Then (A3) is fulfilled, thus A, defined by is monotone.

Proof. For arbitrary fixed = € Q, £,&* € R™™! define function h; by

hi(t) = aj(z, & +7(£—¢)), TER

Then )
h;(1) — h;(0) = /0 Wi(r)dr, ie.
*\ __ ' % T * T _ex _¢x e
(0:8) ~ (o) = [5G e e €6 €
hence by
> laj(,€) — aj(x,€91(& — &) = (3.9)
j=0

/ Z 6% (2,67 + 7€ = €))(& — §)(E — &)dr > 0.

jkO
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Proposition 3.4. Assume that conditions of Proposition[3.3 are fulfilled such
that for a.e. x € Q, each £,n € R*H1

n

Z (. e > o5 S 117y (3.10)

7,k=0 7=0

with p > 2 and some positive constant cs. Then

3

> laj(@,6) — ai(z, €& — &) = & Y& — & (3.11)
7=0

=0
with some constant ¢z > 0.

Proof. By (3.9), (8.10)

n

> laj(@,6) — a;(z,£))(& - &) = (3.12)

=0

/ 28% (2.6 4 7(6 — ))& — )& — E)dr >

7,k=0

[ Z & +7(& — PPl — &
Now we show that there is a constant ¢4 > 0 (depending only on p) such that
1
|16 47 - 2ar 2 el - g2, (3.13)
0
Clearly, for {; — &5 =0 (3.13)) holds. For §; — &7 # 0 we have

/ €8 4 r(E — )P 2dr = [&; — €37 / €86 — €) + rP2dr.

By using the notation d = £ /(£; —&5), we have to show that there is a constant
c4 > 0, not depending on d such that

1
/ |d 4+ 7[P2dr > ¢4. (3.14)
0
In the case 0 < —d < 1
1 —d 1
/ d+7|P~%dr = / (—d — )P~ 2dr + / (d+7)P~2dr = (3.15)
0 0 —d
(At et

p—1 T 22 (p—1)
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where we used inequality
(a+b)* <2°7Ya® +b%), a,b>0,5>1.

In the case when d > 0 or d < —1, d+ 7 has the same sign for all 7 € [0, 1], thus

1 1
1
/ |d + 7|P~2dr > / |T[P~2dr = ——. (3.16)
0 0 p—1

Inequalities (3.15)), (3.16) imply (3.14) and so we have shown Conse-
quently, from 3 12 we obtam

Zaj €) = a;(z,€)](& — &) > caca Y& — &I

j= §=0
which completes the proof of (3.11)). O

From Proposition immediately follows

Theorem 3.5. Assume that the conditions of Proposition [3.4] and (A1), (A2)
are fulfilled. Then operator A, defined by has the property such that for
all up,us €V

<A(U1) — A(uz),ul — UQ> Z C5||U1 — UQ”{)/ (317)

with some positive constant cs.

Remark 3.6. If (3.17)) is satisfied, the operator A : V' — V* is uniformly
monotone. (See the Definition [2.15]) Thus the solution of (2.12)) depends con-
tinuously on F, in this case for the solutions of A(uy) = Fy, A(uz) = Fy we

have

lur — uz|ly < const||Fy — Fy ||1/(p b

Further, according to Remark the sequence (uy,), constructed by Galerkin’s
method, converges to the solution u with respect to the norm of V.

In the case when A is defined by (3.1) and (3.17)) holds, A is called strongly
elliptic.

Remark 3.7. Clearly, (3.17)) implies that A is strictly monotone. Further, the
assumptions of Theorem imply that A :V — V* is coercive, too. Indeed,

(A(u),u) = (A(u) — A(0),u) + (A(0), u) > csllull}, + [[A0)[[v+ [[ullv
which implies that A is coercive since p > 1.
Example 3.8. A typical example satisfying the conditions of Theorem [3.5] is

Apu+ cululP~2, ¢ > 0is a constant, p > 2,
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where A, is the p-Laplacian operator, defined by

Apu=> " D;(|Dul’>Du). (3.18)

Jj=1

In this case the functions a; are defined by

a’j(xaC) :£j|<|p727 .7 = 17"'an, aO(xago) = C§0|§0|p72 (319)
where we used the notation ¢ = (£1,...,&,) Now we show that the inequality
(3.10) holds in this case. For ( #£0, j=1,....,n

da;(zx, 4. .
Doy ) _ (p = 2)&&RICIP " if K # 4,
3"
da;(x, _ _ .
M = (-2 + (P, j=1,..,nand
0¢;
80/0(:1;750) —2
ZH0A50) 1 P
860 C(p )|€O| ;

hence

n 8 . -
2 &;)mnk = (=2 D7 &ibunmt

7,k=0 J,k=1

n
P20 4 elp — D)ol 22 =
j=1

2

(=2~ D &mi| +ICP2D 07 + elp — DIéol” 0§ =

j=1 j=1

const Z €; \”*277?.
§=0
Now consider operator A, defined by (3.1]) with the functions (3.19). Clearly,
(A1), (A2) are fulfilled and by Theorem [3.5[ we have (3.17).

Remark 3.9. Consider the case V = W, (Q) for a bounded domain  C R”.
Then the norm in V' is equivalent with the norm

1/p

n
' = |3 / \DjulPda
j=1

(For the particular case p = 2 see, e.g. [67], for the general case see [I].)
Therefore, conditions of Theorem are fulfilled for A,, i.e. for ag = 0.
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Remark 3.10. In Sectionwe have shown that if u is a solution of with
the operator 1' V =W, "(2) then we may consider u as a weak solution of
the equation (|1.4) with homogeneous Dirichlet boundary condition. The case
of nonhomogeneous boundary condition u|gg = ¢ can be reduced to a problem
with 0 boundary condition for @ = u — uyg if there exits a function ug € WP (£2)
with the property upl|aq = ¢.

Remark 3.11. If u is a solution of (2.12)) with the operator (3.1) and V =
W1P(Q) then u can be considered as a weak solution of (1.4)) with the following
homogeneous Neumann type boundary condition:

n
> aj(x,u, Du)vslog + hulag = g. (3.20)
j=1

By using Gauss’s theorem it is easy to show that a function u € C?(Q) satisfies
the boundary value problem ([1.4), (3.20)) (with sufficiently smooth functions a,)
if and only if u is a solution of ([2.12)) with the operator A (which is a modification

of (3.1)):

(A(u),v) :Z/ a;(x,u, Du)Djvdac—i—/ ao(x,u,Du)vdm—l—/ huvdo,
e Q a0

u,v €V,

<F,v>:/9fv+/mgvda

and V = WHP(Q). Indeed, assuming that u € C?(2) satisfies 773.20
(with sufficiently smooth functions a;), multiplying (1.4) by v € C*(Q) and

integrating over 2, we obtain by ((3.20)

(F,v) = /va —l—/@Q gudo = (3.21)

vag(x, u, Du)dx +/ gudo =

Q o0

_i/QUDj[aj(a:,u,Du)]da:-y/

_/ vZaj(m,u,Du)ujda—l—/ Zaj(x,u,Du)Djv—i—ao(x,u,Du)v dx+
o9

j=1 j=1

/ gudo = (A(u),v).
a0
Further, when u € C%(Q) satisfies A(u) = F, first apply

(A(u),v) = (F,v) (3.22)
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to v € C3(Q). Then from (3.21)) we obtain

/vad:v = /Q — ZDj [a;(z,u, Du)] + ao(z, u, Du) » vdz

j=1

Wthh implies w nce C3(Q) is dense in L?(2). Then apply (3.22) to v €

), by using ( D we ﬁnd

/ gvdo :/ Za] z,u, Du) dea—&—/ huvdo
89 a0

Jj=1

which implies (3.20) since the restrictions of functions v € C*(Q) are dense in
L2(09).

Problems

1. Prove that for the functions (3.5)), satisfying (3.6}, (3.7), the assumptions
(A1)—(A4) are fulfilled.

2. Let a, 8 : Q — R be measurable functions satisfying
a<al@)<c, <pBx)<c, z€N
with some positive constants ¢y, c2. By using Example [3.8] show that
a;(z,Q) = a(@)&ICP2, j=1,...,n, (=(&4,...&)€ER", z€Q,
ao(z,¢) = B(x)éoléo|P ™2, &ER, ze€Q
satisfy the assumptions of Theorem [3.5

3. Define the weak solution of the Dirichlet problem

n
—> " Djla;(x,u, Du)] + ag(x,u, Du) = f
Jj=1
ulpg = ¢

as a function u € WHP(Q) satisfying
(A(u),v) = Z/ a;(z,u, Du)Djv +/ ag(z, u, Du)v = (F,v)
=Je Q

for all v € Wy P(Q), ulog =@

where (F,v) = [, fv and ulsn denotes the trace of u € WP(Q) on the
boundary 0f2.

Show that (for “sufficiently good”) functions a;, a function u € C?(Q2) is a
classical solution of the above Dirichlet problem if and only if it is a weak
solution.
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4. Prove that if the assumptions of Theorem [3.5] are fulfilled and there exists
uy € WHP(Q) such that uglao = ¢ then for each F € [W,"*()]* there
exists a unique weak solution of the Dirichlet problem (in Problem 3) with
nonhomogeneous boundary condition. (See Remark [3.10])

4 Application of pseudomonotone operators

Here we shall formulate more general conditions than (A3) (they are natural
generalizations of ellipticity in the linear case) which will imply that the operator
(3.1)) is pseudomonotone. In the proof we shall apply the following two theorems.

Theorem 4.1. Let @ C R™ be a bounded domain with a sufficiently smooth
boundary, 1 < p < oo. Then WHP(Q) is compactly imbedded into LP ().

The exact formulation on smoothness of 02 and the proof of the above
theorem can be found in [I].

Remark 4.2. Later we shall apply the following statements, too. Let  C R™
be a bounded domain with sufficiently smooth boundary. Then W?(Q) is
compactly imbedded into W'=%P(Q) for arbitrary 0 < § < 1. Further, the trace
operator W1=9P(Q) — LP(99) is bounded if 0 < § < 1 —1/p

Theorem 4.3. (Vitali’s theorem) Let M C R™ be a Lebesgue measurable set.
Assume that the functions fi, : M — R are Lebesque integrable, further, for a.a.
x € M, limy_, o fr(x) exists and is finite. The functions fi are equiintegrable
in the following sense: for arbitrary € > 0 there exist 6 > 0 and S C M of finite
measure such that for all k € N

/ fo(@)|de < = if A(H) < 6 and / | fo(@)|de < e.
0 M\S

Then
lim/ fr(z)dz = f(x)dx.
M M

k—o0

Remark 4.4. It is easy to show that if (fi) — f in L'(M) then the functions
fr are equiintegrable. Further, by Hoélder’s inequality one obtains: if (|gx|P)
is equiintegrable and (hy)is bounded in LI(M) (1 < p < oo) then (gihk) is
eqiintegrable.

First we formulate simple cases when Theorems and imply that op-
erator (3.1) is pseudomonotone.

Theorem 4.5. Assume that Q C R" is a bounded domain, 0N) is sufficiently
smooth and functions aj, satisfying (Al), (A2) have the particular form

aj(z,§) =a;(z,(), j=1,..,n where ¢ = (&1,...,€n),
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ao(w,§) = ao(w, o)
and instead of assumption (A3) we assume

n

> laj(x,¢) — sz, ¢ — &) > 0. (4.1)

j=1
Then the (bounded) operator A (defined by (3.1))) is pseudomonotone.

Proof. Assume that

(ug) — uw weakly in V' and limsup(A(ug),ur —u) <0 (4.2)

k—o0

Since (ug) is bounded in WP(€), by Theorem [4.1| there is a subsequence (uy,)
of (ug) which converges to u with respect to the norm of LP(Q2) and a.e. in Q.
Define operator B by

(B(u),v) :Z/ &j(m,Du)Djvdx—F/ u|u|P~2vdz.
oo Q

Then (4.1) implies that B : V' — V* is monotone and by (Al), (42) B is
hemicontinuous and bounded. Consequently, from Proposition [2.5] it follows
that B is pseudomonotone. Further,

(B(u),v) = (A(u), v) + / fuful?=2 — ao(z, u)]vda. (4.3)
Q
Since
Jim flug, = ullze ) = 0,
and by (A2)

lwk, |u, \p_Q — ao(x, up, )||La(q) is bounded,

Holder’s inequality implies

lim | [ug, |ug, [P~2 — ao(x, ug,)](ug, —u)dz = 0. (4.4)
k—o0 Q

Thus we obtain from (4.2))

lim sup(B(ug, ), ur, — u) < 0. (4.5)
l—o0
Since B is pseudomonotone, (4.2)), (4.5 imply
lim (B(uy,), ur, —u) =0, (4.6)
l—o0 )

(B(ug,)) = B(u) weakly in V™. (4.7)
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By (@.3), (.4), (.6)
lim (A(ug, ), ug, —u) = 0. (4.8)

=0

Finally, (ug,) — u a.e., so by (A1)
U, g, P72 — ao(z, ug,) — ulu[P~? — ao(z,u) a.e. in Q.

By using Hélder’s inequality, one shows that for a fixed v € V, the sequence of
functions
[ukz |ukz |p—2 - Zlo(l’, ukl)]v

is equiintegrable (the L7(€2) norm of the term in brackets is bounded). Thus by
Theorem [4.3]

lim | [ug, |ug, |P~2 — o (2, up, )Jvde = / [u|ulP~? — ag(x, u)|vdz.
l—o0 O ) Q

and so from (4.7) we obtain that
(A(ug,)) = A(u) weakly in V*. (4.9)

(4.8), (4.9) hold for the sequence (uy), too. Because, assuming that it is not
true, by using Cantor’s trick, we get a contradiction. O

Now we formulate other conditions which imply that operator A of the form
(3.1) is pseudomonotone. Instead of (A3) assume (by using the notation £ =

(Ua()ﬂ? =80, (= (51,,&;))

(A3) There exists a constant ¢z > 0 such that for a.a. = € Q, all n € R,
¢, ¢reR”

> laj(@,n,¢) — aj(@,n, CHNE — &) = &l — ¢

j=1

Theorem 4.6. Assume that Q@ C R™ is a bounded domain, 0) _is sufficiently
smooth and (A1), (A2), (A3) hold. Then operator A of the form is bounded
and pseudomonotone.

Proof. According to Proposition [3.1] A is bounded. Now we show that A is
pseudomonotone. Assume that

(ug) — uw weakly in V and limsup(A(ug),ur —u) <0 (4.10)

k—o0 a

Since WP(Q) is compactly imbedded into LP(2) (for bounded Q2 with suffi-
ciently smooth boundary, see Theorem [4.1)), there is a subsequence of (uy),
again denoted by (uy), such that

(ug) — uw in LP(Q) and a.e. in (4.11)
Since (Djug) is bounded in L?(£2), we may assume (on the subsequence) that

(Djur) = Dju weakly in LP(Q), j=1,...,n. (4.12)
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Further,

(A(ug), up, —u) = /an(x,uk, Duy)(u, — u)dx+ (4.13)

n

Z / la;(x, uk, Dug) — a;(x, ug, Du)|(Djur, — Dju)dz+
Q

Jj=1

n
Z/ a;(@, ug, Du)(Dju, — Dju)dz.
j=1"%

The first term on the right-hand side of tends to 0 by and Holder’s
inequality, because the multipliers of (uy —u) are bounded in L4(f2) (by (A2)).
Further, the third term on the right-hand side converges to 0, too, by (4.12)
and because ([{.11)), (A1), (A2) and Vitali’s theorem (Theorem [4.3) imply that

aj(z,ur, Du) — a;(x,u, Du) in L1(§).

Consequently, (I10), (E13) imply

lim supZ/ laj(z, ug, Duy) — aj(z, ug, Du)|(Djur, — Dju)dr < 0. (4.14)
j=1"9

From (A3), (4.14) we obtain

lim / |Duy, — DulPdx =0 (4.15)
k—o0 Q
and (for a subsequence)
(Dug) — Du a.e. in Q. (4.16)

Therefore, by (A1), (A2), (4.11), (4.15), (4.16) and Vitali’s theorem (Theo-
rem [4.3))

a;(x, ug, Dug) = aj(z,u, Du) in LY(Q), j=0,1,...,n.

Thus by Hoélder’s inequality

(A(ug)) — A(u) weakly in V*. (4.17)
Finally, from ([{.11)), (4.15) and (A2) one gets
lim (A(ug),ur —u) = 0. (4.18)
k— o0

Since (4.17)), (4.18)) hold for a subsequence of (uy), by using Cantor’s trick, we
obtain (4.17)), (4.18) for the original sequence. O
Remark 4.7. According to the proof of the above theorem operator A belongs
to the class (S)4+ and it is demicontinuous.
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Browder’s theorem

The following more general theorem is due to F. Browder (see [I4]). Instead of
(A3), (A4) we assume that
(A3') for a.a. x € Qallnp e R; (,¢* e R, ( # ¢*

> laj(x,m,¢) = aj(x,n,¢)E& — &) >0

j=1
where we used the notations n = &g, ¢ = (&1, ..., &n)-
Remark 4.8. In the linear case assumption (A3') means ellipticity.

(A4") There exist a constant c2 > 0 and ke € L'(Q2) such that

n

> aj(@n, Q)& > cal(P — ko).

=0

Theorem 4.9. Assume (Al), (A2), (A3'), (A4’). Then the (bounded) operator
A, defined by with an arbitrary (possibly unbounded) domain Q C R™, is
pseudomonotone.

Proof. Assume (4.2), i.e.
(ug) = u weakly in V and limsup(A(ug),ur —u) <0 (4.19)

k—o0 -

We have to show that

kli_)n;Q(A(uk),uk —u) =0 and (A(ug)) = A(u) weakly in V*. (4.20)
We shall show that (4.20) holds for a suitable subsequence of (uy), by Cantor’s
trick this will imply for (uyg), too.

Assume that (£2,,,) is a sequence of bounded domains with sufficiently smooth
boundary 0f2,, such that Q,, C Q41 and Q = UP_;Q,,. By Theorem for
arbitrary fixed m there is a subsequence of (uy) which is convergent in LP(£,,)
and so a subsequence of this subsequence is a.e. convergent to u in §2,,. By
using a “diagonal process” one obtains a subsequence of (ug) which converges
to u a.e. in €. For simplicity, we shall denote this subsequence also by (u), so

we have
(ug) = u a.e. in Q. (4.21)

The main part of the proof of our theorem is showing
(Duy) = Du a.e. in Q. (4.22)

Set

pr(T) = Z[aj(x,uk, Duy) — aj(z,u, Du)|(Djur, — Dju)+ (4.23)
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[ao(z, u, Dug) — ap(z,u, Du)](ur — u),

then
(A(ug) — A(u), up, —u) = / pr(z)dx
Q
and so by (4.19)
lim Sup/ pr(x)dx < 0. (4.24)
k—o0 Q

Due to (4.23) we have

pr(z) = Zaj (@, ug, Dug)Djug + ao(x, ug, Dug)ur, — gr(x) (4.25)

j=1

where

gr(x) = Z a;(x,u, Du)(Djur, — Dju) + ao(z, u, Du)(up —u) | +  (4.26)

Jj=1

Z a;(x, ug, Dug)Dju + ao(x, ug, Dug)u

Jj=1

By (A2)
l91:(2)] < callulP™t + [DulP~ + ky (@) [Jur] + [Dug| + [u| + [Dull+  (4.27)

s [fur [P~ + [ Dug [P~ + ka (2)][ul + [ Duf],
thus Hoélder’s inequality implies that the sequence (gi) is equiintegrable. (See
Remark ) Further, by Young’s inequality from (4.27) we obtain that for
arbitrary e > 0 there exist a constant c¢(e) and a function k4 € L'(Q) such that
|9k ()| < e|Du” + c(e)[|url” + [ul” + [Dul” + ka(x)]. (4.28)
Choosing sufficiently small € > 0, one obtains from (A44'), (4.25)), (4.28)
pr(x) 2 c2| Dugl” — ka(x) — |gn ()] > (4.29)
c
52|Duk|p = collurl” + [ul” 4 [Dul? + ks ()]
with some constant cg and ks € L(Q). Let
pi (x) = max{py(z),0}, p; (¢) = — min{pg(x),0},

then by (4.29)

0 < py (z) < ka(x) + |gr()]
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where the sequence on the right hand side is equiintegrable, hence the sequence
(pg Jken is equiintegrable. (4.30)

Now we show that (p, ) converges to 0 a.e. in €. Indeed, p; can be written
in the form

pi(z) = qr(z) + ri(x) + sk(x) (4.31)

where

[~
Ead
—~
&
I
INgE

laj(z, uk, Duy) — a;(z, ug, Du)|(Djur, — Dju),

n
Z a;(x, ug, Du) — a;j(z, u, Du)|(Djur — Dju),
Jj=1

sk(x) = [ag(z, uk, Dug) — ao(z, u, Du)](ur, — u).
Denote by xj the characteristic function of the set {x : p, (z) > 0} then
—Pr = XkQk + XkTk + XkSk- (4.32)
By (&.29)

Z|Duyl? < collurl? + [ul? + [ Dul? + ks 2)] i pr(x) <0,

hence by (4.21) the sequence (xxDuy) is bounded for a.a. fixed x. Thus by
[E21). (A2)

(xkre) — 0 a.e. and (xxsi) — 0 a.e.

Since xrqr > 0 a.e., it follows from (|4.32))
(pp) = 0 a.e. (4.33)

Thus by (4.30) and Vitali’s theorem

lim [ p,dx=0. (4.34)
k— o0 9]

Since 0 < pz = pr +p, , from l , 1D we obtain
lim [ pfdx=0. (4.35)
k—oco Q

From (4.34)), (4.35) it follows limg_ oo fQ pr = 0 and so by (4.23)) we obtain the
20)):

first part of (4.

(), ur — ) = (Alur) = Alu), wp — ) + (A(w), ug — u) =

/ka(x)da: + (A(u),up —u) — 0.
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By (4.35)
(pi) — 0 a.e., for a subsequence

(again denoted by (p), for simplicity). Thus (4.33) implies that
(pr) — 0 a.e. (4.36)

Hence implies that for a.a. fixed = € § the sequence (Dug(z)) is bounded.

Consider such a fixed z € Q. Assuming that (4.22) is not valid, we have
a subsequence of (Dug(x)), (again denoted by (Duyg(z)), for simplicity), which
converges to some ¢* # (Du)(z). Since

(ur(2)) = u(z), (re(z)) =0, (sx(x)) =0,

we obtain that
0= Jim pule) = Do) €1 — e (), DUGIG — Dyt
j=
Thus by (A3’) we obtain (* = Du(x) which contradicts to ¢* # (Du)(z). So we

have shown (4.22)).
Hence we obtain the second part of (4.20]), by using Vitali’s theorem: for

arbitrary fixed v € V'

(A(ug),v) = Z/ aj(x7uk,Duk)Djvdx+/ ao(z, u, Dug)vdx —
=ile Q

Q

Z/Qaj(z,u,Du)Djvd:U—i-/ ag(z, u, Du)vdx
j=1

because the sequence of integrands is equiintegrable by (A42) and Holder’s in-
equality, further, the a.e. convergence follows from (A1), (4.21)), (4.22). O

Remark 4.10. According to the proof of the above theorem, A belongs to the
class (S)4 if 2 is bounded and it is demicontinuous.

Remark 4.11. If instead of (44’) we assume (A4), we obtain that A is coercive,
too and we have existence of solutions for arbitrary F' € V*. In the particular
case when  is bounded and V = W, (Q), (A4') implies that A is coercive (see

Remark .

Remark 4.12. F.E. Browder proved in [I4] the following generalization of
Theorem Let V.C W™P(Q) be a closed linear subspace (m > 1,1 < p < oo,
Q C R™ arbitrary, possibly unbounded domain) where W P(Q)) denotes the
Sobolev space of (real valued) measurable functions v :  — R with the norm

1/p

[ E—— /Q Dupde|

o] <m
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D* = D{"..Dg", D;j = 0/0x;. (For the detailed investigation of Sobolev spaces
see, e.g., [1].) Define operator A : V — V* by the formula

(A(u),v) = Z o (T, ..., DPu, ...)D*vdx (4.37)
|oz<m/Q

where || < m and functions a, (depending on a multiindex «) satisfy the
natural generalizations of (A1), (A2), (A3’), (A4"). Then A is pseudomonotone.

A similar generalization of Theorem can be formulated and proved for
higher order nonlinear elliptic equations.

The proofs of the generalizations are similar to that of Theorems
respectively.

Example 4.13. A simple example satisfying the assumptions of Theorem [£.4]
where A is coercive is:

—Apu + ag(x,u, Du) = F
where the function ag satisfies (A1), (42) and

ao(z,£)&0 > c2|&ol” (4.38)

with some constant ¢, > 0. If Q is bounded and V = W, *(£2), instead of (4.38)
it is sufficient to assume ag(z,&)& > 0 (see Remark [3.9).

Nonlinear elliptic functional equations

Now we apply the theory of pseudomonotone operators to nonlinear elliptic
functional equations with nonlinear and “non-local” third boundary conditions.
Let V. C WP(Q) be a closed linear subspace (1 < p < oo, @ C R™ a bounded
domain with sufficiently smooth boundary).

Definition 4.14. Define operator A by

(A(u),v) :/Q Zaj(x,u(x),Du(sc);u)Djv(x)—|—a0(x,u(x),Du(Jc);u)v(Jc) dr+
’ (4:39)
/ h(z;u)vdo, wu,v € V.
a0

Assume that the following conditions are fulfilled.

(A1*) The functions a; : @ x R"" x V = R (j = 0,1,...,n) satisfy the
Carathéodory conditions for arbitrary fixed v € V and h : 90 x V — R is
measurable for each fixed u € V.
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(A2*) There exist bounded (nonlinear) operators g; : V. — RT and k1 : V —
L%(Q) such that

laj(@.n,Gu)l < gr(@)[L+ PP~ + [P + [ (w)](2), j=0.1,....n

for a.e. x € Q, each (,{) e R*"™L we V.
(A3*) The inequality

[aj(2,m, G u) —aj(z,n, ¢ u)](€5 = §7) = ga(w)|C = ¢7P

1

J

holds where

n

g2(u) > ¢ [L+ ||uflv]™ (4.40)

and the constants ¢*, o* satisfy ¢* > 0,0 <o* <p—1.
(A4*) The inequality

n

> ajla,n, Gu)é = g2(w)[L+ [l + [¢7] = [ka(w)](x) (4.41)

j=1

holds where ks(u) and h(z;u) satisfy with some positive o < p — o*, A\ <
p—1—0~
k2 (w)|| () < const [1+ ||ullv]”, weV, (4.42)

A (5 u)|| a(ag) < const [1+ [Jullv]™, weV. (4.43)

(In the case V = WP (Q) h is considered to be identically 0.)

(A5*) There exists § > 0 satisfying 6 < 1—1/p such that if (ux) — u weakly
in V and strongly in W'=%P(Q), (n*) — 1 in R, (¢¥) — ¢ in R™ then for a.a.
z€e, j7=0,1,....n

lim (Zj(ZL', 77k> Ck; uk) = aj(xa n, Ca U)
k—o0
for a subsequence and for a.a. x €
lim h(z;ur) = h(x;u)
— 00

for a suitable subsequence.

Theorem 4.15. Assume (A1*) — (A5*). Then A :V — V* is bounded, pseu-
domonotone and coercive. Thus for any F € V*there exists u € V satisfying
A(u) = F.

Proof. Clearly, (A1*), (A2*) and (4.43)) imply that A is bounded, because the
trace operator W1=%P(Q) — LP(99) is bounded by 6 +1/p < 1 (see [I]) and so
by Holder’s inequality

’/m h(z; u)v(z)do ‘ < [/asz |h(x;u)|qda] v [/m |’U(x)|pd0:| v < (4.44)
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const[L + [ullv]* [ollwi-s.p () < const[L + [[ullv]™ [[vllwir o).
Assumption (A4*) implies that A is coercive because by (|4.44))

(Alur),ur) = 1+ [fugllv]P =" = const[L + [|ugllv]”—

const[1 + |Juz|[v]M T — +o0

as |luglly = cosincep—c* >0, p—c*>M+1,p—0c*> 1.
Now we show (similarly to the proof of Theorem [4.6)) that A is pseudomono-
tone. Assume that

(ug) — uw weakly in V' and limsup(A(ug),ur —u) < 0. (4.45)
k—o0
Since W1P(Q) is compactly imbedded into W1=%P(Q) (for bounded © with
sufficiently smooth boundary, see [I]), there is a subsequence of (ug), again
denoted by (ug), for simplicity, such that

(ug) — w in W'=%P(Q) and a.e. in Q (4.46)
and by (A5*%)
h(z;ur) — h(z;u) for a.e. z € IN. (4.47)
Since (Djug) is bounded in L?(€2), we may assume (on the subsequence) that
(Djug) = Dju weakly in LP(Q), j=1,..,n. (4.48)
Further,
(A(ug), up —u) = /Qag(x,uk,Duk;uk)(uk —u)dz+ (4.49)

Z / laj(z, ur, Dug; ug) — a;(x, u, Du;ug)|(Djur, — Dju)dr+
j=1"¢

/ a;(x, ug, Du;ug)(Djur — Dju)de +/ h(z;ug)(ug — u)do.
— /o o9

J

The first and the fourth terms on the right hand side of tend to 0 by
and Holder’s inequality, because the multipliers of (uy — u) are bounded
in L7(£2) and L%(0%), respectively (by (A2*) and (4.43)), and the trace operator
W1=9P(Q) — LP(0Q) is continuous. Further, the third term on the right hand

side converges to 0, too, by (4.48)) because (4.45), (4.46), (A1*), (A2*), (A5*)

and Vitali’s theorem (Theorem {4.3|) imply that
a;(x, ug, Dusug) — aj(z, u, Du;u) in LI(Q).

