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Chapter 1

NONLINEAR STATIONARY
PROBLEMS

1 Introduction

The aim of these lecture notes is to give a short itroduction to the theory of
monotone type operators, and by using this theory to consider abstract station-
ary and evolution equations with operators of this type. Then the abstract the-
ory will be applied to “weak” solutions of nonlinear elliptic, parabolic, functional
parabolic, hyperbolic and functional hyperbolic equations of “divergence type”.
By using the theory of monotone type operators, it is possible to treat several
types of nonlinear partial differential equations (not only semilinear PDEs) and
to prove global existence of solutions of time dependent problems. However,
there are a lot of problems in physics, chemistry, biology etc. the mathematical
models of which are nonlinear PDEs but the monotone type operators can not
be applied to them. These equations need particular treatment. (see, e.g. [13],
[18], [22], [23], [36], [38], [52], [65], [67]).

The lecture notes are based mainly on the theory of second order linear par-
tial differential equations (see, e.g., [67], [27]), some fundamental notions and
theorems of functional analysis (see, e.g., [42], [66], [92], [8]) and the theory of
ordinary differential equations (see, e.g., [88], [19], [35]). The importance of lin-
ear and nonlinear partial differential equations in physical, chemical, biological
etc. applications is well known (see, e.g., the above references). The classical
results on linear and quasilinear second order partial differential equations can
be found in the monographs [28], [31], [37], [44], [51], [43], [49] and also in the
books [7], [27], [60], [62], [64], [67], [89].

Partial functional differential equations arise in biology, chemistry, physics,
climatology (see, e.g., [13], [18], [21]–[23], [36], [38], [52], [65], [91] and the
references therein). The systematic study of such equations from the dynamical
system and semigroup point of view began in the 70s. Several results in this
direction can be found in the monographs [60], [89], [91]. This approach is
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6 CHAPTER 1. NONLINEAR STATIONARY PROBLEMS

mostly based on arguments used in the theory of ordinary differential equations
and functional differential equations (see [24], [32]–[34], [58], [59]).

In the classical work [50] of J.L. Lions one can find the fundamental results on
monotone type operators and their applications to nonlinear partial differential
equations. Further important monographs have been written by E. Zeidler [93]
and H. Gajewski, K. Gröger, K. Zacharias [30], S.Fučik, A. Kufner in [29]. A
good summary of further results on monotone type operators, based on degree
theory (see, e.g., [20]) and its applications to nonlinear evolution equations is
in the works [8] and [57] of V. Mustonen and J. Berkovits. By using the theory
of monotone type operators one obtains directly the global existence of weak
solutions, also for higher order nonlinear partial differential equations, satisfying
certain conditions which are more restrictive (in some sense) than in the case
of the previous approach.

It turned out that one can apply the theory of monotone type operators (e.g.
pseudomonotone operators) to nonlinear elliptic variational inequalities, further,
to nonlinear parabolic and certain hyperbolic functional differential equations
and systems to get existence and uniqueness theorems on weak solutions and
results on qualitative properties of weak solutions, including, e.g., “strongly
nonlinear” and “non-uniformly” parabolic equations.

In Chapter 1 we shall consider nonlinear stationary problems and as par-
ticular cases nonlinear elliptic differential equations, functional equations and
variational inequalities. In Chapter 2 first order evolution equations and as
particular cases nonlinear parabolic differential equations, functional parabolic
equations will be considered. Finally, in Chapter 3 second order nonlinear evo-
lution equations and certain nonlinear hyperbolic equations will be treated. In
each chapter the “general” results are illustrated by examples.

In this section we shall give a motivation of the abstract stationary problem
and we shall formulate it, by using the definition of the “weak” (“generalized”) so-
lution to boundary value problems for nonlinear elliptic equations of “divergence
type”.

First we recall the definition of the weak solution to the linear elliptic equa-
tion of the form

−
n∑

j,k=1

Dj(ajkDku) + cu = f in the bounded domain Ω ⊂ Rn (1.1)

(Dj = ∂
∂xj

) with the Dirichlet boundary condition

u|∂Ω = ϕ. (1.2)

Assuming that u is a sufficiently smooth (for simplicity, e.g. u ∈ C2(Ω)) solution
of (1.1), (1.2) and ∂Ω is sufficiently smooth (e.g. C1 or in some sense piecewise
C1 surface), multiply (1.1) by a test function v ∈ C1

0 (Ω) and integrate over Ω,
by using Gauss’s theorem, we obtain

n∑
j,k=1

∫
Ω

ajk(Dku)(Djv) +

∫
Ω

cuv =

∫
Ω

fv. (1.3)
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Assuming ajk, c ∈ L∞(Ω) and f ∈ L2(Ω), (1.3) holds for arbitrary element v
of the Sobolev space H1

0 (Ω) (See, e.g. [67].) Therefore, weak solution of the
Dirichlet problem (1.1), (1.2) is defined as a function u ∈ H1(Ω), satisfying
(1.3) for all v ∈ H1

0 (Ω) and the boundary condition (1.2) where u|∂Ω means the
trace of u ∈ H1(Ω). In the particular case when ϕ = 0, the weak solution of
(1.3) is a function u ∈ H1

0 (Ω).
Thus every classical solution u ∈ C2(Ω) of (1.1), (1.2) is a weak solution and

it is not difficult to show that if u is a weak solution and it is sufficiently smooth
(e.g. u ∈ C2(Ω)), then u is a classical solution, too. The details of the above
arguments can be found e.g. in [67], [44].

The weak solution of the nonlinear equation of “divergence form”

−
n∑
j=1

Dj [aj(x, u(x), Du(x))] + a0(x, u(x), Du(x)) = f(x) for all x ∈ Ω (1.4)

(Du = (D1u, ...,Dnu)) with the Dirichlet boundary condition (1.2) is defined
in a similar way. Assume that u is a classical (sufficiently smooth) solution of
(1.4). Multiply the equation (1.4) by a test function v ∈ C1

0 (Ω) and integrate
over Ω. By Gauss’s theorem we obtain

n∑
j=1

∫
Ω

aj(x, u(x), Du(x))Djv(x)dx+

∫
Ω

a0(x, u(x), Du(x))v(x)dx = (1.5)

∫
Ω

f(x)v(x)dx.

Later we shall see that if the functions aj satisfy a certain growth condition (see
later ConditionA2) then for an arbitrary element u of the Sobolev spaceW 1,p(Ω)
(1 < p < ∞) (see the definition e.g. in [67], [1], [93]) we have aj(x, u.Du) ∈
Lq(Ω) where 1/p + 1/q = 1. Consequently, (1.5) holds for all test functions
v ∈W 1,p

0 (Ω) because W 1,p
0 (Ω) is the closure of C1

0 (Ω) with respect to the norm
of W 1,p(Ω).

Thus, similarly to the linear case, the weak solution of (1.4), (1.2) is defined
as a function u ∈ W 1,p(Ω) satisfying (1.5) for all v ∈ W 1,p

0 (Ω) and (1.2) where
u|∂Ω denotes the trace of u ∈ W 1,p(Ω) on ∂Ω. In the particular case ϕ = 0 the
weak solution is a function u ∈ W 1,p

0 (Ω) satisfying (1.5) for all v ∈ W 1,p
0 (Ω).

Similarly to the linear case, a sufficiently smooth function u is a classical solution
if and only if it is a weak solution.

Assume that the functions aj fulfil the above mentioned growth condition
such that aj(x, u,Du) ∈ Lq(Ω) for all u ∈ W 1,p

0 (Ω). Then equation (1.5), i.e.
the fact that u is a weak solution (in the case ϕ = 0) can be interpreted in the
following way. Denote the left hand side of (1.5) by 〈A(u), v〉, i.e.

〈A(u), v〉 =

n∑
j=1

∫
Ω

aj(x, u(x), Du(x))Djv(x)dx+ (1.6)
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Ω

a0(x, u(x), Du(x))v(x)dx.

For a fixed u ∈ W 1,p
0 (Ω), 〈A(u), v〉 is a linear continuous functional applied

to v ∈ W 1,p
0 (Ω), i.e. A(u) belongs to the dual space of V = W 1,p

0 (Ω). Thus,
according to (1.6), we have a (nonlinear) operator A : V → V ?. Further, by
using the notation

〈F, v〉 =

∫
Ω

f(x)v(x)dx, (1.7)

we have F ∈ V ? if f ∈ Lq(Ω).
Summarizing, in the case ϕ = 0 one may write (1.5) in the abstract form

A(u) = F (1.8)

where A : V → V ? is a nonlinear operator and F is a given element of V ?.
In Section 3 we shall show that in the case V = W 1,p(Ω) equation (1.8) is an

abstract form of weak formulation of (1.4) with a Neumann type homogeneous
boundary condition.

In the next section we shall formulate and prove existence and uniqueness
theorems regarding (1.8), by using the theory of monotone type operators.

2 Existence and uniqueness theorems
First we formulate some basic definitions for (possibly nonlinear) operators A :
V → V ?. Denote by V a real Banach space and V ? its dual space.

Definition 2.1. Operator A : V → V ? is called bounded if it maps bounded
sets of V into bounded sets of V ?.

Definition 2.2. Operator A : V → V ? is said to be hemicontinuous if for each
fixed u1, u2, v ∈ V the function

λ 7→ 〈A(u1 + λu2), v〉, λ ∈ R is continuous.

Definition 2.3. Operator A : V → V ? is said to be monotone if

〈A(u1)−A(u2), u1 − u2〉 ≥ 0 for all u1, u2 ∈ V.

If for u1 6= u2

〈A(u1)−A(u2), u1 − u2〉 > 0,

A is said to be strictly monotone.

Definition 2.4. A bounded operator A : V → V ? is said to be pseudomonotone
if

(uj)→ u weakly in V, lim sup
j→∞

〈A(uj), uj − u〉 ≤ 0 (2.1)
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imply

lim
j→∞
〈A(uj), uj − u〉 = 0 and (A(uj))→ A(u) weakly in V ?. (2.2)

Proposition 2.5. Let V be a reflexive Banach space. Assume that A : V → V ?

is bounded, hemicontinuous and monotone. Then A is pseudomonotone.

Proof. Assume (2.1). Since A is monotone,

〈A(uj)−A(u), uj − u〉 ≥ 0,

hence
〈A(uj), uj − u〉 ≥ 〈A(u), uj − u〉. (2.3)

By (2.1), we have
lim
j→∞
〈A(u), uj − u〉 = 0, (2.4)

thus (2.1), (2.3), (2.4) imply

lim
j→∞
〈A(uj), uj − u〉 = 0. (2.5)

In order to show the second part of (2.2) consider

w = (1− λ)u+ λv (2.6)

with arbitrary v ∈ V and λ > 0. Since A is monotone,

〈A(uj)−A(w), uj − w〉 ≥ 0,

whence

〈A(uj), uj − u〉+ 〈A(uj), u− w〉 − 〈A(w), uj − u〉 − 〈A(w), u− w〉 ≥ 0

or equivalently

〈A(uj), uj−u〉+〈A(uj), λ(u−v)〉−〈A(w), uj−u〉−〈A(w), λ(u−v)〉 ≥ 0. (2.7)

By (2.1),
lim
j→∞
〈A(w), uj − u〉 = 0

and so (2.5), (2.7) imply

lim inf
j→∞

〈A(uj), λ(u− v)〉 ≥ 〈A(w), λ(u− v)〉,

thus, due to λ > 0

lim inf
j→∞

〈A(uj), u− v〉 ≥ 〈A(w), u− v〉 = 〈A((1− λ)u+ λv), u− v〉. (2.8)
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Since A is hemicontinuous, as λ→ +0 we obtain from (2.8)

lim inf
j→∞

〈A(uj), (u− v)〉 ≥ 〈A(u), (u− v)〉. (2.9)

The sequence (A(uj)) is bounded in V ?, so there is a subsequence (A(ujk)) of
(A(uj)) which is weakly convergent to some χ ∈ V ?, thus from (2.9) we obtain

〈χ, u− v〉 ≥ 〈A(u), u− v〉. (2.10)

As (2.10) holds for arbitrary v ∈ V , it follows χ = A(u). Thus the second part
of (2.2) holds for a subsequence of (uj). We show that it must hold for the
whole sequence, by using the following trick.

Cantor’s trick Assume the contrary. Then there exist ε0 > 0, a subse-
quence (ũj) of (uj) and v ∈ V such that

|〈A(ũj)−A(u), v〉| ≥ ε0. (2.11)

Applying the above argument to the sequence (ũj) (instead of (uj)), we obtain
a subsequence (ũjk) of (ũj) for which

(A(ũjk))→ A(u) weakly in V ?

which contradicts to (2.11).

Definition 2.6. Operator A : V → V ? is called demicontinuous if

(uj)→ u strongly in V implies (A(uj))→ A(u) weakly in V ?.

Proposition 2.7. If a bounded operator A : V → V ? is pseudomonotone then
A is demicontinuous.

Proof. Assume that (uj)→ u strongly in V . Then

|〈A(uj), uj − u〉| ≤ ‖A(uj)‖V ?‖uj − u‖V → 0

because ‖A(uj)‖V ? is bounded. Since A is pseudomonotone,

(A(uj))→ A(u) weakly in V ?.

Definition 2.8. Operator A : V → V ? is called belonging to (S)+ if

(uj)→ u weakly in V, lim sup〈A(uj), uj − u〉 ≤ 0

imply (uj)→ u strongly in V .

From definitions 2.4, 2.6, 2.8 immediately follows
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Proposition 2.9. If A : V → V ? is bounded, demicontinuous and belongs to
(S)+ then A is pseudomonotone.

Definition 2.10. Operator A : V → V ? is called coercive if

lim
‖u‖→∞

〈A(u), u〉
‖u‖ = +∞.

Remark 2.11. If the linear operator A is strictly positive in the sense that it
satisfies

〈Au, u〉 ≥ c‖u‖2

with some constant c > 0 then A is coercive.

Now consider the equation

A(u) = F (2.12)

with an arbitrary F ∈ V ? where A : V → V ? is a given (possibly nonlinear)
operator. First we prove an existence theorem when A is pseudomonotone. As
a consequence, we shall obtain an existence and uniqueness theorem when A is
strictly monotone.

Theorem 2.12. Let V be a reflexive separable Banach space. Assume that
A : V → V ? is bounded, pseudomonotone and coercive. Then for arbitrary
F ∈ V ? there exists a solution u ∈ V of equation (2.12).

The proof of this theorem is based on Galerkin’s method and on the following
lemma.

Lemma 2.13. (“acute angle lemma”) Let g : Rn → Rn be a continuous function
and suppose: there exists ρ > 0 such that

〈g(ξ), ξ〉Rn ≥ 0 for |ξ| = ρ. (2.13)

Then there exists ξ0 ∈ Rn such that

g(ξ0) = 0, |ξ0| ≤ ρ. (2.14)

Proof. We prove by contradiction. Assume that (2.14) is not true. Then g(ξ) 6=
0 for |ξ| ≤ ρ and thus

h(ξ) = −ρ g(ξ)

|g(ξ)| , |ξ| ≤ ρ

is a continuous function mapping the closed ball Bρ = {ξ ∈ Rn : |ξ| ≤ ρ} into
itself, because |h(ξ)| = ρ. By Brouwer’s fixed point theorem h has a fixed point
ξ?, i.e.

h(ξ?) = ξ?, |ξ?| = ρ.
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Then
〈h(ξ?), ξ?〉Rn = |ξ?|2 = ρ2 > 0

which is impossible since by (2.13)

〈h(ξ?), ξ?〉Rn =

〈
−ρ g(ξ?)

|g(ξ?)| , ξ
?

〉
= − ρ

|g(ξ?)| 〈g(ξ?), ξ?〉Rn ≤ 0.

Proof of Theorem 2.12. Since V is separable, there exists a system z1, z2, ... of
linearly independent elements of V such that their linear combinations are dense
in V . Denote by Vm the set of linear combinations of z1, z2, . . . , zm.

First by using Galerkin’s approximation method, we construct the “m-th
approximation” um ∈ Vm of the solution u ∈ V of (2.12) such that

〈A(um), zj〉 = 〈F, zj〉, j = 1, . . . ,m, (2.15)

or equivalently
〈A(um), v〉 = 〈F, v〉, for v ∈ Vm. (2.16)

In order to do this, we apply Lemma 2.13 to the function g = (g1, g2, . . . , gm),
defined by

gj(ξ1, . . . , ξm) = 〈A(ξ1z1 + · · ·+ ξmzm), zj〉 − 〈F, zj〉, ξ ∈ Rm, j = 1, . . . ,m.

Since A is bounded and pseudomonotone, A is demicontinuous by Proposition
2.7 which implies that the functions gj are continuous. Further, introducing∑m
j=1 ξjzj by y and assuming y 6= 0, we have

〈g(ξ), ξ〉Rm =

m∑
j=1

gj(ξ)ξj =

〈
A(

m∑
j=1

ξjzj),

m∑
j=1

ξjzj

〉
−
〈
F,

m∑
j=1

ξjzj

〉
=

[ 〈A(y), y〉
‖y‖V

− 〈F, y〉‖y‖V

]
‖y‖V ≥

[ 〈A(y), y〉
‖y‖V

− ‖F‖V ?
]
‖y‖V .

Operator A is coercive, hence

lim
‖y‖→∞

〈A(y), y〉
‖y‖V

= +∞,

thus the right-hand side is positive if ‖y‖V is sufficiently large, which is satisfied
if |ξ| is sufficiently large. So by Lemma 2.13 there exists ξ ∈ Rm such that
g(ξ) = 0, i.e. we have a solution um of (2.15).

If V is of finite dimension, Theorem 2.12 is proved. Consider the remaining
case when V is of infinite dimension. Then we have a sequence (um) of elements
satisfying (2.16). The coercivity of A implies that (um) is a bounded sequence
in V . Indeed, assuming that (um) is not bounded, we would have a subsequence
(umk) such that

lim
k→∞

‖umk‖V =∞,
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which is impossible because by (2.16)

0 = 〈A(umk), umk〉 − 〈F, umk〉 ≥
[ 〈A(umk), umk〉

‖umk‖V
− ‖F‖V ?