Consequently, (£45), (E49) imply
n

limsupz / [a;(x, up, Dug; ug) — a; (@, uk, Du; ug)]|(Djur — Dju)dz < 0.

k—o0 j=1 Q

(4.50)
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Since (uy) is bounded in V, from (A3*), (4.50) we obtain

lim / |Duy, — DulPdx =0 (4.51)
k—o0 Q
and (for a subsequence)
(Duy) = Du a.e. in Q. (4.52)

Therefore, by (A1*), (A2*), (A5*), (4.45), (4.46)), (4.52)) and Vitali’s theorem
(Theorem [4.3))

a;(x, uk, Dug; uk) = aj(x,u, Duyu) in LY(Q), j=0,1,..,n
Thus by Holder’s inequality, (4.44)), (4.47) and Vitali’s theorem

(A(ug)) — A(u) weakly in V*. (4.53)

Finally, from (4.44), (4.46]), (4.51) and (A2*) one gets

lim (A(ug),ur —u) = 0. (4.54)

k—o0

Since (4.53] , hold for a subsequence of (ug), by using Cantor’s trick, we
obtain (4.53)), ) for the original sequence.
So we have proved that A is bounded, pseudomonotone and coercive, thus

Theorem implies Theorem O

Remark 4.16. The solution u of the equation A(u) = F' with operator (4.39)
can be considered as weak solution of the equation

— i Djlaj(z,u, Du;u)] + ao(x, u, Du;u) = f (4.55)
Jj=1

with the “non-local” third boundary condition

Zaj (x,u, Du;u)vj + h(xz;uw) = 0 on 0. (4.56)
j=1

Indeed, by using Gauss’s theorem, it is easy to show that a function u € C?(Q)
satisfies the boundary value problem 7 6) (with sufficiently smooth
a; (x u, Duju) if and only if u is a Solutlon of A( = F with operator (4 ,
(F,v) = [, fvde and V = WHP(Q). (See Remark-

By using the Rellich-Kondrashov compact imbedding theorem, one is able to
prove an existence theorem on equation A(u) = F for the operator with
a more general growth condition than (A2*). The Rellich-Kondrashov theorem
with respect to the space WP (Q) says (see, e.g., [1]):
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Theorem 4.17. Let Q@ C R™ be a bounded domain with “sufficiently good”
boundary (Q has the “cone property”, see [1]);

np
n—p

1<p < ifp<n, 1<py arbitrary if p=n,

p1 =00 if p > n.
Then WYP(Q) is compactly imbedded into LP1(€2).

Now instead of (A2*) assume
(A2”) There exist bounded (nonlinear) operators g; : V — R and k1 : V —
L(Q) such that for j =1,...,n

jaj (2.1, Gu)l < gr(@)[L+ P4+ [¢[P7] + [k (w)](2) and

Jao(@, 1, G;u)| < gu(u)[L+ [nlP /9 4 [¢[P/9] + [k (w) ()

where p; is defined in Theorem 1/pr+1/gp=1and ky : V — L9(Q) is a
bounded operator.

Theorem 4.18. Assume (A1*), (A27), (A3*)-(A5*). Then the operator, de-
fined by s bounded, pseudomonotone and coercive. Thus for any F € V*
there exists u € V satisfying A(u) = F.

The proof is similar to that of Theorem [I.15] Applying Holder’s inequality
also in LP*(€2), L% (12), we obtain by Theorem[4.17]that A : V' — V* is bounded.
Further, one proves that the first and third terms on the right hand side of
(4.49) converge to 0, by using Holder’s inequality also in LP*(Q), L% () and
Vitali’s theorem. Finally, proving , we apply Vitali’s theorem and Holder’s
inequality also in LP* (), L9 (Q).

Example 4.19. Now we formulate examples satisfying (A1*)—(A45*) (i.e. as-
sumptions of Theorem [4.15)). Set

aj(z,n,Gu) = bz, [H(w)]()&ICP2, j=1,..,n,
ag(w,m, G u) = bo(x, [Ho(w)]())nln[P =2 + bo(x, [Fo(w))(x))do (2, 7, ),
h(z;u) = B(z, [G(u)l(z))
where b, by, ISO, Qo B are Carathéodory functions and they satisfy

Co C2
> > L
b(.’,l?,o) =14+ ‘9|a*’ bO(x79) =14+ |9|o’*

with some constants co > 0,0 < o* <p—1,
bo(z,0) <1+ |0]P717¢ with0 < o* <p—1

Go(z,m, Q)| <er[L+ 2 +[¢%, 0<6, o +0< o,
16(x,0)] < e[l + |9\A1], O<M<p—1-o0".
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Finally,
H, Hy: WoP(Q) - C(Q), Fo: W oP(Q) — LP(Q), G :LP(0Q) — LP(9Q)

are linear continuous operators. Clearly, assumptions (A1*) — (A3*), (A5*)
are fulfilled, we have to show only the estimate (A2*) for the second term in
ao(z,n, (;u). By Young’s inequality

[bo(, [Fo(w))(2))éo(z, 1, ()] < [1+ [Fo(w)[P~ 2 Jer [1+ [n]® +[¢]%] <
const[1 + |1 + [¢]2]P* + const[1 4 |Fo(u)|P~17e)0]
where ) 1
b1 = b ~ > ]-a q1 = P = P ~.
0 p—1 p-1-0
Consequently, we obtain for this term (A2*) with

k1 (u) = const[1 + | Fy(u)| P17

since by Holder’s inequality we have for this term

/ |k1(u)|? = const/ [1 + |Fo(u)|®~1-e)ma] <
2 Q

n/p
const [1 —|—/ |F0(u)|1’} < const [1 + [lul|f]
Q

where ) .

p—1—op

u:(p—l—g*)qlq:ﬁp<p.
p—1-9

Now we prove that (A4*) holds. Clearly, for our example we have in (4.40)

const const

T TH @[T, T+ THo@]

g2(u) = min { } > const[1 + ||ully] ™.

o
()
Further, by Young’s inequality

[bo (e, [Fo(w)]())do(w, 1, O)nl < [1+ |Fo(w)|P~ = Jeonst[L + [n]&* + [¢E1] <

eb * x .
;[1 + P + [P + Cle) 1+ [Fo(u)| P29

for any € > 0 (because p+ 1 < p — 0*) where

p—0o*
= > 1,
P1 o+ 1 q1

_ D p—o*
p—1 p-or—0o-1

and C(g) is a constant, depending on . Choosing sufficiently small ¢ > 0, we
obtain (A4*) with

[kz(w)](x) = C()[L + |Fo(u) P~ -]
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since
ko)l L1y = Const/[l + |F0(u)|(l’—1—p*)ql] _
Q
COHSt/ [1 —+ |F0(u)|(;b—g*)>\] < const |:1 + HFO( )H(p o* ]
- LP(Q)

(p—c™)A

const [1 + [Jully 5.0(Q)

} < const[1 + ||ul|v]”
with o = (p — o*)\ where

—1—o*
o P 4

— <1
p-1-o —0

because 0* + ¢ < * and thus (p — o*)A < p —o*.
If functions b, by are between two positive constants then, clearly, (A1*) —
(A5*) are fulfilled when
H, Hy: W'=9P(Q) — LP(Q)

are continuous linear operators (as Fp). So in this case [H(u)](z), [Ho(u)](x)
(and [Fp(u)](z)) may have also e.g. the forms

p/q
/d(m,ﬁ)u(f)d{ where / { |d(x,§)|qd£] dr < o0
Q o l/a

or u(x(x)) where x, x "1 : Q2 — Q are continuously differentiable.
Finally,

‘u)|ldo T w](x))|?do < cons )M do
/mwm, )j7d s/mw G w))(2))do < t/m[lJr\G( )Pra)do <

const { /8 K |G(u)|p)da] o

which implies (4.43).

< const {1 + ||uHLp(BQ)} < const [1 + ||u||>\1q}

Problems
1. Prove Remark 4.7
2. Show that the Example satisfies the assumptions of Theorem
3. Prove Theorem 18

4. Assume that the functions a; satisfy the conditions (A1), (A2), (A3), (A4)
and there exists ug € W1P(Q) such that ug|pq = ¢. Prove that then for
each F' € [VVO1 P(Q)]* there exists a weak solution of the Dirichlet problem
with nonhomogeneous boundary condition, considered in Problem 3 in

Section [3] (See Remark [3.10})
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. Let V be a closed linear subspace of W™P(Q) (m > 1,1 < p < c0) and

consider the operator (4.37). Denote by N the number of multiindices
B = (B,...0n) satistying |3] = Z?:I B; < m. Assume that the functions
Ao 1 Q x RN — R satisfy the Carathéodory conditions, i.e.

T aq(z,€) is measurable for each £ € RY,

& aq(x,§) is continuous for a.a. z € Q.

Further, there exist a constant ¢; > 0 and a function k; € L9(€2) such
that

lag(z,&)| < c1|€P  + Ei(x), €€RN, aa z€Q

Prove that then the operator (4.37)) is bounded.

. Consider the operator (4.37) satisfying the assumptions of Problem 5.

Denote by M the number of multiindices § satisfying |5| = m. Assume
that there exists a positive constant cy such that

D faal@m,¢) = aa(z,m, )] (o = C3) > e2l¢ = P (4.57)

|a]=m

for a.a. z € Q, all (,¢* € RM, n € RYN"M_ By using the arguments of
the proof of Theorem [£.6] prove that the bounded operator A : V — V*
is pseudomonotone.

. By using Proposition formulate conditions, which imply the inequality

@57).

. Formulate assumptions on functions a, which imply that the operator A

defined by (4.37) is coercive. Show that the solution of A(u) = F' can be
considered as a weak solution of the equation

Z (=D Day (2, u,...,DPu,...)] = finQ

la|<m

with homogeneous Dirichlet conditions on 9 if V- = W7"?(Q) and with
homogeneous Neumann conditions if V= W"™P().

. Let V be a closed linear subspace of W™P?(Q) (m > 1,p > 2) and define

the operator A : V — V* by
(Alu),0) = Y /(Dau)wauw*?mudx, u,v € V.
jal<m <

Prove that A is bounded, demicontinuous, uniformly monotone, satisfies
(3.17) and, consequently, A is coercive.
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10. Consider the operator (4.37) with p > 2, V. = WJ""(Q2). By using the
notations of Problem 5, assume that the functions a, have the form

a(z,8) = &aléalP72, 2€Q, RN ifla|=m

and for |a| < m the functions a, satisfy the assumptions of Problem 5,
further,
aa(l‘,f)fa >0, z€Q, (¢ RN,

By using the fact that in Wy ()

1/p

= | 3 /Q |Duf?
|a]=m

is equivalent to the original norm, show that A : V. — V* is bounded,
pseudomonotone and coercive.

5 Nonlinear elliptic variational inequalities

Preliminaries

In order to explain the importance of elliptic variational inequalities , first
consider the weak solution of the linear elliptic equation with homoge-
neous Dirichlet boundary condition, i.e. a function u € H} () satisfying for all
ve HH Q)

(Au,v) = Z /Qajk(Dku)(Djv)dx—F/ﬂcuvdx:/vadscz<F,U>. (5.1)

k=1

It is well-known (see, e.g., [67]) that if ¢ > 0, aji, = ar; € L>(Q) satisfy the
uniform ellipticity condition then the unique solution u € H}(Q2) of (5.1) is the
unique function v = u* € Hg(£2) which minimizes the quadratic functional

E(u) = (Au,u) — 2(F,u) = (5.2)
j%_:l/ﬂajk(Dku)(Dju)dx—F/ch dx—2/ﬂfud:l:.

(Here A : V — V* is a linear operator, V = Hg(£).)

Similarly, the weak solution of the Neumann problem with homogeneous
boundary condition, i.e. the solution u € H1(f2) of for all v € H(Q), is
the unique v = u* € H'(Q) where E attains its minimum in H* ().

By using similar arguments as in [67], one can show the following general-
ization of the above statements.
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Theorem 5.1. Let K be a closed convex subset of the real Hilbert space V, A :
V' — V* be a bounded, strictly positive selfadjoint linear operator and F' € V*.
Then the quadratic functional

E(u) = (Au,u) — 2(F,u) (5.3)

attains its minimum in K at uw = u* € K where u = u* is the unique solution
of the “variational inequality”

(Au,v —u) > (F,v —u) for allv € K. (5.4)

Proof. The functional E is bounded from below:

2
£+ [Pl
E(u) > cgl|ully = 2l|F|lvlullv > |collully — B =
Co Co
_IEIS
4
Let (u;) be a sequence such that
e K, lim F(u;)=inf F=d. .
uj € K, Jim (uj) inf d (5.5)

As in [67], one can show that (u;) is a Cauchy sequence in V. Indeed, by using
the parallelogram equality and (5.5)), we obtain that for arbitrary ¢ > 0 there
exists jo such that j,1 > jo implies

Ui + ug
=l = 2 P+ )~ o+l = 2(5)+ B -4 (45 ) <

2[(d+¢e)+ (d+¢)] — 4d = 4e.

Thus there is u* € V such that lim(u;) = u*. Since u; € K and K is closed, we
obtain v* € K. The continuity of E implies

E(u*) = lim E(u;) = i%f E. (5.6)

Jj—o0o
The solution of (5.6) is unique, because if E (i) = infx F then

uwt,u,ut, 1, ..

must be a Cauchy sequence according to the above argument.
Now we show that u = u* satisfies (5.4)). Let v € K be an arbitrary fixed
element and consider the function h defined by

h(t) = E(u* + tv —u*)), telo,1].
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Since K is convex, u* +t(v —u*) € K for all ¢t € [0, 1], hence
h(t) = E(u* +t(v —u*)) > E(u*) = h(0). (5.7)
Since
h(t) = E(u*+t(v—u*)) = (A(u +t(v—u”)), u* +t(v—u*))—2(F, u*+t(v—u*)) =
t2{A(v —u*),v — u*) + t[{A(v — u*),u*) + (Au*, v — u*) — 2(F,v — u*)]+
(Au*,u*) — (F,u*),
by
0 < 1(0) = (A(v—u*), u*)+{Au*, v—u*)—2(F,v—u*) = 2[(Au*, v—u*)—(F,v—u*)],

so we obtained that u = w* satisfies (5.4]). Since A is strictly positive, the
solution of (5.4) is unique: assuming that u; satisfies

(Auj,v —u;) > (F,o—uy) forallve K, j=1,2,
we have
(Aug,ug —ur) > (Foug —uy), (Aug,u; —ug) > (F,u; — ug).
The sum of these inequalities results
(Auy — Aug,uz —uq) > 0, hence uz = uy
because A is strictly positive. O

As a generalization of (5.4) for arbitrary Banach space V and nonlinear
operator A : V — V* we have the definition of an abstract elliptic variational
inequality:

Definition 5.2. Let V be a real Banach space, K C V a closed convez set,
A: K — V* a (nonlinear) operator, F € V*. Then the variational inequality
1s the following problem: find uw € K satisfying

(A(u),v —u) > (F,v —u) for allv € K. (5.8)

Remark 5.3. In general, the variational inequality (5.8 is not connected with
the minimum of a functional.

Remark 5.4. In the particular case when K is a closed convex cone with the
vertex 0, the variational inequality (5.8)) holds if and only if

(Au,v) > (F,v) for all v € K and (5.9)

(Au,u) = (F,u). (5.10)

From we obtain that in the case K =V is equivalent with the equality
(Au,v) = (F,v) for allv € V, i.e. A(u) = F.
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Indeed, from (5.8) with v =0 and v = 2u we obtain
—(Au,u) > —(F,u) and (Au,u) > (F,u),

respectively, i.e. we have (5.10). Further, subtracting the equality (5.10)) from
(5.9), we obtain (5.8]).

Now we formulate some examples for solutions of ([5.8) which can be con-
sidered as weak solutions to boundary value problems for equation (1.1) with
certain nonlinear boundary conditions.

Example 5.5. Consider the linear operator (5.1)) defined in V = H!(2) and
set

K ={ve H'(Q) :v|pq >0}, (F,v)= / fvdx with some f € L*(Q).
Q

Then K is a closed convex cone with vertex 0.

Now we show that a solution u € K of can be considered as a weak
solution of the equation with some nonlinear boundary condition. First
assume that u is a sufficiently smooth (e.g. u € C?(f2)) solution of , (5.10)
with sufficiently smooth functions a;, ¢, f. Then by Gauss’s theorem for v € K,
veClQ)

/vadx = (F,v) < (Au,v) Z /aj;C Dyu)(D; U)dm+/ cuvdr = (5.11)

7,k=1 Q
/ Z i(ajxDru) + cu| dx —|—/ Z a;i(Dru)v;do.
jok= Jok=1
Setting v = ¢ and v = —¢ in (5.11)) with arbitrary ¢ € C3(Q), we obtain
f=- Z Dj(ajrDru) + cu in classical sense . (5.12)
Jk=1

Thus (5.11)) implies for the “conormal derivative”

n

Opu = Z a;i(Dyu)v;

k=1

v@*uda—/ ajk(Dyu)vido >0
/{m Ele) Z ! v

7,k=1
for all v € C1(Q) with v|pq > 0, hence

Opu = Z a;i(Dru)rj > 0 on 0N (5.13)

v
jk=1
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and by u € K we have
u > 0 on O0f2. (5.14)

Since (Au,u) = (F,u), we obtain from (5.11)
/ u(Ou)do =0
a0

which implies by (5.13)), (5.14)
u(O%u) =0 on ON. (5.15)
Summarizing, if « € C?(Q) is a solution of the variational inequality (5.8
(i.e. (5.9), (5.10)) then wu is a classical solution of the (linear) differential equa-
tion (5.12) with the nonlinear boundary conditions (5.13)—(5.15). Conversely,
it is easy to show that a solution u € C?(Q) of the boundary value problem

(5.12)—(5.15) satisfies the variational inequality. Therefore, a function v € K
satisfying the variational inequality (5.8)), can be considered as a weak solution

of (5.12)(5.19).
Example 5.6. Consider the operator (5.1) in V = H}(Q) with

K={veH}Q):v>0ae inQ}, (Fov)= / fudx with some f € L*(Q).
Q

Then K is a closed convex cone with vertex 0.
Assume that v € C?(Q) is a solution of (5.8) (i.e. of (5.9) and (5.10)). Let
Qp={zeQ:ux) >0}, Q={xreQ:ulx)=0}
Consider an arbitrary function ¢ € C3(Q4) and let v = u+ep with some € € R.
Then, clearly, v € K for sufficiently small |e| (because u has a positive minimum
on suppyp) and so from
<A(u),v—u> 2 <F,’U—7.L>

we obtain the differential equation ([5.10) as in the previous example. Further,
since u € K,

u =0 on 004 (5.16)
and, clearly,

Opu =0 on 904 NIQYy. (5.17)

Thus the smooth solution of (5.8) satisfies

n
— Y DjlajDyul +cu= finQy, uw>0inQy, (5.18)
k=1

the boundary conditions ([5.16)), (5.17)) and

u=01in Qo =2\ Q. (5.19)

So a smooth solution u (€ C2(€2)) of (5.8) satisfies the boundary value problem
(5.16)—(5.19) with “free boundary”.

It is easy to show that if u € C?(Q) satisfies (5.16)(5.19) then u is a solution
of (5.8).
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Existence theorems

Now we formulate and prove two existence theorems on the variational inequality

B3).

Theorem 5.7. Let V' be a real reflexive separable Banach space and K C V
a closed, convex, bounded subset. Assume that A : K — V* is bounded and
pseudomonotone. Then for all F € V*there exists u € K which satisfies (@,
1.€.

(A(u),v —u) > (F,v —u) for allv € K.

Remark 5.8. By definition, a bounded operator A : K — V* is called pseu-
domonotone if

(ug) = u weakly in V,  wy € K, limsup(A(ug),ur —u) <0 (5.20)

k—o0
imply
lim (A(uk),ur —uy =0 and (A(uy)) — A(u) weakly in V*. (5.21)

k—o0

Proof of Theorem[5.7 Let V,,, C V be linear subspaces of dimension m such
that

wcVac..CcV, C.oand UX_,V, =V.
Further, let K,, = V,, N K. Then K,, C V,, is a closed, convex, bounded set,

KiCcKyC..CKyC..and U$_ K, =K.

First we show that for all m there exist solutions u,, € K,, of the (“finite
dimensional”) variational inequalities

(A(tm), v — Um) > (F,v — uy,) for all v € K,,. (5.22)

In the finite dimensional (Banach) space V,, define some scalar product [-,]
generating a norm which is equivalent with the original norm in V,,,. If g € V*
then the linear functional

w'_><ng>a w € Vi

is continuous in the Hilbert space V;,, (with the scalar product [-, -]), hence there
exists a linear and continuous operator B : V* — V,,, such that

(g, w) = [Bg,w] for all w € V,,,.
Thus the inequality (5.22)) can be written in the form

[B(A(um)),v — uy] > [BF,v —up), v € Kp,
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[Um, U = U] > [tm + BF — B(A(um)), v — up], v € Kp,. (5.23)

Denote by P, the operator, projecting V,,, on to the convex set K, with respect
to the scalar product [-,-]. Then inequality (5.23) is equivalent with

Um = Pp(um + BF — B[A(un))). (5.24)
Consider the operator @, : K, — K,,, defined by

Qm(v) = Pp(v+ BF — B[A(v)]), v € K. (5.25)

Figure 1.1: Inequality (5.23))

We claim that @, is continuous. It is sufficient to show weak continuity, as
K, is of finite dimension. Assume that (vy) — v in K,,. Since the bounded
operator A is pseudomonotone, A is demicontinuous (Proposition [2.7]), thus

(A(vk)) = A(v) weakly in V* and so B[A(vy)] — B[A(v)] in K, and
P, (v + BF — B[A(v)]) = Pm(v+ BF — B[A(v)]) as k — oc.
Brouwer’s fixed point theorem implies that the continuous map Q,,, : K., — K.,
has a fixed point, i.e. there is a solution u,, of (5.24)).
Now consider the sequence (u,,) of solutions to (5.24) (i.e. to (5.22))). Since
Um € Ky C K, K is bounded and V is reflexive, there is a subsequence of (u,,),
again denoted by (u,,) such that

(Upm,) — u weakly in V. (5.26)
Since u,, € K, K is convex and closed, we have u € K. Now we prove

lim sup(A(tm), m —u) < 0. (5.27)

m—r oo
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As U, K, is dense in K, for arbitrary € > 0 there is ug € USS_; K, such that
l[u—uollv <e. (5.28)
Further, ug € K, for sufficiently large m, thus by
(A(tm), Um — o) < (F, U — ug),
hence by and the boundedness of || A(um)]||v
(Aum), tm —u) = (A(tm), um — to) + (A(um),uo — u) < (F,um —uo) + ce

with some constant ¢. By (5.26]), (5.28)), this inequality implies (5.27]).
Finally, since A is pseudomonotone, ([5.26)), (5.27) imply

lim (A(um), tm —u) =0, (A(um)) = A(u) weakly in V* (5.29)

m—r o0

(for a subsequence). For arbitrary fixed v € UX_; K, the variational inequalities
(5.22) can be written in the form

(A(um),v —u) + (A(um), u — Up) > (F,v — u,y,) if m is sufficiently large.
By (5.26)), (5.29), from this inequality we obtain as n — oo
(A(u),v —u) > (F,v —u) for any v € Up>_1 K. (5.30)

Since UX_, K, is dense in K, (5.30) holds for arbitrary v € K, ie. u is a
solution of (5.8]). O

Now we formulate the extension of Theorem [5.7 to unbounded sets K.

Theorem 5.9. Let V' be a reflexive separable Banach space and K C V a
closed, convex subset. Assume that A : K — V* is bounded, pseudomonotone
and coercive in the following sense: there exists vg € K such that

(A(v),v — o)
[ollv
Then for arbitrary F € V*there exists a solution u € K of (@)

Proof. Set B ={v eV :|v|| <R} and Kr = K N Bg. Since Kg is a closed,
convex, bounded set, by Theorem [5.7] there exists ur € Kp with

— 400 if [|v]|ly = o0, vEK. (5.31)

(A(ugr),v —ugr) > (F,v — ug) for any v € Kg. (5.32)
Applying (5.32) to v = vg and R > |Jvg||y/, we obtain by
(A(ur),vo — ur) 2 (Fivo — ur) 2 —|[F|lv+|lvo — ur|lv,
hence

(A(ugr),ur — vo)
lurllv

llvollv + [lur]v

Vg — UR||V
Ivo = urlly gy,

|
< |[[Fv~

lurllv urllv
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where the right hand side is bounded if ||ug|v > 1. Thus by lurllv is
bounded for all R. Consequently, there are a sequence (Ry), converging to +o0o
and u € V such that

(ug, ) = u weakly in V. (5.33)

Since ug, € Kgr, C K, we have u € K. According to (5.32), for any v € K,
sufficiently large k

<A(uRk)7uRk - u> < <F’U’Rk - u> —0

thus
limsup(A(ur, ), ur, —u) <0,
k—o0
hence by ([5.33)
klim (A(ug,),ur, —u) =0 and (A(ug,)) = A(u) weakly in V* (5.34)
— 00

because A is pseudomonotone.
Applying (5.32) with arbitrary fixed v € K, R = Ry > ||v|lv, we obtain

(A(ur,),v —u) + (A(ug, ), v — ug,) > (F,v — ug,)
whence one obtains (by (5.33), (5.34)) as k — oo
(A(u),v —u) > (Fyv — u),
ie. u € K satisfies (5.8). O

Remark 5.10. If A : K — V* is strictly monotone then the solution of ([5.8)
is unique.

Indeed, assuming that u; € K satisfies
(A(uj),v—u;j) > (F,v—u;y), forallve K, j=1,2,
we obtain
(A(ur),ue —uq) > (Fyug —u1), (A(u2),u; —ug) > (Fyug — ug)

whence
(A(uy) — A(ug),u; —ug) <0

which implies u; = us.

Remark 5.11. Similarly to Remark 2.17] it is easy to show that if A is uni-
formly monotone then the solution u of (5.8]) depends on F' continuously. Indeed,
assuming

(A(uj),v —uj) > (Fj,v—u;y), foralve K, j=1,2,
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we have
(Aur) — A(ug),ur —uz) < (Fy — Fao,up —ug) < ||Fy — Fally+|lug — uz||v.
If A is uniformly monotone then according to Definition [2.15]
a(flur = ual[v)llur — ually < (A(ur) — Auz),u1 — uz),
thus
a(llur —uzllv) < |[Fy = Fallve, i ur —uollv < a”H([[Fy — Faflve)

where a~! : [0,00) — [0, 00) is a continuous function and a~1(0) = 0.

Problems
1. Consider the operator (5.1)) in V = Hi () with
K={ve H}Q) : ¢ <v<hgae. in Q}

where 1)1, 12 are measurable functions. By using the arguments in Exam-
ple [5.6] show that in this case the solution of the variational inequality
(5.8 can be considered as a weak solution of certain boundary value prob-
lem with “free boundary”.

2. Consider the operator (5.1) in V = H}(Q) with
K ={ve H}Q):|Dv(z) <1ae. inQ}

By using the arguments in Example[5.6] show that in this case the solution
of the variational inequality (5.8]) can be considered as a weak solution of
certain boundary value problem with “free boundary”.

3. Let Q C R™ be a bounded domain, V = Wol’p(Q), p>2and K CV a
closed convex set. Define the operator A by

(A(u),v) = Z/Q(Dju)|Du|p*2Djv, u,v € V.
j=1

Prove that then for all FF € V* there exists a unique solution of the
variational inequality (5.8)) and it depends on F' continuously.

4. Let V be a closed linear subspace of W™P(Q) (m >1,p>2)and K CV
a closed convex set. Define the operator A by

(A(u),v) = Z /(Do‘u)|Dau\p_2Do‘v, u,v € V.
jaf <m 7€

Show that for all F' € V* there exists a unique solution of the variational
inequality (5.8]) and it depends on F' continuously.



Chapter 2

FIRST ORDER
EVOLUTION EQUATIONS

6 Formulation of the abstract problem

In this section we shall motivate and formulate the abstract Cauchy problem
for first order evolution equations and problems which will be considered for
nonlinear parabolic equations with nonlinear elliptic operators of “divergence
type”.

In [67] the linear parabolic equation of the following form was considered:

Dyu — Z DjlajxDyu] + cu= fin Qr = (0,T) x Q (6.1)
jk=1

where 2 C R” is a bounded domain, D, = %, with the Dirichlet boundary
condition

u|r, = g where I'p = [0,T) x 09 (6.2)

and the initial condition
u(0,z) = h(z), z€. (6.3)

Assume that u € CY?(Q7) (i.e. w is a function which is once continuously
differentiable with respect to t and twice continuously differentiable with respect
to x in Q) is a classical solution of - . Multiplying the differential
equation with a test function v € C'(Q7) and integrating over Qr, by
Gauss theorem we obtained an equation which (with ) defined the weak
solution of problem — . In this formulation the equation contained the
initial condition (6.3, too.

Now we shall give another definition of the weak solution for certain nonlinear
parabolic equations and as a particular case for the linear equation . We

49
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SRR |

//Q \\\

Figure 2.1: The “cylinder” Qr

shall consider nonlinear parabolic equations of the form

Dyu — Z Djla;(t, z,u, Du)] + ao(t, z,u, Du) = f in Qr, (6.4)

j=1

which is analogous to the nonlinear elliptic equation (|1.4)) of divergence form.

In order to define the weak solution of , , (6.3) with homogeneous
boundary condition, multiply the differential equation (6.4]) with a test function
v e CHR) (ie. by a C! function with compact support), to obtain

/(Dtu)vderZ/ a;(t, z,u, Du)Djvder/ ao(t, z,u, Du)vde =  (6.5)
Q —Ja Q
j=1

/vadx.

Later we shall see that if the functions a; satisfy certain growth conditions
(which are analogous to (A2)) then for a.a. fixed ¢ € [0,T],

x> a;(t, v, u(t,z), Du(t,z)) € LI(Q) if x> u(t,z) € WHP(Q)

(I<p<oo,l/p+1/qg=1).

Then (6.5) holds for all test functions v € W, ().
Introduce the notations

V=WyPQ), Ult)=z—ultz), zcQ
and with a fixed ¢t € [0, T] define operator A(t) and operator A by
([AW)](),v) = ([AB[U(B)],v) = (6.6)

n
/aj(t,x,u,Du)Djvdx—l—/ao(t,x,u,Du)vdaz, U(t),v eV,
=Je Q
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and define F'(t) for all fixed ¢t € [0,T] by
F(t)v = / f(t,z)v(x)dx, assuming z — f(t,x) € LI(Q). (6.7)
Q

Then for each fixed ¢ € [0, T]
[A))(t) e V*, A(t):V = V*, F{)eV*

and equation (6.5) can be written in the form of the “ordinary differential equa-
tion”

[D.U](t) + [AWU)|(t) = F(t), te]0,T). (6.8)

In order to give the exact definition of the equation , we have to define the
derivative D, U. Further, we have to give the exact definition of the initial con-
dition U(0) = h, corresponding to . The homogeneous boundary condition
(i.e. the case g = 0) will be taken into consideration by V = W, ().

First we define the function spaces L?(0,7T; V') which will be the domain of
definition of operator A.

Definition 6.1. Let V be a Banach space, 0 <T < 00, 1 < p < 0. Denote by
LP(0,T;V) the set of measurable functions f: (0,T) — V such that || f(t)|} is
integrable and define the norm by

T
e WGl 2

Then LP(0,7;V) is a Banach space over R (identifying functions that are
equal almost everywhere on (0,T")). If V is separable then L?(0,7T;V) is sepa-
rable, too.

Denoting by V* the dual space of V' and by (-,-) the dualities in spaces
V*, V, we have for all f € LP(0,T;V), g € L0, T;V*) with 1 < p < oo,
1/p+1/q = 1 Holder’s inequality

T T 1/p
SVO ||g(t)||q*dt] /O|f(t)|§’/dt] .

Further, for 1 < p < oo the dual space of LP(0,T; V) is isomorphic and isomet-
ric to L(0,T;V*). Thus we may identify the dual space of LP(0,T;V) with
L(0,7;V*). Consequently, if V is reflexive then LP(0,T;V) is reflexive for
1 < p < 00. The detailed proof of the above facts can be found, e.g., in [93].
The dualities between L%(0,T; V*) and L?(0,T;V) will be denoted by [, ].

1/q

T
/0 (g(t). ()t

Definition 6.2. Let V' be a real separable and reflexive Banach space and H a
real separable Hilbert space with the scalar product (-,-) such that the imbedding
V C H is continuous and V is dense in H. Then the formula

(0,u) = (v,u), weV, veH
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defines a linear continuous functional U over V and it generates a bijection
between H and a subset of V*, i.e. we may write

VCcHCV*
which will be called an evolution triple.

Example 6.3. Let Q2 C R” be a bounded domain, m a nonnegative integer and
2 < p < co. Let V be a closed linear subspace of the Sobolev space W™ ()
and H = L*(Q). Then V C H C V* is an evolution triple.

Now we define the generalized derivatives of functions u € LP(0,T; V).

Definition 6.4. Let V C H C V* be an evolution triple, uw € LP(0,T;V). If
there exists w € L1(0,T;V*) such that

for all ¢ € C§°(0,T) (i.e. for all infinitely many times differentiable functions
on (0,T) with compact support) then w is called the generalized derivative of u
and it is denoted by u'.

Remark 6.5. In the above equality u(t) € V is considered as an element of
V*. In this case we shall write briefly v’ € L7(0,T;V*). It is easily seen that
the generalized derivative is unique.

Further, it is not difficult to show that v’ = w € L(0,T; V*) if and only if

/ (u(t),v)ge'(t)dt = —/ (w(t),v)p(t)dt for all ¢ € C;°(0,T), v € H.
0 0

Theorem 6.6. Let V C H C V* be an evolution triple, 1 < p < oo, 1/p+1/q =
1,0<T < o0. Then

1 . _ . . .
W(0,T;V, H) = {u € LP(0,T; V) : u/ € L9(0,T; V*)}

with the norm

[ull = llullLoo.0:vy + W | Lago,rv+)
18 a Banach space. VVp1 (0,T;V,H) is continuously imbedded into C([0,T); H)
(the space of continuous functions v : [0,T] — H with the supremum norm)
in the following sense: to every u € VVp1 (0,T;V,H) there is a uniquely defined
u € C([0,T); H) such that u(t) = u(t) for a.e. t € [0,T] and

allc o,y < constllullwo,r;v,m)-

Further, the following integration by parts formula holds for arbitrary functions
u,v € WZ}(O,T;V,H) and 0 <s<t<T:

(u(t), v(t)) = (u(s), v(s)) = / [(w'(7), 0(7)) + (v'(7), u(7)))dr. (6.9)
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(In u(t),u(s) mean the values of the above & € C([0,T]; H) in t,s,
respectively.)

Remark 6.7. In the case v =u € W, (0,T;V, H) we obtain from (6.9)

lu(@)I1 = llu(s) 17 = 2[ (' (7), u(r))dr.

The detailed proof of Theorem [6.6[ can be found in [30].

7 Cauchy problem with monotone operators

In this section let V' C H C V* be an evolution triple, 1 < p <00, 0< T < 00
and let us use the notations

X = IP(0,T:V), [Fu] = /T<F(t),v(t)>dt, ve X, FeX*

Let A: X — X* be an operator given by

[A()]() = [A®)](u(t)

where for a.a. fixed t € [0,T], A(t) maps V into V*, ug € H, F € X*. We want
to find u € WZ} (0,T;V, H) satisfying

u 4+ A(u) =F, u(0) = up. (7.1)
By Theorem [6.6] the initial condition makes sense.

Theorem 7.1. Let V C H C V* be an evolution triple, 1 < p < 00,0 < T < o0.

Assume that for all fized t € [0,T), A(t) : V — V* is monotone, hemicontinuous
and bounded in the sense

IA@D @) lv+ < erllollp " + ka(t) (7.2)

forallv eV, t €[0,T] with a suitable constant ¢y and a function ky € L1(0,T).
Further, A(t) is coercive in the sense: there exist a constant ca > 0 and a
function ko € LY(0,T) such that

(A1) (v),v) = eallvlly; — k(1) (7.3)

forallv eV, te[0,T). Finally, for arbitrary fized u,v € V, the function

t— (A(t)(u),v), t€][0,T] is measurable . (7.4)

Then for arbitrary F € L1(0,T;V*) and ug € H there exists a unique solution

of problem with the operator A defined by [A(u)](t) = [A(¢)](u(t)).
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In the proof we shall apply the following theorem of Carathéodory (see [93]
and [19]).

Theorem 7.2. Set I = [to,to+ 7], K = {z € R" : |x — 29| < r} and assume
that the functions f; : I x K = R, j =1,...,n satisfy the following conditions:

t — f;(t,z) is measurable on I for all fived x € K,
x — f;(t,z) is continuous on K for a.a. t € I
(“Carathéodory conditions”) and there exists a function M € L*(I) such that
|fi(t,x)| < M(t) forallz € K, a.a. t € 1.

Then there exist absolute continuous functions &; satisfying the initial value
problem

§(t) = f;(t,£(t)) a.e. in a neighbourhood of to,  £(0) = xo

where f(t) = (51 (t)v ce 7§n(t))

Proof of Theorem[7.1} The proof is based on Galerkin’s approximation. Since
V' is separable, there exists a countable set of linearly independent elements
Z1y vy 2k, ... such that their finite linear combinations are dense in V. We shall
find the m-th approximation of a solution « in the form

m
U () = Zakm(t)zk with some ag,, € W9(0,T)
k=1
such that for a.e. t € [0,T]
(un (1), 25) + (A [um ()], 25) = (F(t),2;), j=1,...,m, (7.5)
U (0) = Umo € V,, = span(zy, ..., 2m), where (tmo) — ug in H. (7.6)

System ([7.5) is a system of ordinary differential equations for ag,, because it
has the form

D G () (20 25) + (ADD_ arm(D)z1), 25) = (F(2), 25) (7.7)
=1 k=1

and ([7.6]) is equivalent to
ajm(O) = «j0, _] = 1,...,m (78)

with some a ;o € R. The system (7.7)) can be transformed to explicit form since
the determinant det(z, z;) # 0, because 21, ..., z, are linearly independent.
According to assumption ([7.4)), the functions

a;(t,w) = a;(t, wi,...,wp) = (A(t)[Zwkzk},zﬁ j=1,...,m
k=1
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are measurable in ¢ (with fixed w) and continuous in w = (w1, ..., Wy, ), because
for all fixed ¢t € [0,T], A(t) : V — V* is monotone, hemicontinuous, bounded
by the assumptions of the theorem, thus it is pseudomonotone and so it is
demicontinuous (see Propositions [2.5| 2.7). From it follows that |a;(t,w)]
can be estimated locally by an integrable function M (t). Consequently, by
Theorem (theorem of Carathéodory ), there exists a solution of in a
neighbourhood of 0.

The coercivity assumption implies that the solutions a;, and thus u,
can be extended to the whole interval [0,7T]. Indeed, if w,, satisfies in a
neighbourhood of 0, then multiplying by @, (t) and summing with respect
to 7, we obtain

(g (), um (1)) + ([A@)][um ()], um (1)) = (F(t), um(t)). (7.9)
Integrating over an interval (0,t) (¢ € [0,T]), by Remark [6.7| one obtains

SOl = O+ [ (AN wnrir = (710
| F@ unar
hence by
e Ol +e2 [ lun(r)ar < ol e (711)

T t 1/p
/ ka(r)dr + | Fll oo {/ ||um(r)||1;.dr} .
0 0

As the constant ¢y is positive and p > 1, we get from (7.11) that there is a
constant with

t
/ lm (7|2 dr < const, ¢ € [0,T] (7.12)
0

and thus
lum (t)||3 < const, t € [0,T). (7.13)

Consequently, a;,,(t) (defined in a neighbourhood of 0) can be estimated by a
constant, not depending on ¢, therefore, the solutions a;,, can be extended to
[0, T7.

Further, by using the notations X = LP(0,T;V), X* = L4(0,T;V™), we
obtain that

[t x s sup ||um ()|, m =1,2,... are bounded, (7.14)
t€[0,T)

hence ||A(unm)||x+ is bounded, too because by (7.2) A : X — X* is a bounded
operator. Since X, X* and H are reflexive, there exist a subsequence of (uy,),
again denoted by (u,), and u € X, w € X*, 2 € H such that

(Um) = u weakly in X,  (A(up)) = w weakly in X*, (7.15)
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(um(T)) — z weakly in H.
Now we prove

Lemma 7.3. Let V. C H C V* be an evolution triple, 1 < p < co. Assume
that uy, satisfies (7.5), (um) — u weakly in LP(0,T;V), (A(up)) — w weakly
in X*, (um(0)) = ug weakly in H and (um(T)) — z weakly in H. Then

o € LY0,T;V*), v +w=F, u0)=uy u)=z2. (7.16)

Proof. Let ¢ € C*°[0,T] be an arbitrary function and v € V an arbitrary
element. Since U2, V; =V, there exist

vy € V; such that (v;) — v in V. (7.17)
Clearly, v, € W)(0,T;V, H), un, € Wy (0,T;V, H), thus by (6.9), (7.5)
(um (1), ¥(T)v1) = (um(0), ¥ (0)vr) = (7.18)

T
Au%mwwm+ww%wth

T
/0 [(F () = [AW®)][wm ()], ¥ ()vr) + (' ()01, wm (£)]dt.
By the assumption of the lemma we obtain from as m — 0o
(z,0(T)vr) = (uo, ¥(0)ur) =
T
[P = vty + (0.
Thus by we get as [ — 0o
(2, (T)v) = (uo, ¥(0)v) = (7.19)
T
[ 1P = w v + (00 e
In the case ¢ € C§°(0,T) implies

/[w@—wwwmm=—/<ummwwﬁ
0 0

thus by Remark there exists v’ € L9(0,T;V*) and
W' (t)=F(t) —w, ueWy(0,T;V,H). (7.20)
Due to (6.9), (7.19), (7.20) for all v

T
(U(T),w(T)U)—(u(O),w(O)v)=/O [(u'(£), ¥ (t)v) + (¢ (t)v, u(t))]dt = (7.21)
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(2, (T)v) = (uo, ¥(0)v).
Hence with a function ¢ € C*°[0,T], ¥(T) = 1, ¥(0) = 0 we obtain u(T) = z,
and with ¢(T) = 0, ¥(0) = 1, u(0) = ug. So by we have proved Lemma
3l 0O

By (7.6) and Lemma (7.5) implies ((7.16)). Further, we show
lim sup[A(tm ), tm — u] < 0. (7.22)

By (190 T T
/0 (LA [t (8] 21 (£)) = / (F(8), tm () dt+

1 1
Slum ) = Sllun (I,

hence (7.6), (7.15), (7.16) imply
T
limsup/ (TA)] [t ()], e ()t = (7.23)
m—oo Jo
T 1 , 1. . )
(F(t), u(®)dt + S[[u(0)[[7r — 5 T inf [un, (T)]7-
0 2 2 m—oo
Since by ([7.16)) in the Hilbert space H
U (T') — w(T) weakly in H,

we have
(T 7 < T i [ (7)1,

whence (7.16)), (7.23), Remark imply
1

tn sup{ A, ] < [, + 5 ()| = 3 (T3 =

m—o0

ol ]+ o) 3 [u(0) 3 — T = o,

thus by (7.15)

lim Sup[A(um)aum - u] < [U),’LL] - [wvu} =0,
m—r oo

i.e. we have (7.22).

Finally, b A: X — X* is bounded and it is monotone since A(t) is
monotone for each fixed t. Because of the hemicontinuity of A(t), A : X —
X* is hemicontinuous by ([7.2)) and Lebesgue’s dominated convergence theorem.
Therefore, Proposition plies that A : X — X* is pseudomonotone (X =

L?(0,T;V) is reflexive). Consequently, (7.15)), (7.22) imply w = A(u) which
completes the proof of the existence.
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Uniqueness of the solution follows from the fact that A(t) : V — V* is
monotone for all t. Indeed, assuming that uy,us € W (0,T;V, H) are solutions
of (7.1)), we find for all ¢ € [0, 7]

/ (wl(r), s () — uan(r))dr + / (Au)](r), u (7) — ua(r))dr =
0 0

whence

/0 () — wy(7), un (7) — un (7)) + (7.24)

[ 4Ir) - 14N, (r) = watryar =0,

Since A(7) is monotone for a.a. fixed 7, the second term on the left hand side
of (7.24)) is nonnegative, thus by
lur (8) = ua (B)[17 — fJua (0) — u2(0)[[7 < 0

which implies ||ug(t) — u2(t)|| g < 0 for each ¢ because u1(0) — u2(0) = 0, thus
Up = uUg. O

Remark 7.4. Assume that the conditions of Theorem [Z1] are satisfied such
that A(t) is uniformly monotone in the sense

([AD)](v1) = [A)](v2), 01 = v2) = ellor = va|l}y, w10 €V (7.25)
with some constant ¢ > 0, for all ¢ € [0,T]. Then the solution of (7.1]) depends
on F' and wug continuously: if u; is a solution of (7.1) with F' = F}, ug = uo;
(7 =1,2) then for all t € [0,T]

llur (8) = w2 ()1 F + cllur — w200 1oy < (7.26)
eIy = FallFa o movey + lluor — ozl

with some positive constant ¢. Indeed, similarly to (7.24]) we obtain

t
l[ur(t) — w2 ()3 — lluor — w2l + 20/ s (7) = ua ()|}, dr <
0

2{ [1m6e wm} L ) wate >||Vdf} !

whence, by using Young’s inequality with a sufficiently small € > 0 we obtain
(7.26)).
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Remark 7.5. Assume that there exists a > 0 such that the operator B, defined
by B(v) = [A(¢)](v) + av is uniformly monotone, i.e.

([A®] (1) = [AD)](v2), v1 = v2) = cllor —v2|[§, — aflor — w2l

with some constant ¢ > 0. Then the solution of is unique and it depends
continuously on F' and ug.

Indeed, multiplying the equation by e~ we obtain that %(t) = e~ u(t)
satisfies @(0) = up and

a(t) + e A®)][e®u(t)] + au(t) = e F(t).
Applying Remark to the operator B(t), defined by
[B(t)](v) = e~ [A(1)][e"v] + av
and to 4, we obtain the uniqueness of the solution of and for @;(t) =
e u;(t), Fj(t) = e “F;(t) (j = 1,2) an estimation of the form

- _ Ch~
2 (8) = @2 (®)ll + Sl — 20700 7o) <

eIFy = Fol|a o goyey + luor — wozll7-

Remark 7.6. According to the proof of Theorem a subsequence of the
Galerkin solutions (u.,) converges weakly in L?(0,T'; V') to a solution u of (7.1).

Since the solution of (7.1)) is unique, the total sequence (u,,) is also weakly
converging to u. Further, similarly to the elliptic case, if (7.25) holds, i.e. A(t)

is uniformly monotone, then
(um) — w strongly in LP(0,T; V).

Indeed, assuming that the original sequence does not converge weakly to u, by
using Cantor’s trick, we get a contradiction. Further, by (7.25))

T
c / et () = ()3t < [Altn) = A(t), g — u] =

[A(wm), U — u] — [A(w), Uy, — u] = 0
by (7.15) and ([7.22)) since A is pseudomonotone.

8 Application to nonlinear parabolic equations

By using the results of Sections [3] one obtains the following applications of
Section [7] to nonlinear parabolic equations.

Let V be a closed linear subspace of W'(Q) (containing W, (1)), 2 <
p < 00, & C R™ a bounded domain with “sufficiently smooth” boundary (see,
eg., 1), H = L*(Q). Then V C H C V* is an evolution triple. We shall
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consider operators A : LP(0,T;V) — L9(0,T;V*), defined by a formula which
is analogous to (3.1]).

On functions a; we assume
(B1) Functions a; : Qr x R"™ — R (j = 1,...,n) satisfy the Carathéodory
conditions, i.e. for a.e. fixed (¢t,z) € Qr = (0,T) x

& aj(t,zg), §€ R"™*! is continuous
and for each fixed ¢ € R"*?
(t,x) = a;(t,z,§), (t,z)€ Qr is measurable.

(B2) There exist a constant ¢; > 0 and a function k; € LY(Qr) (1/p+1/g=1)
such that for a.e. (t,2) € Qr, all £ € R*H!

|aj(ta J),f)l < cl|§|p_1 + kl(tvx)'
(B3) For a.a. (t,z) € Qr, all £,&* € R+

> laj(t,7,€) — a;(t,2,£)1(& — &) > 0.

7=0
(B4) There exist a constant ¢y > 0, ko € L'(Q7) such that for a.e. (¢,7) € Qr,
all € € R7H1

Zaj(tv x)f)ﬁj > 02|§|p — kz(t,x).
7=0

In this particular case, when V is a closed linear subspace of W1P(Q), for a
function U € LP(0,T;V) we shall denote U(t) by wu(t,z) and instead of U €
L?(0,T;V) we shall write u € L?(0,T; V).

By using the same arguments as in Section [3] one proves

Theorem 8.1. Assume (B1) — (B4). Then the operator A, defined by

[A(u), v] = /0 (AU D), v(t))dt = (8.1)

n

T
/ / Zaj(t,m,u,Du)Djv—I—ao(t,x,u,Du)v dx p dt, w,ve LP(0,T;V)
0 Q

Jj=1

satisfies the assumptions of Theorem . Thus for any F € L1(0,T;V*), ug €
H = L?(Q) there is a unique solution u of with the operator .

Proposition implies the following sufficient condition for (B3).

Proposition 8.2. Assume that functions a; satisfy (Bl), further, for a.a.
(t,xz) € Qr, the functions & — a;(t,x,&) are continuously differentiable and

the matrix N
<aaj(t7 €, 5) )
afk j,k=0

is positive semidefinite. Then (B3) holds.
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Proposition 8.3. Assume that the assumptions of Proposition[8.4 are fulfilled
such that for a.a. (t,x) € Qr, each &,n € R**!

n

Z 35 (t z, )i = C3Z|§J - 2‘77]|2 (8.2)

7,k=0 7=0

with p > 2 and some positive constant c3. Then

n

Zajtxé a;(t,z, &), Z - &P
7=0

7=0

with some constant é¢s > 0. Consequently, the operator A(t), defined by 18
uniformly monotone in the sense and so the solution of 18 unique
and it depends continuously on F and ug according to . Further, due to
Remark [7.6] the sequence, constructed by the Galerkin method converges to the
solution u with respect to the norm of LP(0,T;V).

Example 8.4. A simple example satisfying all the above conditions is the
equation
Dyu— Apu — cululP™2 = f, ¢ >0 is a constant .

(See Example [3.8])
In the case V = W, ”(€2) (with bounded ) the conditions are satisfied also

for the equation
Dy — Apu = f.

Problems
1. Assume that the functions
aj :Qr xR =R, j=01,...,n
satisfy the Carathéodory conditions and for a.a. (¢,2) € Qr
& — a;(t,z,§;) is monotone nondecreasing,

BilEIP! <t @, &) < Bol&P7h, & ER

with some positive constants (31, 32. Consider the operator

T n
[A(u), v] :/ / Zaj(t,aiju)Djv—i—ozo(t,x,u)v dx p dt,
0 Q|4
j=1
u,v € LP(0,T;V)
where V is a closed linear subspace of W1P(Q), p > 2.

Show that for arbitrary F € L4(0,T : V*) and ug € L*(f) there exists a
unique solution of problem (7.1).
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2. Assume that the functions §; — «;(t, z, ;) are continuously differentiable

and there exists a positive constant 3 such that

0

0¢;

By using Remark [7.5] and Proposition [3.4] , show that the solution of the
above problem depends continuously on F' and ug.

(t7x7§]) 2 ﬁ3|£j|p72'

. Let o, 8 : Q7 — R be measurable functions satisfying

a1 <alt,z) <co, c1 <B(tz)<cg, foralmostall (t,z) € Qr

with some positive constants c1, co. Define operator A by

T ~
[A(u), 0] =/O (AN [u@®)], v(t))dt =

T
/ {/ [a(t, z)Dju|DulP~?Djv + B(t, x)u|u|p_2v]dac} dt,
0 Q

u,v € LP(0,T; V) where V.C WHP(€) is a closed linear subspace, p > 2.

By using Theorem and Remark show that there exists a unique
solution of problem ([7.1)) and it depends continuously on F' and wuyg.

. Assume that u € C12(Qr) is a (classical) solution of (6.1)), (6.3) with the

boundary condition
u(t,z) = g(z), (t,z)€eTlr

where g(z) = h(z) for z € 9Q and wg € WHP(Q) satisfies woloq = g
Define the function ug by wug(t, ) = wo(z).

Prove that then the function 4@ = u — ug satisfies
W+ Alt+u)=F, aeWh0,T;V,H),

’11(0) =h— wo
where V = W} (), H = L?(Q), the operator A is defined by and
F is defined by (6.7]).

Ifae WI} (0, T;V, H) satisfies the above conditions, u = @ + ug is called a
weak solution of the above (classical) initial-boundary value problem.

. By using Theorem show that if the functions a; satisfy (B1)-(B4)

then there is a weak solution u = 4 + ug of the above problem with
nonhomogeneous boundary condition. (See Problem 4.)
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6. Assume that the functions
fa:Qr xR =R, |a]<m
satisfy the Carathéodory conditions and for a.a. (¢,x) € Qr
o = fa(t,x, &) is monotone nondecreasing,

Bl‘falp_l < ‘fa(t7x7§a)| < 52‘5a|p_17 o €ER

with some positive constants (31, 32. Consider the operator

T ~
[A(u), v] =/ (A [u@)], v(t))dt =

0

T
/ / Z fa(t,z, D) D | dx  dt,
0 Q

lal<m
u,v € LP(0,T;V) where V.C W"™P(Q) is a closed linear subspace, p >
2,m > 1 and for |a] = 0, D*u = u by definition.

Show that for arbitrary F € L4(0,T;V*) and ug € L?(f2) there exists a
unique solution of problem ([7.1)) with the above operator A.

7. Assume the the functions &, — f4(t, z,£,) are continuously differentiable
and there exists a positive constant (3 such that

%(t7x7§a) 2 /63|§04‘p725 p 2 2

By using Proposition and Remark show that the solution of the
above problem depends continuously on F' and ug.

9 Cauchy problem with pseudomonotone opera-
tors

In the proof of Theorem ﬂ we did not use the monotonicity of A(t) directly,
it would be sufficient to assume instead of monotonicity and hemicontinuity
that A(t) : V — V* is demicontinuous and A : LP(0,T;V) — L2(0,T;V*) is
pseudomonotone. Moreover, it is sufficient to assume a weaker form of pseu-
domonotonicity, which will be satisfied for operators of the form if the
functions a; satisfy conditions which are analogous to (A3), (A3'), respectively.

Definition 9.1. Let V C H C V* be an evolution triple, p > 1. A bounded
operator A : LP(0,T;V) — L1(0,T; V™) is called pseudomonotone with respect
to W(0,T;V, H) if

ug € VVpl(O,T;V,H)7 (ug) = u weakly in LP(0,T;V), (9.1)
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(u},) — v’ weakly in LY(0,T;V*), (9.2)
lilzn sup[A(ug), ur —u] <0 (9.3)
— 00

imply

lim [A(ug), ur —u] =0 and (A(uy)) — A(u) weakly in LU0, T; V™). (9.4)

k—o0

Theorem 9.2. Let V C H C V* be an evolution triple, 1 < p < o0, 0 <T < oo.

Assume that for a.a. fized t € [0,T], A(t) : V — V* is demicontinuous and
bounded such that for allv eV, a.e. t €[0,T]

IABI@) v+ < exlloll§, + Ea(#) (9-5)

with a suitable constant ¢, > 0 and ky € L9(0,T). Further, A(t) is coercive
such that for allv € V, a.e. t € [0,T]

(A1), v) = eallvllyy — ka(t) (9.6)

with some constant ca > 0, ke € LY(0,T) and for arbitrary fized u,v € V, the
function

t ([A®)](u),v), t€[0,T] is measurable . (9.7

Finally, the operator A : LP(0,T;V) — L(0,T;V*), defined by [A(u)](t) =
[A(t)][u(t)] is pseudomonotone with respect to W) (0, T3V, H).

Then for any F € X* = L0, T;V*) and uy € H there exists a solution u

of .

Proof. Theorem [0.2]follows by a slight modification of the proof of Theorem [7.1]
because we only have to show property for a subsequence of the sequence,
constructed by Galerkin’s method. Clearly it will follow from the fact that the
sequence (u).) is bounded in L2(0,T; V™).

Multiply the equations (defining w,,, with the initial condition (7.6))
with arbitrary functions bj,, € LP(0,T) and integrate over [0,7]. Then we

obtain for the sum of these equations

[ur,, w] + [A(um), w] = [F,w] where (9.8)
w(t) = ibjm(t)zj and w € LP(0,T;V). (9.9)
j=1

The equation implies

[t w]| < [IF, w]] + |[Atm), w]]| <

[HFHL‘I(&T;V*) + HA(Um)HLq(QT;V*ﬂ ”w”LP(&T;V) < ConStHw”LP(O,T;V)

where the constant is independent of m and w.
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The functions w of the form (for all m and arbitrary b;,, € L?(0,T))
are dense in L%(0,T; V*) because the linear combinations of z; are dense in V,
thus

[ w]| < constf|w]|Lr(o,7;v)
holds for all w € LP(0,T;V) (with a constant, not depending on w). Thus we

obtained that (ul,) is bounded with respect to the norm of L7(0,T;V™*), the
dual space of LP(0,7T; V'), which completes the proof of Theorem (9.2 O

Now we shall formulate a generalization of Theorem Let VCHCV™
be an evolution triple, 1 < p < 00, 0 < T < oo. Define operator L as follows:

Lu=u, weD(L)={uecW,(0,T;V,H): u(0) =0} (9.10)

One can show that L is a closed, linear, densely defined operator from LP(0,T; V)
into L9(0,T;V*), which is monotone by Remark since

(L] = [ @, u(®)de = 5y >0,

Further, L is “maximal monotone”, which means that there is no proper mono-
tone extension of it. (For the proof see, e.g., [03].)