]
‖umk‖V → +∞

as k →∞ since A is coercive.
The operator A : V → V ? is bounded thus the sequence (A(um)) is bounded

in V ?. Since V is reflexive, there are u ∈ V , χ ∈ V ? and a subsequence (umk)
of (um) such that

(umk)→ u weakly in V (2.17)

and
(A(umk))→ χ weakly in V ?. (2.18)

Now we show that χ = F . Due to (2.16), for arbitrary fixed finite linear
combination v of z1, z2, . . .

〈A(umk), v〉 = 〈F, v〉 (2.19)

for sufficiently large k. From (2.18), (2.19) as k →∞ we obtain 〈χ, v〉 = 〈F, v〉
for any finite linear combination of z1, z2, .... Since the finite linear combinations
are dense in V , we find χ = F .

Finally, pseudomonotonicity of A implies A(u) = χ(= F ). Indeed, according
to (2.17), (umk)→ u weakly in V and by (2.16), (2.18)

〈A(umk), umk − u〉 = 〈A(umk), umk〉 − 〈A(umk), u〉 = (2.20)

〈F, umk〉 − 〈A(umk), u〉 → 〈F, u〉 − 〈χ, u〉 = 0 as k →∞.

Theorem 2.14. Let V be a reflexive separable Banach space and assume that
A : V → V ? is bounded, hemicontinuous, monotone and coercive. Then for
arbitrary F ∈ V ? there exists a solution u ∈ V of (2.12). If A is strictly
monotone then the solution is unique.

Proof. By Proposition 2.5 A is pseudomonotone, thus Theorem 2.12 implies the
existence of a solution u ∈ V of (2.12). Assume that A is strictly monotone and

A(uj) = F for j = 1, 2.

Then
0 = 〈A(u1)−A(u2), u1 − u2〉

whence u1 = u2.

Definition 2.15. Operator A : V → V ? is said to be uniformly monotone if
there exists a strictly monotone increasing continuous function

a : [0,∞)→ [0,∞) with a(0) = 0, lim
+∞

a = +∞
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such that

〈A(u1)−A(u2), u1 − u2〉 ≥ a(‖u1 − u2‖V )‖u1 − u2‖V for all u1, u2 ∈ V.

Remark 2.16. If A is uniformly monotone then it is strictly monotone. Func-
tion a may be chosen as a(t) = ctp−1 with constants c > 0, p > 1.

Remark 2.17. If A is uniformly monotone then

‖A(u1)−A(u2)‖V ? ≥ a(‖u1 − u2‖V ), u1, u2 ∈ V (2.21)

because

‖A(u1)−A(u2)‖V ?‖u1 − u2‖V ≥ 〈A(u1)−A(u2), u1 − u2〉 ≥

a(‖u1 − u2‖V )‖u1 − u2‖V .
If (2.21) holds then operator A is called stable. In this case the solution of the
equation (2.12) is unique and the solution u of (2.12) depends continuously on
the right hand side F ∈ V ?, because by (2.21)

‖u1 − u2‖V ≤ a−1 (‖A(u1)−A(u2)‖V ?) ,

a−1 : [0,∞)→ [0,∞) is a continuous function and a−1(0) = 0.

Remark 2.18. According to the proof of Theorem 2.12 the sequence (un), con-
structed by Galerkin’s method, contains a subsequence which converges weakly
in V to a solution u of (2.12). If the solution of (2.12) is unique (e.g. if A
is strictly monotone) then also the sequence (un) must converge to u. Indeed,
assuming the contrary, one gets contradiction, by using Cantor’s trick (see in
the proof of Proposition 2.5).

If A is uniformly monotone then (un)→ u also with respect to the norm of
V . Indeed, let ã(t) = a(t)t which clearly has the same properties as a, further,

ã(‖un − u‖V ) = a(‖un − u‖V )‖un − u‖V ≤ 〈A(un)−A(u), un − u〉 =

〈A(un), un − u〉 − 〈A(u), un − u〉 → 0 as u→∞
by (2.17), (2.20), hence

lim
n→∞

‖un − u‖V = 0.

3 Application of monotone operators
Now we shall apply Theorem 2.14 to the case when V is a closed linear subspace
of the Sobolev space W 1,p(Ω), containing W 1,p

0 (Ω) (1 < p < ∞, Ω ⊂ Rn is a
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bounded domain with sufficiently smooth boundary). Further, the operator
A : V → V ? will be given by

〈A(u), v〉 =

n∑
j=1

∫
Ω

aj(x, u(x), Du(x))Djv(x)dx+ (3.1)

∫
Ω

a0(x, u(x), Du(x))v(x)dx, u, v ∈ V

where the functions aj : Ω× Rn+1 → R satisfy conditions which will imply the
assumptions of Theorem 2.14.

(A1) Assume that the functions aj : Ω×Rn+1 → R satisfy the Carathéodory
conditions, i.e. for a.a. fixed x ∈ Ω, the function ξ 7→ aj(x, ξ), ξ ∈ Rn+1 is
continuous and for each fixed ξ ∈ Rn+1, x 7→ aj(x, ξ), x ∈ Ω is measurable.

(A2) Assume that there exist a constant c1 and a nonnegative function k1 ∈
Lq(Ω) (1/p+ 1/q = 1) such that for a.a, x ∈ Ω, each ξ ∈ Rn+1

|aj(x, ξ)| ≤ c1|ξ|p−1 + k1(x).

Proposition 3.1. Assume that conditions (A1), (A2) are satisfied. Then A :
V → V ? is bounded and hemicontinuous.

Proof. By (A1) the function x 7→ aj(x, u(x), Du(x)) is measurable for arbitrary
u ∈ V . Further, by (A2) ∫

Ω

|aj(x, u(x), Du(x))|qdx ≤

const
[∫

Ω

|(u(x), Du(x))|(p−1)qdx+

∫
Ω

k1(x)qdx

]
≤ const [‖u‖pV + 1]

and so Hölder’s inequality implies

|〈A(u), v〉| ≤
n∑
j=1

[∫
Ω

|aj(x, u,Du)|qdx
]1/q

‖Djv‖Lp(Ω)+ (3.2)

[∫
Ω

|a0(x, u,Du)|qdx
]1/q

‖v‖Lp(Ω) ≤ const
[
‖u‖p/qV + 1

]
‖v‖V .

By (3.2) it follows that A(u) is a bounded linear operator on V and

‖A(u)‖V ? ≤ const
[
‖u‖p/qV + 1

]
,

thus A : V → V ? is bounded.
Now we show that A is hemicontinuous. Consider with fixed u1, u2, v ∈ V

the function
λ 7→ 〈A(u1 + λu2), v〉, λ ∈ R.
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For the operator A, given by (3.1) we have

〈A(u1 + λu2), v〉 =

n∑
j=1

∫
Ω

aj(x, u1 + λu2, Du1 + λDu2)Djvdx+

∫
Ω

a0(x, u1 + λu2, Du1 + λDu2)vdx.

Assume that limk→∞ λk = λ for a sequence (λk). Then by (A1) for a.a. x ∈ Ω

lim
k→∞

aj(x, u1+λku2, Du1+λkDu2) = aj(x, u1+λu2, Du1+λDu2), j = 0, 1, . . . , n,

further, by (A2)
|aj(x, u1 + λku2, Du1 + λkDu2)|q ≤ (3.3)

const[|(u1 + λku2, Du1 + λkDu2)|p + k1(x)q] ≤

const[|u1|p + |u2|p + |Du1|p + |Du2|p + k1(x)q]

because (λk) is bounded. Thus by Young’s inequality

|aj(x, u1 + λku2, Du1 + λkDu2)Djv| ≤

const[|u1|p + |u2|p + |Du1|p + |Du2|p + k1(x)q] + const|Djv|p

and similar inequality holds for

|a0(x, u1 + λku2, Du1 + λkDu2)v|.

Thus by (3.3) Lebesgue’s dominated convergence theorem implies

lim
k→∞

〈A(u1 + λku2), v〉 = 〈A(u1 + λu2), v〉

which completes the proof of Proposition 3.1.

Now we formulate assumptions which, clearly, imply that operator A, defined
by (3.1) is monotone and coercive.

(A3) Assume that for a.a. x ∈ Ω, all ξ, ξ? ∈ Rn+1

n∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξj − ξ?j ) ≥ 0.

(A4) Assume that there exist a constant c2 > 0 and k2 ∈ L1(Ω) such that
for a.a. x ∈ Ω, all ξ ∈ Rn+1

n∑
j=0

aj(x, ξ)ξj ≥ c2|ξ|p − k2(x).
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Remark 3.2. Assumption (A4) implies that for any u ∈ V ,

〈A(u), u〉 ≥ c2‖u‖pV −
∫

Ω

k2(x)dx. (3.4)

Now we formulate particular cases when (A3) and (A4) are fulfilled. First
observe that (A1)–(A4) are satisfied in the simple case:

aj(x, ξ) = αj(x, ξj), j = 0, 1, ..., n (3.5)

where the Carathéodory function αj satisfies the following conditions for all j,
a.a. x ∈ Ω:

ξj 7→ αj(x, ξj) is monotone nondecreasing, (3.6)

β1|ξj |p−1 ≤ |αj(x, ξj)| ≤ β2|ξj |p−1, ξj ∈ R (3.7)

with some positive constants β1, β2. Thus, by Theorem 2.14 there exists a
solution u ∈ V of equation (2.12) if (3.5)-(3.7) hold.

Proposition 3.3. Assume that the functions aj satisfy (A1), for a.e. x ∈ Ω,
the functions ξ 7→ aj(x, ξ) are continuously differentiable and the matrix(

∂aj(x, ξ)

∂ξk

)n
j,k=0

is positive semidefinite. (3.8)

Then (A3) is fulfilled, thus A, defined by (3.1) is monotone.

Proof. For arbitrary fixed x ∈ Ω, ξ, ξ? ∈ Rn+1 define function hj by

hj(τ) = aj(x, ξ
? + τ(ξ − ξ?)), τ ∈ R.

Then

hj(1)− hj(0) =

∫ 1

0

h′j(τ)dτ, i.e.

aj(x, ξ)− aj(x, ξ?) =

∫ 1

0

n∑
k=0

∂aj
∂ξk

(x, ξ? + τ(ξ − ξ?))(ξk − ξ?k)dτ,

hence by (3.8)
n∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξj − ξ?j ) = (3.9)

∫ 1

0

n∑
j,k=0

∂aj
∂ξk

(x, ξ? + τ(ξ − ξ?))(ξk − ξ?k)(ξj − ξ?j )dτ ≥ 0.
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Proposition 3.4. Assume that conditions of Proposition 3.3 are fulfilled such
that for a.e. x ∈ Ω, each ξ, η ∈ Rn+1

n∑
j,k=0

∂aj
∂ξk

(x, ξ)ηjηk ≥ c3
n∑
j=0

|ξj |p−2|ηj |2 (3.10)

with p ≥ 2 and some positive constant c3. Then

n∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξj − ξ?j ) ≥ c̃3
n∑
j=0

|ξj − ξ?j |p (3.11)

with some constant c̃3 > 0.

Proof. By (3.9), (3.10)

n∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξj − ξ?j ) = (3.12)

∫ 1

0

n∑
j,k=0

∂aj
∂ξk

(x, ξ? + τ(ξ − ξ?))(ξk − ξ?k)(ξj − ξ?j )dτ ≥

∫ 1

0

c3

n∑
j=0

|ξ?j + τ(ξj − ξ?j )|p−2|ξj − ξ?j |2dτ.

Now we show that there is a constant c4 > 0 (depending only on p) such that∫ 1

0

|ξ?j + τ(ξj − ξ?j )|p−2dτ ≥ c4|ξj − ξ?j |p−2. (3.13)

Clearly, for ξj − ξ?j = 0 (3.13) holds. For ξj − ξ?j 6= 0 we have∫ 1

0

|ξ?j + τ(ξj − ξ?j )|p−2dτ = |ξj − ξ?j |p−2

∫ 1

0

|ξ?j /(ξj − ξ?j ) + τ |p−2dτ.

By using the notation d = ξ?j /(ξj−ξ?j ), we have to show that there is a constant
c4 > 0, not depending on d such that∫ 1

0

|d+ τ |p−2dτ ≥ c4. (3.14)

In the case 0 < −d < 1∫ 1

0

|d+ τ |p−2dτ =

∫ −d
0

(−d− τ)p−2dτ +

∫ 1

−d
(d+ τ)p−2dτ = (3.15)

(−d)p−1 + (d+ 1)p−1

p− 1
≥ 1

2p−2(p− 1)
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where we used inequality

(a+ b)s ≤ 2s−1(as + bs), a, b ≥ 0, s ≥ 1.

In the case when d ≥ 0 or d ≤ −1, d+ τ has the same sign for all τ ∈ [0, 1], thus∫ 1

0

|d+ τ |p−2dτ ≥
∫ 1

0

|τ |p−2dτ =
1

p− 1
. (3.16)

Inequalities (3.15), (3.16) imply (3.14) and so we have shown (3.13). Conse-
quently, from (3.12) we obtain

n∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξj − ξ?j ) ≥ c3c4
n∑
j=0

|ξj − ξ?j |p

which completes the proof of (3.11).

From Proposition 3.4 immediately follows

Theorem 3.5. Assume that the conditions of Proposition 3.4 and (A1), (A2)
are fulfilled. Then operator A, defined by (3.1) has the property such that for
all u1, u2 ∈ V

〈A(u1)−A(u2), u1 − u2〉 ≥ c5‖u1 − u2‖pV (3.17)

with some positive constant c5.

Remark 3.6. If (3.17) is satisfied, the operator A : V → V ? is uniformly
monotone. (See the Definition 2.15.) Thus the solution of (2.12) depends con-
tinuously on F , in this case for the solutions of A(u1) = F1, A(u2) = F2 we
have

‖u1 − u2‖V ≤ const‖F1 − F2‖1/(p−1)
V ? .

Further, according to Remark 2.18, the sequence (un), constructed by Galerkin’s
method, converges to the solution u with respect to the norm of V .

In the case when A is defined by (3.1) and (3.17) holds, A is called strongly
elliptic.

Remark 3.7. Clearly, (3.17) implies that A is strictly monotone. Further, the
assumptions of Theorem 3.5 imply that A : V → V ? is coercive, too. Indeed,

〈A(u), u〉 = 〈A(u)−A(0), u〉+ 〈A(0), u〉 ≥ c5‖u‖pV + ‖A(0)‖V ?‖u‖V

which implies that A is coercive since p > 1.

Example 3.8. A typical example satisfying the conditions of Theorem 3.5 is

4pu+ cu|u|p−2, c > 0 is a constant, p ≥ 2,
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where 4p is the p-Laplacian operator, defined by

4pu =

n∑
j=1

Dj(|Du|p−2Du). (3.18)

In this case the functions aj are defined by

aj(x, ζ) = ξj |ζ|p−2, j = 1, . . . , n, a0(x, ξo) = cξ0|ξ0|p−2 (3.19)

where we used the notation ζ = (ξ1, . . . , ξn) Now we show that the inequality
(3.10) holds in this case. For ζ 6= 0, j = 1, ..., n

∂aj(x, ζ)

∂ξk
= (p− 2)ξjξk|ζ|p−4 if k 6= j,

∂aj(x, ζ)

∂ξj
= (p− 2)ξ2

j |ζ|p−4 + |ζ|p−2, j = 1, ..., n and

∂a0(x, ξ0)

∂ξ0
= c(p− 1)|ξ0|p−2,

hence
n∑

j,k=0

∂aj(x, ζ)

∂ξk
ηjηk = (p− 2)|ζ|p−4

n∑
j,k=1

ξjξkηjηk+

|ζ|p−2
n∑
j=1

η2
j + c(p− 1)|ξ0|p−2η2

0 =

(p− 2)|ζ|p−4

 n∑
j=1

ξjηj

2

+ |ζ|p−2
n∑
j=1

η2
j + c(p− 1)|ξ0|p−2η2

0 ≥

const
n∑
j=0

|ξj |p−2η2
j .

Now consider operator A, defined by (3.1) with the functions (3.19). Clearly,
(A1), (A2) are fulfilled and by Theorem 3.5 we have (3.17).

Remark 3.9. Consider the case V = W 1,p
0 (Ω) for a bounded domain Ω ⊂ Rn.

Then the norm in V is equivalent with the norm

‖u‖′ =

 n∑
j=1

∫
Ω

|Dju|pdx

1/p

.

(For the particular case p = 2 see, e.g. [67], for the general case see [1].)
Therefore, conditions of Theorem 3.5 are fulfilled for 4p, i.e. for a0 = 0.
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Remark 3.10. In Section 1 we have shown that if u is a solution of (2.12) with
the operator (3.1), V = W 1,p

0 (Ω) then we may consider u as a weak solution of
the equation (1.4) with homogeneous Dirichlet boundary condition. The case
of nonhomogeneous boundary condition u|∂Ω = ϕ can be reduced to a problem
with 0 boundary condition for ũ = u−u0 if there exits a function u0 ∈W 1,p(Ω)
with the property u0|∂Ω = ϕ.

Remark 3.11. If u is a solution of (2.12) with the operator (3.1) and V =
W 1,p(Ω) then u can be considered as a weak solution of (1.4) with the following
homogeneous Neumann type boundary condition:

n∑
j=1

aj(x, u,Du)νj |∂Ω + hu|∂Ω = g. (3.20)

By using Gauss’s theorem it is easy to show that a function u ∈ C2(Ω) satisfies
the boundary value problem (1.4), (3.20) (with sufficiently smooth functions aj)
if and only if u is a solution of (2.12) with the operator A (which is a modification
of (3.1)):

〈A(u), v〉 =

n∑
j=1

∫
Ω

aj(x, u,Du)Djvdx+

∫
Ω

a0(x, u,Du)vdx+

∫
∂Ω

huvdσ,

u, v ∈ V ,

〈F, v〉 =

∫
Ω

fv +

∫
∂Ω

gvdσ

and V = W 1,p(Ω). Indeed, assuming that u ∈ C2(Ω) satisfies (1.4), (3.20)
(with sufficiently smooth functions aj), multiplying (1.4) by v ∈ C1(Ω) and
integrating over Ω, we obtain by (3.20)

〈F, v〉 =

∫
Ω

fv +

∫
∂Ω

gvdσ = (3.21)

−
n∑
j=1

∫
Ω

vDj [aj(x, u,Du)]dx+

∫
Ω

va0(x, u,Du)dx+

∫
∂Ω

gvdσ =

−
∫
∂Ω

v

n∑
j=1

aj(x, u,Du)νjdσ +

∫
Ω

 n∑
j=1

aj(x, u,Du)Djv + a0(x, u,Du)v

 dx+

∫
∂Ω

gvdσ = 〈A(u), v〉.