Another example of a closed, linear, densely defined maximal monotone
operator is (see, Theorem :

Lu=u/, weD(L)={ueW)(0,T;V,H) : u(T) =u(0)}. (9.11)

Definition 9.3. Let V C H C V* be an evolution triple, 1 <p < oo, 0 < T <
00. Denote by L a closed, linear, densely defined, maximal monotone opera-
tor from LP(0,T;V) into L1(0,T;V*). A bounded operator A : LP(0,T;V) —
L(0,T; V™) is called pseudomonotone with respect to D(L) if

ug,u € D(L), (ug) — u weakly in LP(0,T;V),
(Lug) — Lu weakly in L0, T; V™), lilrcn sup[A(ug), ux —u] <0
—00
imply
lim [A(ug),ur —u] =0 and (A(ug)) = A(u) weakly in LI(0,T; V™).

k—o0

Theorem 9.4. LetV C H C V* be an evolution triple, 1 < p < 00,0 < T < o0.

Denote by L a closed, linear, densely defined, maximal monotone operator from

L?(0,T;V) into L1(0,T;V*). Assume that A : LP(0,T;V) — L9(0,T;V*) is

bounded, demicontinuous, pseudomonotone with respect to D(L) and coercive.
Then for all F € L1(0,T; V™) there exists a solution u € D(L) of

Lu+ A(u) = F.
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For the proof see, e.g., [§].
It is important that in Theorem A LP(0,T;V) — L9(0,T;V*) is not
assumed to have the form

[A(w)](t) = [A@®)][u(?))], (9.12)

ie. [A(w)](t) may depend not only on u(t), thus the above theorem can be
applied to “functional parabolic equations”. (See some examples in Section )

Remark 9.5. Applying Theorem with operator L, defined by 1' and
operator A, defined by (9.12)), one obtains existence of T-periodic solutions, see
Section [13

Now consider the particular case when Lu = «' and D(L) is defined by
(19.10). We generalize the existence theorem to the case of nonhomogeneous
initial condition.

Theorem 9.6. Let V C H C V* be an evolution triple, 1 < p < 00,0 < T < o0
and let L be defined by (9.10). Assume that A : LP(0,T;V) — L9(0,T;V*) is
bounded, demicontinuous, pseudomonotone with respect to VVp1 (0, T;V,H) and
coercive such that for arbitrary constant ¢ > 0

Jo ([A@)(#), u(t))dt = el A@w) | Lagorv)

11m
f[ul[—o0 [wll Lo o,7;v)

= 400

Then for all F € LY(0,T;V*), ug € H there exists a solution v € W, (0,T;V, H)
of
u + A(u) =F, u(0) = ug. (9.13)

Proof. If ug € V, one can reduce problem (9.13)) to the case ug = 0 as follows.
By using the notations ug(t) = wg, t € [0,T], @ = u — ug, problem (9.13) is
equivalent to the problem

i + Al +ug) = F, @(0) =0. (9.14)

Clearly, the operator @ — A(@ + up) is demicontinuous, bounded and pseu-
domonotone with respect to D(L). Further, it is coercive because
[A(a-i-Uo),ﬂ] [A(’a—FUo),ﬂ-f—’U,o] - [A(ﬂ"f‘U;O),U,O]

— = - >
il e o0.1.v) @l e 0. 1.v)

[A(a + uo), & + uo] — |uoll e o,7;v) | A(@ + uo) || Lago,ryv+)
1% + woll e (0,75v)

@+ ol e 0,151

o — 400
@l Lo 0,7;v)
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if ||@|| £r 0,7,y — oo since then ||@ + uol| £r(o,r;vy) — 00. Thus for any ug € H
there is a solution @ of by Theorem [9.4

Now let ug € H arbitrary element. Since V' is dense in H, there is a sequence
of u,g € V, converging to ug in H. According to the first part of the proof,
there is a solution u,, € W, (0,T;V, H) of

ulm + A(um) =F, um(o) = Umo-

By using the arguments of the proof of Theorem [7.I] we obtain that there is
a subsequence of (u,,) which converges weakly in LP(0,T;V) to a solution of
(©.13). O

10 Parabolic equations and functional equations

Parabolic differential equations

Here we shall apply the results of Section [9]to the case when V is a closed linear
subspace of WP(Q), 2 < p < 0o, Q C R” is a bounded domain (with sufficiently
smooth boundary), H = L?(Q). First we shall consider operators A of the form
, but instead of (B3), with weaker assumptions, which are analogous to
assumptions (1213), (A3'), respectively, considered in the nonlinear elliptic case.
It will be proved that A is pseudomonotone with respect to Wp1 (0,T;V,H), by
using the following compact imbedding theorem.

Theorem 10.1. Let V. C H C V* be an evolution triple, B a Banach space
satisfying

V € BC V™, the imbedding V C B is compact, B C V* is continuous .
(10.1)
Then for any 1 < p < oo, the imbedding

1 ) .
W, (0,T;V,H) C LP(0,T; B)
1§ compact.

In the proof of Theorem [10.1] we shall use

Lemma 10.2. Assume . Then for arbitrary n > 0 there exists a constant
¢y > 0 such that for allv eV

ol < nllvllv + eyllvllv (10.2)

Proof. Assume that (10.2) does not hold, then there exists n > 0 and sequences
(ck), (vk), ck € R, v, € V, satisfying

||UkHB > UHUkHV + CkHUk”V*a lim ¢ = +o0. (10.3)
k—o0
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Then for wy, = vi/||vg||lv we have

V|| B
|lwells > 1+ ckllwellvs, ||wklls = o] < const (10.4)

lowllv —
because the imbedding V' C B is continuous. Thus (10.3), (10.4)) imply

lim |Jwg|v+ = 0. (10.5)
k—o0

Further, since ||wi|ly = 1 and the imbedding V' C B is compact, there is a
subsequence (wy,) of (wy) which is convergent in B. Due to the limit in
B must be 0, i.e.

lim |lwg, |l =0

l—o00

which is impossible because of ((10.4)). O

Proof of Theorem[10.1. Let (v) be a bounded sequence in W, (0,T;V, H). We
have to show that a subsequence is convergent in LP(0,T; B). First observe
that as W (0,T;V, H) is a reflexive Banach space (V, V* are reflexive thus
L?(0,T;V), L0, T; V*) are reflexive), thus there are v € Wp1 (0,T;V,H) and a
subsequence of (vi), again denoted by (vg) such that

(vk) = v weakly in T/V]D1 (0,T;V,H), thus (10.6)
(vk — v) — 0 weakly in W, (0,T;V, H).
To prove our theorem, we have to show that
(vg —v) = 0in LP(0,T; B). (10.7)
Introduce the notation v, = vy — v, due to we have
(%) — 0 weakly in W, (0,T;V, H), ||Okllwyo.r:v.m) < ¢* (10.8)
with some constant ¢* > 0. We prove that
(0x) — 0in LP(0,T; B). (10.9)
By Lemma@ for arbitrary 7 > 0 there exists ¢, > 0 such that
1oxll5 < nllokllv + cqllOeflv+
which implies
0&]l e (0, 7:8) < 0llOk e 0,730y + CnllOnkllLe 0,10 +) < (10.10)

c*n + eyl Okl Le 0,750 +)-
Since ([10.10]) holds for arbitrary n > 0, we shall obtain ((10.9) by showing
(0k) = 0in LP(0,T; V™). (10.11)
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The convergence (|10.11) will follow from Lebesgue’s dominated convergence
theorem, if we show that for almost all s € [0, T,

Ok (s) — 0 with respect to the norm of V*. (10.12)
Indeed, for a.a. s € [0,7], k € N
|0k (s)||v+ < const
since (%) is bounded in W) (0,T;V, H) and by Theorem [6.6| W, (0, T;V, H) is
continuously imbedded into C([0,T]; H), hence into C([0,TT; V*), too.

Now we prove (10.12)). For simplicity, consider the case s = 0, the general
case can be treated similarly. Define functions u by

we(t) = o(\), € [0,T] (10.13)

where the constant A € (0,1) will be chosen later. By the definition (10.13))
uj(0) = 0(0), and as (0y) is bounded in W} (0,T; V, H), we obtain inequalities

Loy < AP lugllpaovey < doAMP (10.14)

with some constants di,ds > 0, not depending on A\. Let ¢ € C'[0,T] be a
function with the properties p(0) = —1, ¢(T') = 0. Then

T T T
u(0) = / (puy)'dt = / oujdt —I—/ O updt = B + Y (10.15)
0 0 0
whence by ((10.14))
106 (0)[lv+ = [Jur(0)[|v+ < [IBrllvs + [vellve < (10.16)

dsAMP + |||y

The number A € (0,1) can be chosen such that the first term in the right
hand side of (|10.16) is arbitrary small for all n € N. Therefore, we shall obtain
(10.12) for s = 0 if we show that

9]l = 0 in V*. (10.17)

According to (10.8) (%) — 0 weakly in W, (0,T;V, H), thus (7x) — 0 and so
(ug) — 0 weakly in LP(0,T; V) for arbitrary fixed A € (0,1). Consequently, by

the definition (10.15)) of ~g,

(vk) — 0 weakly in V. (10.18)

Since the imbedding V' C V* is compact, ((10.18]) implies (10.17]) which completes
the proof of Theorem O
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Now instead of (B3) we formulate a weaker assumption on functions aj,
defining operators A(t) and A in which will imply with (B1), (B2), (B4)
that A(t) satisfies assumptions of Theorem

As in Section 8] let V be a closed linear subspace of WP(Q), 2 < p < oo,
Q C R™ a bounded domain (with sufficiently smooth boundary), H = L?(Q).
Instead of (B3) we assume on functions a; : Q7 x R™ - R

(BS) There exists a constant ¢ > 0 such that for a.e. (t,z) € Qr, alln € R,
¢, ¢ eR”

n

Z[aj(taxan7 C) - a’](t7xa77ag*)]<gj - Cj*) Z EQ'C - C*|p

j=1
Remark 10.3. Assumption (B3) is analogous to (A3) in Section

Theorem 10.4. Assume that Q C R" is a bounded domain, 0} is sufficientl
smooth and (Bl), (B2), (B3), (B4) hold. Then operator A of the form
satisfies all the conditions of Theorem[9.3

Proof. All the conditions easily follow from the above conditions (see Theo-
rem , we only have to show that A is pseudomonotone with respect to
W, (0,T;V, H). Assume that

(ug) — u weakly in LP(0,T;V), (10.19)
(u},) — ' weakly in L9(0,T;V*) and
lim sup[A(ug), ux, — u] < 0. (10.20)
k—o0

Since W1P(Q) is compactly imbedded into LP(Q2) (for bounded 2 with suffi-
ciently smooth boundary, see Theorem , by Theorem there is a subse-
quence of (ug), again denoted by (uy), for simplicity, such that

(ug) = win LP(Qr) and a.e. in Q. (10.21)

The remaining part of the proof is similar to that of Theorem Since (Djuy)
is bounded in LP(Qr), we may assume (on the subsequence) that

(Djug) = Dju weakly in LP(Qr), j=1,...,n. (10.22)

Further,

[A(ug), up —u] = / ao(t, x, ug, Dug) (ugx — u)dtde+ (10.23)
Z/ la;(t, x,up, Dug) — a;(t, , ug, Du)|(Dju, — Dju)dtdz+

n
Z/ a;(t, @, ug, Du)(Dju, — Dju)dtdz.
i=17Qr
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The first term on the right-hand side of tends to 0 by and
Holder’s inequality, because the multipliers of (u; — u) are bounded in LY(Qr)
(by (B2)). Further, the third term on the right-hand side converges to 0, too,
because (10.21)), (B1), (B2) and Vitali’s convergence theorem imply that

a;(t, z,up, Du) = a;(t,z,u, Du) in LY(Qr).

Consequently, (10.20)), (10.23|) imply

n

lim supZ/ [a;(t, z, ug, Dug) — a;(t, z, uk, Du)](Dju, — Dju)dtdr < 0.

k—o00 j=1
B (10.24)
>From (B3), (10.24) we obtain
lim |Duy, — DulPdtdez =0 (10.25)
k—o0 QT
and (for a subsequence)
(Dug) — Du a.e. in Qp. (10.26)

Therefore, by (B1), (B2), (10.25), (10.21), (10.26) and Vitali’s theorem
(Theorem [4.3])

a;(t, z, uk, Dug) — a;(t,z,u,Du) in LY(Qr), j=0,1,...,n
Thus by Hélder’s inequality

(A(ug)) — A(u) weakly in LI(0,T; V™). (10.27)

Finally, from (10.21)), (10.23)), (10.25) and (B2) one gets

lim [A(ug),ur, —u] = 0. (10.28)

k—o0

Since ([10.27), (10.28) hold for a subsequence of (uy), by using Cantor’s trick,
we obtain ((10.27)), (10.28) for the original sequence. O

Remark 10.5. According to the proof of the above theorem, operator A belongs
to the class (S)4+ and it is demicontinuous.

Now we formulate assumptions (B3'), (B4'), which are analogous to (A3’),
(A4") in Section [4] which will also imply with (B1), (B2) that the conditions of
Theorem [0.2] hold.

(B3') For ae. (t,z) € Qr, all g € R, (,C* € R™, ¢ = (€1,.0y6n) # C* =
(&, ..., &) we have

> a2, Q) — aj(t,a,m, ¢ — &) >0
Jj=1
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(B4') There exist a constant ca > 0 and a function ks € L'(Q7) such that for
ae. (t,z) € Qr,all £ = (n,{) e R (n=¢, €R, ( €R")

n

Zaj(tvmvn,C)fj > C2|C|p — ]Cg(t,x).

Jj=0

Theorem 10.6. Assume (Bl), (B2), (B3'), (B4). Then the operator A, de-
fined by satisfies the conditions of Theorem , Thus, for any F €
LU0, T;V*), ug € H = L?(Q) there is a solution of with the operator
.

In the case when V = WyP(Q), instead of (B4) it is sufficient to assume

(B4'), because then (BA') implies coercivity. (See Remarks (3.9, [4.11])

Proof. As in Section [3 one proves that (B1), (B2) imply (0.5), and (B4)
implies . Further, by Theorem the operator A(t) : V — V* (defined
in (8.1))) is pseudomonotone for a.a. ¢t € [0,T] (since (B3'), (B4') imply: (A3'),
(A4") hold for a.a. fixed t € [0,7T]). Thus, for a.a. t € [0,T], the bounded
operator A is demicontinuous (see Proposition .

Finally, we have to prove that A : LP(0,T;V) — L9(0,T;V™*) (defined by
1) is pesudomonotone with respect to WI} (0,T;V,H). The proof of this fact
is similar to that of Theorem (elliptic case) and we use only (B4') instead
of (B4).

According to Definition assume - (9-3), i-e.

u € Wy (0,T;V, H), (ug) — u weakly in LP(0,T;V), (10.29)
(u},) — u weakly in L(0,T; V™), (10.30)
lim sup[A(ug), ux, — u] < 0. (10.31)

k— o0

We have to show (9.4), i.e.
lim [A(ug),ur —u] =0 and (A(ug)) = A(u) weakly in LI(0,T;V™). (10.32)

k—o0

Since © C R™ is bounded and 9 is sufficiently smooth, by Theorem [£.1] V' is
compactly imbedded into L?(2) and thus by Theorem the imbedding

W,(0,T;V, H) C LP(0,T; LP(2)) = L"(Qr)

is compact. Hence, by (10.29), (10.30) there is a subsequence of (uy), again
denoted by (ug) (for simplicity) with the properties

(ug) = uwin LP(Qr) and a.e. in Q. (10.33)

Then the proof of (10.32) is almost the same as that of (4.20) in the proof
of Theorem [£.9] Introduce the notation

n
p(t,x) = Z[aj(t, x, uk, Dug) — a;(t, x,u, Du)|(Djur, — Dju)+
j=1
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[ao(t, z, ug, Dug) — ao(t, z,u, Du)|(ur — u)

which is similar to the formula (4.23) of px(x). Then

[A(ur) — A(u), up — u] = / pr(t, z)dtdx

T

and by ((10.29), (10.30) (10.31) we have

k—o0

limsup/ pr(t, x)dtdz < 0.
T
By using the arguments of the proof of Theorem [£.9] we find

lim pi(t, z)dtdz = 0 and (10.34)

k—o0 QT

(pr) = 0 ae. in Qr. (10.35)

The equality (|10.34)) directly implies the first part of (10.32). Further, (|10.35|),
(10.33) and (B3’) imply (as in the proof of Theorem [4.9)

(Duy) — Du a.e. in Q. (10.36)

Finally, by using (10.33), (10.36)), (B1), (B2) and Vitali’s theorem (Theorem
we obtain the second part of (10.32]) which completes the proof of Theorem
110.6! O

Remark 10.7. One can formulate and prove a generalization of Theorem [10.6
to the case when A(t) is a 2m order nonlinear elliptic operator which is analogous

to (4.37). (See Remark [4.12])

Functional parabolic equations

Now we shall show some applications of Theorem [0.4] which is a generaliza-
tion of Theorem [9.2 In Theorem A LP(0,T;V) — L%0,T;V*) is such
that [A(w)](t) is depending not only on w(t), thus also “functional parabolic
equations” (e.g. equations with delay) can be treated. The following theorem
will be a generalization of Theorem [10.4] to functional parabolic equations with
nonlinear and “non-local” third boundary conditions.

Let V. C WYP(Q) be a closed linear subspace (2 <
bounded domain with sufficiently smooth boundary), H
consider operators of the following form.

o0, 2 C R" a

p <
= L*(Q). We shall

Definition 10.8. Define operator A by
[A(u),v] = (10.37)

/ Z a;(t, z,u(x), Du(z); u)Djv(z) + ao(t, z, u(z), Du(x); w)v(x) p dtde+

T | j=1
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T
/ { h(t, x; u)vdox} dt, w,ve LP0,T;V).
0 a0

Assume that the following conditions are fulfilled.

(C1) The functions a; : Q7 x R*™! x LP(0,T;V) — R (j = 0,1,...,n)
satisfy the Carathéodory conditions for arbitrary fixed w € LP(0,7;V) and
h:(0,T) x 9Q x LP(0,T;V) — R is measurable for each fixed u € LP(0,T; V).

(C2) There exist (nonlinear) operators ¢g; : LP(0,T;V) — R* and k; :
L?(0,T;V) — LYQ) such that

laj(t,2,m, G u)| < gr(W)[1+ [P~ + (¢ + [ka (w)](t, 2)

for a.e. (t,z) € Qr, each (n,¢) € R**! € LP(0,T;V) where

lg1(w)] < const [+ ||ulleo,mv)]

k1 (w)|| La(@r) < const [1 + ”uHLP(O,T;v)]G

and the constants o*, 0 satisfy 0 < o* <p—-1,0< o0 <p—o0*.
(C3) The inequality

n

> laj(t,2,m.Gu) — aj(t,z,m,¢C5w)(& — &) = [g2(w)] (B¢ — ¢

j=1
holds where the operator g, satisfies

*
—0

lg2()](t) > ¢ [1+ [[ullLe(o,6v)]
and c* is some positive constant.
(C4) The inequality

Z%(t%m(w)& > (g2 (W] (@)1 + [n]” + [C[P] = [k2(uw)](t, ) (10.38)

holds where ko (u) € L' (Q7) satisfies for all t € [0, 7]
k2 (u)|| L2 () < const [1+ [|ullro.evy]” s u€ LP(0,T;V). (10.39)
Further, for all ¢t € [0,T], w € LP(0,T;V)

17 (10.40)

[ (t, 25 u) || Lago,4)xo0) < const [1 4 ||ul| Lo (o,6v)

(In the case V = W, () h is considered to be identically 0.)

(C5) There exists 6 > 0 satisfying § < 1 — 1/p such that if (u) — u weakly
in LP(0,T;V) and strongly in LP(0,T; W'=%P(Q)), (n*) — n in R, (¢¥) — ¢ in
R™ then for a.a. (t,z) € Qr,j=0,1,....,n

lim aj(t,xvnkv Ckvuk) = aj(tvxana C,u)
k— o0
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for a subsequence and for a.a. t € (0,7, z € 09

lim h(t,z;ur) = h(t, z;u)

k— o0
for a suitable subsequence.

Theorem 10.9. Assume (C1) - (C5). Then A: LP(0,T;V) — L%(0,T;V™*) is
bounded, demicontinuous, pseudomonotone with respect to W]}(O,T; V,H) and
coercive in the sense of Theorem , Thus for any F € Li(0,T;V*), uy €
L2(Q) there ewists u € T/Vp1 (0,T;V, H) satisfying

u + A(u) =F, u(0)=uqp. (10.41)

Proof. Clearly, (C1), (C2) and (10.40) imply that A is bounded, because the
trace operator W1=%P(Q) — LP(99) is bounded if 6 +1/p < 1 (see Remark
and so by Holder’s inequality for all v € V/

h(t, z;u)vdo,

1/aq
< [/ h(t,x;u)|qdo$] - const||v]|y1-s.p(0),
o0

‘jﬁT{jéQ;“tﬁulﬂvdam]dt‘g (10.42)

—1
const [1+ [[ullLroriv)]” 10l Leo.r5v)-

Further, by using (C1), (C2), (C5), (10.40), Hélder’s inequality and Vitali’s
theorem (Theorem one obtains that A is demicontinuous. Assumptions
(C2), (C4) imply that A is coercive in the sense of Theorem because (for
sufficiently large ||ul|Lr0,7;v))

’ [5}9)

hence by ((10.40)

[A(u), u] — e[| A(u)||Lao,7;v+)
”u”LT’(O,T;V)

p—1—0c*

C*
> 5 [L+ lullroam)]

const [1 + Hu||Lp(07T;V)}Jfl — 400

as |lull ro,7;v) — o0 since p — o* > 0.
Now we show (similarly to the proof of Theorem 4.15]) that A is pseudomono-
tone with respect to Wpl(O7 T;V,H). Assume that

(ug) — u weakly in LP(0,T;V), (10.43)
(u),) — v’ weakly in L4(0,7;V™*) and (10.44)
lim sup[A(uk), ux — u] < 0. (10.45)

k—oc0
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Since W1P(Q) is compactly imbedded into W=%P(Q) (for bounded  with
“sufficiently good” boundary, see Remark , by Theorem there is a sub-
sequence of (uy), again denoted by (ug), for simplicity, such that

(up) = win LP(0,T; W'%P(Q)) and a.e. in Q7. (10.46)

Further, since the trace operator W!'=%P(Q) — LP(0R) is continuous, the se-
quence of functions

(t,x) = ug(t,z), (t,z) € (0,T) x I converges to (10.47)
(t,z) = u(t,z), (t,z)€ (0,T) x O in LP((0,T) x 99).
Since (Djuy) is bounded in LP(Qr), we may assume (on the subsequence) that
(Djug) = Dju weakly in LP(Qr), j=1,...,n. (10.48)
Further,

[A(ug), up — u] = / ao(t, z, uk, Dug; ug) (ur — u)dtde+ (10.49)

T

Z/ [a;(t, @, up, Dug; ug) — a;(t, z, uk, Du; ug)|(Djur, — Dju)dtde+
J=17%T

Z/ aj(t,z,uk,Du;uk)(Djuk—Dju)dtder/ h(t, z; ug) (up—u)dtdo.
j=1 T (O,T)X@Q

The first term on the right-hand side of (10.49)) tends to 0 by (|10.46[) and Hélder’s
inequality, because the multiplier of (ux — «) is bounded in LY(Qr). Further,
the third term on the right-hand side converges to 0, too, by (10.48) because

(110.43), (10.46), (C1), (C2), (C5) and Vitali’s theorem imply that
a;(t, z, uk, Dus;ug) = a;(t, z,u, Duyu) in LY(Qr).

The last term on the right-hand side of (10.49)) tends to 0, too, by Holder’s
inequality, (10.47) and (10.40).
Consequently, (10.45)), (10.49)) imply

n

limsupZ/ [a;(t, @, wk, Dug; ug)—a; (¢, @, wk, Du; ug)]|(Djug—Dju)dtde < 0.

k—oo j=1 Qr
(10.50)
Since (uy) is bounded in LP(0,T; V), from (C3), (10.50) we obtain
lim |Duy, — DulPdtdez =0 (10.51)
k—o0 Qr

and (for a subsequence)

(Duy) = Du a.e. in Q. (10.52)
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Therefore, by (C1), (C2), (C5), (10.40), (10.43)), (10.46]), (10.52)) and Vitali’s
theorem (Theorem 4.3

a;(t, z, uk, Dug; ug) = a;(t, z,u, Du;u) in LYQr), j=0,1,...,n,
h(t,z;ur) — h(t,z;u) in L((0,T) x 09).
Thus by Hoélder’s inequality and Vitali’s theorem

(A(ug)) = A(u) weakly in L9(0,T; V™). (10.53)

Finally, from (10.46)), (10.49)), (10.51)) and (C2) one gets

lim [A(ug), ur — u] = 0. (10.54)

k—oco

Since ((10.53)), (10.54)) hold for a subsequence of (u), by Cantor’s trick we obtain

(10.53)), (10.54) for the original sequence.

So we have proved that A is bounded, demicontinuous, pseudomonotone
with respect to Wpl(O, T;V,H) and coercive, thus Theorem implies Theorem
10.9 O

Remark 10.10. According to the proof of Theorem (C1) — (C5) imply
that A belongs to the class (S); with respect to W, (0,T;V, H), i.e.

(ur) — u weakly in LP(0,T;V), (u}) — u weakly in L4(0,T;V™),

lim sup[A(ug), ur, — u] < 0 imply (ug) — w in LP(0,T;V).

k—o0

(See ([031).)

Remark 10.11. In the case of “non-local” operator A one may consider the
following modified problem (instead of ) which is a generalization of the
standard Cauchy problem for functional differential equations (delay equations)
in one variable:

o'(t) + A(t, 0y) = F(t) for a.a. t € [0,T], (10.55)
a(t) = () for a.a. t € [—a,0) (10.56)

where @ is defined by
Ui(s) = a(t+s), s€[-a,0], t>0 (10.57)

Here ¢y € LP(—a,0;V), F € L0, T;V*) are given functions and we want to
find a function 4@ € LP(—a,T;V) such that @' € L%(0,T;V*) and @ satisfies

(10.55)), (10.56)). The operator

A:(0,T) x LP(—a,0; V) — LU0, T; V™)

is defined by A
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n
Z i(t,x, 4, DU; ) Djv + ag(t, x, @, DG; 4 )v p dtdz,

where v € LP(0,T; V) and the functions
aj : Qr x R"™ x [P(—a,0;V) - R

satisfy conditions which are analogous to (C1) — (C5), with L”(—a,0; V) instead
of LP(0,T;V) and LP(—a, 0; W'=%P(Q)) instead of LP(0,T; W'~ ‘S’p( ))
Problem , can be reduced to problem of the form , in
the case when ¢ € LP(—a,0;V) satisfies ¢’ € LI(—a,0; V™). Indeed, assume
that @ € LP(—a,T;V) satisfies (10.55)), such that @' € Li(—a,T; V™)
and define u and @ by
u(t) = a(t) for t € (0,7), (10.59)

a(t) = u(t) for t € (0,T) and @(t) = ¢(t) for ¢t € (—a,0). (10.60)
Further, define operator A : LP(0,T;V) — L(0,T;V*) by

[A(w)](t) = A(t, @), wue LP(0,T;V) (10.61)

where @ is defined by (10.60). Since for & € LP(—a,T;V) we have @' €
LY(—a,T;V*), function u € LP(0,T;V), defined by ([10.59) satisfies

W (t) + [A@)](t) = F(t), te(0,T) (10.62)

u(0) = ¢(0). (10.63)
Conversely, if uw € LP(0,T;V) satisfies (10.62)), (10.63) then @, defined by

at) =u(t), te(0,T), a(t)=uv(t), te(—a,0)

satisfies (10.55), (10.56) and @ € Lp —a,T;V), @ € LY(—a,T;V*).

Further 1f the functlons aj in 8|) satisfy the above mentioned conditions
(which are analogous to (Cl (C )), then the functions defining operator A
by m, satisfy (C1) — (C5)). Consequently, by Theorem we obtain
existence of solutions of (10.62) 0 6 , .63 10.63) (since ¢(0) € L?(£2)) which implies the
existence of solutions to

Example 10.12. Now we formulate examples satisfying (C1) — (C5)), i.e. as-
sumptions of Theorem [10.9] Let a; have the form

a; (t7 €, 1, Ca ’LL) = b(t7 €, [H(U)](t, $))§j‘§|p_2, .7 = 17 sy Ty

aO(ta z, 1, C’ U) = bo(t, €, [Ho(u)](t, x))77|77‘p72 + 80(t7 €T, [Fo(u)](t, I))&O(t7 €Z,n, C)
where b, by, 130, &g are Carathéodory functions and they satisfy

Co C2

const > b(t, x,0) > T const > bo(t, z,0) > 110
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with some positive constants co and 0 < o* <p—1,
|bo(t,2,0)] <14 |0[P~17¢" with 0 < ¢* < p—1 and

|éo(t, z,m, Q) < er(1+ |n|? +1¢|?)
with some constants ¢1, ¢ > 0, 0* + 0 < o*.
Finally,
H, Hy: LP(0,T;W'2P(Q)) = C(Qr),  Fo: LP(0, T;W'=oP()) = LP(Qr),

are linear and continuous operators. Thus, [H(u)](t,z) and [Ho(u)](t,z) may
have one of the forms

/ d(t, z, 7, &)u(r, £)drd€ where d is continuous in (¢, x),

t

sup / |d(t, x,7,&)|drdé < o0,
(t,x)eQT JQr

/ d(t,z, 7, &)u(r, §)drdoe where d is continuous in (¢, z),
Iy

sup / |d(t,z,7,&)|drdoe < 00, Ty =][0,t) x 9.
(t,x)eQr JTr

To prove that examples of the above type satisfy the conditions (C1) — (C5)),
we apply similar arguments as in Example

Clearly, assumptions (C1), (C3), (C5) hold. In order to show (C2), we
only have to show that the second term in ag(t,z,n,(;u) satisfies the desired
inequality. By Young’s inequality we obtain

[bo(t, z, [Fo ()] (¢, 2))ao(t, 2,0, O] < [1+ [Fo(w)P~' ¢ Jer (14 [n]? + |¢]?) <

const(1 4 || + [¢])P* + const[1 + | Fy(u)|P~17¢)n]

where 1 1
plzpf>1andq1: h __P -,
0 -1 p—-1-p

Consequently, we obtain for this term (C2) with

k1 (u) = const[1 + | Fy(u)|P~1=¢)a]

since by Holder’s inequality we have for this term

/ k1 (u)|?dtda = const/ [1 4 |Fo(u)| P10 dtde <

T T

n/p
const [1 —i—/Q |F0(u)|1’dtd:v] < const |1+ ||uH‘£p(0}T;V)}
T
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where
*

M:(P—l—g*)Q1q=p_17_QAp<p.
p—1—0

Now we prove that (C4) is satisfied. Clearly, for our example we have in

(110.38)

[m(u)](t)zmin{l e T }z
FTHWIZ gy, T+ T g,

const [1 -+ [[ulao.zw)] 7 -
Further, by Young’s inequality
[bo (s @, [Fo(w)(t, 2))éo(t, 2,1, ()n| <
[1+ [ Fo(u) [P~ Jeomst (1 + [n|2+" +[¢|27) <
T [P + CEL + [Fau)|
for any € > 0 (because ¢+ 1 < p — 0*) where

. pr p—o* _p—o”
p-1 p-o—p-1 T Gr1

q1

and C(e) is a constant depending on e. Choosing sufficiently small € > 0, we
obtain (C4) with

[k2(w)](t, @) = C(e)[L + [ Fo(w)| P10

since

Hk?(u)HLl(Qt) = const/ 1+ \Fo(u)‘(p—l—g*)ql] _

t

const / [14 [Fo(u)| P~ <

t

const [1 + ||Fo(u)|\(Lpp_(th;A} < const [1 + ||u||(Lpp_(&t;)§\V1ﬂs,p(Q))} <

const [1 + ||uHLp(0,t;V)]U with o = (p — *)\ where

—1—o*
A= p—QA < 1, because
p—l—0*—0
0" 4+ 6 < 0" and thus (p — o)A <p—o™.

If the functions b,by are between two positive constants, then, it is not
difficult to show that (C1) — (C5) are fulfilled when

H,Hy: LP(0, T; W%P(Q)) — LP(Qr)
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are continuous linear operators (like Fpy). So in this case [H (u)](¢, ), [Ho(u)](¢, z)
(and also [Fy(u)](t, 2)) may have also the forms

/t d(t, z, 7)u(r, z)dr, d(t,x, &u(t, £)d¢
0 Q

where
T T »/4 p/a

/ sup [/ |d(t,x,7‘)|qd7'1 dt < oo, sup [/ |d(t,x,§)|qd§} dr < oo,
0 z€9 |Jo ateo,1] L/a

respectively, or

u(x(t),z) where y € C'[0,T], x>0, 0<x(t) <t

Problems
1. Prove Remark [10.51
2. Prove Remark [10.10]

3. Show that if the functions a; satisfy (B1), (B2), (B3), (B4) and there is
wo € WHP(Q) such that wo|sn = g then there is a weak solution u = @+ug
of the initial-boundary value problem with nonhomogeneous boundary
condition, formulated in Problem 4 of Section |8| (where ug(t, ) = wo(z)).

4. Let V = Wy"?(Q) where m > 1,p > 2 and  C R" is a bounded domain
with sufficiently smooth boundary. Consider the operator A defined by

[A(w), 0] = / (AW [u(e)], v(b)dt =

T
/ / > (Du)[Du[P"2 D | da p di+
0 Q

lee|=m.

T
/ / Z ao(t,z,...,DPu,.. . )D%| dx 3 dt, |B| <m,
0 Q

|| <m
u,v € LP(0,T; V') where the functions a,, (|| < m) satisfy the Carathéodory
conditions and there exist a constant ¢; > 0 and k; € L9(Q) such that
laa(t,z,€)] < c1|€]P~! 4 ki(z) for € e RN, a.a. z € Q.
Further,
ao(t,z,6)fq >0 for £ € RY, aa. z € Q.
(See the notations in Problem 5 in Section [4])

By using the arguments of the proof of Theorem show that for ar-
bitrary F' € L4(0,T;V*), up € L*(2) there exists a solution u of problem

).
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11 Existence of solutions for ¢ € (0, 00)

In this section we shall prove existence of solutions to nonlinear evolution equa-
tions in infinite time horizon. These results will be applied to nonlinear parabolic
differential equations and functional parabolic equations which were considered
in Sections [§ and [0

First we formulate some basic definitions.

Definition 11.1. Let V' be a Banach space, 1 < p < oo. The set L}, (0,00;V)
consists of all functions f : (0,00) — V' for which the restriction f|o 1) of f to
(0,T) belongs to LP(0,T;V) for each finite T > 0.

Further, by using the notations Qs = (0,00) X, I'ss = (0,00) x 9N, denote
by LY (Qoo) and LY () the set of functions f: Qoo — R and g : T — R,

loc

respectively, for which f|lg, € LP(Qr), g|r, € LP(T'r) for arbitrary finite T > 0.

First we consider the case when A : L (0,00; V) — L (0, 00; V*) is “local”,
i.e. it has the form [A(u)](t) = [A(t)][u(t)] where for fixed t, A(t) maps V into

| %

Theorem 11.2. Let V. C H C V* be an evolution triple, 1 < p < oo.
Assume that for almost all t > 0, A(t) : V. — V* is such that operator
A LY (0,00, V) — L (0,00; V*), defined by [A(w)](t) = [A(t)][u(t)] satis-
fies the assumptions of Theorems[7.1),[9-3, respectively for each fized T > 0.
Then for any F € L}, (0, oo; V*) and ug € H there exists u € L} (0,00;V)

such that w' € L} (0,00; V*),
u'(t) + [A(w)](t) = F(t) for a.a. t € (0,00), u(0) = ug. (11.1)

In the case when the conditions of Theorem are fulfilled (monotone case),
the solution of is unique.

Proof. Let (T;) be an increasing sequence of positive numbers with lim(T}) =
+00. Due to Theorems respectively, there exist u; € LP(0,T}; V') such
that v} € L(0,T;;V*) and

(1) + [Au)(8) = F(t) for aa. t € [0,Ty], u;(0) = up. (11.2)

The coercivity assumptions , respectively, imply that for all fixed T' >

0 (and sufficiently large J u]| 0.T; ] is bounded in L?(0,T; V). The (boundedness)
assumptions (7.2), (9.5 1mp1y that [A(u;)]l[0,7,) is bounded in L9(0,T; V*) for
all fixed finite 7" > 0.

Therefore, by using a “diagonal process”, one can select a subsequence of
(u;) (again denoted by (u;), for simplicity) such that for each fixed k, ;|07 is
weakly convergent in LP(0, Ty; V') and the sequence u/; |[0 7,,] is weakly convergent
in L‘I(O Ty; V*) as j — oo. Thus we obtain a functlon uw e LT (0,00;V) such
that ' € L] (0,00; V*), u(0) = uo, further, for each fixed k

(ujlj0,1,]) = ulpo,r,) weakly in LF(0, Ty; V), (11.3)
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(Wjl0,1)) = 'l jo,13,) Weakly in L(0, Ty; V*). (11.4)
Thus, similarly to the proof of (7.16) (see Lemma , one obtains u(0) = wug

(by using u;(0) = ug). Further, by (11.2)) for j > k

wi(t) + [Auy)](t) = F(t) for a.a. t € [0,Tx], u;(0) = uo, (11.5)

thus by Remark and
T
| et i) - uar =

Tk Tk
/ (F (), (t) — u(t))dt — / (s (1), g (1) — u(t))dt =
0 0
Ty
| 0.0 = ) = 5y (1) — T+

T
| w0 - uv),

0
hence

Ty

timsup [ ((A(w))(0),u5(6) ~ u(®)de < 0.
Jj—o0 0

Since for fixed k A is pseudomonotone with respect to Wp1 (0,Ty; V, H) (as op-
erator from LP(0,Ty; V) into L4(0,Tg; V™)),

(A(uj)) = A(u) weakly in L(0, Ty; V™)

and so from ([11.4), (11.5)) we obtain as j — oo that (11.1)) holds for a.a. t €
[0, Ty]. Since it holds for all k and limg_,o Ty = +00, we obtain (11.1) for a.a.

t € (0,00).

In the case when the conditions of Theorem 7.1] are fulfilled (monotone case),
u; is unique for all j and thus the solution u of (11.1) is unique, too. (The
restriction of a solution in (0, c0) to (0,7}) satisfies the initial value problem in
0,75).) O

Now we consider the case when operator A is “non-local”, i.e. [A(u)](t)
depends not only on w(t). Then it is important to assume that A has the
“Volterra property”.

Definition 11.3. An operator A : L, (0,00; V) — L{ (0, 00; V*) is of Volterra

type (it has the Volterra property) if for each u € L} (0,00;V) and t > 0,
[A(w)](t) depends only on u|(oy), i-e. the restriction of u to (0,t).

IfA: LT (0,00, V) — Li (0,00;V*) is of Volterra type, then the “restriction
of A to [0,T)”, denoted by Ar, is the operator Ar : LP(0,T;V) — Li(0,T;V*),
defined by

Ap(u) = A(ur), we€ LP(0,T;V) where
ur(t) = u(t) fort € [0,T] and ur(t) =0 fort > T.
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Theorem 11.4. Let the operator A : L} (0,00;V) — Li (0,00;V*) be an
operator of Volterra type such that for each finite T > 0, the restriction of A
0 [0,T], Ap : LP(0,T;V) — L9(0,T;V*) satisfies the assumptions of Theo-
rem [9.6, i.e. it is bounded, demicontinuous, pseudomonotone with respect to
V[/p1 (0, T;V,H) and it is coercive in the sense of Theorem .

Then for arbitrary F € L}, (0,00; V*), ug € H there exists u € L} (0,00;V)

such that v’ € LY _(0,00;V*) and

loc

u'(t) + [A(uw)](t) = F(t) for a.a. t € (0,00), u(0) = up. (11.6)

Proof. Similarly to the proof of Theorem [11.2] let (7;) be an increasing se-
quence of positive numbers with lim(7;) = +o0o. Due to Theorem there
exist functions u; € LP(0,T}; V) such that u; € L(0,T;; V*) and

wj(t) + [Ar, (uy)](t) = F(t) for a.e. t € [0,T5], u;(0) = uo.
The Volterra property implies that v = u;(o 7] satisfies
V'(t) + [Ar, (v)](t) = F(t) for a.a. t € [0, Tk] (11.7)

if T, < T;. Coercivity of Ap implies that for all fixed finite T > 0 (and
sufficiently large j), ujljo,r) is bounded in LP(0,T; V). From the boundedness
of Ap it follows that Ar (u;jo,7)) is bounded in L7(0,T; V*).

Therefore, by a “diagonal process”, one can select a subsequence of (u;)
(again denoted by (u;)) such that for each fixed £,

(uj|[0,Tk]) is weakly convergent in LP(0,Ty; V') and

(u;|[07Tk]) is weakly convergent in L9(0,Ty; V™) as j — oo.

Thus we obtain a function u € L (0,00;V) such that «’ € L} (0,00;V*). By

loc loc

using the arguments of the proof of (7.16]) (see Lemmal7.3)), we obtain u(0) = uq.
Further,

(uj|[0,Tk]) — u|[0,Tk] weakly in LP(0,Ty; V') and (11.8)
(wjlio,r,1) = |, weakly in LU(0,Ty; V*) as j — oo. (11.9)

Since by (11.7))
uji(t) + [Ag, (uy)](t) = F(t) for a.a. t € [0,T%], u;(0) = uo, (11.10)

by Remark

/0 (A ()] (8), () — u(t))dt =

Ty Tk
/ (F(t),u;(t) — u(t))dt — / ((t), uy () — u(t))dt =
0 0
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Tk
/0 (F(t),uj(t) — u(t))dt—

Ty,
s (1) = (Tl + [0 @),y (0) — u(o)a.
hence "
limsup/0 ([Az, (u))](t), u;(t) — u(t))dt <O0. (11.11)

j—o0
Since (for fixed k) Ar, : LP(0,Ty; V) — L0, T); V* is pseudomonotone with
respect to W, (0, T;V, H), the inequality (11.11]), (11.8), (11.9) imply that

(Ap, (uj)) = A, (u) weakly in LY(0,Ty; V™) as j — oo.
Thus from (11.10)) we obtain as j — oo

W' (t) + [A7, (w)](t) = F(t) for a.a. t € [0,Tk], u(0) = uo, (11.12)
(11.12) holds for all k, so we have (|11.6]). O

Now we apply Theorem to operators of the form where V is a
closed linear subspace of WP(2), 2 < p < oo, 2 C R” is a bounded domain
with “sufficiently good” boundary, H = L?().

Assume that

(Bso1) Functions a; : Qoo xR™™! — R (j = 1, ..., n) satisfy the Carathéodory
conditions.

(B2) There exist a constant ¢; and a function k1 € L] (Qs) (1/p+1/q =
1) such that for a.a. (t,7) € Qw, all £ € R*!

laj(t,2,6)] < erlélP™! + ka(t, o).
(Boo3) For a.a. (t,2) € Quo, all £,&* € R™HL

n

> laj(t, 7. €) — a;(t,z,£)](& — &) > 0.

Jj=0

(Bso4) There exist a constant co > 0, ko € L}, .(Qs) such that for a.e.
(t,7) € Quo, all £ € R TL

Zaj(tvxag)gj Z CQ|§‘p - kz(t,x).
7=0

From Theorems directly follows

Theorem 11.5. Assume (Bsl) — (Bso4). Then for all F € Ll (0,00;V*),

loc
up € L2(Q) there is a unique u € L7 (0,00;V) such that u' € L} (0,00;V*)

loc loc
and
u'(t) + [A(w)](t) = F(t) for a.a. t € (0,00), u(0)=wug (11.13)
with the operator .
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Instead of (B3) assume
(Bx3) There exists a constant ¢ > 0 such that for a.a. (t,2) € Qu, all
neR, (¢ eR”

n

> laj(t,2,m.0) — a;(t, 2,0, CNE — &) = &¢ — ¢

i=1
From Theorems one obtains

Theorem 11.6. Assume (Bool), (Boo2), (Boo3) (Boo4). Then for all F €
L (0,00, V*), ug € L2(Q) there is a solution u € LY (0,00;V) of with

loc

the operator .

If instead of (Bso3) we assume
(Bx3') For a.a. (t,2) € Qu, all n €R, (,¢* €R™, ( # ¢*

> a2, Q) — aj(t,z,m, ¢ — &) >0
j=1

we obtain from Theorems

Theorem 11.7. Assume (Bool), (Boo2), (Bso3') (Bood). Then for all F €
L (0,00, V*), ug € L2(Q) there is a solution u € LY (0,00;V) of with

loc

the operator .

Remark 11.8. If V = W, ?(Q) and Q is bounded then instead of (Bu4) it is
sufficient to assume
(Bood') For ace. (t,7) € Quo, all £ = (n,¢) € R*T!

S aj(t 2, €)¢) > ealClP — ka(t, )
=0

with some constant ¢z > 0, k2 € L}, (Qxo). (See Remarks )

Now we apply Theoremm to operators of the form ((10.37)) (see Definition
10.8)) where V is a closed linear subspace of W1P(Q), 2 <p < 00, Q CR" is a
bounded domain (with sufficiently smooth boundary).

Theorem 11.9. Assume that the functions

a; : Qoo xR LP (0,00;V) =R, j=0,1,...n

loc
have the Volterra property, i.e. for allt >0, a;(t,z,n,(;u) depends only on the
restriction u | ) of u to (0,t). Further, for all finite T > 0, the restrictions of
aj to Qr x R x LP(0,T;V) satisfy (C1) — (C5), i.e. assumptions of Theorem
fza

Then for arbitrary F € LlOC(O 00; V*), ug € L2(QQ) there exists a function
we€ LY (0,00;V) such that u' € L} (O o0; V*) and (11.6 (-) holds with the oper-

loc loc

ator A of the form (10.37 (m with h =0, i.e. when A is defined by
([AW)](t), w) = (11.14)
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n
/ Z a;(t, z,u, Du;w)Djw + ao(t, z, u, Du;w)w | dz,
Q

j=1

p
where u € L,

(0,00; V), v e V.

Problems
1. Prove Theorem [11.5

2. Prove Theorem [I1.6l
3. Prove Remark [I1.8
4. Consider the functions
aj Qoo xRxR, j=0,1,...,n

which satisfy the conditions of Problem 1 in Section [8| for all ¢ € (0, c0),
with the same constants. Prove that there exists a unique solution of
problem @ with the operator fl(t) defined by functions a; in Problem
1 of Section Bl

5. Formulate and prove an existence and uniqueness theorem for the solution
of (11.1)) where the operator A(t) is defined in Problem 3 of Section

6. Formulate and prove an existence and uniqueness theorem for the solution
of ([11.1)) where the operator A(t) is defined in Problem 6 of Section

7. Formulate and prove an existence theorem for the solution of (11.1)) where
the operator A(t) is defined in Problem 4 of Section

12 Qualitative properties of the solutions

Boundedness of solutions

First we formulate and prove theorems on the boundedness of ||u(t)||nm, ¢t €

(0, 00) for the solutions w of (11.1)) and (L1.6)).

Theorem 12.1. Assume that the operator A : L} (0,00;V) — L (0,00;V*)
s given by

[A()](t) = [A()]|[u(t)] with A(t): V — V*

and the assumptions of Theorem are fulfilled such that for a.a. t € (0,00),
veV
([A®)](v),v) > calv]|% — ka(t) where ky € L>(0,00) (12.1)

(i.e. the function ko in is essentially bounded) and || F(t)|v« is bounded
for a.e. t € (0,00), i.e. F € L>(0,00; V™).
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Then for a solution u of , lw(@®)|| e s bounded for t € (0,00), sou €
L>(0,00; H) and

T
/ la() | dt < cs(Ts —T2) for 0 < Ty < T (12.2)
Ty

with some constant ¢z (not depending on Ty, Ts).

Proof. Let u be a solution of (11.1)) and y(t) = |lu(t)||%. Then by (11.1)), (12.1)

and Young’s inequality for arbitrary € > 0

(W' (1), u(t)) + ([AD][w(D)], ult)) = (F(1), u(t)),
hence
(u'(t), u(t)) + callu@)IT, = ka2(t) < IF@)[lv+lu®)llv < (12.3)
ellu@®y + CENEF @)
Since by Remark [6.7]
T
| O utwpde = S~ )l
T

choosing sufficiently small ¢ > 0 and integrating (12.3)) with respect to ¢ over
[Tl, TQ], we obtain

1 c 12
STl = lu(T)lIE] + 5 /T lu(®)|I5-dt < (12.4)
T2 T2
ko (t)dt + c4/ I1E@O.dt < es(Ty —T1).
T1 Tl

Since the imbedding V' C H is continuous,
y(t) = llu@®)||F < const||u(t)|},

thus (12.4)) implies
Ts

y(Ty) — y(Ty) + c*/T [y(O)]P/2dt < 2¢5(Ty — T1) (12.5)

with some positive constant c*.

We show that the inequality implies that y(¢) is bounded for ¢ €
(0,00). Indeed, assuming that the (continuous) function y is not bounded, for
any M > 0 there are tg > 0 and t; € [0, o] such that

y(t1) = maxy > M.
{O,to]

Since y is continuous, there is § > 0 such that

y(t)>Mift1—(5§t<t1,



12. QUALITATIVE PROPERTIES OF THE SOLUTIONS 89

hence by ([12.5])
y(ty) — y(ty — 6) + "6 MP/? < 2¢50

which is impossible for all M > 0, because y(t1) — y(t; —6) > 0 and p > 1.
Finally, from (12.4)) and the boundedness of y(t) we obtain (12.2]). O

Theorem 12.2. Assume that the conditions of Theorem[I1.]) are fulfilled such
that for a.a. t € (0,00), v € LY (0,00; V) with v' € L} (0,00;V*)

loc loc

T€0,t] T€[0,t

([ADN@)], v(t) > c2lo@)II} — cs [ sup [|v(7)[lr +(t) sup [jo(7)l[}; +1

holds where co,c3 > 0, 0 < p1 < p are constants, @ > 0 is a function with the
property lima, ¢ = 0. Further, |[F(t)||y~ is bounded for a.a. t € (0,00).

Then for a solution u of (with arbitrary initial condition), ||u(t)|| g is
bounded for t € (0,00) and holds.

Proof. Similarly to the proof of Theorem we have for a solution of (|11.6)

(W' (1), u(t)) + e2llu®)llY, — cs | sup Ju(7)llF +@(t) sup [u(r)|f +1

T€[0,t T€[0,t

<

ellu@®IR + CEIF@IY--

Choosing sufficiently small ¢ > 0 and integrating over [T%, T3], by Remark
we obtain

1 Co T2
ST, — W)l + % [ ol < (120
Ts
53/ supyP /% + p(t) supy?/2 + 1| dt
T [0,¢] [0,¢]
with some constant ¢3 > 0. Since y(t) = |lu(t)||% < const||u(t)||3,, we obtain
from ({12.6))
T>
oI~ o(T) + e [l < (127
T
dt

T>
2&3/ sup yP1/2 + o(t) sup y?/? + 1
Ty [0,¢] [0,¢]

with some positive constant ¢*. We show that ((12.7)) implies the boundedness
of y.
Assume that y(¢) is not bounded. Then for any M > 0 there are ty > 0 and
t; € [0,tp] such that
M+1>y(t;)) =supy > M.
[O,to]

As y is continuous, there is a § > 0 such that

y(t) > M ifty — 6 <t <t.
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Hence by (12.7))
y(t) —y(ty — 6) + 6 MP/% <

ty
265 [6(M + 1)P/2 4 (M + 1)p/2/ o(t)dt + 5]
t1—96

which is impossible for all M > 0 because y(t1) — y(t; —6) > 0, p1 < p and
limy, ¢ = 0. From the boundedness of y(¢) and (12.6) we obtain (12.2]). O

Now consider the case when V is a closed linear subspace of W1P(Q), 2 <
p < 0o, H = L?(2). Similarly to the proof of Theorem one proves

Theorem 12.3. Assume that the conditions of Theorem[11.9 are fulfilled such

that for all for a.a. t € (0,00), v € L} (0,00; V) with v' € L] (0,00;V*) the
inequalities
[92(v)](t) = const |1+ Sl[lp} U(T)||L2(Q)] ; (12.8)
T7€[0,t
[ (o)t < (129
Q

const |14 sup [|o(r) 72, + (1) sup ||v<7>|fzz(’m]

T7€[0,t] T€[0,t]

hold with some constants, 0 < c* < p—1,1 <o <p—0*, limyxp =0 and
|E(t)||v+ is bounded for a.e. t € (0,00).
Then for a solution u of with operator A given by

([AW)](t), w) = (12.10)

n
/ Zaj(t,m,u,Du;u)Djw—i—ao(t,x,u,Du;u)w dz,
Q

j=1

ueL?

loc

lu(®) ||z s bounded for t € (0,00) and holds.

(0,00;V), wevV,

Stabilization of the solutions

Now we shall formulate conditions which imply results on the stabilization of
solutions u to (11.6) as ¢ — oco. First consider operators defined by

[A(u)](t) = [A(t)][u(t)] where A(t):V — V* (12.11)

is defined for all ¢ > 0.
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Theorem 12.4. Assume that the operator fl(t) : V. — V* satisfies the condi-
tions of Theorem[7.1] for all t > 0 such that for any v,w € V

([A®](v) = [AD)](w),v —w) = 2l —wlf + esllo —wllF (12.12)

with some constants co > 0,c3 > 0. (In this case fl(t) is uniformly monotone,
see Definition ) Further, there exist Aso : V. — V* and Foo € V*, a
continuous function ® with the property lims, ® = 0 and for all R > 0 there is
a positive number cg such that for allv € V with ||v|]ly < R, t > 0 we have

ITA®)](0) = Aoo (v)[[v+ < cr®(t) and [|F(t) = Faollv+ < @(1). (12.13)
Then for a solution u of with operator A of the form we have
T+a
Jim () = el =0, Jim [ ) —unlifit =0 (1214)

for arbitrary fired a > 0, where us, € V' is the unique solution to

Ao (o) = Fro. (12.15)
If
/ B(t)%dt < 0o (12.16)
0
18 satisfied, too, then we have
/ lu(t) — uso || dt < o0, / |w(t) — U || 37dt < oo (12.17)
0 0
Further, if c3 > 0,
[ o)~ sl < (12.18)
T

T o)
const{e‘”T + / {e‘V(T_t) / @(T)da} dt}
0 t

holds with some constant v > 0.

Proof. By (7.2), (12.12)), (12.13]) the operator A, : V' — V* is bounded, strictly

monotone and coercive, too, according to Remark@ Further, it is easy to show
that by A is hemicontinuous, because A(t) is hemicontinuous and in
(12.13)) @ is not depending on v.

Therefore, Theorem implies that has a unique solution wu«, for
all F, € V*. Further, by Theorem [I1.2] there exists a unique solution u of

in (0,00). Then by one obtains
(Di[u(t) = uso], ult) — tioo) + ([A(u)](t) — Aoc(uoc), u(t) — use) = (12.19)

(F(t) — Foo(too), u(t) — Uoo)-
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The second term on the left-hand side of (12.19)) can be estimated by (12.12))
and Young’s inequality as follows:

([A@)](t) = Aso(too ), ult) — tUse) > (12.20)
([AW)](t) = Altos ), u(t) = uoo) = [{Altoo) = Aso(Uoo ), u(t) — tiso)| =
eallult) — uso Iy, + eallu(t) — usc 3

—%IIU(t) = tool[y, = C()II[A(uo0)]() — Aso(tioo)[IY -

Further, for the right-hand side of ((12.19) we have
|<F(t) - Foo(uoo)a u(t) - uoo>| < (12.21)

6p
—|u
p

Thus, choosing sufficiently small £ > 0, integrating (12.19)) over [T3, T3], we
obtain by Remark [6.7] (12.13), (12.20), (12-21))

() = uss [y, + C)IF(t) = Foolly--

1 1
S(T) ~ ol — 5 () — o 3+ (12.22)
e [T P - 2
2 [ ) — eyt 4 s [ u(t) - uaclfyde <
T1 Tl

T>
const [ AG]0) — A ) + [P(0) = Pl ]t <
T

T>
const / O (t)dt.

T
Hence, by using the notation y(t) = ||u(t) — us||%, we obtain with some ¢* > 0
T> T> T>
oI~ y(T) + e [l e [ Cud e [ e (1223)
T T T

Since ®(t)? is bounded and the last term on the left-hand side of ((12.23)) is

nonnegative, we obtain form (12.23)), as from (12.5)), that y(¢) is bounded for
t € (0,00).
Further, since lim,, ® = 0, (12.23)) implies that

limy = 0. (12.24)

First we show that
liminfy = 0. (12.25)
o0

Assuming that (12.25)) is not valid, there exist ¢y > 0 and § > 0 such that

y(t) > 4§ for t > to.
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Further, since lim, ® = 0, for arbitrary € > 0 there exists ¢ such that
0 <[®(t)]? < e fort>t.