Further, when u ∈ C2(Ω) satisfies A(u) = F , first apply

〈A(u), v〉 = 〈F, v〉 (3.22)
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to v ∈ C1
0 (Ω). Then from (3.21) we obtain∫

Ω

fvdx =

∫
Ω

−
n∑
j=1

Dj [aj(x, u,Du)] + a0(x, u,Du)

 vdx

which implies (1.4) since C1
0 (Ω) is dense in L2(Ω). Then apply (3.22) to v ∈

C1(Ω), by using (1.4), (3.21) we find∫
∂Ω

gvdσ =

∫
∂Ω

v

n∑
j=1

aj(x, u,Du)νjdσ +

∫
∂Ω

huvdσ

which implies (3.20) since the restrictions of functions v ∈ C1(Ω) are dense in
L2(∂Ω).

Problems
1. Prove that for the functions (3.5), satisfying (3.6), (3.7), the assumptions

(A1)–(A4) are fulfilled.

2. Let α, β : Ω→ R be measurable functions satisfying

c1 ≤ α(x) ≤ c2, c1 ≤ β(x) ≤ c2, x ∈ Ω

with some positive constants c1, c2. By using Example 3.8, show that

aj(x, ζ) = α(x)ξj |ζ|p−2, j = 1, . . . , n, ζ = (ξ1, . . . ξn) ∈ Rn, x ∈ Ω,

a0(x, ζ) = β(x)ξ0|ξ0|p−2, ξ0 ∈ R, x ∈ Ω

satisfy the assumptions of Theorem 3.5.

3. Define the weak solution of the Dirichlet problem

−
n∑
j=1

Dj [aj(x, u,Du)] + a0(x, u,Du) = f

u|∂Ω = ϕ

as a function u ∈W 1,p(Ω) satisfying

〈A(u), v〉 =

n∑
j=1

∫
Ω

aj(x, u,Du)Djv +

∫
Ω

a0(x, u,Du)v = 〈F, v〉

for all v ∈W 1,p
0 (Ω), u|∂Ω = ϕ

where 〈F, v〉 =
∫

Ω
fv and u|∂Ω denotes the trace of u ∈ W 1,p(Ω) on the

boundary ∂Ω.
Show that (for “sufficiently good”) functions aj , a function u ∈ C2(Ω) is a
classical solution of the above Dirichlet problem if and only if it is a weak
solution.
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4. Prove that if the assumptions of Theorem 3.5 are fulfilled and there exists
u0 ∈ W 1,p(Ω) such that u0|∂Ω = ϕ then for each F ∈ [W 1,p

0 (Ω)]? there
exists a unique weak solution of the Dirichlet problem (in Problem 3) with
nonhomogeneous boundary condition. (See Remark 3.10.)

4 Application of pseudomonotone operators

Here we shall formulate more general conditions than (A3) (they are natural
generalizations of ellipticity in the linear case) which will imply that the operator
(3.1) is pseudomonotone. In the proof we shall apply the following two theorems.

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain with a sufficiently smooth
boundary, 1 < p <∞. Then W 1,p(Ω) is compactly imbedded into Lp(Ω).

The exact formulation on smoothness of ∂Ω and the proof of the above
theorem can be found in [1].

Remark 4.2. Later we shall apply the following statements, too. Let Ω ⊂ Rn
be a bounded domain with sufficiently smooth boundary. Then W 1,p(Ω) is
compactly imbedded into W 1−δ,p(Ω) for arbitrary 0 < δ ≤ 1. Further, the trace
operator W 1−δ,p(Ω)→ Lp(∂Ω) is bounded if 0 ≤ δ < 1− 1/p

Theorem 4.3. (Vitali’s theorem) Let M ⊂ Rn be a Lebesgue measurable set.
Assume that the functions fk : M → R are Lebesgue integrable, further, for a.a.
x ∈ M , limk→∞ fk(x) exists and is finite. The functions fk are equiintegrable
in the following sense: for arbitrary ε > 0 there exist δ > 0 and S ⊂M of finite
measure such that for all k ∈ N∫

H

|fk(x)|dx < ε if λ(H) < δ and
∫
M\S
|fk(x)|dx < ε.

Then
lim
k→∞

∫
M

fk(x)dx =

∫
M

f(x)dx.

Remark 4.4. It is easy to show that if (fk)→ f in L1(M) then the functions
fk are equiintegrable. Further, by Hölder’s inequality one obtains: if (|gk|p)
is equiintegrable and (hk)is bounded in Lq(M) (1 < p < ∞) then (gkhk) is
eqiintegrable.

First we formulate simple cases when Theorems 4.1 and 4.3 imply that op-
erator (3.1) is pseudomonotone.

Theorem 4.5. Assume that Ω ⊂ Rn is a bounded domain, ∂Ω is sufficiently
smooth and functions aj, satisfying (A1), (A2) have the particular form

aj(x, ξ) = ãj(x, ζ), j = 1, ..., n where ζ = (ξ1, ..., ξn),
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a0(x, ξ) = ã0(x, ξ0)

and instead of assumption (A3) we assume

n∑
j=1

[ãj(x, ζ)− ãj(x, ζ?)](ξj − ξ?j ) ≥ 0. (4.1)

Then the (bounded) operator A (defined by (3.1)) is pseudomonotone.

Proof. Assume that

(uk)→ u weakly in V and lim sup
k→∞

〈A(uk), uk − u〉 ≤ 0 (4.2)

Since (uk) is bounded in W 1,p(Ω), by Theorem 4.1 there is a subsequence (ukl)
of (uk) which converges to u with respect to the norm of Lp(Ω) and a.e. in Ω.

Define operator B by

〈B(u), v〉 =

n∑
j=1

∫
Ω

ãj(x,Du)Djvdx+

∫
Ω

u|u|p−2vdx.

Then (4.1) implies that B : V → V ? is monotone and by (A1), (A2) B is
hemicontinuous and bounded. Consequently, from Proposition 2.5 it follows
that B is pseudomonotone. Further,

〈B(u), v〉 = 〈A(u), v〉+

∫
Ω

[u|u|p−2 − ã0(x, u)]vdx. (4.3)

Since
lim
l→∞

‖ukl − u‖Lp(Ω) = 0,

and by (A2)
‖ukl |ukl |p−2 − ã0(x, ukl)‖Lq(Ω) is bounded,

Hölder’s inequality implies

lim
k→∞

∫
Ω

[ukl |ukl |p−2 − ã0(x, ukl)](ukl − u)dx = 0. (4.4)

Thus we obtain from (4.2)

lim sup
l→∞

〈B(ukl), ukl − u〉 ≤ 0. (4.5)

Since B is pseudomonotone, (4.2), (4.5) imply

lim
l→∞
〈B(ukl), ukl − u〉 = 0, (4.6)

(B(ukl))→ B(u) weakly in V ?. (4.7)
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By (4.3), (4.4), (4.6)
lim
l→∞
〈A(ukl), ukl − u〉 = 0. (4.8)

Finally, (ukl)→ u a.e., so by (A1)

ukl |ukl |p−2 − ã0(x, ukl)→ u|u|p−2 − ã0(x, u) a.e. in Ω.

By using Hölder’s inequality, one shows that for a fixed v ∈ V , the sequence of
functions

[ukl |ukl |p−2 − ã0(x, ukl)]v

is equiintegrable (the Lq(Ω) norm of the term in brackets is bounded). Thus by
Theorem 4.3

lim
l→∞

∫
Ω

[ukl |ukl |p−2 − ã0(x, ukl)]vdx =

∫
Ω

[u|u|p−2 − ã0(x, u)]vdx.

and so from (4.7) we obtain that

(A(ukl))→ A(u) weakly in V ?. (4.9)

(4.8), (4.9) hold for the sequence (uk), too. Because, assuming that it is not
true, by using Cantor’s trick, we get a contradiction.

Now we formulate other conditions which imply that operator A of the form
(3.1) is pseudomonotone. Instead of (A3) assume (by using the notation ξ =
(η, ζ), η = ξ0, ζ = (ξ1, . . . , ξn))

(Ã3) There exists a constant c̃2 > 0 such that for a.a. x ∈ Ω, all η ∈ R,
ζ, ζ? ∈ Rn

n∑
j=1

[aj(x, η, ζ)− aj(x, η, ζ?)](ξj − ξ?j ) ≥ c̃2|ζ − ζ?|p.

Theorem 4.6. Assume that Ω ⊂ Rn is a bounded domain, ∂Ω is sufficiently
smooth and (A1), (A2), (Ã3) hold. Then operator A of the form (3.1) is bounded
and pseudomonotone.

Proof. According to Proposition 3.1 A is bounded. Now we show that A is
pseudomonotone. Assume that

(uk)→ u weakly in V and lim sup
k→∞

〈A(uk), uk − u〉 ≤ 0. (4.10)

Since W 1,p(Ω) is compactly imbedded into Lp(Ω) (for bounded Ω with suffi-
ciently smooth boundary, see Theorem 4.1), there is a subsequence of (uk),
again denoted by (uk), such that

(uk)→ u in Lp(Ω) and a.e. in Ω (4.11)

Since (Djuk) is bounded in Lp(Ω), we may assume (on the subsequence) that

(Djuk)→ Dju weakly in Lp(Ω), j = 1, ..., n. (4.12)
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Further,

〈A(uk), uk − u〉 =

∫
Ω

a0(x, uk, Duk)(uk − u)dx+ (4.13)

n∑
j=1

∫
Ω

[aj(x, uk, Duk)− aj(x, uk, Du)](Djuk −Dju)dx+

n∑
j=1

∫
Ω

aj(x, uk, Du)(Djuk −Dju)dx.

The first term on the right-hand side of (4.13) tends to 0 by (4.11) and Hölder’s
inequality, because the multipliers of (uk − u) are bounded in Lq(Ω) (by (A2)).
Further, the third term on the right-hand side converges to 0, too, by (4.12)
and because (4.11), (A1), (A2) and Vitali’s theorem (Theorem 4.3) imply that

aj(x, uk, Du)→ aj(x, u,Du) in Lq(Ω).

Consequently, (4.10), (4.13) imply

lim sup
k→∞

n∑
j=1

∫
Ω

[aj(x, uk, Duk)− aj(x, uk, Du)](Djuk −Dju)dx ≤ 0. (4.14)

From (Ã3), (4.14) we obtain

lim
k→∞

∫
Ω

|Duk −Du|pdx = 0 (4.15)

and (for a subsequence)

(Duk)→ Du a.e. in Ω. (4.16)

Therefore, by (A1), (A2), (4.11), (4.15), (4.16) and Vitali’s theorem (Theo-
rem 4.3)

aj(x, uk, Duk)→ aj(x, u,Du) in Lq(Ω), j = 0, 1, ..., n.

Thus by Hölder’s inequality

(A(uk))→ A(u) weakly in V ?. (4.17)

Finally, from (4.11), (4.15) and (A2) one gets

lim
k→∞

〈A(uk), uk − u〉 = 0. (4.18)

Since (4.17), (4.18) hold for a subsequence of (uk), by using Cantor’s trick, we
obtain (4.17), (4.18) for the original sequence.

Remark 4.7. According to the proof of the above theorem operator A belongs
to the class (S)+ and it is demicontinuous.
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Browder’s theorem
The following more general theorem is due to F. Browder (see [14]). Instead of
(A3), (A4) we assume that

(A3′) for a.a. x ∈ Ω, all η ∈ R; ζ, ζ? ∈ Rn, ζ 6= ζ?

n∑
j=1

[aj(x, η, ζ)− aj(x, η, ζ?)](ξj − ξ?j ) > 0

where we used the notations η = ξ0, ζ = (ξ1, ..., ξn).

Remark 4.8. In the linear case assumption (A3′) means ellipticity.

(A4′) There exist a constant c2 > 0 and k2 ∈ L1(Ω) such that

n∑
j=0

aj(x, η, ζ)ξj ≥ c2|ζ|p − k2(x).

Theorem 4.9. Assume (A1), (A2), (A3′), (A4′). Then the (bounded) operator
A, defined by (3.1) with an arbitrary (possibly unbounded) domain Ω ⊂ Rn, is
pseudomonotone.

Proof. Assume (4.2), i.e.

(uk)→ u weakly in V and lim sup
k→∞

〈A(uk), uk − u〉 ≤ 0. (4.19)

We have to show that

lim
k→∞

〈A(uk), uk − u〉 = 0 and (A(uk))→ A(u) weakly in V ?. (4.20)

We shall show that (4.20) holds for a suitable subsequence of (uk), by Cantor’s
trick this will imply (4.20) for (uk), too.

Assume that (Ωm) is a sequence of bounded domains with sufficiently smooth
boundary ∂Ωm such that Ωm ⊂ Ωm+1 and Ω = ∪∞m=1Ωm. By Theorem 4.1 for
arbitrary fixed m there is a subsequence of (uk) which is convergent in Lp(Ωm)
and so a subsequence of this subsequence is a.e. convergent to u in Ωm. By
using a “diagonal process” one obtains a subsequence of (uk) which converges
to u a.e. in Ω. For simplicity, we shall denote this subsequence also by (uk), so
we have

(uk)→ u a.e. in Ω. (4.21)

The main part of the proof of our theorem is showing

(Duk)→ Du a.e. in Ω. (4.22)

Set

pk(x) =

n∑
j=1

[aj(x, uk, Duk)− aj(x, u,Du)](Djuk −Dju)+ (4.23)
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[a0(x, uk, Duk)− a0(x, u,Du)](uk − u),

then
〈A(uk)−A(u), uk − u〉 =

∫
Ω

pk(x)dx

and so by (4.19)

lim sup
k→∞

∫
Ω

pk(x)dx ≤ 0. (4.24)

Due to (4.23) we have

pk(x) =

n∑
j=1

aj(x, uk, Duk)Djuk + a0(x, uk, Duk)uk − gk(x) (4.25)

where

gk(x) =

 n∑
j=1

aj(x, u,Du)(Djuk −Dju) + a0(x, u,Du)(uk − u)

+ (4.26)

 n∑
j=1

aj(x, uk, Duk)Dju+ a0(x, uk, Duk)u

 .
By (A2)

|gk(x)| ≤ c4[|u|p−1 + |Du|p−1 + k1(x)][|uk|+ |Duk|+ |u|+ |Du|]+ (4.27)

c5[|uk|p−1 + |Duk|p−1 + k1(x)][|u|+ |Du|],
thus Hölder’s inequality implies that the sequence (gk) is equiintegrable. (See
Remark 4.4.) Further, by Young’s inequality from (4.27) we obtain that for
arbitrary ε > 0 there exist a constant c(ε) and a function k4 ∈ L1(Ω) such that

|gk(x)| ≤ ε|Duk|p + c(ε)[|uk|p + |u|p + |Du|p + k4(x)]. (4.28)

Choosing sufficiently small ε > 0, one obtains from (A4′), (4.25), (4.28)

pk(x) ≥ c2|Duk|p − k2(x)− |gk(x)| ≥ (4.29)

c2
2
|Duk|p − c6[|uk|p + |u|p + |Du|p + k5(x)]

with some constant c6 and k5 ∈ L1(Ω). Let

p+
k (x) = max{pk(x), 0}, p−k (x) = −min{pk(x), 0},

then by (4.29)

0 ≤ p−k (x) ≤ k2(x) + |gk(x)|
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where the sequence on the right hand side is equiintegrable, hence the sequence

(p−k )k∈N is equiintegrable. (4.30)

Now we show that (p−k ) converges to 0 a.e. in Ω. Indeed, pk can be written
in the form

pk(x) = qk(x) + rk(x) + sk(x) (4.31)

where

qk(x) =

n∑
j=1

[aj(x, uk, Duk)− aj(x, uk, Du)](Djuk −Dju),

rk(x) =

n∑
j=1

[aj(x, uk, Du)− aj(x, u,Du)](Djuk −Dju),

sk(x) = [a0(x, uk, Duk)− a0(x, u,Du)](uk − u).

Denote by χk the characteristic function of the set {x : p−k (x) > 0} then

− p−k = χkqk + χkrk + χksk. (4.32)

By (4.29)

c2
2
|Duk|p ≤ c6[|uk|p + |u|p + |Du|p + k5(x)] if pk(x) < 0,

hence by (4.21) the sequence (χkDuk) is bounded for a.a. fixed x. Thus by
(4.21), (A2)

(χkrk)→ 0 a.e. and (χksk)→ 0 a.e.

Since χkqk ≥ 0 a.e., it follows from (4.32)

(p−k )→ 0 a.e. (4.33)

Thus by (4.30) and Vitali’s theorem

lim
k→∞

∫
Ω

p−k dx = 0. (4.34)

Since 0 ≤ p+
k = pk + p−k , from (4.24), (4.34) we obtain

lim
k→∞

∫
Ω

p+
k dx = 0. (4.35)

From (4.34), (4.35) it follows limk→∞
∫

Ω
pk = 0 and so by (4.23) we obtain the

first part of (4.20):

〈A(uk), uk − u〉 = 〈A(uk)−A(u), uk − u〉+ 〈A(u), uk − u〉 =∫
Ω

pk(x)dx+ 〈A(u), uk − u〉 → 0.
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By (4.35)
(p+
k )→ 0 a.e., for a subsequence

(again denoted by (p+
k ), for simplicity). Thus (4.33) implies that

(pk)→ 0 a.e. (4.36)

Hence (4.29) implies that for a.a. fixed x ∈ Ω the sequence (Duk(x)) is bounded.
Consider such a fixed x ∈ Ω. Assuming that (4.22) is not valid, we have

a subsequence of (Duk(x)), (again denoted by (Duk(x)), for simplicity), which
converges to some ζ? 6= (Du)(x). Since

(uk(x))→ u(x), (rk(x))→ 0, (sk(x))→ 0,

we obtain that

0 = lim
k→∞

pk(x) =

n∑
j=1

[aj(x, u(x), ζ?)− aj(x, u(x), Du(x))](ζ?j −Dju(x)).