Choosing sufficiently large 17, T5, by using the boundedness of y, we obtain from
(12.23)

C5

c*5p/2(T2 —T1) < cse(To — Th) + cs, e OP/? < che+
T, —-Th

with some constant c5, which is impossible if ¢ is sufficiently small and T — T}
is sufficiently large. Thus we have (|12.25)).
Assume that ((12.24)) is not true. Then there exist £g > 0 and

t; <t} <tg <tj < .. converging to + oo

such that
my(te) =0, y(te) <o, y(t) > o

Since y is continuous, there is #; € (tg,tx+1) with

y(tx) = sup  y(t) and y(ty) > eo.
tE[tr,try1]

Applying (12.23) to Ty = ¢ — 6k, T» = t; with sufficiently small §; > 0, we
obtain from ((12.23])

y(tr) =yt — 0) + c*Opef < cady  sup  [B(1)]
te(t,—0k,tk]

and since y(fx) — y(tx — 01) > 0, we have

c’eb <ey  sup  [®(1)]
te[ik—ék,fk]

which is impossible because lim,, ® = 0.
So we have proved ([12.24), i.e. the first part of (12.14]). The second part of

follows from (12.23) with Ty =T —a, To = T + a. If (12.16) is satisfied,
too, then we obtain from (12.22)), as To — 400, the first par and in
the case when ¢35 > 0, we find the second part of .

Finally, we obtain from as Tp — +00

() + 20 [ ytie< [ e

Th T

Hence, by using the notation Y (T) = [ y(t)dt, we get

(o)
V(1) + 25V (T) < e / [ (1))t
T
This linear differential inequality implies (12.18)) which completes the proof of
Theorem [[2.41 O
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It is easy to formulate conditions which imply that the operator fl(t), defined

by (8.1)), satisfies the assumptions of Theorem in the case when V' is a closed
linear subspace of W1?(Q). So by Theorem we find

Theorem 12.5. Assume that the operator A(t) : V — V* satisfies the condi-
tions of Theorem such that with some constants co >0, cg3 > 0

> laj(t2,6) — aj(t 2, €& — &) > el — € P +esls — €7 (12.26)
j=0
Further, there exist a continuous function ® and Carathéodory functions
Qoo : XX R™ 5 R
such that for a.a. (t,7) € Qoo, all € €R" j=0,1,....,n
Jaj(t, 2, €) — aj.00 (2, )] < @) (|7~ + 1) where lim & =0
and there exists Foo € V* such that

|F(t) — Foollv+ < ®(t) for a.a. t > 0.

Then for a solution u of we have (12.14]) where uso € V is the unique
solution of with operator Ay, : V. — V*, defined by

(Ao (2),v) :Z/ aj’oo(bx,z,Dz)Djvder/ ap,00(x, 2z, Dz)vdx.  (12.27)
=e Q

Further, implies the first part of , if c3 > 0, we have the second
part of and the estimate .

Now we formulate and prove a stabilization result on the (“non-local”) solu-

tion of (I1.6), considered in Theorem [11.4]
Theorem 12.6. Assume that the (“non-local”) operator A : LF (0,00;V) —

loc

L} (0,00;V*) has the form A(u) = B(u,u) where the operator
B: L} (0,00;V) x L} (0,00;V)— L (0,00; V)

is such that for each fivred w € L7 (0,00;V), [B(u,w)](t) depends only on u(t)

loc

and this operator, mapping V into V*, satisfies the assumptions of Theorem[7.]]
for a.a. t > 0. Further, for all uy,us,w € LY (0,00;V), a.a. t >0

loc
([B(ur, w)](t) — [Bluz, w)](8), ur () — us(t)) > (12.28)

collur (t) = ua (01, + esllua (t) — ua ()]

with some constants co > 0, c3 > 0.
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Finally, there exist Ay 'V — V* and Foo € V*, a continuous function ®
and for all R > 0 there is a positive constant cr such that for all v € V with
lvllv <R, we LY (0,00;V)NL>®0,00;H), a.a. t >0 we have

I[B(v, w)](t) — Ao (V)||v+ < cr®P(t) and (12.29)
|F(t) — Foollvs < ®(t) (12.30)
where lims, ® = 0.

Then for a solution of we have the conclusions of Theorem|12.4], i.e.

we have (12.14]) and if holds then we have (12.17), (12.18).

Proof. Similarly to the proof of Theorem one obtains that Ay, : V — V*
is bounded, strictly monotone, coercive and hemicontinuous. Thus the equation
has a unique solution us for each Fi, € V*. Further, by Theorem [11.4]
there exists a unique solution u of . Thus one obtains

(Dafu(t) — tse], 0t) — t1o0) + ([A@)]() — Avo(tioe),ult) — o) = (12.31)
(F(t) — Foo,u(t) — too)-

The second term on the left hand side of can be estimated as follows:
([A)](t) = Aco(too), u(t) = tios) = c2l|u(t) — oo [+ (12.32)
csl|u(t) — usollfr — [[B(uoo, )](£) — Asc(ucc), u(t) — usc)| >

callult) — usolly, + esllu(t) = uselr—

() — usoly, — C(E)I[B(tioo; )](t) — Aco(too) |V
For the right hand side of (12.31)) we have ((12.21)).

Thus, choosing sufficiently small ¢ > 0, integrating (12.31)) over [T, T3], we
obtain by Remark [6.7] (12.21), (12.29), (12.30), (12.32)

gp
—|lu

ShlT) — usely — 5 (Ty) — el i+ (12.33)
o T2 Tz T2
= lu(t) — uool}dt + 03/ lu(t) — too|| % dt < const/ [®(t)]dt.
i T T:
Inequality is the same as 7 so we can finish the proof of Theorem
12.6| as in the proof of Theorem O

It is easy to formulate assumptions on functions

aj: Qoo X R 5 LP (0,00;V) — R

loc

which imply that the operator A of the form (|11.14)) satisfies the conditions of
Theorem [12.6]| with

([B(u,w)](t),v) = Z/Qaj(t,m,u,Du;w)Djvdx+

loc

/ao(tx,u,Du;w)vdx, u,w € LY (0,00;V), wveV.
Q
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Theorem 12.7. Let V be a closed linear subspace of W1P(Q), 2 < p < oo,
H = L?*(Q) and assume that the operator A of the form satisfies the
conditions of Theorem such that for allu € LY (0,00;V), a.a. (t,x) € Qoo
all £,6* € R*HL

n

> laj(t,x, & u) — aj(t, 2, &5u)(& — &) >

=0

[g2(W)]()I€ — €I + eslé — €

where c3 is a nonnegative constant. Further, there exist a continuous function
® and Carathéodory functions

Aj.00 : 2 X R*t S5 R
such that for a.a. (t,7) € Quo, all £ € R*HL
laj(t, 2,6 ) = aj0(z,€)] < @O +1), j=0,1,..n
where lims, ® = 0 and there exists Foo € V* such that
|F(t) — Foollv+ < ®(t) for a.a. t > 0.

Then for a solution u of (11.6) we have the conclusion of Theorem i.e.
12.14) and (12.17), (12.18), respectively, where the operator Ay : V — V* is
defined by .

Now we consider Examples [[0.12] and we formulate additional conditions
which imply that assumptions of theorems in Sections [11] and [12] are fulfilled.

According to Example let
a; (t, Zz,1, C? U) = b(t7 z, [H(U)](t, m))gj |<‘p_25 j = 13 ey T
ao(t,x,m, ¢ u) = bo(t,x, [Ho(w)](t, ))nln|" >+

EO(tv z, [FO(u)](t’ Jf))do(t, Z,1, C)

where b, by, by, &g are Carathéodory functions, defined for a.a. (t,z) € Qo
satisfying

C2 C2
const > b(t,x,0) > —————, const > b(t,z,0) > —————
2 b ) 1+|0)° ( ) 14+ 10]°

with some constants co > 0,0 < o* <p—1,
|bo(t,2,0)] <14 |0]P~'7¢ with 0 < ¢* < p— 1 and

|540(t750a777<)| S01(1+|7]‘§—|—|C|@), U*+é< Q*v @20
Further, let H, Hy, Fy be operators of Volterra type such that for all 7" > 0,

H, Hy: LP(0, T; W*%P(Q)) —» C(Qr), Fo: LP(0,T;W'%P(Q)) — LP(Qr)
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are linear continuous operators (of Volterra type).

Then clearly, the assumptions of Theorem [11.9|on existence are fulfilled and
in the case when b, by, by are positive constants, the conditions of Theorem
are satisfied. If b,by are between two positive constants, the operators H, Hy
may be linear continuous operators, mapping

LP(0,T; W'=%P(Q)) into LP(Q7), as Fy.

For examples of operators of the above types, see in Example [10.12
The conditions of Theorem on the boundedness of [, u(t,z)*dx are

fulfilled in the (“local”) case when b, bo,BO are positive constants, because by
Young’s inequality and p <p—1

lGo(t, x,v, Dv)v| < const(1 + |v]et + | Dv|?T) < const P[|v|? + |Dv|P] + C(e)

hence with sufficiently small € > 0 we obtain .

The conditions of Theorem m (on the boundedness of [, u(t,z)*dz) are
fulfilled in the “non-local” case for the above example if H, Hy are linear oper-
ators of Volterra type, mapping continuously L?(Q;) into C(Q;) for all ¢ > 0.
Further, Fj is a linear operator of Volterra type, mapping LP(Q;) continuously
into L2(Q;) for all t > 0. (If b, by are between two positive constants, H, Hy
may map L?(Q;) continuously into L?(Q;) for all ¢t > 0).

Because then
Co C2

S T HWIE D © L [ HW)G .,

b(t, z, [H(u))(t, z))

C2 > C2
1 + const (sup[(m Jo ult, x)QdﬂC)

and similarly can be estimated by (t, x, [Ho(u)](¢, z)).
Further, by using the estimates in Example [10.12] we obtain by Young’s
inequality

*

1+ constHuH%;(Qt)

\bo (t, 2, [Fo(w)(t, x))éo(t, 2, u, Du)u| <
(14 B )~ (4 ) ] xlul (1 + Jul® + | Du) <

const [1+[[Fo(u)]P~1¢ (6, 2)]] (1+ Jul#1 + | Duf#*) <

p * * *
A+ 1Du = [+ O [1+ o )

where
* *

p1 p—o p—o

= = — s = — <1
pm-1 p-o-o-1 "7 5r1

q1

and

q(p—1—0%)
/ | Fo(u)|(t, )1 P~1=2") dg < const l sup / u? (T, x)dm]
Q Q

T€[0,t]
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Thus, choosing sufficiently small € > 0, we have (12.9)) with

k2(w](t,2) = CE) [+ |Fo@]" "= (t,2)]

*
*

_1—
P " s

= —1—*: — ol PR S
o=aqlp o) =(p 0)p7170*7g

because o0* + ¢ < g*.

Finally, we formulate conditions which imply that our example satisfies the
assumptions of Theorems and respectively (on stabilization of u as
t — 00). In the “local” case, when b, by, 130 are positive constants, assume that
Ag has the form

Got, 2,1, ¢) = [1 +(t, 2))ao(n)

where |¢(t, 2)| < ®(t) and &g is a monotone nondecreasing function, satisfying
lao(n)| < const(1 + |n|¢) with 6 < p — 1.
In this case is satisfied with ¢3 = 0. If
ao(n) —ao(n*) = cs(n—n*), & >0
then we have with some c¢3 > 0. In this case the conclusions of Theorem
hold, assuming also
|1F(t) — Fool| < ®(t) for a.e. t >0

with some F,, € V*.
In the “non-local” case assume that

b(t,z,0) = co[l + p(t,,0)], bo(t,z,0) = [l +U(t, z,0)]

where cg, ¢ are positive constants and the Carathéodory functions satisfy for
a.a. (6,z) € Qu, all § €R

[(t, z,0)] < ®(t), |Y(¢t, x,0)] < P(t) where sup® <1, lim®P =0.

Further,

bo(t,z,0) =1+ o(t, x,0) where |t (t,z,0)| < ®(t) and

|Go(t,z,n, Q) < [L+ 4 (t2)]Bo(n),  |va(t,2)] < (1),
where 3 is a monotone nondecreasing function, satisfying

|Bo(n)] < const(1 + |n|2) with < p — 1.

In this case ((12.26] holds with c3 = 0.
If
Bo(n) = Bo(n*) = és(n—n*), é >0
then we have (|12.26)) with some c3 > 0. The conclusions of Theorem hold
(with const ®(t)), assuming also

|1E(t) — Foollv+ < ®(t), for a.a. t > 0, with some Fo, € V™.
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Problems

1.

. Let w € I?

Let u € L} (0,00;V) be a solution of problem (11.1)) with the operator

loc

A(t) in Problem 4 of Section [11] and assume that ||F(¢)||v+ is bounded
for a.a. t € (0,00). Prove that ||u(t)||z2(q) is bounded for ¢ € (0,00) and

(12.2) holds.

. Let u € LP (0,00;V) be a solution of problem (11.1)) with the operator

loc

A(t), t € (0,00) in Problem 3 of Section [8] (see also Problem 5 in Section
satisfying the conditions

cp <alt,z) <co, ¢ <Btz)<cyforaa. (6,7) € Qu

with some positive constants ¢1, c2. Assume that F' € L*°(0,00; V). Prove
that [[u(t)||L2(q) is bounded for ¢ € (0, 00) and ([12.2) holds.

P .(0,00; V) be a solution of problem (11.1) with the operator
A(t), t € (0,00) in Problem 6 of Section 3| (see also Problem 6 in Section
. Assuming F' € L*°(0,00; V), prove that |lu(t)||z2(q) is bounded for

t € (0,00) and (12.2)) holds.

Assume that the operator A(t), defined in Problem 4 of Section satisfies
the conditions in that Problem for all ¢t € (0, 00). Prove that if w is a solu-
tion of problem with the above operator A(t) and F € L>(0,00; V)
then [lu(t)||L2(q) is bounded for ¢ € (0, 00) and holds.

. Assume that v € L} (0,00;V) is a solution of problem (11.1)) with the

operator A(t), t € (0,00) considered in Problem 3 of Section [§] (for 0 <
t <T) and in Problem 2 for ¢ € (0,00). Further, assume that there exist
functions o, B € L¥(Q) such that

Tim [Ja(t, ) — el = 0. lim [B(t,) — Bocll =) = 0.
Further, there exists Fi,, € V* such that
Jim [F(t) = Fally- = 0.

Prove that then

TH+a
Jim [fu(t) ool ey =0, Jim | fu(e) o[t =0

for arbitrary fixed a > 0 where u, is the unique solution to
/ [O‘OO(CU)(DJUOO”DUOOW_ZDJU’ + ﬁM(x)UM|UW‘p_2w] dx =
Q

(Foo,w), wevV.
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6. Formulate and prove a theorem on the stabilization of the solution of
(11.1) (as t — oo) with the operator A defined by

(A @], o) = Y /(DQU)IDQUI”’QD“M% t € (0,00),
la|<m ¢

u,v € LY (0,00;V), V is a closed linear subspace of WP (Q), if there

loc

exists Fiy, € V* such that

Hm (| F(8) = Fool| Loe () = 0.

13 Periodic solutions

In this section we shall formulate conditions which imply the existence of T-
periodic solutions of evolution equations in (0,00). In the proofs we shall apply
the following maximal monotone operator. (See (9.11), Remark [9.5])

Definition 13.1. Let V C H C V* be an evolution triple and define operator
L by

Lu=4', D(L)={ue€ LP(0,T;V):u € LY0,T;V*),u(0) =u(T)} (13.1)

Theorem 13.2. The operator is a closed, linear, densely defined, maxi-
mal monotone mapping from LP(0,T;V) into L9(0,T; V*). The maximal mono-
tonicity of L means that it is monotone and it has no proper monotone extension.

Proof. Tt is not difficult to show that L is a closed, linear, densely defined
operator, mapping from L?(0,7T;V) into L2(0,T;V*). Further, the operator L
is monotone because by Remark [6.7] for arbitrary u € D(L)

(L, ul =/0 (' (1), u(t))dt = % (@)1 = lu(0)[17] = 0.

Further, assume that for some v € LP(0,T; V), w € L1(0,T;V*)

[w— Lu,v —u] >0 for all u € D(L). (13.2)
We have to show that v € D(L) and w = Lv = v’. Apply (13.2) to u(t) = Mp(t)z
where z € V, ¢ € C§°(0,T) and X € R are arbitrary. Since

[Lu,u]:/o (u’(t),u(t))dt:/ N (1) (z, 2)dt = 0,

0

we obtain from ((13.2)

[w,v —u] — [Lu,v] >0, ie.
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T
| two.oohae—

T T
| twio vtz [ <¢'<t>z,v<t>>dtl >0,
0 0

This inequality may hold for arbitrary A € R, only if

/ we), vt + / 02 o))t =0
0 0
which implies according to Remark [6.5] that
v =we LI0,T; V*).

F?rt)her, by using the formula in Remark 6.7} we obtain from and u(0) =
u(T

0 <2[" — ;v —u] = [[o(T) — (T3 — [[v(0) — u(0)|[ (13.3)

((T),v(T)) + (W(T),u(T)) — 2(u(T),v(T)) — (v(0),v(0)) — (u(0),u(0))+

2(u(0),v(0)) = [lo(T)[1F = [lv(0) |7 + 2(u(0),v(0) — v(T)).
)

The inequality (13.3) implies v(0) = v(T), i.e. v € D(L). Indeed, assuming
v(0) # v(T'), one could find u € D(L) such that the right hand side of (13.3)
would be negative, since for arbitrary v € V, the function

u(t)=v, te€][0,T]
belongs to D(L). So we have shown that L is maximal monotone. O
Now consider evolution equations in (0,00) with “local” operators A which
have the form )
[Aw)](t) = [A@®)][u(®)]- (13.4)

Theorem 13.3. Assume that for a.a. t > 0, the function t — fl(t) is T'-periodic
(i.e. A(t+T) = A(t) for a.a. t > 0), and satisfies the conditions of Theorem
4, further, F € L} (0,00;V*) is T-periodic, too.

Then there exists a T-periodic function w € LY
u' e L} (0,00;V*) and

d () + [A®)]|[u(®)] = F(t) for a.a. t > 0. (13.5)

(0,00; V) which satisfies

loc

Proof. The assumptions of Theorem [13.3] imply that the operator
A:LP(0,T;V)— LI(0,T; V™),

, defined by R
[A)](t) = [A®)][u(®)], t<€[0,T]

is bounded, coercive and pseudomonotone with respect to Wl(O T;V,H), and,
consequently, it is pseudomonotone with respect to D(L) (defined by -
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Further, we claim that it is demicontinuous. Indeed, for a.a. fixed ¢, fl(t) V=
V* is demicontinuous, thus, if (ug) — u with respect to the norm of L?(0,T; V)
then for a.a. t € [0,T], (ux(t)) — u(t) with respect to the norm of V (for a
subsequence) which implies that for each fixed v € L?(0,T;V), a.a. t € [0,T]

(A®)[ur(®)], v(8) = ([ADO)[u(t)], v(2)) as k — oo

(since A(t) is demicontinuous), so Vitali’s theorem, Holder’s inequality and the
boundedness assumption (9.5)) imply

[A(ug),v] = [A(u),v] as k — .

Thus by Theorems there exists a solution v € D(L) of (13.5)) in
[0,T]. Since u € D(L), we have u(0) = u(T). Thus, defining u(¢) for ¢t > 0 by

ult+kT) =u(t), t€[0,T], k=1,2,..

we obtain

we L} (0,00;V), u' €L} (0,00;V*) and u is T-periodic.
(v € L} .(0,00;V*) follows from u(0) = w(T) and formula ) Thus u
satisfies ((13.5) in (0, 00). O

Applying Theorem [I3.3] in the case when V is a closed linear subspace of
WhP(Q), p> 2, H = L?(Q), to operators of the form (8.1), we obtain directly

Theorem 13.4. Assume that the functions a; : Qoo xR"1 — R are T-periodic,
i.e. for a.a. t >0,z € Q and all ¢ € R

a]<t + Tvxvé-) = aj(t,l‘,f)

and their restrictions to [0,T] satisfy (B1), (B2), (B3) or (B3') and (B4).
Further, F € L}, (0,00;V*) is T-periodic, too.

Then there exists a T-periodic solution u € L}, (0,00; V) of where the
operator A(t) : V. — V* is defined by .

In the case of “non-local” operators A, instead of the abstract Cauchy prob-
lem we consider the following modified problem, which is a generalization of
the Cauchy problem for functional differential equations in one variable (see

Remark |10.11)):
u'(t) + A(t,uy) = F(t) for a.a. t € [0,00], u(t)=1p(t), for a.a. t € [—a,0)
(13.6)
where u; is defined by
u(s) =u(t+s), s€[-a0, t>0 (13.7)

€ LP(—a,0; V), F € L} _(0,00;V*) are given functions and we want to find a

loc
function u € L} (—a,00; V') such that v’ € L] (0,00;V*) and u satisfies (13.6)).
Further,

loc

A:(0,00) x LP(—a,0;V) — L

loc

(0,00; V*) (13.8)
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is a given (nonlinear) operator. Observe that defining operator

A:LP

loc

(—a,00; V) — L

loc

(0,00; V*) by

[A(w)](t) = A(t,ug), weL?

oe(—a, 00, V), >0
the differential equation in (13.6)), i.e.

W) + [A()](t) = F(t), t>0, o €Ll

loc

(0,00; V)

has the form (11.6) which was considered in Section We assume that A is
of Volterra type and [A(u)](t) depends only on u [f;—q.

We shall formulate conditions on A and F which imply that for some 9 €
LP(—a,0;V) there exists a T-periodic solution of problem (|13.6)).

Theorem 13.5. Assume that the operator

A:(0,00) x LP(—a,0;V) — L

loc

(0, 00; V™)

and F are T-periodic, i.e. for allv € LP(—a,0;V)

A(t+T,v) = A(t,v), F{t+T)=F() for a.a. t € (0,00),

and A is of Volterra type. Further, assume that the operator A Lr0,7;V) —
L1(0,T;V*), defined by

[A(w)](t) = A(t, (Pu),), tel[0,T), weLP(0,T;V) (13.9)

(Pu)(t) =u(t+kT) ift > —a and t + kT € (0,T) for some k=0,1,2,...,
(13.10)
18 bounded, demicontinuous, coercive and pseudomonotone with respect to

D(L)={u € LP(0,T;V) :u' € LY0,T;V*), u(T)=u(0)}. (13.11)

Then there ezists uw € L?

loc

—a,00; V) such that v’ € LY
(—a, 00;

loc

(_av [N V*):

u'(t) + A(t,ug) = F(t), u(t+T)=u(t) for a.a. t € (0,00).

Remark 13.6. Theorem means that for all T > 0 there exists
€ LP(—a,0; V) with ¢’ € LY(—a,0; V*)
such that there exists a T-periodic solution of the Cauchy problem ([13.6]).

Proof of Theorem[13.5 Since by Theorem L = D; is a maximal mono-
tone, closed, densely defined linear operator with D(L), given in (13.11) and
A: LP(0,T;V) — L%(0,T;V*) is bounded, demicontinuous, coercive and pseu-
domonotone with respect to D(L), by Theorem [9.4] there is a solution u € D(L)
of

v + A(u) = F.
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Then for Pu, defined by
(Pu)(t) = u(t + kT), t> —a and t+ kT € [0,T] for some integer k
(—a,00; V), Pu is T-periodic, (Pu)’ € L. (—a,00;V*) and

loc

we have Pu € Ly
satisfies R R R
(Pu)'(t) + A(t, (Pu);) = F(t), for a.a. t € (0,00),
i.e. the statement of Theorem |13__.£>_| holds for Pu. O
Now we apply Theorem in the particular case when A has the form
10.37

analogous to the formula (10.37) and V is a closed linear subspace of W?((Q),
H = L*(Q). Similarly to the conditions (C1) — (C5) and the conditions of
Theorem [11.9] assume

(C1*) The functions

aj : Qoo X R X [P(—a,0;V) - R
satisfy the Carathéodory conditions for arbitrary fixed w € LP(—a,0; V) (j =
0,1,...,n)), and are T-periodic:
aj(t+ T, z,&w) = a;(t, z,&w)

for a.e. (t,7) € Quo, all ¢ € R w € LP(—a,0; V).

(C2*) There exist bounded (nonlinear) operators g; : LP(—a,0; V) — RT
and k; : LP(—a,0; V) — LY(Qr) such that

laj(t, 2,1, Gw)| < gr(w)[L+ [P~ + [P~ + [k (w)] (¢, )

for a.e. (t,z) € Qr, each (n,¢) € R**! and w € LP(—a,0; V).
(C3*) There holds the inequality

> lajtw,n, Gw) — ag(t,z,m, w5 — &) > [ga(w)]|¢ — ¢

j=1
where )
g2(w) > ¢* [1+ [0l o—aovy]
¢* is some positive constant and 0 < o* <p — 1.
(C4*) There holds the inequality

> alt,z,n,Gw)g; > [ga(w)][1+ [l +1¢[7) = [ka(w)](t, )
j=0

where ko (w) € L' (Qr) satisfies for some positive o < p — o*

k2 (w)l| 21 (@r) < const [1+ [lwllLr(—a00]” -

(C5*) There exists 6 > 0 such that if (wy) = w in LP(—a,0; V), strongly in
LP(—a,0;W'9(Q)), (n*) — n in R, (¢¥) — ¢ in R, then for a.a. (¢,z) € Qr,
j=0,1,..,n,

lim aj(tv z, nk7 <k§ wk) = aj(t’ Z, 1, <; w),
k—o00

for a subsequence.
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Definition 13.7. Assuming (C1*) - (C5*), we define operator

A:LP (0,00; V™) by

loc

(—a,o00; V) — L}

loc

([A(u)](t),v>=/ Zaj(t,m,u,Du;ut)Djv+a0(t,m,u,Du;ut)v dz,
o | =

(13.12)
wel?

loc

(—a,00;V), veW

Theorem 13.8. Let V be a closed linear subspace of W1P(Q), H = L*(Q),
assume (C1*) — (C5*) and let F € L} (0,00;V*) be T-periodic. Then there

loc
exists u € L} (—a,00; V) such that v’ € L} (—a,00;V*) and

loc
u'(t) + [A()](@t) = F(t), ult+T)=u(t) for a.a. t € (0,00).

Proof. Let A(t,u;) = [A(u)](t) where [A(u)]() is given by (13.12), then the

operator ~
A:LP(0,T;V) — L0, T; V™),

given in , has the form
([AW)](t),0) = (A(t, (Pu)s),v) =

/ Z a;(t, z,u, Du; (Pu)¢)Djv + ao(t, z, u, Du; (Pu))v p dz,
j=1
uwe LP(0,T;V), veV
where Pu is defined by ((13.10). By Theorem the assumptions (C1*), (C2%),
(C4*) imply that A is bounded, demicontinuous and coercive. Further, (C1*) —
(C5*) imply that A is pseudomonotone with respect to D(L), given by (|13.11])

This statement can be proved by using the arguments of the proof of Theorem
[[0.9] Thus Theorem directly follows from Theorem [I3.5] O

Now we formulate conditions which imply that the Examples [10.12] satisfy
the conditions of Theorem [I3.8

Example 13.9. Assume that the functions b, by, BO, Qg are T-periodic. Further,
operators H, Hy, Fy have the form

H(u) = H(up), Ho(u) = Ho(ue), Fo(u) = Fo(ue)

where
H,Hy: LP(—a,0;W'79(Q)) = C(Qr), Fo:LP(—a,0;W'°(Q)) = LP(Qr)

are linear continuous operators. Then the conditions of Theorem on a; are
fulfilled.
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Problems
1. Show that for the Example the assumptions of Theorem [13.8| are
fulfilled.

2. Consider the functions
aj i Qo xR—=R, j=0,1,...,n

which satisfy the assumptions of Problem 1 in Section [8| for all ¢ € (0, c0)
(see also Problem 4 in Section and

a;(t+T,z,&) =aj(t,z,§) foraa t >0, z€Q, & eR

Further, F' € L} (0, 00; V*) satisfies

loc
F(t+T)=F(t) for a.a. t > 0.

Prove that there exists a T-periodic solution u € LP(0, 00; V') of the equa-
tion (13.5) with the operator A(t) defined by functions «; in Problem 1
of Section

3. Formulate and prove a theorem on the existence of a T-periodic solution
of the equation (13.5) where the operator A(t) is defined in Problem 3 of
Section

4. Formulate and prove a theorem on the existence of a T-periodic solution
of the equation (13.5) where the operator A(t) is defined in Problem 6 of
Section Bl

5. Formulate and prove a theorem on the existence of a T-periodic solution
of the equation (13.5) where the operator A(t) is defined in Problem 4 of
Section [0l



Chapter 3

SECOND ORDER
EVOLUTION EQUATIONS

In this chapter we shall consider certain nonlinear hyperbolic differential equa-
tions and functional equations which can be treated by means of monotone type
operators. Namely, we shall consider equations of the form

v+ NuW)+Qu+ MW, u)=F
where N is a nonlinear operator of monotone type, () is a linear operator having
some particular properties and M is a nonlinear operator with some compactness
properties, finally, F' € L2(0,T; V™).
14 Existence of solutions in (0,7)

As before, let V. C H C V* be an evolution triple, 1 < p < oo and let the
operator L be defined by

Lu=+4', D(L)={ueLP(0,T;V):u € LI0,T;V*), u(0)=0}.
Assume that

(D1) N : LP(0,T;V) — L%0,T;V™*) is bounded, demicontinuous, pseu-
domonotone with respect to D(L) and coercive such that

N (), ] = / (N0, v(0)dt > ealloll o gy — 30 v € LP(O,T5V)

with some constants co > 0, c3.
(D2) @ :V — V* is a linear continuous operator with the properties:

(Qu,v) = (Q0,a), (Qu,a) >0 for any @,0 €V

107
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and define @ : LP(0,T;V) — L(0,T;V*) by
(Qu)(t) = Qu(t), e LP(O,T;V).
(D3) The operator
M : LP(0,T; V) x LP(0,T; V) — L9(0,T; V*)

is bounded, demicontinuous, it has the following compactness property: if
(ur) = w weakly in LP(0,T;V), (u),) — v/ weakly in LP(0,T;V) and (u) — u”
weakly in L2(0,7; V*) then for a subsequence

(M (u},ug)) — M(u',u) weakly in L9(0,T;V*) and

T
Jim ; (M (u, ug) (), () — ' (t))dt = 0.
Finally,
1M @, )00
111 D Iz =0
I(w,v) || =00 Hu”LP(O’T;V) + H’UHLP([LT;V)
where || (u, v)|| = [[ul| Lo, 75v) + V] e 0,7v)-

Theorem 14.1. Assume (D1) — (D3). Then for arbitrary F € L%(0,T;V*)
there exists u € CL([0,T); H) N C([0,T);V) such that v’ € LP(0,T;V), u" €
L0, T;V*) and

u + N')+ Qu+ M, u)=F in [0,T], (14.1)

w(0) =0, u'(0)=0. (14.2)

Proof. Define operator S : L?(0,T;V) — C([0,T]; V) by

(Sv)(t):/o v(s)ds.