Thus by (A3′) we obtain ζ? = Du(x) which contradicts to ζ? 6= (Du)(x). So we
have shown (4.22).

Hence we obtain the second part of (4.20), by using Vitali’s theorem: for
arbitrary fixed v ∈ V

〈A(uk), v〉 =

n∑
j=1

∫
Ω

aj(x, uk, Duk)Djvdx+

∫
Ω

a0(x, uk, Duk)vdx→

n∑
j=1

∫
Ω

aj(x, u,Du)Djvdx+

∫
Ω

a0(x, u,Du)vdx

because the sequence of integrands is equiintegrable by (A2) and Hölder’s in-
equality, further, the a.e. convergence follows from (A1), (4.21), (4.22).

Remark 4.10. According to the proof of the above theorem, A belongs to the
class (S)+ if Ω is bounded and it is demicontinuous.

Remark 4.11. If instead of (A4′) we assume (A4), we obtain that A is coercive,
too and we have existence of solutions for arbitrary F ∈ V ?. In the particular
case when Ω is bounded and V = W 1,p

0 (Ω), (A4′) implies that A is coercive (see
Remark 3.9).

Remark 4.12. F.E. Browder proved in [14] the following generalization of
Theorem 4.9. Let V ⊂Wm,p(Ω) be a closed linear subspace (m ≥ 1, 1 < p <∞,
Ω ⊂ Rn arbitrary, possibly unbounded domain) where Wm,p(Ω) denotes the
Sobolev space of (real valued) measurable functions u : Ω→ R with the norm

‖u‖Wm,p(Ω) =

 ∑
|α|≤m

∫
Ω

|Dαu|pdx

1/p

,
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Dα = Dα1
1 ...Dαn

n , Dj = ∂/∂xj . (For the detailed investigation of Sobolev spaces
see, e.g., [1].) Define operator A : V → V ? by the formula

〈A(u), v〉 =
∑
|α|≤m

∫
Ω

aα(x, u, ..., Dβu, ...)Dαvdx (4.37)

where |β| ≤ m and functions aα (depending on a multiindex α) satisfy the
natural generalizations of (A1), (A2), (A3′), (A4′). Then A is pseudomonotone.

A similar generalization of Theorem 4.6 can be formulated and proved for
higher order nonlinear elliptic equations.

The proofs of the generalizations are similar to that of Theorems 4.9, 4.6,
respectively.

Example 4.13. A simple example satisfying the assumptions of Theorem 4.4,
where A is coercive is:

−4pu+ a0(x, u,Du) = F

where the function a0 satisfies (A1), (A2) and

a0(x, ξ)ξ0 ≥ c2|ξ0|p (4.38)

with some constant c2 > 0. If Ω is bounded and V = W 1,p
0 (Ω), instead of (4.38)

it is sufficient to assume a0(x, ξ)ξ0 ≥ 0 (see Remark 3.9).

Nonlinear elliptic functional equations

Now we apply the theory of pseudomonotone operators to nonlinear elliptic
functional equations with nonlinear and “non-local” third boundary conditions.
Let V ⊂ W 1,p(Ω) be a closed linear subspace (1 < p < ∞, Ω ⊂ Rn a bounded
domain with sufficiently smooth boundary).

Definition 4.14. Define operator A by

〈A(u), v〉 =

∫
Ω

 n∑
j=1

aj(x, u(x), Du(x);u)Djv(x) + a0(x, u(x), Du(x);u)v(x)

 dx+

(4.39)∫
∂Ω

h(x;u)vdσ, u, v ∈ V.

Assume that the following conditions are fulfilled.
(A1?) The functions aj : Ω × Rn+1 × V → R (j = 0, 1, ..., n) satisfy the

Carathéodory conditions for arbitrary fixed u ∈ V and h : ∂Ω × V → R is
measurable for each fixed u ∈ V .
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(A2?) There exist bounded (nonlinear) operators g1 : V → R+ and k1 : V →
Lq(Ω) such that

|aj(x, η, ζ;u)| ≤ g1(u)[1 + |η|p−1 + |ζ|p−1] + [k1(u)](x), j = 0, 1, ..., n

for a.e. x ∈ Ω, each (η, ζ) ∈ Rn+1, u ∈ V .
(A3?) The inequality

n∑
j=1

[aj(x, η, ζ;u)− aj(x, η, ζ?;u)](ξj − ξ?j ) ≥ g2(u)|ζ − ζ?|p

holds where
g2(u) ≥ c? [1 + ‖u‖V ]

−σ? (4.40)

and the constants c?, σ? satisfy c? > 0, 0 ≤ σ? < p− 1.
(A4?) The inequality

n∑
j=1

aj(x, η, ζ;u)ξj ≥ g2(u)[1 + |η|p + |ζ|p]− [k2(u)](x) (4.41)

holds where k2(u) and h(x;u) satisfy with some positive σ < p − σ?, λ1 <
p− 1− σ?

‖k2(u)‖L1(Ω) ≤ const [1 + ‖u‖V ]
σ
, u ∈ V, (4.42)

‖h(x;u)‖Lq(∂Ω) ≤ const [1 + ‖u‖V ]
λ1 , u ∈ V. (4.43)

(In the case V = W 1,p
0 (Ω) h is considered to be identically 0.)

(A5?) There exists δ > 0 satisfying δ < 1−1/p such that if (uk)→ u weakly
in V and strongly in W 1−δ,p(Ω), (ηk) → η in R, (ζk) → ζ in Rn then for a.a.
x ∈ Ω, j = 0, 1, . . . , n

lim
k→∞

aj(x, η
k, ζk;uk) = aj(x, η, ζ;u)

for a subsequence and for a.a. x ∈ Ω

lim
k→∞

h(x;uk) = h(x;u)

for a suitable subsequence.

Theorem 4.15. Assume (A1?) – (A5?). Then A : V → V ? is bounded, pseu-
domonotone and coercive. Thus for any F ∈ V ?there exists u ∈ V satisfying
A(u) = F .

Proof. Clearly, (A1?), (A2?) and (4.43) imply that A is bounded, because the
trace operator W 1−δ,p(Ω)→ Lp(∂Ω) is bounded by δ+ 1/p < 1 (see [1]) and so
by Hölder’s inequality∫

∂Ω

h(x;u)v(x)dσ
≤ [∫

∂Ω

|h(x;u)|qdσ
]1/q [∫

∂Ω

|v(x)|pdσ
]1/p

≤ (4.44)
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const[1 + ‖u‖V ]λ1‖v‖W 1−δ,p(Ω) ≤ const[1 + ‖u‖V ]λ1‖v‖W 1,p(Ω).

Assumption (A4?) implies that A is coercive because by (4.44)

〈A(uk), uk〉 ≥ c?[1 + ‖uk‖V ]p−σ
? − const[1 + ‖uk‖V ]σ−

const[1 + ‖uk‖V ]λ1+1 → +∞
as ‖uk‖V →∞ since p− σ? > σ, p− σ? > λ1 + 1, p− σ? > 1.

Now we show (similarly to the proof of Theorem 4.6) that A is pseudomono-
tone. Assume that

(uk)→ u weakly in V and lim sup
k→∞

〈A(uk), uk − u〉 ≤ 0. (4.45)

Since W 1,p(Ω) is compactly imbedded into W 1−δ,p(Ω) (for bounded Ω with
sufficiently smooth boundary, see [1]), there is a subsequence of (uk), again
denoted by (uk), for simplicity, such that

(uk)→ u in W 1−δ,p(Ω) and a.e. in Ω (4.46)

and by (A5?)
h(x;uk)→ h(x;u) for a.e. x ∈ ∂Ω. (4.47)

Since (Djuk) is bounded in Lp(Ω), we may assume (on the subsequence) that

(Djuk)→ Dju weakly in Lp(Ω), j = 1, ..., n. (4.48)

Further,

〈A(uk), uk − u〉 =

∫
Ω

a0(x, uk, Duk;uk)(uk − u)dx+ (4.49)

n∑
j=1

∫
Ω

[aj(x, uk, Duk;uk)− aj(x, uk, Du;uk)](Djuk −Dju)dx+

n∑
j=1

∫
Ω

aj(x, uk, Du;uk)(Djuk −Dju)dx+

∫
∂Ω

h(x;uk)(uk − u)dσ.

The first and the fourth terms on the right hand side of (4.49) tend to 0 by
(4.46) and Hölder’s inequality, because the multipliers of (uk − u) are bounded
in Lq(Ω) and Lq(∂Ω), respectively (by (A2?) and (4.43)), and the trace operator
W 1−δ,p(Ω)→ Lp(∂Ω) is continuous. Further, the third term on the right hand
side converges to 0, too, by (4.48) because (4.45), (4.46), (A1?), (A2?), (A5?)
and Vitali’s theorem (Theorem 4.3) imply that

aj(x, uk, Du;uk)→ aj(x, u,Du;u) in Lq(Ω).

Consequently, (4.45), (4.49) imply

lim sup
k→∞

n∑
j=1

∫
Ω

[aj(x, uk, Duk;uk)− aj(x, uk, Du;uk)](Djuk −Dju)dx ≤ 0.

(4.50)
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Since (uk) is bounded in V , from (A3?), (4.50) we obtain

lim
k→∞

∫
Ω

|Duk −Du|pdx = 0 (4.51)

and (for a subsequence)

(Duk)→ Du a.e. in Ω. (4.52)

Therefore, by (A1?), (A2?), (A5?), (4.45), (4.46), (4.52) and Vitali’s theorem
(Theorem 4.3)

aj(x, uk, Duk;uk)→ aj(x, u,Du;u) in Lq(Ω), j = 0, 1, ..., n.

Thus by Hölder’s inequality, (4.44), (4.47) and Vitali’s theorem

(A(uk))→ A(u) weakly in V ?. (4.53)

Finally, from (4.44), (4.46), (4.51) and (A2?) one gets

lim
k→∞

〈A(uk), uk − u〉 = 0. (4.54)

Since (4.53), (4.54) hold for a subsequence of (uk), by using Cantor’s trick, we
obtain (4.53), (4.54) for the original sequence.

So we have proved that A is bounded, pseudomonotone and coercive, thus
Theorem 2.12 implies Theorem 4.15.

Remark 4.16. The solution u of the equation A(u) = F with operator (4.39)
can be considered as weak solution of the equation

−
n∑
j=1

Dj [aj(x, u,Du;u)] + a0(x, u,Du;u) = f (4.55)

with the “non-local” third boundary condition

n∑
j=1

aj(x, u,Du;u)νj + h(x;u) = 0 on ∂Ω. (4.56)

Indeed, by using Gauss’s theorem, it is easy to show that a function u ∈ C2(Ω)
satisfies the boundary value problem (4.55), (4.56) (with sufficiently smooth
aj(x, u,Du;u) if and only if u is a solution of A(u) = F with operator (4.39),
〈F, v〉 =

∫
Ω
fvdx and V = W 1,p(Ω). (See Remark 3.11.)

By using the Rellich-Kondrashov compact imbedding theorem, one is able to
prove an existence theorem on equation A(u) = F for the operator (4.39) with
a more general growth condition than (A2?). The Rellich-Kondrashov theorem
with respect to the space W 1,p(Ω) says (see, e.g., [1]):
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Theorem 4.17. Let Ω ⊂ Rn be a bounded domain with “sufficiently good”
boundary (Ω has the “cone property”, see [1]);

1 ≤ p1 <
np

n− p if p < n, 1 ≤ p1 arbitrary if p = n,

p1 =∞ if p > n.

Then W 1,p(Ω) is compactly imbedded into Lp1(Ω).

Now instead of (A2?) assume
(A2”) There exist bounded (nonlinear) operators g1 : V → R+ and k1 : V →

Lq(Ω) such that for j = 1, ..., n

|aj(x, η, ζ;u)| ≤ g1(u)[1 + |η|p1/q + |ζ|p−1] + [k1(u)](x) and

|a0(x, η, ζ;u)| ≤ g1(u)[1 + |η|p1/q1 + |ζ|p/q1 ] + [k̃1(u)](x)

where p1 is defined in Theorem 4.17, 1/p1 + 1/q1 = 1 and k̃1 : V → Lq1(Ω) is a
bounded operator.

Theorem 4.18. Assume (A1?), (A2”), (A3?)–(A5?). Then the operator, de-
fined by (4.39) is bounded, pseudomonotone and coercive. Thus for any F ∈ V ?
there exists u ∈ V satisfying A(u) = F .

The proof is similar to that of Theorem 4.15. Applying Hölder’s inequality
also in Lp1(Ω), Lq1(Ω), we obtain by Theorem 4.17 that A : V → V ? is bounded.
Further, one proves that the first and third terms on the right hand side of
(4.49) converge to 0, by using Hölder’s inequality also in Lp1(Ω), Lq1(Ω) and
Vitali’s theorem. Finally, proving (4.53), we apply Vitali’s theorem and Hölder’s
inequality also in Lp1(Ω), Lq1(Ω).

Example 4.19. Now we formulate examples satisfying (A1?)–(A5?) (i.e. as-
sumptions of Theorem 4.15). Set

aj(x, η, ζ;u) = b(x, [H(u)](x))ξi|ζ|p−2, j = 1, ..., n,

a0(x, η, ζ;u) = b0(x, [H0(u)](x))η|η|p−2 + b̂0(x, [F0(u)](x))α̂0(x, η, ζ),

h(x;u) = β(x, [G(u)](x))

where b, b0, b̂0, α̂0 β are Carathéodory functions and they satisfy

b(x, θ) ≥ c2
1 + |θ|σ? , b0(x, θ) ≥ c2

1 + |θ|σ?

with some constants c2 > 0, 0 ≤ σ? < p− 1,

b̂0(x, θ) ≤ 1 + |θ|p−1−%? with 0 < %? < p− 1

|α̂0(x, η, ζ)| ≤ c1[1 + |η|%̂ + |ζ|%̂], 0 ≤ %̂, σ? + %̂ < %?,

|β(x, θ)| ≤ c1[1 + |θ|λ1 ], 0 < λ1 < p− 1− σ?.
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Finally,

H,H0 : W 1−δ,p(Ω)→ C(Ω), F0 : W 1−δ,p(Ω)→ Lp(Ω), G : Lp(∂Ω)→ Lp(∂Ω)

are linear continuous operators. Clearly, assumptions (A1?) – (A3?), (A5?)
are fulfilled, we have to show only the estimate (A2?) for the second term in
a0(x, η, ζ;u). By Young’s inequality

|b̂0(x, [F0(u)](x))α̂0(x, η, ζ)| ≤ [1 + |F0(u)|p−1−%? ]c1[1 + |η|%̂ + |ζ|%̂] ≤

const[1 + |η|%̂ + |ζ|%̂]p1 + const[1 + |F0(u)|(p−1−%?)q1 ]

where
p1 =

p− 1

%̂
> 1, q1 =

p1

p1 − 1
=

p− 1

p− 1− %̂ .

Consequently, we obtain for this term (A2?) with

k1(u) = const[1 + |F0(u)|(p−1−%?)q1 ]

since by Hölder’s inequality we have for this term∫
Ω

|k1(u)|q = const
∫

Ω

[1 + |F0(u)|(p−1−%?)q1q] ≤

const
[
1 +

∫
Ω

|F0(u)|p
]µ/p

≤ const [1 + ‖u‖µV ]

where
µ = (p− 1− %?)q1q =

p− 1− %?
p− 1− %̂ p < p.

Now we prove that (A4?) holds. Clearly, for our example we have in (4.40)

g2(u) = min

{
const

1 + ‖H(u)‖σ?
C(Ω)

,
const

1 + ‖H0(u)‖σ?
C(Ω)

}
≥ const[1 + ‖u‖V ]−σ

?

.

Further, by Young’s inequality

|b̂0(x, [F0(u)](x))α̂0(x, η, ζ)η| ≤ [1 + |F0(u)|p−1−%? ]const[1 + |η|%̂+1 + |ζ|%̂+1] ≤
εp

p
[1 + |η|p−σ? + |ζ|p−σ? ] + C(ε)[1 + |F0(u)|(p−1−%?)q1 ]

for any ε > 0 (because ρ̂+ 1 < p− σ?) where

p1 =
p− σ?
%̂+ 1

> 1, q1 =
p1

p1 − 1
=

p− σ?
p− σ? − %̂− 1

and C(ε) is a constant, depending on ε. Choosing sufficiently small ε > 0, we
obtain (A4?) with

[k2(u)](x) = C(ε)[1 + |F0(u)|(p−1−%?)q1 ]
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since
‖k2(u)‖L1(Ω) = const

∫
Ω

[1 + |F0(u)|(p−1−ρ?)q1 ] =

const
∫

Ω

[1 + |F0(u)|(p−σ?)λ] ≤ const
[
1 + ‖F0(u)‖(p−σ

?)λ
Lp(Ω)

]
≤

const
[
1 + ‖u‖(p−σ

?)λ

W 1−δ,p(Ω)

]
≤ const[1 + ‖u‖V ]σ

with σ = (p− σ?)λ where

λ =
p− 1− %?

p− 1− σ? − %̂ < 1

because σ? + %̂ < %? and thus (p− σ?)λ < p− σ?.
If functions b, b0 are between two positive constants then, clearly, (A1?) –

(A5?) are fulfilled when

H,H0 : W 1−δ,p(Ω)→ Lp(Ω)

are continuous linear operators (as F0). So in this case [H(u)](x), [H0(u)](x)
(and [F0(u)](x)) may have also e.g. the forms∫

Ω

d(x, ξ)u(ξ)dξ where
∫

Ω

[∫
Ω

|d(x, ξ)|qdξ
]p/q

dx <∞

or u(χ(x)) where χ, χ−1 : Ω→ Ω are continuously differentiable.
Finally,∫
∂Ω

|h(x;u)|qdσ ≤
∫
∂Ω

|β(x, [G(u)](x))|qdσ ≤ const
∫
∂Ω

[1 + |G(u)|λ1q]dσ ≤

const
[∫

∂Ω

(1 + |G(u)|p)dσ
]λ1q/p

≤ const
[
1 + ‖u‖λ1q

Lp(∂Ω)

]
≤ const

[
1 + ‖u‖λ1q

V

]
which implies (4.43).

Problems
1. Prove Remark 4.7.

2. Show that the Example 4.13 satisfies the assumptions of Theorem 4.6.

3. Prove Theorem 4.18.

4. Assume that the functions aj satisfy the conditions (A1), (A2), (Ã3), (A4)
and there exists u0 ∈ W 1,p(Ω) such that u0|∂Ω = ϕ. Prove that then for
each F ∈ [W 1,p

0 (Ω)]? there exists a weak solution of the Dirichlet problem
with nonhomogeneous boundary condition, considered in Problem 3 in
Section 3. (See Remark 3.10.)
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5. Let V be a closed linear subspace of Wm,p(Ω) (m ≥ 1, 1 < p < ∞) and
consider the operator (4.37). Denote by N the number of multiindices
β = (β1, . . . βn) satisfying |β| = ∑n

j=1 βj ≤ m. Assume that the functions
aα : Ω× RN → R satisfy the Carathéodory conditions, i.e.

x 7→ aα(x, ξ) is measurable for each ξ ∈ RN ,

ξ 7→ aα(x, ξ) is continuous for a.a. x ∈ Ω.

Further, there exist a constant c1 > 0 and a function k1 ∈ Lq(Ω) such
that

|aα(x, ξ)| ≤ c1|ξ|p−1 + k1(x), ξ ∈ RN , a.a. x ∈ Ω

Prove that then the operator (4.37) is bounded.

6. Consider the operator (4.37) satisfying the assumptions of Problem 5.
Denote by M the number of multiindices β satisfying |β| = m. Assume
that there exists a positive constant c2 such that∑

|α|=m

[aα(x, η, ζ)− aα(x, η, ζ?)](ζα − ζ?α) ≥ c2|ζ − ζ?|p (4.57)

for a.a. x ∈ Ω, all ζ, ζ? ∈ RM , η ∈ RN−M . By using the arguments of
the proof of Theorem 4.6, prove that the bounded operator A : V → V ?

is pseudomonotone.

7. By using Proposition 3.4 formulate conditions, which imply the inequality
(4.57).

8. Formulate assumptions on functions aα which imply that the operator A
defined by (4.37) is coercive. Show that the solution of A(u) = F can be
considered as a weak solution of the equation∑

|α|≤m

(−1)|α|Dα[aα(x, u, . . . , Dβu, . . . )] = f in Ω

with homogeneous Dirichlet conditions on ∂Ω if V = Wm,p
0 (Ω) and with

homogeneous Neumann conditions if V = Wm,p(Ω).

9. Let V be a closed linear subspace of Wm,p(Ω) (m ≥ 1, p ≥ 2) and define
the operator A : V → V ? by

〈A(u), v〉 =
∑
|α|≤m

∫
Ω

(Dαu)|Dαu|p−2Dαvdx, u, v ∈ V.

Prove that A is bounded, demicontinuous, uniformly monotone, satisfies
(3.17) and, consequently, A is coercive.
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10. Consider the operator (4.37) with p ≥ 2, V = Wm,p
0 (Ω). By using the

notations of Problem 5, assume that the functions aα have the form

aα(x, ξ) = ξα|ξα|p−2, x ∈ Ω, ξ ∈ RN if |α| = m

and for |α| < m the functions aα satisfy the assumptions of Problem 5,
further,

aα(x, ξ)ξα ≥ 0, x ∈ Ω, ξ ∈ RN .

By using the fact that in Wm,p
0 (Ω)

‖u‖′ =

 ∑
|α|=m

∫
Ω

|Dαu|p
1/p

is equivalent to the original norm, show that A : V → V ? is bounded,
pseudomonotone and coercive.

5 Nonlinear elliptic variational inequalities

Preliminaries

In order to explain the importance of elliptic variational inequalities , first
consider the weak solution of the linear elliptic equation (1.1) with homoge-
neous Dirichlet boundary condition, i.e. a function u ∈ H1

0 (Ω) satisfying for all
v ∈ H1

0 (Ω)

〈Au, v〉 =

n∑
j,k=1

∫
Ω

ajk(Dku)(Djv)dx+

∫
Ω

cuvdx =

∫
Ω

fvdx = 〈F, v〉. (5.1)

It is well-known (see, e.g., [67]) that if c ≥ 0, ajk = akj ∈ L∞(Ω) satisfy the
uniform ellipticity condition then the unique solution u ∈ H1

0 (Ω) of (5.1) is the
unique function u = u? ∈ H1

0 (Ω) which minimizes the quadratic functional

E(u) = 〈Au, u〉 − 2〈F, u〉 = (5.2)

n∑
j,k=1

∫
Ω

ajk(Dku)(Dju)dx+

∫
Ω

cu2dx− 2

∫
Ω

fudx.

(Here A : V → V ? is a linear operator, V = H1
0 (Ω).)

Similarly, the weak solution of the Neumann problem with homogeneous
boundary condition, i.e. the solution u ∈ H1(Ω) of (5.1) for all v ∈ H1(Ω), is
the unique u = u? ∈ H1(Ω) where E attains its minimum in H1(Ω).

By using similar arguments as in [67], one can show the following general-
ization of the above statements.
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Theorem 5.1. Let K be a closed convex subset of the real Hilbert space V , A :
V → V ? be a bounded, strictly positive selfadjoint linear operator and F ∈ V ?.
Then the quadratic functional

E(u) = 〈Au, u〉 − 2〈F, u〉 (5.3)

attains its minimum in K at u = u? ∈ K where u = u? is the unique solution
of the “variational inequality”

〈Au, v − u〉 ≥ 〈F, v − u〉 for all v ∈ K. (5.4)

Proof. The functional E is bounded from below:

E(u) ≥ c20‖u‖2V − 2‖F‖V ?‖u‖V ≥
[
c0‖u‖V −

‖F‖V ?
c0

]2

− ‖F‖
2
V ?

c20
≥

−‖F‖
2
V ?

c20

Let (uj) be a sequence such that

uj ∈ K, lim
j→∞

E(uj) = inf
K
E = d. (5.5)

As in [67], one can show that (uj) is a Cauchy sequence in V . Indeed, by using
the parallelogram equality and (5.5), we obtain that for arbitrary ε > 0 there
exists j0 such that j, l > j0 implies

‖uj−ul‖2 = 2[‖uj‖2 +‖ul‖2]−‖uj+ul‖2 = 2[E(uj)+E(ul)]−4E

(
uj + ul

2

)
≤

2[(d+ ε) + (d+ ε)]− 4d = 4ε.

Thus there is u? ∈ V such that lim(uj) = u?. Since uj ∈ K and K is closed, we
obtain u? ∈ K. The continuity of E implies

E(u?) = lim
j→∞

E(uj) = inf
K
E. (5.6)

The solution of (5.6) is unique, because if E(ũ) = infK E then

u?, ũ, u?, ũ, . . .

must be a Cauchy sequence according to the above argument.
Now we show that u = u? satisfies (5.4). Let v ∈ K be an arbitrary fixed

element and consider the function h defined by

h(t) = E(u? + t(v − u?)), t ∈ [0, 1].
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Since K is convex, u? + t(v − u?) ∈ K for all t ∈ [0, 1], hence

h(t) = E(u? + t(v − u?)) ≥ E(u?) = h(0). (5.7)

Since

h(t) = E(u?+t(v−u?)) = 〈A(u?+t(v−u?)), u?+t(v−u?)〉−2〈F, u?+t(v−u?)〉 =

t2〈A(v − u?), v − u?〉+ t[〈A(v − u?), u?〉+ 〈Au?, v − u?〉 − 2〈F, v − u?〉]+
〈Au?, u?〉 − 〈F, u?〉,

by (5.7)

0 ≤ h′(0) = 〈A(v−u?), u?〉+〈Au?, v−u?〉−2〈F, v−u?〉 = 2[〈Au?, v−u?〉−〈F, v−u?〉],
so we obtained that u = u? satisfies (5.4). Since A is strictly positive, the
solution of (5.4) is unique: assuming that uj satisfies

〈Auj , v − uj〉 ≥ 〈F, v − uj〉 for all v ∈ K, j = 1, 2,

we have

〈Au1, u2 − u1〉 ≥ 〈F, u2 − u1〉, 〈Au2, u1 − u2〉 ≥ 〈F, u1 − u2〉.
The sum of these inequalities results

〈Au1 −Au2, u2 − u1〉 ≥ 0, hence u2 = u1

because A is strictly positive.

As a generalization of (5.4) for arbitrary Banach space V and nonlinear
operator A : V → V ? we have the definition of an abstract elliptic variational
inequality:

Definition 5.2. Let V be a real Banach space, K ⊂ V a closed convex set,
A : K → V ? a (nonlinear) operator, F ∈ V ?. Then the variational inequality
is the following problem: find u ∈ K satisfying

〈A(u), v − u〉 ≥ 〈F, v − u〉 for all v ∈ K. (5.8)

Remark 5.3. In general, the variational inequality (5.8) is not connected with
the minimum of a functional.

Remark 5.4. In the particular case when K is a closed convex cone with the
vertex 0, the variational inequality (5.8) holds if and only if

〈Au, v〉 ≥ 〈F, v〉 for all v ∈ K and (5.9)

〈Au, u〉 = 〈F, u〉. (5.10)

From (5.9) we obtain that in the caseK = V (5.8) is equivalent with the equality

〈Au, v〉 = 〈F, v〉 for all v ∈ V, i.e. A(u) = F.
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Indeed, from (5.8) with v = 0 and v = 2u we obtain

−〈Au, u〉 ≥ −〈F, u〉 and 〈Au, u〉 ≥ 〈F, u〉,

respectively, i.e. we have (5.10). Further, subtracting the equality (5.10) from
(5.9), we obtain (5.8).

Now we formulate some examples for solutions of (5.8) which can be con-
sidered as weak solutions to boundary value problems for equation (1.1) with
certain nonlinear boundary conditions.

Example 5.5. Consider the linear operator (5.1) defined in V = H1(Ω) and
set

K = {v ∈ H1(Ω) : v|∂Ω ≥ 0}, 〈F, v〉 =

∫
Ω

fvdx with some f ∈ L2(Ω).

Then K is a closed convex cone with vertex 0.

Now we show that a solution u ∈ K of (5.8) can be considered as a weak
solution of the equation (1.1) with some nonlinear boundary condition. First
assume that u is a sufficiently smooth (e.g. u ∈ C2(Ω)) solution of (5.9), (5.10)
with sufficiently smooth functions ajk, c, f . Then by Gauss’s theorem for v ∈ K,
v ∈ C1(Ω)∫

Ω

fvdx = 〈F, v〉 ≤ 〈Au, v〉 =

n∑
j,k=1

∫
Ω

ajk(Dku)(Djv)dx+

∫
Ω

cuvdx = (5.11)

∫
Ω

v

− n∑
j,k=1

Dj(ajkDku) + cu

 dx+

∫
∂Ω

v

n∑
j,k=1

ajk(Dku)νjdσ.

Setting v = ϕ and v = −ϕ in (5.11) with arbitrary ϕ ∈ C1
0 (Ω), we obtain

f = −
n∑

j,k=1

Dj(ajkDku) + cu in classical sense . (5.12)

Thus (5.11) implies for the “conormal derivative”

∂?νu =

n∑
j,k=1

ajk(Dku)νj

∫
∂Ω

v∂?νudσ =

∫
∂Ω

v

n∑
j,k=1

ajk(Dku)νjdσ ≥ 0

for all v ∈ C1(Ω) with v|∂Ω ≥ 0, hence

∂?νu =

n∑
j,k=1

ajk(Dku)νj ≥ 0 on ∂Ω (5.13)
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and by u ∈ K we have
u ≥ 0 on ∂Ω. (5.14)

Since 〈Au, u〉 = 〈F, u〉, we obtain from (5.11)∫
∂Ω

u(∂?νu)dσ = 0

which implies by (5.13), (5.14)

u(∂?νu) = 0 on ∂Ω. (5.15)

Summarizing, if u ∈ C2(Ω) is a solution of the variational inequality (5.8)
(i.e. (5.9), (5.10)) then u is a classical solution of the (linear) differential equa-
tion (5.12) with the nonlinear boundary conditions (5.13)–(5.15). Conversely,
it is easy to show that a solution u ∈ C2(Ω) of the boundary value problem
(5.12)–(5.15) satisfies the variational inequality. Therefore, a function u ∈ K
satisfying the variational inequality (5.8), can be considered as a weak solution
of (5.12)–(5.15).

Example 5.6. Consider the operator (5.1) in V = H1
0 (Ω) with

K = {v ∈ H1
0 (Ω) : v ≥ 0 a.e. in Ω}, 〈F, v〉 =

∫
Ω

fvdx with some f ∈ L2(Ω).

Then K is a closed convex cone with vertex 0.

Assume that u ∈ C2(Ω) is a solution of (5.8) (i.e. of (5.9) and (5.10)). Let

Ω+ = {x ∈ Ω : u(x) > 0}, Ω0 = {x ∈ Ω : u(x) = 0}.
Consider an arbitrary function ϕ ∈ C1

0 (Ω+) and let v = u+εϕ with some ε ∈ R.
Then, clearly, v ∈ K for sufficiently small |ε| (because u has a positive minimum
on suppϕ) and so from

〈A(u), v − u〉 ≥ 〈F, v − u〉
we obtain the differential equation (5.10) as in the previous example. Further,
since u ∈ K,

u = 0 on ∂Ω+ (5.16)
and, clearly,

∂?νu = 0 on ∂Ω+ ∩ ∂Ω0. (5.17)
Thus the smooth solution of (5.8) satisfies

−
n∑

j,k=1

Dj [ajkDku] + cu = f in Ω+, u > 0 in Ω+, (5.18)

the boundary conditions (5.16), (5.17) and

u = 0 in Ω0 = Ω \ Ω+. (5.19)

So a smooth solution u (∈ C2(Ω)) of (5.8) satisfies the boundary value problem
(5.16)–(5.19) with “free boundary”.

It is easy to show that if u ∈ C2(Ω) satisfies (5.16)–(5.19) then u is a solution
of (5.8).
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Existence theorems
Now we formulate and prove two existence theorems on the variational inequality
(5.8).

Theorem 5.7. Let V be a real reflexive separable Banach space and K ⊂ V
a closed, convex, bounded subset. Assume that A : K → V ? is bounded and
pseudomonotone. Then for all F ∈ V ?there exists u ∈ K which satisfies (5.8),
i.e.

〈A(u), v − u〉 ≥ 〈F, v − u〉 for all v ∈ K.

Remark 5.8. By definition, a bounded operator A : K → V ? is called pseu-
domonotone if

(uk)→ u weakly in V, uk ∈ K, lim sup
k→∞

〈A(uk), uk − u〉 ≤ 0 (5.20)

imply

lim
k→∞

〈A(uk), uk − u〉 = 0 and (A(uk))→ A(u) weakly in V ?. (5.21)

Proof of Theorem 5.7. Let Vm ⊂ V be linear subspaces of dimension m such
that

V1 ⊂ V2 ⊂ ... ⊂ Vm ⊂ ... and ∪∞m=1Vm = V.

Further, let Km = Vm ∩K. Then Km ⊂ Vm is a closed, convex, bounded set,

K1 ⊂ K2 ⊂ ... ⊂ Km ⊂ ... and ∪∞m=1Km = K.

First we show that for all m there exist solutions um ∈ Km of the (“finite
dimensional”) variational inequalities

〈A(um), v − um〉 ≥ 〈F, v − um〉 for all v ∈ Km. (5.22)

In the finite dimensional (Banach) space Vm define some scalar product [·, ·]
generating a norm which is equivalent with the original norm in Vm. If g ∈ V ?
then the linear functional

w 7→ 〈g, w〉, w ∈ Vm

is continuous in the Hilbert space Vm (with the scalar product [·, ·]), hence there
exists a linear and continuous operator B : V ? → Vm such that

〈g, w〉 = [Bg,w] for all w ∈ Vm.

Thus the inequality (5.22) can be written in the form

[B(A(um)), v − un] ≥ [BF, v − um], v ∈ Km,
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i.e.

[um, v − um] ≥ [um +BF −B(A(um)), v − um], v ∈ Km. (5.23)

Denote by Pm the operator, projecting Vm on to the convex set Km with respect
to the scalar product [·, ·]. Then inequality (5.23) is equivalent with

um = Pm(um +BF −B[A(um)]). (5.24)

Consider the operator Qm : Km → Km, defined by

Qm(v) = Pm(v +BF −B[A(v)]), v ∈ Km. (5.25)

v − umv
B
F
−B

[A
(u

m
)]

um + BF −B[A(um)]

um

Km

Figure 1.1: Inequality (5.23)

We claim that Qm is continuous. It is sufficient to show weak continuity, as
Kn is of finite dimension. Assume that (vk) → v in Km. Since the bounded
operator A is pseudomonotone, A is demicontinuous (Proposition 2.7), thus

(A(vk))→ A(v) weakly in V ? and so B[A(vk)]→ B[A(v)] in Km and

Pm(vk +BF −B[A(vk)])→ Pm(v +BF −B[A(v)]) as k →∞.
Brouwer’s fixed point theorem implies that the continuous map Qm : Km → Km

has a fixed point, i.e. there is a solution um of (5.24).
Now consider the sequence (um) of solutions to (5.24) (i.e. to (5.22)). Since

um ∈ Km ⊂ K, K is bounded and V is reflexive, there is a subsequence of (um),
again denoted by (um) such that

(um)→ u weakly in V. (5.26)

Since um ∈ K, K is convex and closed, we have u ∈ K. Now we prove

lim sup
m→∞

〈A(um), um − u〉 ≤ 0. (5.27)
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As ∪∞m=1Km is dense in K, for arbitrary ε > 0 there is u0 ∈ ∪∞m=1Km such that

‖u− u0‖V ≤ ε. (5.28)

Further, u0 ∈ Km for sufficiently large m, thus by (5.22)

〈A(um), um − u0〉 ≤ 〈F, um − u0〉,

hence by (5.28) and the boundedness of ‖A(um)‖V ?