Clearly, S is a linear and continuous operator. If  is a solution of (14.1]), (14.2])
then v = u’ satisfies v € LP(0,T; V), v' € L4(0,T;V*) and

v+ N()+ QSv+ M(v,Sv) =F (14.3)

v(0) = 0. (14.4)

Further, if v € LP(0,T;V) satisfies (14.3)), (14.4]) then v = Sv is a solution of

(14.1), (14.2), since u = Swv is absolutely continuous and u'(¢t) = v(t) for a.a.
€ [0, T]. Thus, due to Theorem [9.4] it is sufficient to show that the operator

]
: LP(0,T;V) — L0, T;V*), defined by

o+

A(v) = N(v) + QSv + M (v, Sv)
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is bounded, demicontinuous, pseudomonotone with respect to D(L) and it is
coercive.

Since the operator S : LP(0,T;V) — LP(0,T;V) is linear and continuous,
from assumptions (i) - (iii) directly follows that A : LP(0,T;V) — L%(0,T; V™)
is bounded and demicontinuous.

Now we show that A is pseudomonotone with respect to D(L). Let (vg) be
a sequence in D(L) such that

(vg) — v weakly in LP(0,T;V), (vy) — v weakly in L1(0,T;V*), (14.5)

lim sup[A(vg), v — v] < 0. (14.6)

k—o0

By (ii) the linear operator QS : L?(0,T; V) — L9(0,T; V*) is monotone. Indeed,
by using the notation © = Sv, we have v = v’ and thus

[QSv,v] = [Qu,u'], (14.7)

SO

r 1~ 1~
[Qu,U’]:/ <QU(t),U’(t)>dt:§<QU(T)7U(T)>*§<QU(0),U(0)>: (14.8)
0

5 (Qu(T), u(T) 0.

To obtain formula (14.8)) we choose a sequence of polynomials ¢; : [0,7] — V
such that

q) — u' in W;(O,T;V,H), q — uin C([0,T]; V) as | — oo.

Then
(Qa(t), ai(t)) = (Qqi(t), (1)) + (Qau(t), qi(t)) =

2(Qau(t), (1)),

and after integrating over [0, T] we obtain

(Qq(0),¢:(0))

DN =

| @uv. eyt = 5(@a(m). (1)) -

and so ([14.8)) follows as | — oo.
Consequently,

[QSvr — QSv, v, — v] > 0,

hence
[QSvi, v —v] > [QSv, v —v] = 0 as k — oo,

which implies
lim inf[QSvg, v, — v] > 0. (14.9)

k—oc0
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Set up = Svk, u = Sv then v, = uj, v =’ and
(Svg) = Sv weakly in LP(0,T;V), i.e. up — u weakly in LP(0,7;V) (14.10)
and by
(u},) — o' weakly in LP(0,T;V), (u}) — u” weakly in LY(0,T;V*). (14.11)

Thus by assumption (D3) for a subsequence (denoted in the same way) we
obtain

M (vk, Sv) = M (v, Sv) weakly in LY(0,T; V™), (14.12)
klim [M (vg, Svi), v, — v] = 0. (14.13)
— 00

Now (T4.6), ([4.9), (T4.13) imply

lim sup[N (vi), vg — v] <0, (14.14)
k—o0
for a subsequence. By using Cantor’s trick one obtains that (14.14]) holds for

the original sequence, too.
Since according to (D1) N is pseudomonotone with respect to D(L), by

(14.5), (14.14) we have

(N (vg)) = N(v) weakly in LY(0,T; V™), (14.15)
kli)n;o[N(vk)’vk —v] =0. (14.16)

>From (14.6), (14.13]), (14.16) one gets

lim sup[QS(vx), vi —v] <0

k—o0

for a subsequence and so by ((14.9)

lim [QS(vk), vk —v] =0, (14.17)
k—o00
whence
klim [A(vg), v —v] =0 (14.18)
—00

for a subsequence, thus by using Cantor’s trick we find for the original
sequence, too.

Since QS : LP(0,T;V) — L9(0,T; V™) is linear, continuous and monotone,
by Proposition [2.5] it is pseudomonotone which implies by

(QS(vr)) = QS(v) weakly in LY(0,T; V™). (14.19)

Therefore, (14.12)), (14.15)), (14.19) imply

(A(vk)) = A(v) weakly in LY(0,T; V™)
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(for a subsequence), so by (14.18) we have shown that A is pseudomonotone
with respect to D(L).
Finally, we prove that A is coercive. By assumption (i) and the monotonicity

of QS

A M(v, S
M e @S0l g
||v||Lp(O’T;V) ||v||Lp(0’T;V) HUHLP(O,T;V)
and for the last term we have
q 1/‘1
[[M (v, Sv),v]] ”M(U’SU)HLQ(O T;V*)
. < . T , (14.21)
”UHLP(O,T;V) HU”LP(QT;V)
”M(va”)H%Q(O,T;V*) _ (14.22)
1010 0,70y
1M (v, SO) %4 0 7149 101 Z0 .m0y + 150N 200,70
”vHip(o,T;v) + ||SU||ip(o7T;V) HU”ZL;;:(O,T;V)

According to assumption (D3), for arbitrary & > 0 there exists a > 0 such that

1M (0. S L0 071
o} 4y F11Sv]|F vy > @ implies o < e
L»(0,T;V) LP(0,T;V) HU||ZL),P(O7T;V) T ||SUH;2P(O7T;V)
Thus by the boundedness of S and ([14.22))
M (v, SO0 (0.1 1
P e < Ce + Nl ||M(U7u)||%q(07T;V*) =
””HLP(O,T;V) ||U||Lp(o,T;V) llollP+|ull?<a
C*
Cg + pi(a)
1ol Ze 0.7:v)

with some constant C' > 0 and a constant C* > 0, depending on a. Choosing
sufficiently small € > 0, we obtain

M (v, Sv)[I74

0,T;V*
TV < (e /2)1
”U”Lp(oj;v)

if ||v]| e (0, 1;vy is sufficiently large, whence by (14.20), (14.21) we find
[A(v), v]

”’U”I[),p(oj;v)

> /2 — “

”U”ip(oj;v)

if ||v]|zr0,;v) is sufficiently large. Thus, A is coercive which completes the
proof of Theorem [14.1 O
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Now assume that instead of (D1) the following (stronger) condition is ful-
filled.

(D) N : L?(0,T;V) — L%0,T;V*) is bounded, demicontinuous, coercive
(as in (D1)) and is of (S); with respect to D(L) (see, e.g. [8], [93]): if for
v € D(L)

(vr) — v weakly in LP(0,T;V), (v},) — v weakly in L4(0,T; V™),
lim sup[N (vg), vg, — v] < 0 then (vg) — v in LP(0,T; V).
k—o00

(Then, clearly, N is pseudomonotone with respect to D(L).)

In this case we may assume a weaker condition on M:

(D3’) The operator M : LP(0,T;V)x L?(0,T;V) — L%(0,T; V*) is bounded,
demicontinuous. Further,

if (ug) = u, (up) — v weakly in LP(0,T;V),

(u}) — v weakly in L4(0,T; V™)
then for a subsequence

T
lim [ (M (uf w)](8), wh () — o/ (D) dt = 0.

k—o0 0

Finally,

1M (0,0 v

lim

= 0. (14.23)
I(u,v) || =00 ”U”ip(oj;v) + ”vHip(O,T;V)

Theorem 14.2. Assume (D1'), (D2), (D3'). Then for arbitrary F € L1(0,T; V™)
there exists u € C([0,T]; V) such that v’ € LP(0,T;V), u” € L9(0,T;V*) and
D). {173 hold

The proof of this Theorem follows from the proof of Theorem [14.1

Remark 14.3. One can prove the following generalization of Theorem [I4.]]
to problems with nonhomogeneous initial conditions. Assume (D1) - (D3) or
(D), (D2), (D3") such that the coercivity of N holds in the sense of Theorem
Then for arbitrary F' € L1(0,T;V*), ug € V, uy € H there exists u such
that w € C([0,T); V), v’ € LP(0,T;V), v € L1(0,T;V*), u satisfies and

uw(0) = ug, u'(0) = uy. (14.24)

Indeed, if u is a solution of (14.1)), (14.24) then © = «' € LP(0,T;V), ¢’ €
L(0,T;V*) and © satisfies

¥+ N(®) + QSt + M (9, S + uo) = F — Quy, (14.25)

5(0) = uy. (14.26)
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Conversely, if # € LP(0,T; V) satisfies (14.25)), (14.26) then u = St +uy satisfies

(), (20, u < C(l0.T};V).

It is not difficult to show that if M satisfies (D3) or (D3') then the operator

(, 1) — M (3,4 + uo)

also satisfies (iii) or (111’) Consequently, by Theorems 14.1} |14.2] there is a

solution of (14.25)), (14.26)) and so there is a solution of 1-) (14.24])).

Remark 14.4. Assume that (D1) is satisfied such that N is uniformly mono-
tone in the sense

(INW)(@) = [N(W)](2), v(t) = w(t)) = collv(t) — w(B)[[y, and (14.27)

(Qa), a) > es|lally,

with some positive constants ¢z, c3, further, M = 0. Then the solution of (14.1J),
(14.24]) is unique and it depends continuously on F, ug, u;. 4
Indeed then for solutions v; of 1 42 ), 1 42 6) with f = up = ud,

up = uj (j =1,2) we have

/0 (8} (7) — (7). B1(7) — (7)) dr+ (14.28)

Since by Remark [6.7]

[0 = (7). 50(0) = sy = 5100 - 5a(0)F = 5152(0) - 520y
0

we obtain from (14.27), (14.28)) by Young’s inequality for the solutions u; =
Sf}j + u{)

IN

- - C2 - ~ C3 -~ -
Sl (t) = as ()|l + 5 181 = @llia o vy + 5 I8 (t) = az ()15

callFr = FollTag vy + esllur — willyy + collug — udlly
with some positive constants cy, cs, cg.

Applying Theorems [10.1} [I0.9] one easily gets from Theorem [I4.1] and Re-
mark [[4.3]
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Theorem 14.5. Let V be a closed linear subspace of WHP(Q), (p > 2, Q C R"
a bounded domain with sufficiently smooth boundary), H = L*()). Assume
that N : L?(0,T;V) — L%(0,T;V*) has the form and (C1) - (C5) are
fulfilled such that gs(u) and kq(u) are not depending on w. Further, operator Q
has the form

n

(Qu,7) = /Q 3" a(@)(Dy@)(Dy0) + d(a)ad | da+ (14.29)

jl=1

K(z,z)u(z)0(z)dzdz, 4,0 €V,
QxQ

where aji,d € L™(Q), aji = aij, Y25, aj(x)€& >0, d(x) > 0 for a.a. v € €,
all € € R™,
KecL*(QxQ), K(z,z2) =K(zx) and

K(z,2)u(z)u(z)dzdz > 0. (14.30)
QxQ

Finally, there is 6 > 0 with 6 < 1/p such that
M :LP(0,T;V) x LP(0,T; V) — L(0,T; W'=%P(Q)*) (14.31)

is bounded, demicontinuous,

1M (0, 0| oo w5y < const [ [ollEoo.ziy + Nl Tooran]  (14:32)

with some constant 0 < o < p—1.

Then there exists a solution of , (14.24)).

Proof. By Theorem and Remark [10.10| NV satisfies (D1'). Clearly, Q sat-
isfies (D2). Finally, we show that M satisfies (D3'). By (14.31)

M : LP(0,T; V) x LP(0,T;V) — L9(0,T; V*)
is bounded and demicontinuous. Further, if
(ur) = u, (u)) — o weakly in LP(0,T;V),
(u}) — v weakly in L4(0,T; V™)
then by Theorem [10.1] for a subsequence
(u}) — o' in LP(0,T; W'=0P(Q)),
thus by Holder’s inequality
[M (u),, ug), up, —u'] — 0

since M (u},uy) is bounded in L9(0, T; W1=9P()*) by (14.31). The assumption

(14.32) implies (14.23)). Therefore, from Theorem we obtain Theorem
O
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Remark 14.6. The assumption (14.30) means that the selfadjoint and compact
operator K : L2(Q)) — L?(2), defined by

- / K(z,2)3(z)dz, o € L3(Q)
Q

is positive which is equivalent to the fact that all eigenvalues of K are nonneg-
ative which holds if and only if the function K has the form

Z% ) with some 1; € L*(Q). (14.33)

Indeed, by the Hilbert—Schmidt theorem
Ko=) A\i(#,05)¢;
J

where ); are the eigenvalues and ¢;,j = 1,2, ... is the orthonormal system of the

corresponding eigenfunctions of K (this system is finite or countably infinite).
Thus

K (z, 2)i(z)a(z)dzdz = (K, Z/\ (@

QxQ

Further, since

[ K(.2)i)i(:)dods - /Q (K9)(2)ii(x)dz =

/Q i) ;Aj@,%m(x) dz = / y ;wmmz) ()i (z)dedz,

and A\; > 0, we have

2) = Ngj(x)p;(z)
J
i.e. we have (14.33) with ¢; = /\Jl-/zgoj.

Problems

1. Prove Theorem [14.2

2. Consider the initial-boundary value problem

Dfu— Y Dja;(t, z, Dyu, DDyu)] + ag(t, , Dyu, DDyu)—  (14.34)
j=1

Z [a(2) D] + d(z)u = f(t,2), (t,z) € Qr,



116 CHAPTER 3. SECOND ORDER EVOLUTION EQUATIONS

u(0,2) = uo(x), Dwu(0,z)=ui(z), zins, (14.35)
ulr, = 0 where 'y = [0,T) x 9. (14.36)

Prove that u is a (“sufficiently smooth”) classical solution of (14.34) —
(14.36) if and only if the function U, defined by U(t) = =z — wu(t,z)
satisfies (14.1), (14.24) where V = W,?(Q), H = L*(Q), M =0,

[N(v),w] = / Z a;(t,z,v, Dv)Djw + ao(t, , v, Dv)w | dtdz,
T [j=1
] (14.37)
[Qu, w] :/ Z a;i(z)(Dw)Djw + d(z)uvw | dtde, (14.38)
T |jl=1
u,v,w € LP(0,T;V),
[F,w] = fwdtdx, w e LP(0,T;V). (14.39)

Qr

If this function U satisfies (14.1)), (14.24) with the operators (14.37),
(14.38)) and with F' defined in (14.39)), it is called a weak solution of ({14.34])

— (|14.36]).
3. Assume that M =0,

[N(v),w] :/ zn:fj(t,x,Djv)Djw + fo(t,z, Djv)w| dtdx

r 5=
where the functions f; satisfy the Carathéodory conditions,

& — fi(t,x,&;) is monotone nondecreasing
for a.a. (t,z) € Qp, V =W *(Q), H=L*(Q),

Bul& P < IS5t 2, &5)] < Bol& P for aa. (t,2) € Qr

with some positive constants (1, 82 and p > 2. Further, ) has the form

(14.38)) where

aji,d € L), aj = ay, Z a; ()& >0, d(x) >0 (14.40)
=1

for a.a. z € Q, all £ € R™.
Prove that then for each F' € L1(0,T;V*), ugp € V, u1 € H there exists a

solution of ([14.1)), (14.24]) (i.e. a weak solution of (14.34) — (14.36] with
aj(t,x,f) = fj(t, Z‘,fj), j = 0.1, e ,n).
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4. Let M =0 and

[N (v),w] :/ Z(Djv)|Dv|p72Djw—|—v|v|p72w dtdzx,
T

j=1

where v,w € LP(0,T;V), V.= WyP(Q), p > 2, H = L*(Q). Further,
assume that @ has the form ((14.38)) such that conditions ((14.40]) hold.
Prove that then for each F € L9(0,T;V™*), ug € V, u; € H there exists a

solution of (14.1), (14.24)), i.e. a weak solution of (14.34) — (14.36) with
a’j(ta z,n, C) = <j|C|p72 for j = ]., Lo, n,

ao(t,x,n,g):n|n|p_2, neR, (eR".

15 Solutions in (0, c0)

Now we consider equation (14.1) for ¢t € (0,00). By using the notations of
Section [[1] we have

Theorem 15.1. Assume that Q : V — V* satisfies (ii). Let
N:L?

loc

(0,00; V) — L]

loc

(0,005 V™),

M:IP (0,00, V)

be operators of Volterra type and assume that for each finite T > 0 their restric-
tions to (0,T) satisfy (D1) and (D3) such that the coercivity of N holds in the
sense of Theorem[9.6

Then for arbitrary F € L1(0,00;V*), ug € V, uy € H there exists u such
that u € C([0,00); V), v’ € L} (0,00; V), u” € L} (0,00;V*) and

loc

(0,00; V) x LY

loc

(0,00; V) — L}

loc

u(t) + [N (u)](t) + Qu(t) + [M(u',w)](t) = F(t) for a.a. t € (0,00), (15.1)
uw(0) =ugp, u(0)=u. (15.2)

The proof is similar to that of Theorem based on Remark
From Theorems [T4.5] [I1.9] we obtain

Theorem 15.2. Let V be a closed linear subspace of WHP(2), 2 < p < oo,
Q C R™ a bounded domain with sufficiently smooth boundary. Assume that the
functions

aj i Qoo X R™ X IP (0,00;V) =R, j=0,1,...,n

loc

satisfy the assumptions of Theorem N has the form (11.14), Q : V — V*
satisfies the assumptions of Theorem

M : L2 (0,00;V) x L (0, 00; W=P(Q)*)

(0,00; V) — L}

loc
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1s of Volterra type and satisfies the assumptions of Theorem for arbitrary
finite T > 0.
Then for arbitrary F € Ll (0,00;V*), ug € V, uy € L*(Q) there exists

loc
we L7 (0,00, V) such that v’ € L} (0,00;V), v’ € L} (0,00, V*),

loc

v+ NW)+Qu+ M u)=F in (0,00), u(0)=mug, u'(0)=mu;.

Now we formulate a theorem on boundedness of the solutions u of (|15.1),
(15.2).

Theorem 15.3. Let the assumptions of Theorem [I5.1] be satisfied such that
with some co > 0

(INW)](1),v(t)) = c2llo(@)[IY,, ¢ € (0,00) (15.3)
for all u,v € LY (0,00;V), and with some nonnegative ®1,®2 € L*(0,00), a
positive constant 6 < 1, y(1) = ||v(7)||% we have
1M (0, w)] ()] < P1(t) sup y” +Po(t), te(0,00) (15.4)
0,t

Finally, let F € L1(0,00; V*).
Then for a solution u of (15.1)), ,y(t) = ||/ (1)]|% is bounded in (0, 00),
u’ € LP(0,00; V) and
(Qu(t)],u(t)) is bounded for t € (0, 00). (15.5)

If
(Qu, @) > esl|i[fzq) for dla eV (15.6)

with some constant c3 > 0 then

lu(t)|w1.2(q) is bounded fort € (0, 00). (15.7)

Proof. Applying both sides of (15.1)) to «’ and integrating over [0, T, we obtain

[ u'] + [N (), o] + [Qu,u] + [M (v, u),u] = [F,u]. (15.8)
By Remark and
1 1 1
[u”,u'] = §||U'(T)||§1 - §||U’(0)||§1 = 5y(T) = 54(0) (15.9)
and by

Qu,u] = S{Qu(T), u(T)) ~ 3 (@u(0), u(0)). (15.10)
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Further, by Young’s inequality

, , er (T N 1 4 / q
60 < S [ o [ M@ alol.d (s

I 17 :
1]l < — i ' It + i IE @)% dt. (15.12)

Choosing sufficiently small € > 0, from ((15.3), (15.4), (15.8) — (15.12)) we obtain
the inequality

0T+ [ IO+ 5 (QuT).u(r) < (15.13)
T ! q g q 1
const [/0 I[M (u )] ()] *dt+/0 |1E @)L dt +§y(0)+

1<C~2u(0), u(0)) < const

T T T
5 1+ sup y"/ él(t)dt—i—/ <I>2(t)—|—/ ||F(t)|q*dt] :
0 0 0

(0,77

Since 7 < 1, @1, P2 € L'(0,00), F € L9(0,00;V*), we obtain from (15.13))
that y(T) and (Qu(T),u(T)) are bounded for T € (0,00) and u’ € L?(0, 00; V).
Finally, (15.6) implies ((15.7). O

Now we consider examples for operators N, M, Q which satisfy the assump-
tions of Theorems -[I53l

The operator in Example [I0.12]satisfies the conditions on N in Theorem [I4.5]
and the operator in Example, considered in Section [12] satisfies the conditions
on N in Theorem In the case b,by > co with some positive constant co
and by = 0 the assumption on N in Theorem are fulfilled.

It is easy to show that the assumptions on M in Theorem [I4.5] are fulfilled
if e.g.

[M (v, u)](w) = / g(t, z, [G1(v)](¢), [G2(v)](¢))wdtdz +/ ho(t, z; u)wdo

T FT
(15.14)
u,v € LP(0,T;V), w e LP(0,T; W oP(Q))

where ¢ is a Carathéodory function satisfying with some positive constant o <
p—1
l9(t,,01,02)| < const[1 + |67 + [6]7], (15.15)

G1,Gs : LP(0,T;V) — LP(Q) are linear and continuous operators, 0 < ¢ <
l/pa 1—‘T = (O7T) X 697

he : T x LP(0,T;V) - R
is a measurable function, satisfying

|h2(t, 25 u)|| La(ry) < const [1 + ||U||LP(O,T;V)TT .
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Further, the assumptions on M in Theorem are satisfied if (15.14),
(115.15) hold for all ¢ € (0, 00),

Gla GQ : Lp (07 o3 V) — L;lnoc(Qoo)

loc

are linear operators of Volterra type and for all fixed finite 7" > 0, they map
L?(0,T;V) into LP(Qr) continuously.
The assumptions on M in Theorem [I5.3] are satisfied if

lg(t, 2, 01,02)] < 1(1)]601] + ®2(t), ¢ € (0,00)
with @y, ®, € L(0, 00) N L®(0,00), 0 < A < 2/q and for all v € L2, (Qu)
1G1(v)]|Lr(@,) < constlv]r2(q,), t € (0,00).

Finally, 1D is satisfied for the operator Q of the form (|14.29) if for a.a.
r e all &= (&, ..., &) € RPHL

n

3" aj@)gie + d(x)ER > eslé)? (15.16)

jl=1

with some constant c3 > 0.

Now we shall formulate conditions which imply a result on the stabilization
of solutions u of as t — oo. For simplicity we consider the case when N
is “local”, i.e. [N(u)](t) = [N(t)](u(t)) where N(t) : V — V* is defined for all
t>0and M = 0.

. loc loc(07 S V*)
is given by [N(w)](t) = [N(t)](u(t)) where N(t): V — V* satisfies the assump-
tions of Theorem[7.1] such that for all © € V

(IN®](@),0) = ca(t + D], (15.17)

Theorem 15.4. Assume that the operator N : LY (0,00;V) — L]

with some constants > p—1 (p >2), c2 > 0. (In this case N(t) is uniformly
monotone, see Definition 215) The operator M = 0 and Q satisfies (D2) and
. Further, there exist F oo € V*, a continuous function ® > 0 with

o0
lim ® = 0, / d()1dt < oo (15.18)
o0 0

such that
[1F(t) = Foollv+ < @(t) (15.19)

and there exists a solution u., € V of
Quos = Fso (15.20)
Then for a solution u of with M =0 we have

. / o
Jim [l (8|11 = 0. (15.21)
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/ (t+ 1)) (t)]|%dt < oo, / (t+ )|/ (8)]|]dt < o0 (15.22)
0 0
where 0 < B < [2u — (p — 2)]/p and there exists w € V such that

const 1

||U(t) - ’LUH(‘Z/ < ﬁm (15.23)

where A= p/(p—1) > 1.

Proof. Since uo, € V' and so its derivative with respect to t is 0, we may apply

(15.1) to ' = (u — uwo)’, and thus, integrating over [0, 7] we obtain by (15.20)

T T
| ooy [ (15.24)
0 0

T T
/ (OTu(t) — uad], [u(t) — un]' )t = / (F() — Fao, o (1)) dt.
0 0

By using the notation y(t) = ||u’(t)||%;, we obtain by Remark and

|t @nas = 5u(r) - 5u00) (15.25)
0
(see (15.9)) and by
T
| (@1utt) =l fute) = )t = (15.26)
S(QIT) — uecl, () — ) = 5 (@Lu(0) — o), w(0) — )
Further, by Young’s inequality
‘/T<F(t) —Foo,u’(t)>dt‘§ (15.27)
0

= [ e+ o [ 1E® - Pl

Choosing sufficiently small e > 0, by (15.17)), (15.19)), (15.24) - (15.27) we find

1 C2 T Wi p 1, =~
T+ F [+ D Ot + Q) — ul u(T) — ) < (15.28)

1 1, ~

T
const [ (807 + 5(0) + 5 (Qfu(0) — o u(0) — ).

Since the right hand side is bounded for all 7" > 0 by (|15.18]), we obtain the
second part of (15.22)), i.e.

/Ooo(t + D () dt < oc. (15.29)
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Consequently, for any T < T, we have

T>
[u(T2) = u(To)llv = [[(Su')(T2) — (Su')(T1)llv = ||/T o' (t)dt|ly < (15.30)

Ts T 1
/ o (&) lvdt = / Ve e <

T: T (t + 1)>\/q

T a T e
{/T (t+11)kdt} {/T (t+ 1)“|U’(t)||€/dt}

where A = pu/(p— 1) > 1 and thus pA/g=A(p—1) = p.
Thus, for any € > 0 there exists T such that for Ty < 17 < Tb

[u(T2) = w(Ty)llv <e.
Hence, there exists w € V' such that

lim ||u(T) — w|y =0. (15.31)
T— 00
In order to prove (15.23), take the limit 75 — 400 in ((15.30f), then we find

lw — u(T)lly < / o (&)t <
T

([ ) (o)

1 1 1/qa oo ) )
nw
{/\—1(T1+1)/\1} /O (t + D"l ()][5dt,

i.e. we have ((15.23]).
The first estimate in (15.22)) can be obtained as follows. If 0 < 8 < [2u —

(p — 2)]/p then by Holder’s inequality

/ (t+ 1)||u (£)|3dt < const / (t+ 1)l ()|t
0 0
const/ (1 172007 (04 1200 (1) 3] e <
0

00 P (p—2)/p 00 2/p
const {/ (t+1) »2 dt} {/ (t+ 1)”||u’(t)|"’,dt} < o0
0 0

because of the second part of (15.22) and 52%3” < —1. In the case p = 2
the first multiplier in the last term is the L>°(0,00) norm of the function ¢ —
(t+ 1)5—2/1/10.




15. SOLUTIONS IN (0,0) 123

Now we apply again (15.1)) to v’ = (u — us)’ and integrate over [T}, T3],
then we obtain by (|15.20))

Ty T>
/ (" (), o ()t + / (N ())(8), (1)) di-+

T1 Tl

/ (Olu(t) — uso), [ult) — o))t = / F(t) — Faoy (1),

T T

whence, similarly to ((15.28]), we find

1 (6] T2
S vt + 2 [ (Ol (15.32)
Ts
%(Q[u(Tg)—uw},u(Tg)—um)—%@)[u(Tl)—uoo],u(Tl)—uoo> < const /T (o

Since Q : V — V* is a continuous and linear operator, by (15.31))

lim  {{Q[u(Ts) — uoc], u(T2) — te) — (Qu(Th) — uos], u(T1) — usc)} = 0,

Tl,TQ*}OO

thus (T5.18), (T5.29) imply
lim [y(T1) — y(T2)] = 0.