〈A(um), um − u〉 = 〈A(um), um − u0〉+ 〈A(um), u0 − u〉 ≤ 〈F, um − u0〉+ cε

with some constant c. By (5.26), (5.28), this inequality implies (5.27).
Finally, since A is pseudomonotone, (5.26), (5.27) imply

lim
m→∞

〈A(um), um − u〉 = 0, (A(um))→ A(u) weakly in V ? (5.29)

(for a subsequence). For arbitrary fixed v ∈ ∪∞m=1Km the variational inequalities
(5.22) can be written in the form

〈A(um), v − u〉+ 〈A(um), u− um〉 ≥ 〈F, v − um〉 if m is sufficiently large.

By (5.26), (5.29), from this inequality we obtain as n→∞

〈A(u), v − u〉 ≥ 〈F, v − u〉 for any v ∈ ∪∞m=1Km. (5.30)

Since ∪∞m=1Km is dense in K, (5.30) holds for arbitrary v ∈ K, i.e. u is a
solution of (5.8).

Now we formulate the extension of Theorem 5.7 to unbounded sets K.

Theorem 5.9. Let V be a reflexive separable Banach space and K ⊂ V a
closed, convex subset. Assume that A : K → V ? is bounded, pseudomonotone
and coercive in the following sense: there exists v0 ∈ K such that

〈A(v), v − v0〉
‖v‖V

→ +∞ if ‖v‖V →∞, v ∈ K. (5.31)

Then for arbitrary F ∈ V ?there exists a solution u ∈ K of (5.8).

Proof. Set BR = {v ∈ V : ‖v‖ ≤ R} and KR = K ∩ BR. Since KR is a closed,
convex, bounded set, by Theorem 5.7 there exists uR ∈ KR with

〈A(uR), v − uR〉 ≥ 〈F, v − uR〉 for any v ∈ KR. (5.32)

Applying (5.32) to v = v0 and R ≥ ‖v0‖V , we obtain by (5.31)

〈A(uR), v0 − uR〉 ≥ 〈F, v0 − uR〉 ≥ −‖F‖V ?‖v0 − uR‖V ,

hence

〈A(uR), uR − v0〉
‖uR‖V

≤ ‖F‖V ?
‖v0 − uR‖V
‖uR‖V

≤ ‖F‖V ?
‖v0‖V + ‖uR‖V
‖uR‖V
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where the right hand side is bounded if ‖uR‖V ≥ 1. Thus by (5.31) ‖uR‖V is
bounded for all R. Consequently, there are a sequence (Rk), converging to +∞
and u ∈ V such that

(uRk)→ u weakly in V. (5.33)

Since uRk ∈ KRk ⊂ K, we have u ∈ K. According to (5.32), for any v ∈ K,
sufficiently large k

〈A(uRk), uRk − u〉 ≤ 〈F, uRk − u〉 → 0

thus
lim sup
k→∞

〈A(uRk), uRk − u〉 ≤ 0,

hence by (5.33)

lim
k→∞

〈A(uRk), uRk − u〉 = 0 and (A(uRk))→ A(u) weakly in V ? (5.34)

because A is pseudomonotone.
Applying (5.32) with arbitrary fixed v ∈ K, R = Rk > ‖v‖V , we obtain

〈A(uRk), v − u〉+ 〈A(uRk), u− uRk〉 ≥ 〈F, v − uRk〉

whence one obtains (by (5.33), (5.34)) as k →∞

〈A(u), v − u〉 ≥ 〈F, v − u〉,

i.e. u ∈ K satisfies (5.8).

Remark 5.10. If A : K → V ? is strictly monotone then the solution of (5.8)
is unique.

Indeed, assuming that uj ∈ K satisfies

〈A(uj), v − uj〉 ≥ 〈F, v − uj〉, for all v ∈ K, j = 1, 2,

we obtain

〈A(u1), u2 − u1〉 ≥ 〈F, u2 − u1〉, 〈A(u2), u1 − u2〉 ≥ 〈F, u1 − u2〉

whence
〈A(u1)−A(u2), u1 − u2〉 ≤ 0

which implies u1 = u2.

Remark 5.11. Similarly to Remark 2.17, it is easy to show that if A is uni-
formly monotone then the solution u of (5.8) depends on F continuously. Indeed,
assuming

〈A(uj), v − uj〉 ≥ 〈Fj , v − uj〉, for all v ∈ K, j = 1, 2,
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we have

〈A(u1)−A(u2), u1 − u2〉 ≤ 〈F1 − F2, u1 − u2〉 ≤ ‖F1 − F2‖V ?‖u1 − u2‖V .

If A is uniformly monotone then according to Definition 2.15

a(‖u1 − u2‖V )‖u1 − u2‖V ≤ 〈A(u1)−A(u2), u1 − u2〉,

thus

a(‖u1 − u2‖V ) ≤ ‖F1 − F2‖V ? , i.e. ‖u1 − u2‖V ≤ a−1(‖F1 − F2‖V ?)

where a−1 : [0,∞)→ [0,∞) is a continuous function and a−1(0) = 0.

Problems
1. Consider the operator (5.1) in V = H1

0 (Ω) with

K = {v ∈ H1
0 (Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω}

where ψ1, ψ2 are measurable functions. By using the arguments in Exam-
ple 5.6, show that in this case the solution of the variational inequality
(5.8) can be considered as a weak solution of certain boundary value prob-
lem with “free boundary”.

2. Consider the operator (5.1) in V = H1
0 (Ω) with

K = {v ∈ H1
0 (Ω) : |Dv(x)| ≤ 1 a.e. in Ω}

By using the arguments in Example 5.6, show that in this case the solution
of the variational inequality (5.8) can be considered as a weak solution of
certain boundary value problem with “free boundary”.

3. Let Ω ⊂ Rn be a bounded domain, V = W 1,p
0 (Ω), p ≥ 2 and K ⊂ V a

closed convex set. Define the operator A by

〈A(u), v〉 =

n∑
j=1

∫
Ω

(Dju)|Du|p−2Djv, u, v ∈ V.

Prove that then for all F ∈ V ? there exists a unique solution of the
variational inequality (5.8) and it depends on F continuously.

4. Let V be a closed linear subspace of Wm,p(Ω) (m ≥ 1, p ≥ 2) and K ⊂ V
a closed convex set. Define the operator A by

〈A(u), v〉 =
∑
|α|≤m

∫
Ω

(Dαu)|Dαu|p−2Dαv, u, v ∈ V.

Show that for all F ∈ V ? there exists a unique solution of the variational
inequality (5.8) and it depends on F continuously.



Chapter 2

FIRST ORDER
EVOLUTION EQUATIONS

6 Formulation of the abstract problem

In this section we shall motivate and formulate the abstract Cauchy problem
for first order evolution equations and problems which will be considered for
nonlinear parabolic equations with nonlinear elliptic operators of “divergence
type”.

In [67] the linear parabolic equation of the following form was considered:

Dtu−
n∑

j,k=1

Dj [ajkDku] + cu = f in QT = (0, T )× Ω (6.1)

where Ω ⊂ Rn is a bounded domain, Dt = ∂
∂t , with the Dirichlet boundary

condition
u|ΓT = g where ΓT = [0, T )× ∂Ω (6.2)

and the initial condition

u(0, x) = h(x), x ∈ Ω. (6.3)

Assume that u ∈ C1,2(QT ) (i.e. u is a function which is once continuously
differentiable with respect to t and twice continuously differentiable with respect
to x in QT ) is a classical solution of (6.1) – (6.3). Multiplying the differential
equation (6.1) with a test function v ∈ C1(QT ) and integrating over QT , by
Gauss theorem we obtained an equation which (with (6.2)) defined the weak
solution of problem (6.1) – (6.3). In this formulation the equation contained the
initial condition (6.3), too.

Now we shall give another definition of the weak solution for certain nonlinear
parabolic equations and as a particular case for the linear equation (6.1). We

49
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t

ΓT

Ω

Rn

QT

Figure 2.1: The “cylinder” QT

shall consider nonlinear parabolic equations of the form

Dtu−
n∑
j=1

Dj [aj(t, x, u,Du)] + a0(t, x, u,Du) = f in QT , (6.4)

which is analogous to the nonlinear elliptic equation (1.4) of divergence form.
In order to define the weak solution of (6.4), (6.2), (6.3) with homogeneous

boundary condition, multiply the differential equation (6.4) with a test function
v ∈ C1

0 (Ω) (i.e. by a C1 function with compact support), to obtain∫
Ω

(Dtu)vdx+

n∑
j=1

∫
Ω

aj(t, x, u,Du)Djvdx+

∫
Ω

a0(t, x, u,Du)vdx = (6.5)

∫
Ω

fvdx.

Later we shall see that if the functions aj satisfy certain growth conditions
(which are analogous to (A2)) then for a.a. fixed t ∈ [0, T ],

x 7→ aj(t, x, u(t, x), Du(t, x)) ∈ Lq(Ω) if x 7→ u(t, x) ∈W 1,p(Ω)

(1 < p <∞, 1/p+ 1/q = 1).

Then (6.5) holds for all test functions v ∈W 1,p
0 (Ω).

Introduce the notations

V = W 1,p
0 (Ω), U(t) = x 7→ u(t, x), x ∈ Ω

and with a fixed t ∈ [0, T ] define operator Ã(t) and operator A by

〈[A(U)](t), v〉 = 〈[Ã(t)][U(t)], v〉 = (6.6)

n∑
j=1

∫
Ω

aj(t, x, u,Du)Djvdx+

∫
Ω

a0(t, x, u,Du)vdx, U(t), v ∈ V ;
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and define F (t) for all fixed t ∈ [0, T ] by

F (t)v =

∫
Ω

f(t, x)v(x)dx, assuming x 7→ f(t, x) ∈ Lq(Ω). (6.7)

Then for each fixed t ∈ [0, T ]

[A(U)](t) ∈ V ?, Ã(t) : V → V ?, F (t) ∈ V ?

and equation (6.5) can be written in the form of the “ordinary differential equa-
tion”

[DtU ](t) + [A(U)](t) = F (t), t ∈ [0, T ]. (6.8)

In order to give the exact definition of the equation (6.8), we have to define the
derivative DtU . Further, we have to give the exact definition of the initial con-
dition U(0) = h, corresponding to (6.3). The homogeneous boundary condition
(6.2) (i.e. the case g = 0) will be taken into consideration by V = W 1,p

0 (Ω).
First we define the function spaces Lp(0, T ;V ) which will be the domain of

definition of operator A.

Definition 6.1. Let V be a Banach space, 0 < T <∞, 1 ≤ p <∞. Denote by
Lp(0, T ;V ) the set of measurable functions f : (0, T )→ V such that ‖f(t)‖pV is
integrable and define the norm by

‖f‖pLp(0,T ;V ) =

∫ T

0

‖f(t)‖pV dt.

Then Lp(0, T ;V ) is a Banach space over R (identifying functions that are
equal almost everywhere on (0, T )). If V is separable then Lp(0, T ;V ) is sepa-
rable, too.

Denoting by V ? the dual space of V and by 〈·, ·〉 the dualities in spaces
V ?, V , we have for all f ∈ Lp(0, T ;V ), g ∈ Lq(0, T ;V ?) with 1 < p < ∞,
1/p+ 1/q = 1 Hölder’s inequality∣∣∣∣∣

∫ T

0

〈g(t), f(t)〉dt
∣∣∣∣∣ ≤

[∫ T

0

‖g(t)‖qV ?dt
]1/q [∫ T

0

‖f(t)‖pV dt
]1/p

.

Further, for 1 < p <∞ the dual space of Lp(0, T ;V ) is isomorphic and isomet-
ric to Lq(0, T ;V ?). Thus we may identify the dual space of Lp(0, T ;V ) with
Lq(0, T ;V ?). Consequently, if V is reflexive then Lp(0, T ;V ) is reflexive for
1 < p < ∞. The detailed proof of the above facts can be found, e.g., in [93].
The dualities between Lq(0, T ;V ?) and Lp(0, T ;V ) will be denoted by [·, ·].
Definition 6.2. Let V be a real separable and reflexive Banach space and H a
real separable Hilbert space with the scalar product (·, ·) such that the imbedding
V ⊂ H is continuous and V is dense in H. Then the formula

〈ṽ, u〉 = (v, u), u ∈ V, v ∈ H
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defines a linear continuous functional ṽ over V and it generates a bijection
between H and a subset of V ?, i.e. we may write

V ⊂ H ⊂ V ?

which will be called an evolution triple.

Example 6.3. Let Ω ⊂ Rn be a bounded domain, m a nonnegative integer and
2 ≤ p < ∞. Let V be a closed linear subspace of the Sobolev space Wm,p(Ω)
and H = L2(Ω). Then V ⊂ H ⊂ V ? is an evolution triple.

Now we define the generalized derivatives of functions u ∈ Lp(0, T ;V ).

Definition 6.4. Let V ⊂ H ⊂ V ? be an evolution triple, u ∈ Lp(0, T ;V ). If
there exists w ∈ Lq(0, T ;V ?) such that∫ T

0

ϕ′(t)u(t)dt = −
∫ T

0

ϕ(t)w(t)dt

for all ϕ ∈ C∞0 (0, T ) (i.e. for all infinitely many times differentiable functions
on (0, T ) with compact support) then w is called the generalized derivative of u
and it is denoted by u′.

Remark 6.5. In the above equality u(t) ∈ V is considered as an element of
V ?. In this case we shall write briefly u′ ∈ Lq(0, T ;V ?). It is easily seen that
the generalized derivative is unique.

Further, it is not difficult to show that u′ = w ∈ Lq(0, T ;V ?) if and only if∫ T

0

(u(t), v)Hϕ
′(t)dt = −

∫ T

0

〈w(t), v〉ϕ(t)dt for all ϕ ∈ C∞0 (0, T ), v ∈ H.

Theorem 6.6. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 1/p+1/q =
1, 0 < T <∞. Then

W 1
p (0, T ;V,H) = {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ?)}

with the norm
‖u‖ = ‖u‖Lp(0,T ;V ) + ‖u′‖Lq(0,T ;V ?)

is a Banach space. W 1
p (0, T ;V,H) is continuously imbedded into C([0, T ];H)

(the space of continuous functions v : [0, T ] → H with the supremum norm)
in the following sense: to every u ∈ W 1

p (0, T ;V,H) there is a uniquely defined
ũ ∈ C([0, T ];H) such that u(t) = ũ(t) for a.e. t ∈ [0, T ] and

‖ũ‖C([0,T ];H) ≤ const‖u‖W 1
p (0,T ;V,H).

Further, the following integration by parts formula holds for arbitrary functions
u, v ∈W 1

p (0, T ;V,H) and 0 ≤ s < t ≤ T :

(u(t), v(t))− (u(s), v(s)) =

∫ t

s

[〈u′(τ), v(τ)〉+ 〈v′(τ), u(τ)〉]dτ. (6.9)
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(In (6.9) u(t), u(s) mean the values of the above ũ ∈ C([0, T ];H) in t, s,
respectively.)

Remark 6.7. In the case v = u ∈W 1
p (0, T ;V,H) we obtain from (6.9)

‖u(t)‖2H − ‖u(s)‖2H = 2

∫ t

s

〈u′(τ), u(τ)〉dτ.

The detailed proof of Theorem 6.6 can be found in [30].

7 Cauchy problem with monotone operators
In this section let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <∞
and let us use the notations

X = Lp(0, T ;V ), [F, v] =

∫ T

0

〈F (t), v(t)〉dt, v ∈ X,F ∈ X?.

Let A : X → X? be an operator given by

[A(u)](t) = [Ã(t)](u(t))

where for a.a. fixed t ∈ [0, T ], Ã(t) maps V into V ?, u0 ∈ H, F ∈ X?. We want
to find u ∈W 1

p (0, T ;V,H) satisfying

u′ +A(u) = F, u(0) = u0. (7.1)

By Theorem 6.6 the initial condition makes sense.

Theorem 7.1. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <∞.
Assume that for all fixed t ∈ [0, T ], Ã(t) : V → V ? is monotone, hemicontinuous
and bounded in the sense

‖Ã(t)(v)‖V ? ≤ c1‖v‖p−1
V + k1(t) (7.2)

for all v ∈ V , t ∈ [0, T ] with a suitable constant c1 and a function k1 ∈ Lq(0, T ).
Further, Ã(t) is coercive in the sense: there exist a constant c2 > 0 and a
function k2 ∈ L1(0, T ) such that

〈Ã(t)(v), v〉 ≥ c2‖v‖pV − k2(t) (7.3)

for all v ∈ V , t ∈ [0, T ]. Finally, for arbitrary fixed u, v ∈ V , the function

t 7→ 〈Ã(t)(u), v〉, t ∈ [0, T ] is measurable . (7.4)

Then for arbitrary F ∈ Lq(0, T ;V ?) and u0 ∈ H there exists a unique solution
of problem (7.1) with the operator A defined by [A(u)](t) = [Ã(t)](u(t)).
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In the proof we shall apply the following theorem of Carathéodory (see [93]
and [19]).

Theorem 7.2. Set I = [t0, t0 + r], K = {x ∈ Rn : |x − x0| ≤ r} and assume
that the functions fj : I ×K → R, j = 1, . . . , n satisfy the following conditions:

t 7→ fj(t, x) is measurable on I for all fixed x ∈ K,

x 7→ fj(t, x) is continuous on K for a.a. t ∈ I
(“Carathéodory conditions”) and there exists a function M ∈ L1(I) such that

|fj(t, x)| ≤M(t) for all x ∈ K, a.a. t ∈ I.

Then there exist absolute continuous functions ξj satisfying the initial value
problem

ξ′j(t) = fj(t, ξ(t)) a.e. in a neighbourhood of t0, ξ(0) = x0

where ξ(t) = (ξ1(t), . . . , ξn(t)).

Proof of Theorem 7.1. The proof is based on Galerkin’s approximation. Since
V is separable, there exists a countable set of linearly independent elements
z1, ..., zk, ... such that their finite linear combinations are dense in V . We shall
find the m-th approximation of a solution u in the form

um(t) =

m∑
k=1

akm(t)zk with some akm ∈W 1,q(0, T )

such that for a.e. t ∈ [0, T ]

〈u′m(t), zj〉+ 〈Ã(t)[um(t)], zj〉 = 〈F (t), zj〉, j = 1, . . . ,m, (7.5)

um(0) = um0 ∈ Vn = span(z1, ..., zm), where (um0)→ u0 in H. (7.6)

System (7.5) is a system of ordinary differential equations for akm because it
has the form

m∑
k=1

a′km(t)(zk, zj) + 〈Ã(t)[

m∑
k=1

akm(t)zk], zj〉 = 〈F (t), zj〉 (7.7)

and (7.6) is equivalent to

ajm(0) = αj0, j = 1, . . . ,m (7.8)

with some αj0 ∈ R. The system (7.7) can be transformed to explicit form since
the determinant det(zk, zj) 6= 0, because z1, ..., zm are linearly independent.

According to assumption (7.4), the functions

aj(t, w) = aj(t, w1, ..., wm) = 〈Ã(t)
[ m∑
k=1

wkzk

]
, zj〉 j = 1, . . . ,m
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are measurable in t (with fixed w) and continuous in w = (w1, ..., wm), because
for all fixed t ∈ [0, T ], Ã(t) : V → V ? is monotone, hemicontinuous, bounded
by the assumptions of the theorem, thus it is pseudomonotone and so it is
demicontinuous (see Propositions 2.5, 2.7). From (7.2) it follows that |aj(t, w)|
can be estimated locally by an integrable function M(t). Consequently, by
Theorem 7.2 (theorem of Carathéodory ), there exists a solution of (7.7) in a
neighbourhood of 0.

The coercivity assumption (7.3) implies that the solutions ajn and thus un
can be extended to the whole interval [0, T ]. Indeed, if um satisfies (7.5) in a
neighbourhood of 0, then multiplying (7.5) by ajm(t) and summing with respect
to j, we obtain

〈u′m(t), um(t)〉+ 〈[Ã(t)][um(t)], um(t)〉 = 〈F (t), um(t)〉. (7.9)

Integrating (7.9) over an interval (0, t) (t ∈ [0, T ]), by Remark 6.7 one obtains

1

2
‖um(t)‖2H −

1

2
‖um(0)‖2H +

∫ t

0

〈[Ã(τ)][um(τ)], um(τ)〉dτ = (7.10)

∫ t

0

〈F (τ), um(τ)〉dτ,

hence by (7.3)

1

2
‖um(t)‖2H + c2

∫ t

0

‖um(τ)‖pV dτ ≤
1

2
‖um0‖2H+ (7.11)

∫ T

0

k2(τ)dτ + ‖F‖Lq(0,T ;V ?)

{∫ t

0

‖um(τ)‖pV dτ
}1/p

.

As the constant c2 is positive and p > 1, we get from (7.11) that there is a
constant with ∫ t

0

‖um(τ)‖pV dτ ≤ const, t ∈ [0, T ] (7.12)

and thus
‖um(t)‖2H ≤ const, t ∈ [0, T ]. (7.13)

Consequently, ajm(t) (defined in a neighbourhood of 0) can be estimated by a
constant, not depending on t, therefore, the solutions ajm can be extended to
[0, T ].

Further, by using the notations X = Lp(0, T ;V ), X? = Lq(0, T ;V ?), we
obtain that

‖um‖X , sup
t∈[0,T ]

‖um(t)‖H , m = 1, 2, ... are bounded, (7.14)

hence ‖A(um)‖X? is bounded, too because by (7.2) A : X → X? is a bounded
operator. Since X,X? and H are reflexive, there exist a subsequence of (um),
again denoted by (um), and u ∈ X, w ∈ X?, z ∈ H such that

(um)→ u weakly in X, (A(um))→ w weakly in X?, (7.15)
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(um(T ))→ z weakly in H.

Now we prove

Lemma 7.3. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p < ∞. Assume
that um satisfies (7.5), (um) → u weakly in Lp(0, T ;V ), (A(um)) → w weakly
in X?, (um(0))→ u0 weakly in H and (um(T ))→ z weakly in H. Then

u′ ∈ Lq(0, T ;V ?), u′ + w = F, u(0) = u0, u(T ) = z. (7.16)

Proof. Let ψ ∈ C∞[0, T ] be an arbitrary function and v ∈ V an arbitrary
element. Since ∪∞l=1Vl = V , there exist

vl ∈ Vl such that (vl)→ v in V. (7.17)

Clearly, ψvl ∈W 1
p (0, T ;V,H), um ∈W 1

p (0, T ;V,H), thus by (6.9), (7.5)

(um(T ), ψ(T )vl)− (um(0), ψ(0)vl) = (7.18)∫ T

0

[〈u′m(t), ψ(t)vl〉+ 〈ψ′(t)vl, um(t)〉]dt =∫ T

0

[〈F (t)− [Ã(t)][um(t)], ψ(t)vl〉+ 〈ψ′(t)vl, um(t)〉]dt.

By the assumption of the lemma we obtain from (7.18) as m→∞

(z, ψ(T )vl)− (u0, ψ(0)vl) =∫ T

0

[〈F (t)− w,ψ(t)vl〉+ 〈ψ′(t)vl, u(t)〉]dt.

Thus by (7.17) we get as l→∞

(z, ψ(T )v)− (u0, ψ(0)v) = (7.19)∫ T

0

[〈F (t)− w,ψ(t)v〉+ 〈ψ′(t)v, u(t)〉]dt.

In the case ψ ∈ C∞0 (0, T ) (7.19) implies∫ T

0

[〈F (t)− w, v〉ψ(t)dt = −
∫ T

0

〈v, u(t)〉ψ′(t)dt

thus by Remark 6.5 there exists u′ ∈ Lq(0, T ;V ?) and

u′(t) = F (t)− w, u ∈W 1
p (0, T ;V,H). (7.20)

Due to (6.9), (7.19), (7.20) for all v

(u(T ), ψ(T )v)− (u(0), ψ(0)v) =

∫ T

0

[〈u′(t), ψ(t)v〉+ 〈ψ′(t)v, u(t)〉]dt = (7.21)
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(z, ψ(T )v)− (u0, ψ(0)v).

Hence with a function ψ ∈ C∞[0, T ], ψ(T ) = 1, ψ(0) = 0 we obtain u(T ) = z,
and with ψ(T ) = 0, ψ(0) = 1, u(0) = u0. So by (7.20) we have proved Lemma
7.3.

By (7.6) and Lemma 7.3 (7.5) implies (7.16). Further, we show

lim sup
m→∞

[A(um), um − u] ≤ 0. (7.22)

By (7.10) ∫ T

0

〈[Ã(t)][um(t)], um(t)〉dt =

∫ T

0

〈F (t), um(t)〉dt+

1

2
‖um(0)‖2H −

1

2
‖um(T )‖2H ,

hence (7.6), (7.15), (7.16) imply

lim sup
m→∞

∫ T

0

〈[Ã(t)][um(t)], um(t)〉dt = (7.23)

∫ T

0

〈F (t), u(t)〉dt+
1

2
‖u(0)‖2H −

1

2
lim inf
m→∞

‖um(T )‖2H .

Since by (7.16) in the Hilbert space H

um(T )→ u(T ) weakly in H,

we have
‖u(T )‖H ≤ lim inf

m→∞
‖um(T )‖H ,

whence (7.16), (7.23), Remark 6.7 imply

lim sup
m→∞

[A(um), um] ≤ [F, u] +
1

2
‖u(0)‖2H −

1

2
‖u(T )‖2H =

[u′, u] + [w, u] +
1

2
‖u(0)‖2H −

1

2
‖u(T )‖2H = [w, u],

thus by (7.15)

lim sup
m→∞

[A(um), um − u] ≤ [w, u]− [w, u] = 0,

i.e. we have (7.22).
Finally, by (7.2) A : X → X? is bounded and it is monotone since Ã(t) is

monotone for each fixed t. Because of the hemicontinuity of Ã(t), A : X →
X? is hemicontinuous by (7.2) and Lebesgue’s dominated convergence theorem.
Therefore, Proposition 2.5 implies that A : X → X? is pseudomonotone (X =
Lp(0, T ;V ) is reflexive). Consequently, (7.15), (7.22) imply w = A(u) which
completes the proof of the existence.
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Uniqueness of the solution follows from the fact that Ã(t) : V → V ? is
monotone for all t. Indeed, assuming that u1, u2 ∈W 1

p (0, T ;V,H) are solutions
of (7.1), we find for all t ∈ [0, T ]∫ t

0

〈u′i(τ), u1(τ)− u2(τ)〉dτ +

∫ t

0

〈[A(ui)](τ), u1(τ)− u2(τ)〉dτ =

∫ t

0

〈F (τ), u1(τ)− u2(τ)〉dτ, i = 1, 2

whence ∫ t

0

〈u′1(τ)− u′2(τ), u1(τ)− u2(τ)〉dτ+ (7.24)

∫ t

0

〈[A(u1)](τ)− [A(u2)](τ), u1(τ)− u2(τ)〉dτ = 0.

Since Ã(τ) is monotone for a.a. fixed τ , the second term on the left hand side
of (7.24) is nonnegative, thus by (6.9)

‖u1(t)− u2(t)‖2H − ‖u1(0)− u2(0)‖2H ≤ 0

which implies ‖u1(t) − u2(t)‖H ≤ 0 for each t because u1(0) − u2(0) = 0, thus
u1 = u2.

Remark 7.4. Assume that the conditions of Theorem 7.1 are satisfied such
that Ã(t) is uniformly monotone in the sense

〈[Ã(t)](v1)− [Ã(t)](v2), v1 − v2〉 ≥ c‖v1 − v2‖pV , v1, v2 ∈ V (7.25)

with some constant c > 0, for all t ∈ [0, T ]. Then the solution of (7.1) depends
on F and u0 continuously: if uj is a solution of (7.1) with F = Fj , u0 = u0j

(j = 1, 2) then for all t ∈ [0, T ]

‖u1(t)− u2(t)‖2H + c‖u1 − u2‖pLp(0,T ;V ) ≤ (7.26)

c̃‖F1 − F2‖qLq(0,T ;V ?) + ‖u01 − u02‖2H
with some positive constant c̃. Indeed, similarly to (7.24) we obtain

‖u1(t)− u2(t)‖2H − ‖u01 − u02‖2H + 2c

∫ t

0

‖u1(τ)− u2(τ)‖pV dτ ≤

2

{∫ t

0

‖F1(τ)− F2(τ)‖qV ?dτ
}1/q {∫ t

0

‖u1(τ)− u2(τ)‖pV dτ
}1/p

whence, by using Young’s inequality with a sufficiently small ε > 0 we obtain
(7.26).
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Remark 7.5. Assume that there exists a > 0 such that the operator B, defined
by B(v) = [Ã(t)](v) + av is uniformly monotone, i.e.

〈[Ã(t)](v1)− [Ã(t)](v2), v1 − v2〉 ≥ c‖v1 − v2‖pV − a‖v1 − v2‖2H
with some constant c > 0. Then the solution of (7.1) is unique and it depends
continuously on F and u0.

Indeed, multiplying the equation (7.1) by e−at, we obtain that ũ(t) = e−atu(t)
satisfies ũ(0) = u0 and

ũ(t)′ + e−at[Ã(t)][eatũ(t)] + aũ(t) = e−atF (t).

Applying Remark 7.4 to the operator B̃(t), defined by

[B̃(t)](v) = e−at[Ã(t)][eatv] + av

and to ũ, we obtain the uniqueness of the solution of (7.1) and for ũj(t) =

e−atuj(t), F̃j(t) = e−atFj(t) (j = 1, 2) an estimation of the form

‖ũ1(t)− ũ2(t)‖2H +
c

2
‖ũ1 − ũ2‖pLp(0,T ;V ) ≤

c̃‖F̃1 − F̃2‖qLq(0,T ;V ?) + ‖u01 − u02‖2H .

Remark 7.6. According to the proof of Theorem 7.1, a subsequence of the
Galerkin solutions (um) converges weakly in Lp(0, T ;V ) to a solution u of (7.1).
Since the solution of (7.1) is unique, the total sequence (um) is also weakly
converging to u. Further, similarly to the elliptic case, if (7.25) holds, i.e. Ã(t)
is uniformly monotone, then

(um)→ u strongly in Lp(0, T ;V ).

Indeed, assuming that the original sequence does not converge weakly to u, by
using Cantor’s trick, we get a contradiction. Further, by (7.25)

c

∫ T

0

‖um(t)− u(t)‖pV dt ≤ [A(um)−A(u), um − u] =

[A(um), um − u]− [A(u), um − u]→ 0

by (7.15) and (7.22) since A is pseudomonotone.

8 Application to nonlinear parabolic equations
By using the results of Sections 3, one obtains the following applications of
Section 7 to nonlinear parabolic equations.

Let V be a closed linear subspace of W 1,p(Ω) (containing W 1,p
0 (Ω)), 2 ≤

p < ∞, Ω ⊂ Rn a bounded domain with “sufficiently smooth” boundary (see,
e.g., [1]), H = L2(Ω). Then V ⊂ H ⊂ V ? is an evolution triple. We shall
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consider operators A : Lp(0, T ;V ) → Lq(0, T ;V ?), defined by a formula which
is analogous to (3.1).

On functions aj we assume
(B1) Functions aj : QT × Rn+1 → R (j = 1, ..., n) satisfy the Carathéodory
conditions, i.e. for a.e. fixed (t, x) ∈ QT = (0, T )× Ω

ξ 7→ aj(t, x, ξ), ξ ∈ Rn+1 is continuous

and for each fixed ξ ∈ Rn+1

(t, x) 7→ aj(t, x, ξ), (t, x) ∈ QT is measurable.

(B2) There exist a constant c1 > 0 and a function k1 ∈ Lq(QT ) (1/p+ 1/q = 1)
such that for a.e. (t, x) ∈ QT , all ξ ∈ Rn+1

|aj(t, x, ξ)| ≤ c1|ξ|p−1 + k1(t, x).

(B3) For a.a. (t, x) ∈ QT , all ξ, ξ? ∈ Rn+1

n∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξj − ξ?j ) ≥ 0.

(B4) There exist a constant c2 > 0, k2 ∈ L1(QT ) such that for a.e. (t, x) ∈ QT ,
all ξ ∈ Rn+1

n∑
j=0

aj(t, x, ξ)ξj ≥ c2|ξ|p − k2(t, x).

In this particular case, when V is a closed linear subspace of W 1,p(Ω), for a
function U ∈ Lp(0, T ;V ) we shall denote U(t) by u(t, x) and instead of U ∈
Lp(0, T ;V ) we shall write u ∈ Lp(0, T ;V ).

By using the same arguments as in Section 3, one proves

Theorem 8.1. Assume (B1) – (B4). Then the operator A, defined by

[A(u), v] =

∫ T

0

〈[Ã(t)][U(t)], v(t)〉dt = (8.1)

∫ T

0


∫

Ω

 n∑
j=1

aj(t, x, u,Du)Djv + a0(t, x, u,Du)v

 dx
 dt, u, v ∈ Lp(0, T ;V )

satisfies the assumptions of Theorem 7.1. Thus for any F ∈ Lq(0, T ;V ?), u0 ∈
H = L2(Ω) there is a unique solution u of (7.1) with the operator (8.1).

Proposition 3.3 implies the following sufficient condition for (B3).

Proposition 8.2. Assume that functions aj satisfy (B1), further, for a.a.
(t, x) ∈ QT , the functions ξ 7→ aj(t, x, ξ) are continuously differentiable and
the matrix (

∂aj(t, x, ξ)

∂ξk

)n
j,k=0

is positive semidefinite. Then (B3) holds.
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Proposition 8.3. Assume that the assumptions of Proposition 8.2 are fulfilled
such that for a.a. (t, x) ∈ QT , each ξ, η ∈ Rn+1

n∑
j,k=0

∂aj
∂ξk

(t, x, ξ)ηjηk ≥ c3
n∑
j=0

|ξj |p−2|ηj |2 (8.2)

with p ≥ 2 and some positive constant c3. Then
n∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξj − ξ?j ) ≥ c̃3
n∑
j=0

|ξj − ξ?j |p

with some constant c̃3 > 0. Consequently, the operator Ã(t), defined by (8.1) is
uniformly monotone in the sense (7.25) and so the solution of (7.1) is unique
and it depends continuously on F and u0 according to (7.26). Further, due to
Remark 7.6 the sequence, constructed by the Galerkin method converges to the
solution u with respect to the norm of Lp(0, T ;V ).

Example 8.4. A simple example satisfying all the above conditions is the
equation

Dtu−4pu− cu|u|p−2 = f, c > 0 is a constant .

(See Example 3.8.)
In the case V = W 1,p

0 (Ω) (with bounded Ω) the conditions are satisfied also
for the equation

Dtu−4pu = f.

Problems
1. Assume that the functions

αj : QT × R→ R, j = 0, 1, . . . , n

satisfy the Carathéodory conditions and for a.a. (t, x) ∈ QT
ξj 7→ αj(t, x, ξj) is monotone nondecreasing,

β1|ξj |p−1 ≤ αj(t, x, ξj) ≤ β2|ξj |p−1, ξj ∈ R

with some positive constants β1, β2. Consider the operator

[A(u), v] =

∫ T

0


∫

Ω

 n∑
j=1

αj(t, x,Dju)Djv + α0(t, x, u)v

 dx
 dt,

u, v ∈ Lp(0, T ;V )

where V is a closed linear subspace of W 1,p(Ω), p ≥ 2.
Show that for arbitrary F ∈ Lq(0, T : V ?) and u0 ∈ L2(Ω) there exists a
unique solution of problem (7.1).
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2. Assume that the functions ξj 7→ αj(t, x, ξj) are continuously differentiable
and there exists a positive constant β3 such that

∂αj
∂ξj

(t, x, ξj) ≥ β3|ξj |p−2.

By using Remark 7.5 and Proposition 3.4 , show that the solution of the
above problem depends continuously on F and u0.

3. Let α, β : QT → R be measurable functions satisfying

c1 ≤ α(t, x) ≤ c2, c1 ≤ β(t, x) ≤ c2, for almost all (t, x) ∈ QT

with some positive constants c1, c2. Define operator A by

[A(u), v] =

∫ T

0

〈[Ã(t)][u(t)], v(t)〉dt =

∫ T

0

{∫
Ω

[α(t, x)Dju|Du|p−2Djv + β(t, x)u|u|p−2v]dx

}
dt,

u, v ∈ Lp(0, T ;V ) where V ⊂W 1,p(Ω) is a closed linear subspace, p ≥ 2.

By using Theorem 7.1 and Remark 7.5, show that there exists a unique
solution of problem (7.1) and it depends continuously on F and u0.