T1,T24)OO

Thus limr_, o y(7T') exists and is finite, further, by the first estimate in ((15.22)),
it must be 0, i.e. we have (15.21]) which completes the proof of Theorem|15.4] [

The following example satisfies the assumptions of Theorem
Example 15.5. Set [N (u)](t) = [N(t)][u(t)] where

(N @@.5) = ¢+ 17 [ (Vi S (0,050 + 2o

j=1
@, €V where V.=W,P(Q)or V=W"Q), u>p—1,p>2 M=0and
<Qa7@>:/ > aj(Dja)(Did) + dav |, @5 €V
Q

J.l=1

where the functions aj,d € C(Q) satisfy the (uniform ellipticity) condition
(15.16). Finally,

F(t) = Fo + ®(t)g where Fix € LP(Q), g € LU(Q).
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It is well-known (see, e.g. [2]) that for a bounded domain Q C R™ with
sufficiently smooth boundary and F., € LP(2), there exists a unique solution
@ € W2P(Q) solution of the linear equation

— Y Di(ajDyii) + dii = Fs in Q
gl=1
with the boundary condition
~ _ A ~ _
U loo=0, (0, a) [sn=0,

respectively, where 9 denotes the “conormal derivative” of @ on 9 (with re-
spect to the differential operator in the differential equation). Thus we have a

solution of (15.20]).

Problems
1. Show that the operator M defined by (|15.14]) satisfies the assumptions of
Theorem [I4.5]

2. Show that the Example [I5.5] satisfies the assumptions of Theorem [I5.4]

3. Formulate and prove an existence theorem on problem (15.1)), (15.2)) with
the operators M = 0, N,Q considered in Problem 3 of Section [I4] with
arbitrary t € (0, 00).

4. Formulate and prove an existence theorem on problem ((15.1)), (15.2)) with
the operators M = 0, N, Q@ considered in Problem 4 of Section with
arbitrary ¢t € (0,00).

16 Semilinear hyperbolic equations

In this section we shall consider the equation (14.1) in the case when N = 0
(16.2))

and operator M has a particular form (see , further, V is a closed linear
subspace of W12(Q), (p =2), H = L*(Q).

Existence of solutions in [0, 7]

Theorem 16.1. Let V C W2(Q) be a closed linear subspace, p = 2, H =
L2(Q). Assume that Q : V — V* satisfies (D2) (see Section and

(Qu, ) > co||12|\%vl,z(ﬂ) foralueV (16.1)

with some constant ¢ > 0 (i.e. Q satisfies )
Let operator M (u,u’) have the form

[M (u,u")](t,z) = @(z)h' (u(t)) + P (t, z;u)u'(t) where (16.2)



16. SEMILINEAR HYPERBOLIC EQUATIONS 125
p: Q=R Y:QrxL*(Qr) >R
are measurable in x and (t,x), respectively, 1 has the Volterra property and
(ug) — w in L*(Qr) implies (t, x;uy) — ¥ (t, z;u) for a.a. (t,z) € Qr,
for a subsequence. Further, there exist positive constants cy,ca,cs such that
1 <) <co, 0<Y(t,z;u) < cs; (16.3)

h:R — R is continuously differentiable function satisfying

2
h(n) >0, |W(n)] < const |2 where 0 < o < — (16.4)

(In the case n =2, o+ 1 may be any nonnegative number.)
Then for any F € L*(0,T; H), ug € V, uy € H there exists u € L>(0,T;V)
such that

' € L®(0,T; H), u' € L*0,T;V*), (16.5)
(1) +(Qu) (t) +p(x)h (u(t)) +(t, z;u)u'(t) = F(t) for a.a. t € [0,T], (16.6)
uw(0) = ug, u'(0) = uy. (16.7)

Remark 16.2. One can show (see, e.g [93]) that H is dense in the Hilbert space
V*, thus
HcV*CH” (16.8)

is an evolution triple, hence
L*(0,T; H) C L*(0,T;V*) C L*(0,T; H*).
Consequently, since
u"” € L?(0,T;V*), we have (v') € L*(0,T; H*)
which implies by v’ € L?(0,T; H) and
u € C([0,T]; V*).
Since u; € H C V*, the initial condition u«(0) = u; makes sense.

Proof of Theorem[I6.1. We apply Galerkin’s method. Let wy,ws, ... be a lin-
early independent system in V such that the linear combinations are dense in
V. We want to find the m-th approximation of u in the form

wn(t) = 3 g (g where gy, € W22(0,T) = H2(0,T) (16.9)
=1
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such that for all j =1,....m

(up (8), w5) + ((Quam ) (1), wj)+ (16.10)
((@)h (), w;) + (¢ 25 um )y, (£), wy) = (F(£),w5),
Um (0) = umo, UL, (0) = U (16.11)

where .0, U1 are linear combinations of w1y, wa, ... satisfying
(wmo) = ug in Vo (um1) = ug in H. (16.12)

By the existence theorem for a system of functional differential equations with
Carathéodory conditions (see [32]) there exists a solution of (16.10)), (16.11)) in a
neighborhood of 0. The maximal solution of (16.10)), (16.11) is defined in [0, T7].
Indeed, multiplying by g}, (t) and taking the sum with respect to j, we
obtain

(tm (£), up (1)) + (Qum ) (1), uyy, (8))+
(p(@)h (um), U (8)) + (D(E, 25w )y, (2), iy (£)) = (F(2), iy (2))
Integrate the above equality over [0,t], we find by , Remark and

Young’s inequality

S () + 5 (Quan) (1), (1) + (16.13

/Q() Uy (T dx—|—//7,/17':cum ! (7)) dxdr =

/0<F(T)7 Uy (T))dT + *Hu O% + 5 <Qum() um (0))+

/Qcp(z)h( (O))dz<1/ | F(7)||%dr + = /Hu 7)||3d7 4 const

where the constant is not depending on m and ¢, because of (D2), (16.3)), (16.4)),
(116.12])
[h(n)| < const(1 + [n]¢*?)

and by Sobolev’s imbedding theorem (see [I] and also Theorem 4.17)), L¢T2(£2)
is continuously imbedded into W12(£2) since

2n — 2 < 2n
n—2 n—2

2
o+2< ——+2=
n—2

By (D2), (16.3), (16.4), (16.13) implies

i < e [1+ [ Tt (1614
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with some constant ¢4, not depending on ¢ and m (but depending on ||ug||v,
luillms |FllL2(@ry-) Thus by Gronwall’s inequality

|l ()13 < const ,¢ € [0,T]. (16.15)

The constant is not depending on ¢ and m (but depending on |lugllv, ||u1ll#,

| Fll22(@r)). Thus (16.1)), (16.13) imply

|t ()13, < const ,t € [0,T]. (16.16)

By , the maximal solution w,, of , is defined on
[0,7] and (u,) is bounded in L>°(0,T;V), (ul,) is bounded in L>(0,T; H).

Consequently, there are a subsequence of (u,,), again denoted by (u,,), and
u € L*°(0,T;V) such that

(Um) — u weakly in L*(0,T; V), (16.17)

(ul,) — u' weakly in L>°(0,T; H), (16.18)
which means that for any fixed g € L*(0,7;V*) and g; € L1(0,T; H)

T T
/ (9(8), wm(£))dt — / (9(), u(t))dt,
0 0

T T
/ (92(8), e (D)) dE — / (91 (1), (1)),
0 0

because w,,,u (and u/,,u’) are linear continuous functionals on L(0,7;V™*)
(and L'(0,T; H), respectively).
Since the imbedding of W12(£2) into L?(12) is compact (if 2 is bounded and

its boundary is “sufficiently good”, see Theorem , by Theorem (116.17)),
(16.18)), for a subsequence

Um) = w in L?(0,T; H) = L? and a.e. in . 16.19
( Tﬂ) ( s Ly ) QT QT
As Q : V — V* is a linear and continuous operator, by 1) forallveV
(Qum (t),v) = (Qu(t),v) weakly in L>°(0,T) (16.20)
and by (16.18)
(1) 0) = ol (1),) = (" (1), ) (16.21)

with respect to the weak convergence of the space of distributions D’(0,T).
Further, by (16.19) and the continuity of A’

o(2)h (um (1)) — p(x)h (u(t)) for a.e. (t,z) € Qr. (16.22)
by (53,
(@ ()l 20y < constll(um (2o < (16:23)
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1/2 1/2
const [/ |um(t)|2(g+1)d:r] = const {/ |um(t)|q°dx} < const||um(t)|\§1})/2
Q Q

because for 2(p+ 1) = go < 2% we have by Sobolev’s imbedding theorem (see,

n—2
e.g [I] and also Theorem [4.17))

n—2

2n

1
L®(Q) C V since — >

1 1
9 2 n

Thus by the Cauchy—Schwarz inequality the sequence of functions ¢(z)h' (um (t))v
is equiintegrable in  for each fixed v € V and a.a. ¢t € [0,7]. So by Vitali’s
theorem for a.a. t € [0,7

lim cp(m)h’(um(t))vdx:/cp(x)h'(u(t))vdx. (16.24)

Further, by the assumption of our theorem, for a.e. t € [0, T, for a subsequence
Y(t, T3 um) — Y(t,z;u) in L2(9), (16.25)

hence for all fixed v € V C H, a.a. t € [0,7]

/w(t,x;um)u;n(t)vdac = /[w(t,x;um) —(t, z;u)]ul, (tH)vde+  (16.26)
Q Q

/ »(t, x;u)ul, (Hvde — / P(t, x;u)u (t)vde
Q Q
because for a.a. t € [0,T], u,,(t) is bounded in L?(2) and

ul (t) — u'(t) weakly in H.

m

Let v € V be an arbitrary element and vy = ZN:1 Bjw; a sequence, ap-

proximating v with respect to the norm of V. By we have
(um (£), o) + (Qum (t), vn) + (@(2) (um (1)), va)+
(W(t, 23 um)up, (t), vn) = (F(t),vn)
which implies as N — oo
(um (£),v) + (Qum(t),v) + (p(2)R (wm)(¢), v)+
(W (t, @ um)tl, (1), 0) = (F(t),0) for a.a. ¢ € [0,T].

By using (16.20)), (16.21)), (16.24)), (16.26) we obtain from the above equality as
m — 00

lim (u”,(t),0) + (Qu(t),v) + {p(@)h (u)(t), v)+ (16.27)

m—r oo
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Equality (16.27) means that for a.a. t € [0,7], u], (¢) is weakly converging to
an element of V* and this limit as a function of ¢ belongs to L*(0,7; V*). Thus
u” € L?(0,T;V*) and it is not difficult to show that

(ull) — u” weakly in L?(0,T; V™). (16.28)
According to (16.17)), (16.18) v € L>=(0,T;V), v’ € L*°(0,T; H) thus Theorem

implies v € C(0,T; H) and for ¢ € C*[0,T] with the property (0) = 1
¥(T) = 0 we have for all j

T T
/ (W (), wy )b (E)dt = — (u(0), w;) — / (ut), ;) (),
0 0

T T
/ (i (£), w0 (E)dt = (11 (0), w07) — / (tm (£), w0 (8.
0 0

Hence by (16.11)), (16.12)), (16.17)), (16.18)) we obtain as m — o

(o, 05) = 10 (o, 5} = Tim {un (0), wy) = {u(0), w;)

for all j which 1mphes u(0) = up.
Similarly, since v’ € L>(0,T; H), v” € L*((0,T; V*) by using Remark-,
we obtain v/(0) = u; and so by (16.27] m ) Theorem is proved.

Uniqueness and smoothness of solutions

Now we formulate and prove a theorem on the uniqueness and continuous de-
pendence of the solution on F', ug, u1.

Theorem 16.3. Assume that the conditions of Theorem are fulfilled so
that Y(t, z;u) = ¥ (x) with the property

0 < 1(z) < const, (16.29)
R is continuous and satisfies
[n(n)| < const|n|®. (16.30)
Then the solution of (16.6 , ' i umque Further, if u; is a solution of
l lwzthF Fj,uo—uo, uy =) (j =1,2) then for

w=wuy —uz and wy(s) = /Os[ul (1) — ug(7))dr

we have
w(s)[|7 + lwi(s)[3 < (16.31)

Xo(Fj,up,u}) e |f1 = fallZaqu) + llug — upllFr + lui — uf}
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where Xo is a function, the values of which are bounded if || Fj||12(qQ.), |y,

() = /0 " (r)dr

Proof. Assume that u; is a solution of li 1' with F' = F}j, up = u,
-»

up = qu (j =1,2). Let s € [0,7T] be an arbitrary fixed number and apply (16.6
(with u;) to v, defined by

!l are bounded and

v(t) = /ts[ul(r) —ug(7)]dr if 0 <t < s and

v(t)=0if s <t <T.
It is not difficult to show that

ve C(0,T;V), v e€L>*0,T;V), (16.32)

V() = —w(t) = ua(t) —ur(t) if t <sand v'(t) =0 if t > s

(w” (), v(t)) +(Qu(t), v(t)) + (p(@)[I' (ur (1)) — ' (ua(t))], v(E)+

(@) (1), 0(t)) = (F1(t) = Fa(t), v(1)).
Integrating over (0, s), by we obtain

[ @ Qoo+ [ e oo = (63
0 0 0
/ R () — Fa(t),ot))d — / o) [ s (£)) — B (s (1)), (1)) .
By Remarks and
/ (" (6), v(t))dt = / (! (6, w(t))dt — (w/(0), 0(0)) =
0 0

1 1
Slw(s) 3 = 5 IO — (' (0),0(0).
Since v(s) = 0, integrating by parts, by m we get from (|16.33))

Qo)+ [ [ dwnrtas = 0

/OS(Fl(t) — Fy(t),v(t)) —|—/Qw'(O)v(O)dx—I—/Qz/;(m)w(O)v(O)dx—

|
£l
S
+
N | =

| ot ) = K uale) o + 5O
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By using the definition of w and the notation wy(s) = [; w(7)dr we have
S
v(0) = / w(T)dr = wq(s) (16.35)
0

and so by
(Qu(0),v(0)) = col[v(0)[[} = collwa(s)[F- (16.36)

By using the notation f;(t) = fot F;(1)dr, we obtain by integration by parts and
Young’s inequality

‘/ (Fy(t o(t))dt | = ]/ {/ R (t)dt} dr|= (1637

/{/ hU]@ﬁ}mF;Ast%ﬁ+;ﬁ—m&@>
Similarly, by (T6.3
\/Qzu%o>v«»dx\f;sHun(s)H%dt+-ca<e»wu%o>uﬂ (16.35)
and by
| [ S@ue0)ds | < clos(s) e+ Co@ @ (1639

(C;(e) denote constants, depending on ¢.)
Finally, the last term on the right hand side of ((16.34]) can be estimated as
follows: by (16.3)), (16.30) and Lagrange’s mean value theorem

\A?wmwmmw>faW@Mw@mﬂg (16.40)

const /08 {/Q | (uy(t)) — h’(uQ(t))|v(t)d:r} dt =

cmwf{éwmwmnm€@ﬁMm@—m@wwm@ag

wm3£{Aﬂmuw+wuwMumw—w@nwmm}w

where
a = min{uq (), u2(t)}, b= max{ui(t),uz(t)}.

Since
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V' is continuously imbedded into LP™(2) and L%(2), and so we may apply
Hélder’s inequality by 1 + I + % =1:

/ { [ty + |u2<t>|@1|w<t>|v<t>|dx} it < (16.41)

const / [ (8)]2 2y + Nlus(6)]e]

o] lw@®llalv(®)l|La@ydt.

const / s DI + N2 O w @)L [0 ()] 2o () dt
0

Since uy,ug € L*>(0,T;V) and according to the proof of Theorem |1 I, 1 their
L>(0,T;V) norm can be estimated by a function of || F}||z2(q,), ad|lv, 14 || ar,

the values of which are bounded if || F}||z2(q,. b llv, 1wl ||z are bounded (see

(16.14) - (16.16))), we obtain from (L6.40)), 1) and v(t) = wi(s) —wi (¢) (for

t < s) that
\ /0 <<P($)[h/(u1(t))—h'(ug(t))]m(t»dt‘g (16.42)
X(Fy / o)Ll )| oyt <

NRTRT / lo®lla [lwor®ll ey + lwn ()]l o] dt <

X(Ej,up, ui) {Ellwl(S)ll%/ +C(e) /0 (@7 + lwi@®I) de

where x(F},u}, u}) is bounded if || Fj]| 2 (@Qr)s lud|lv, |ul]l s are bounded.
Choosing sufficiently small ¢ > 0, we obtain from (16.34)), (16.36) — (16.39)),

(16.42) with some Y(Fj,u), u?)

()l + llwr ()13 < X(Fy, uh,uf) /()S[Ilw(t)?{ + [l (0[5 )dt+

o (I = Fal3agqn) + ()% + v/ (0)]1F]

Hence by Gronwall’s lemma
lw(s)IF + i ()17 <

xo(Fyyubyud)er (112 = foll3aq,) + (O + 1w/ ()] -

Thus we have ((16.31)) and, consequently, the uniqueness of the solution of (|16.6)),
(116.7)). O

If F, up, uy satisfy certain smoothness conditions then we have smoother

solutions of ([16.6), (16.7]).
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Theorem 16.4. Assume that the conditions of Theorem [16.3 are fulfilled so
that the restriction of (the linear and continuous operator) @ : V. — V* to
V N H?(Q) is continuous operator from H?(Y) into H = L*(Q);

F' ¢ I*(Qr), wo € VNH*Q), wu €V (16.43)
Then there exists a (unique) solution
u e L>(0,T;V) (16.44)
of , satisfying
u € L>*(0,T;V), ' e€L>*0,T;H). (16.45)
IfQ:V — V* is such that for any
feL*Q), Qu=f implyac H*(Q) and (16.46)
[l 20y < const]| f]|L2(q)
then for the solution u of , we have
u € L>=(0,T;V N H*(Q)). (16.47)

Proof. We apply Galerkin’s method and, similarly to the proof of Theorem [16.1
we want to find the solution u of (16.6)), (16.7)) as the limit of functions u,,, given

by (16.9) with g;,, € H3(0,T), satisfying (16.10)), (16.11)) and instead of (16.12)

we have

(Umo) — up in VN H*(Q),  (Um1) — uy in V. (16.48)

Since h” is continuous, we may differentiate (16.10) with respect to t, so we
obtain

(WD (), ;) + (Quip (1), ;) + (@) (Y (), w5+ (16.49)

(@), (1), ws) = (F'(8),w;).
Multiplying (16.49) with g7, (¢) and taking the sum with respect to j, we find

() (#), iy, (£)) + (Qui, (8), iy (8)) + (0(@)h” (i i (8), iy, (D)4 (16.50)

(W (@) (£, i (1)) = (F7 (1), up (1))
Integrating both sides of (16.50) over (0,t), we obtain (similarly to (16.13))

S ()3 + 5 (@ (0) () + (16.51)

/ / ()R (g )t (Pl (F)ddr + / D), () 2dwdra =
0 Q 0 Q
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t
| )i+ S O + (@i 0).1,0)
Further, multiplying by g;’m(t) and summing with respect to j, we
obtain
[t ()77 + (Quuun (£), i, (8)) + (o (@) (i), 107, (£))+
(W (@), (8), 1 (1)) = (F (1), uip (1)),

thus
[[urr, (0)[I7r <

[HF(O)IIH + 11Quan (0)l] 21 + e2 || (i (0) ] + CBII%(O)IIH} [, ()| -
So by (16.48) and Sobolev’s imbedding theorem (see ((16.23)))

[l (0)||zr < const for all m (16.52)

since by the assumption of our theorem

1Qun (012 < const[um (0)] 72

Finally, the third term on the left hand side of (16.51) can be estimated as

follows: (similarly to 1 , 1) by Hélder’s inequality with %—i— % —|—% =1
t
|/ [ / tp(az)h”(um(r))u’m(T)u%(r)dx} dr| < (16.53)
0 Q
t
const/ [/ |um(7')|9|u;n(7')||u;;l(7')|dx} dr <
0 Q
t
COHSt/O (e ()N 2 () 1w (7))l L 1w (7) | ] d <
t
const / et (P18 e () 1 () ) <
t t
const / il ()l () s < comst / [l (2 + it (P)113,] dr
0 0

since () is bounded in L>(0,T;V).
Thus, (16.51)) - (16.53) (16.1)), (ii) and Young’s inequality imply

t
[l (D112 + |, (£)]|> < const {1 +/O [, (P77 + [, (D] dr}

and so by Gronwall’s lemma for all m, ¢ € [0, T]
l[um ()17 + l[ug ()13 < const. (16.54)
Hence, similarly to the proof of Theorem [I6.1] we obtain

(ul,) — u’ weakly in L>(0,T;V),
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(urr) — u” weakly in L>(0,T; H),

we have ((16.17)), too, for the (unique) solution of ((16.6]), (16.7).
If (16.46]) holds then from the equation (16.6)) and ((16.44)), (16.45)) we obtain
directly (|16.47)). O

Remark 16.5. According to [5I] the operator Q given in (14.29) satisfies
(116.46)).

Solutions in (0.00)

Similarly to the previous existence theorems, one can prove existence of solutions

to (16.6), (16.7) for ¢ € (0, 0).

Theorem 16.6. Assume that the conditions of Theorem are fulfilled for
all T > 0 with

Qoo X L2(Qoo) - R,
satisfying for all t € (0,00). Then for any F € L? (0,00; H), ug € V,

loc

ur € H there exists u € LjS.(0,00;V) such that v' € Li° (0,00;H), u" €

L} .(0,00; V*) and for a.a. t € (0,00), and hold.

Theorem 16.7. Assume that the conditions of Theorem are fulfilled for
all finite T'> 0 and the conditions of Theorem[16.6] are satisfied, too. If

F' € L} .(0,00;H), u€VNH*Q), wecV

loc

then there exists a (unique) solution of (16.6)),

u € L2.(0,00; V) satisfying u' € LiS.(0,00; V), u” € LiS.(0,00; H).

loc

Further, implies u € L2 (0,00; V N H2()).

Now we formulate and prove a theorem on the “boundedness” of the solution

of (16.6)), ([16.7) for ¢t € (0, 00).

Theorem 16.8. Assume that the conditions of Theorem [16.7 are fulfilled such
that (z) > ¢ >0, on F assuming only F € L? (0,00; H) and u is a solution

loc
of (16.6), fort € (0,00).
If with some Ty > 0, F(t) =0 for a.a. t > Ty then

1 B2 + collul®) 2 + 21 /Q h(u(t))do+ (16.55)

t
6/ {/ |u’(T)|2dx} dr < const, t € (0,00).
o Lo

Consequently,

we L®(0,00; V), ' € L®(0,00;H) and ¥*/*u’ € L*(0,00; H).
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Further,
F € L*(0,00; H) and & > 0 (16.56)
also imply . Consequently,
v ()|l g < const e, ¢ € (0,00). (16.57)

Finally, if F € L*°(0,00; H) and ¢ > 0 then
1 t
f/ l|lu/ (7)]|%dr < const
t Jo
and thus
t
\|u’(t)||§,+co||u(t)||2v+2c1/ h(u(t))da:—i—%/ [/ |u/(7)|2d4 dr < ¢t (16.58)
Q 0 L/e

with some constant ¢.

Proof. Let u be a solution of (16.6)), (16.7) for ¢ € (0,00). By (16.1)), (16.13)) we
obtain for a.a. ¢t € (0, 00)
2 2

5/; UQ |u§n(7)|2dx} dr <
1

o 2 1 To / 2
3| WPl [ ol e

L 113 + = collum @2 + / o@D h(um()dzt  (16.59)

2

where the constant ¢ is independent of ¢. Thus

¢
a1 < 4+ [ b (DIFyr (16.60)
0
with some constant ¢4 (independent of ¢) and
b(t)=1for 0 <7 <Ty, b(r)=0forr>Tp.

From ((16.60) by Gronwall’s lemma we find
To
lul, (D)% < cq + 04/ eT0=%ds < const, t € (0,Tp). (16.61)
0

Since by (16.17), (16.18)

lu@®)} < liminf lum @)1, o' (O < lminf [, (@)1,

by (16.19)), Vitali’s theorem, from ({16.59)) we obtain as m — oo (16.55)).
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If F € L*(0,00; H) and & > 0, we obtain similarly to (16.59)

1

S O + geolum(®)} + / p(@)h(um(D)dzt  (16.62)

¢
6/ [/ lul (T) de} dr <5/ |l (7)||%dm + C(e) / | F(7)||%dT + é.
o Lo

By (16.56) and (16.62)) with sufficiently small € > 0, we obtain

t
| @ lfidr < const, 1€ 0.00)

0
and so we obtain from (|16.62f) (16.55)). Further, by (16.55]

¢
o Ol +2 [ Il <
with some positive constant ¢*. Thus by using Gronwall’s lemma we obtain
I’ ()7 < cre™>

which implies (16.57)).
Finally, if ' € L*°(0,00; H) and ¢ > 0, we have similarly to (16.62)),

S O + geolum(®)} + /Q o(@)h(um(D)da+  (16.63)

/[/ o de] dr<||F||Lm<0wH>/ et (7| e <

t 1/2
const - t1/2 [/0 |u;n(7')|%1dr} :

By using the notation

/ e ()2, we have ¥'(t) = [l (8) %

and thus
Y'(t) 4 eaY (t) < est2[Y (6)]Y? 4 ¢ (16.64)

with constants ¢4, ¢5,c6 > 0. Set z(t) = Y'(¢)/t, then from (16.64) we obtain
t )

2'(t) + <C4 + 1) z(t) < CS[Z(t)}lm + ‘6

whence
2(0)+ eax(t) < ol + L < 2ef+(0)) 2
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if t > csc6 = 1o and z(t) > 1. Thus, assuming z(t) > 1, we obtain for t > ¢
2 (t) < dy[2()]? = dyoz(t) where dy > 0. (16.65)

Inequality implies that z(t) is bounded for ¢ > ty because if z(t) >
(dy/dz2)?* then the right hand side of is negative, thus the nonnegative
function z is decreasing.

Consequently, there is a constant ¢* such that

0<z(t)<c*, te(0,00), ie.

1 t
¢ [ @ < e

and by (16.63) we have (16.53). 0
Remark 16.9. Assume that the conditions of Theorem [16.8] are fulfilled in the
following form: there exist F,, € H and us, € V such that

F —F,, € L*(0,00; H) and

Uoe € V is a solution of Que, = Fixe. (16.66)

(Such ue € V exists if Q is an elliptic operator with K = 0, considered in
Theorem [T4.5)) Then (16.55) holds. Indeed, taking the difference of (??) and
16.66)), we obtain (16.62)) with w = u — us, instead of u (in the third term on
the left hand side with u) and with F — F, instead of F.

Theorem 16.10. Assume that the conditions of Theorem [16.§ are satisfied in
the more general form, formulated in Remark [16.9, i.e. there exists Fo, € H
such that F — F, € L?(0,00; H) and us is a solution of , ie. Quoo =
F... Further,

U(x) > ¢ with a constant & > 0. (16.67)

Then for the solution u of ,
/ [/ (7) | wdr < o0, ice. u € LM(0, 00 H)
0

and there exists wg € H such that

w(T) = wg in H as T — oo, ||u(T) — wollzr < const e~
Proof. According to Theorem [16.8
llu'(t)||r < const e, (16.68)

thus -
/|W@Mm<m. (16.69)
0
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Further, applying Theorem to v = u(T2) — u(Ty) (which is constant in t),
we obtain by using u'(t) € H

lu(Ts) — (T3 = (u(T), w(Tz) — u(Ty)) — (u(T1), u(Ty) — u(T1)) =
/T (! (6), u(Ts) — u(Ty))dt = /T (! (1), u(Ty) — u(Ty)dt <
la(Ts) - w(T)|n /T el () et
which implies
u(T2) — u(Ty) || < /T ! (1) .
Hence by
lu(T2) — u(T1)||lg — 0

as Ty, Ty — 00, i.e. there is some wy € H such that

w(T) = wo in H as T — oo

and by (|16.68|)
(o) oo 5 -
lu(T) —w||g < / o (t)]| pdt < const / e % dt = const e~
T T

O

Theorem 16.11. Assume that the conditions of Theorem [16.10] are satisfied,
further, F' € L*(0,00; H), h € C? and b is bounded. Then

v ()|l g < const e, t € (0,00) and (16.70)
u' € L=(0,00; V).
Further, if limy_o0 [|[F(t) — Foollg = 0 then for the function wo satisfying

lims oo ||u(t) — wollgr = 0 (see Theorem we have with arbitrary x €
VN H*(Q)

/Qwoéxda:—i—/g ap(a:)h(wo(x))xdx:/QFooxdx. (16.71)

If Q is defined by

n

<@ﬂ77~)> :/Q Z aji(x)(Dya)(D;v) + d(x)uv | de

jil=1

(see Theorem [1].5) then equation (16.71) means that wy is a weak (distribu-

tional) solution of

— > Djlaj(z)Dywo] + ¢(x)h(wo(r)) = Fao

=1

(with some homogeneous boundary conditions).
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Sketch of the proof. One applies the arguments in the proof of Theorem [16.4
Since h” is bounded, the third term on the left hand side of (16.51)) can be
estimated as follows

<

/ot [/Q @(x)h”(um(T))ug(r)ug@(T)dI} dr

t t t
const / ()l () b < / ()3 + Cle) / il (7).
0 0 0

Choosing sufficiently small € > 0, we obtain from ([16.51))
t
(% + & / () |Zdr < const, ¢ € (0, 00).
0

Thus Gronwall’s lemma implies (16.70). Applying (16.6) to x € V N H?(Q), we

obtain (|16.71f) as t — oo.
O

Problems
1. Prove Theorem

2. Prove Theorem
3. Prove Theorem [I6.11]
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