4. Assume that u ∈ C1,2(QT ) is a (classical) solution of (6.1), (6.3) with the
boundary condition

u(t, x) = g(x), (t, x) ∈ ΓT

where g(x) = h(x) for x ∈ ∂Ω and w0 ∈ W 1,p(Ω) satisfies w0|∂Ω = g.
Define the function u0 by u0(t, x) = w0(x).

Prove that then the function ũ = u− u0 satisfies

ũ′ +A(ũ+ u0) = F, ũ ∈W 1
p (0, T ;V,H),

ũ(0) = h− w0

where V = W 1,p
0 (Ω), H = L2(Ω), the operator A is defined by (6.6) and

F is defined by (6.7).

If ũ ∈W 1
p (0, T ;V,H) satisfies the above conditions, u = ũ+ u0 is called a

weak solution of the above (classical) initial-boundary value problem.

5. By using Theorem 8.1, show that if the functions aj satisfy (B1)–(B4)
then there is a weak solution u = ũ + u0 of the above problem with
nonhomogeneous boundary condition. (See Problem 4.)
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6. Assume that the functions

fα : QT × R→ R, |α| ≤ m

satisfy the Carathéodory conditions and for a.a. (t, x) ∈ QT

ξα 7→ fα(t, x, ξα) is monotone nondecreasing,

β1|ξα|p−1 ≤ |fα(t, x, ξα)| ≤ β2|ξα|p−1, ξα ∈ R

with some positive constants β1, β2. Consider the operator

[A(u), v] =

∫ T

0

〈[Ã(t)][u(t)], v(t)〉dt =

∫ T

0


∫

Ω

 ∑
|α|≤m

fα(t, x,Dαu)Dαv

 dx
 dt,

u, v ∈ Lp(0, T ;V ) where V ⊂ Wm,p(Ω) is a closed linear subspace, p ≥
2,m ≥ 1 and for |α| = 0, Dαu = u by definition.

Show that for arbitrary F ∈ Lq(0, T ;V ?) and u0 ∈ L2(Ω) there exists a
unique solution of problem (7.1) with the above operator A.

7. Assume the the functions ξα 7→ fα(t, x, ξα) are continuously differentiable
and there exists a positive constant β3 such that

∂fα
∂ξα

(t, x, ξα) ≥ β3|ξα|p−2, p ≥ 2.

By using Proposition 3.4 and Remark 7.5 show that the solution of the
above problem depends continuously on F and u0.

9 Cauchy problem with pseudomonotone opera-
tors

In the proof of Theorem 7.1 we did not use the monotonicity of Ã(t) directly,
it would be sufficient to assume instead of monotonicity and hemicontinuity
that Ã(t) : V → V ? is demicontinuous and A : Lp(0, T ;V ) → Lq(0, T ;V ?) is
pseudomonotone. Moreover, it is sufficient to assume a weaker form of pseu-
domonotonicity, which will be satisfied for operators of the form (8.1) if the
functions aj satisfy conditions which are analogous to (Ã3), (A3′), respectively.

Definition 9.1. Let V ⊂ H ⊂ V ? be an evolution triple, p > 1. A bounded
operator A : Lp(0, T ;V )→ Lq(0, T ;V ?) is called pseudomonotone with respect
to W 1

p (0, T ;V,H) if

uk ∈W 1
p (0, T ;V,H), (uk)→ u weakly in Lp(0, T ;V ), (9.1)
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(u′k)→ u′ weakly in Lq(0, T ;V ?), (9.2)

lim sup
k→∞

[A(uk), uk − u] ≤ 0 (9.3)

imply

lim
k→∞

[A(uk), uk − u] = 0 and (A(uk))→ A(u) weakly in Lq(0, T ;V ?). (9.4)

Theorem 9.2. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <∞.
Assume that for a.a. fixed t ∈ [0, T ], Ã(t) : V → V ? is demicontinuous and
bounded such that for all v ∈ V , a.e. t ∈ [0, T ]

‖[Ã(t)](v)‖V ? ≤ c1‖v‖pV + k1(t) (9.5)

with a suitable constant c1 > 0 and k1 ∈ Lq(0, T ). Further, Ã(t) is coercive
such that for all v ∈ V , a.e. t ∈ [0, T ]

〈[Ã(t)](v), v〉 ≥ c2‖v‖pV − k2(t) (9.6)

with some constant c2 > 0, k2 ∈ L1(0, T ) and for arbitrary fixed u, v ∈ V , the
function

t 7→ 〈[Ã(t)](u), v〉, t ∈ [0, T ] is measurable . (9.7)

Finally, the operator A : Lp(0, T ;V ) → Lq(0, T ;V ?), defined by [A(u)](t) =
[Ã(t)][u(t)] is pseudomonotone with respect to W 1

p (0, T ;V,H).
Then for any F ∈ X? = Lq(0, T ;V ?) and u0 ∈ H there exists a solution u

of (7.1).

Proof. Theorem 9.2 follows by a slight modification of the proof of Theorem 7.1,
because we only have to show property (9.2) for a subsequence of the sequence,
constructed by Galerkin’s method. Clearly it will follow from the fact that the
sequence (u′m) is bounded in Lq(0, T ;V ?).

Multiply the equations (7.5) (defining um with the initial condition (7.6))
with arbitrary functions bjm ∈ Lp(0, T ) and integrate over [0, T ]. Then we
obtain for the sum of these equations

[u′m, w] + [A(um), w] = [F,w] where (9.8)

w(t) =

m∑
j=1

bjm(t)zj and w ∈ Lp(0, T ;V ). (9.9)

The equation (9.8) implies

|[u′m, w]| ≤ |[F,w]|+ |[A(um), w]| ≤[
‖F‖Lq(0,T ;V ?) + ‖A(um)‖Lq(0,T ;V ?)

]
‖w‖Lp(0,T ;V ) ≤ const‖w‖Lp(0,T ;V )

where the constant is independent of m and w.
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The functions w of the form (9.9) (for all m and arbitrary bjm ∈ Lp(0, T ))
are dense in Lq(0, T ;V ?) because the linear combinations of zj are dense in V ,
thus

|[u′m, w]| ≤ const‖w‖Lp(0,T ;V )

holds for all w ∈ Lp(0, T ;V ) (with a constant, not depending on w). Thus we
obtained that (u′m) is bounded with respect to the norm of Lq(0, T ;V ?), the
dual space of Lp(0, T ;V ), which completes the proof of Theorem 9.2.

Now we shall formulate a generalization of Theorem 9.2. Let V ⊂ H ⊂ V ?

be an evolution triple, 1 < p <∞, 0 < T <∞. Define operator L as follows:

Lu = u′, u ∈ D(L) = {u ∈W 1
p (0, T ;V,H) : u(0) = 0} (9.10)

One can show that L is a closed, linear, densely defined operator from Lp(0, T ;V )
into Lq(0, T ;V ?), which is monotone by Remark 6.7 since

[Lu, u] =

∫ T

0

〈u′(t), u(t)〉dt =
1

2
‖u(T )‖2H ≥ 0.

Further, L is “maximal monotone”, which means that there is no proper mono-
tone extension of it. (For the proof see, e.g., [93].)

Another example of a closed, linear, densely defined maximal monotone
operator is (see, Theorem 13.2):

L̃u = u′, u ∈ D(L̃) = {u ∈W 1
p (0, T ;V,H) : u(T ) = u(0)}. (9.11)

Definition 9.3. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <
∞. Denote by L a closed, linear, densely defined, maximal monotone opera-
tor from Lp(0, T ;V ) into Lq(0, T ;V ?). A bounded operator A : Lp(0, T ;V ) →
Lq(0, T ;V ?) is called pseudomonotone with respect to D(L) if

uk, u ∈ D(L), (uk)→ u weakly in Lp(0, T ;V ),

(Luk)→ Lu weakly in Lq(0, T ;V ?), lim sup
k→∞

[A(uk), uk − u] ≤ 0

imply

lim
k→∞

[A(uk), uk − u] = 0 and (A(uk))→ A(u) weakly in Lq(0, T ;V ?).

Theorem 9.4. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <∞.
Denote by L a closed, linear, densely defined, maximal monotone operator from
Lp(0, T ;V ) into Lq(0, T ;V ?). Assume that A : Lp(0, T ;V ) → Lq(0, T ;V ?) is
bounded, demicontinuous, pseudomonotone with respect to D(L) and coercive.

Then for all F ∈ Lq(0, T ;V ?) there exists a solution u ∈ D(L) of

Lu+A(u) = F.
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For the proof see, e.g., [8].
It is important that in Theorem 9.4 A : Lp(0, T ;V ) → Lq(0, T ;V ?) is not

assumed to have the form

[A(u)](t) = [Ã(t)][u(t)], (9.12)

i.e. [A(u)](t) may depend not only on u(t), thus the above theorem can be
applied to “functional parabolic equations”. (See some examples in Section 10.)

Remark 9.5. Applying Theorem 9.4 with operator L̃, defined by (9.11) and
operator A, defined by (9.12), one obtains existence of T -periodic solutions, see
Section 13.

Now consider the particular case when Lu = u′ and D(L) is defined by
(9.10). We generalize the existence theorem to the case of nonhomogeneous
initial condition.

Theorem 9.6. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p <∞, 0 < T <∞
and let L be defined by (9.10). Assume that A : Lp(0, T ;V ) → Lq(0, T ;V ?) is
bounded, demicontinuous, pseudomonotone with respect to W 1

p (0, T ;V,H) and
coercive such that for arbitrary constant c > 0

lim
‖u‖→∞

∫ T
0
〈[A(u)](t), u(t)〉dt− c‖A(u)‖Lq(0,T ;V ?)

‖u‖Lp(0,T ;V )
= +∞.

Then for all F ∈ Lq(0, T ;V ?), u0 ∈ H there exists a solution u ∈W 1
p (0, T ;V,H)

of
u′ +A(u) = F, u(0) = u0. (9.13)

Proof. If u0 ∈ V , one can reduce problem (9.13) to the case u0 = 0 as follows.
By using the notations u0(t) = u0, t ∈ [0, T ], ũ = u − u0, problem (9.13) is
equivalent to the problem

ũ′ +A(ũ+ u0) = F, ũ(0) = 0. (9.14)

Clearly, the operator ũ 7→ A(ũ + u0) is demicontinuous, bounded and pseu-
domonotone with respect to D(L). Further, it is coercive because

[A(ũ+ u0), ũ]

‖ũ‖Lp(0,T ;V )
=

[A(ũ+ u0), ũ+ u0]− [A(ũ+ u0), u0]

‖ũ‖Lp(0,T ;V )
≥

[A(ũ+ u0), ũ+ u0]− ‖u0‖Lp(0,T ;V )‖A(ũ+ u0)‖Lq(0,T ;V ?)

‖ũ+ u0‖Lp(0,T ;V )
·

‖ũ+ u0‖Lp(0,T ;V )

‖ũ‖Lp(0,T ;V )
→ +∞
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if ‖ũ‖Lp(0,T ;V ) → ∞ since then ‖ũ + u0‖Lp(0,T ;V ) → ∞. Thus for any u0 ∈ H
there is a solution ũ of (9.13) by Theorem 9.4.

Now let u0 ∈ H arbitrary element. Since V is dense in H, there is a sequence
of un0 ∈ V , converging to u0 in H. According to the first part of the proof,
there is a solution un ∈W 1

p (0, T ;V,H) of

u′m +A(um) = F, um(0) = um0.

By using the arguments of the proof of Theorem 7.1, we obtain that there is
a subsequence of (um) which converges weakly in Lp(0, T ;V ) to a solution of
(9.13).

10 Parabolic equations and functional equations

Parabolic differential equations
Here we shall apply the results of Section 9 to the case when V is a closed linear
subspace ofW 1,p(Ω), 2 ≤ p <∞, Ω ⊂ Rn is a bounded domain (with sufficiently
smooth boundary), H = L2(Ω). First we shall consider operators A of the form
(8.1), but instead of (B3), with weaker assumptions, which are analogous to
assumptions (Ã3), (A3′), respectively, considered in the nonlinear elliptic case.
It will be proved that A is pseudomonotone with respect to W 1

p (0, T ;V,H), by
using the following compact imbedding theorem.

Theorem 10.1. Let V ⊂ H ⊂ V ? be an evolution triple, B a Banach space
satisfying

V ⊂ B ⊂ V ?, the imbedding V ⊂ B is compact, B ⊂ V ? is continuous .
(10.1)

Then for any 1 < p <∞, the imbedding

W 1
p (0, T ;V,H) ⊂ Lp(0, T ;B)

is compact.

In the proof of Theorem 10.1 we shall use

Lemma 10.2. Assume (10.1). Then for arbitrary η > 0 there exists a constant
cη > 0 such that for all v ∈ V

‖v‖B ≤ η‖v‖V + cη‖v‖V ? . (10.2)

Proof. Assume that (10.2) does not hold, then there exists η > 0 and sequences
(ck), (vk), ck ∈ R, vk ∈ V , satisfying

‖vk‖B > η‖vk‖V + ck‖vk‖V ? , lim
k→∞

ck = +∞. (10.3)
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Then for wk = vk/‖vk‖V we have

‖wk‖B > η + ck‖wk‖V ? , ‖wk‖B =
‖vk‖B
‖vk‖V

≤ const (10.4)

because the imbedding V ⊂ B is continuous. Thus (10.3), (10.4) imply

lim
k→∞

‖wk‖V ? = 0. (10.5)

Further, since ‖wk‖V = 1 and the imbedding V ⊂ B is compact, there is a
subsequence (wkl) of (wk) which is convergent in B. Due to (10.5) the limit in
B must be 0, i.e.

lim
l→∞

‖wkl‖B = 0

which is impossible because of (10.4).

Proof of Theorem 10.1. Let (vk) be a bounded sequence in W 1
p (0, T ;V,H). We

have to show that a subsequence is convergent in Lp(0, T ;B). First observe
that as W 1

p (0, T ;V,H) is a reflexive Banach space (V , V ? are reflexive thus
Lp(0, T ;V ), Lq(0, T ;V ?) are reflexive), thus there are v ∈W 1

p (0, T ;V,H) and a
subsequence of (vk), again denoted by (vk) such that

(vk)→ v weakly in W 1
p (0, T ;V,H), thus (10.6)

(vk − v)→ 0 weakly in W 1
p (0, T ;V,H).

To prove our theorem, we have to show that

(vk − v)→ 0 in Lp(0, T ;B). (10.7)

Introduce the notation ṽk = vk − v, due to (10.6) we have

(ṽk)→ 0 weakly in W 1
p (0, T ;V,H), ‖ṽk‖W 1

p (0,T ;V,H) ≤ c? (10.8)

with some constant c? > 0. We prove that

(ṽk)→ 0 in Lp(0, T ;B). (10.9)

By Lemma 10.2 for arbitrary η > 0 there exists cη > 0 such that

‖ṽk‖B ≤ η‖ṽk‖V + cη‖ṽk‖V ?

which implies

‖ṽk‖Lp(0,T ;B) ≤ η‖ṽk‖Lp(0,T ;V ) + cη‖ṽnk‖Lp(0,T ;V ?) ≤ (10.10)

c?η + cη‖ṽk‖Lp(0,T ;V ?).

Since (10.10) holds for arbitrary η > 0, we shall obtain (10.9) by showing

(ṽk)→ 0 in Lp(0, T ;V ?). (10.11)
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The convergence (10.11) will follow from Lebesgue’s dominated convergence
theorem, if we show that for almost all s ∈ [0, T ],

ṽk(s)→ 0 with respect to the norm of V ?. (10.12)

Indeed, for a.a. s ∈ [0, T ], k ∈ N

‖ṽk(s)‖V ? ≤ const

since (ṽk) is bounded in W 1
p (0, T ;V,H) and by Theorem 6.6 W 1

p (0, T ;V,H) is
continuously imbedded into C([0, T ];H), hence into C([0, T ];V ?), too.

Now we prove (10.12). For simplicity, consider the case s = 0, the general
case can be treated similarly. Define functions uk by

uk(t) = ṽk(λt), t ∈ [0, T ] (10.13)

where the constant λ ∈ (0, 1) will be chosen later. By the definition (10.13)
uk(0) = ṽk(0), and as (ṽk) is bounded in W 1

p (0, T ;V,H), we obtain inequalities

‖uk‖Lp(0,T ;V ) ≤ d1λ
−1/p, ‖u′k‖Lq(0,T ;V ?) ≤ d2λ

1/p (10.14)

with some constants d1, d2 > 0, not depending on λ. Let ϕ ∈ C1[0, T ] be a
function with the properties ϕ(0) = −1, ϕ(T ) = 0. Then

uk(0) =

∫ T

0

(ϕuk)′dt =

∫ T

0

ϕu′kdt+

∫ T

0

ϕ′ukdt = βk + γk (10.15)

whence by (10.14)

‖ṽk(0)‖V ? = ‖uk(0)‖V ? ≤ ‖βk‖V ? + ‖γk‖V ? ≤ (10.16)

d3λ
1/p + ‖γk‖V ? .

The number λ ∈ (0, 1) can be chosen such that the first term in the right
hand side of (10.16) is arbitrary small for all n ∈ N. Therefore, we shall obtain
(10.12) for s = 0 if we show that

‖γk‖ → 0 in V ?. (10.17)

According to (10.8) (ṽk) → 0 weakly in W 1
p (0, T ;V,H), thus (ṽk) → 0 and so

(uk)→ 0 weakly in Lp(0, T ;V ) for arbitrary fixed λ ∈ (0, 1). Consequently, by
the definition (10.15) of γk,

(γk)→ 0 weakly in V. (10.18)

Since the imbedding V ⊂ V ? is compact, (10.18) implies (10.17) which completes
the proof of Theorem 10.1.
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Now instead of (B3) we formulate a weaker assumption on functions aj ,
defining operators Ã(t) and A in (8.1) which will imply with (B1), (B2), (B4)
that Ã(t) satisfies assumptions of Theorem 9.2.

As in Section 8, let V be a closed linear subspace of W 1,p(Ω), 2 ≤ p < ∞,
Ω ⊂ Rn a bounded domain (with sufficiently smooth boundary), H = L2(Ω).
Instead of (B3) we assume on functions aj : QT × Rn → R

(B̃3) There exists a constant c̃2 > 0 such that for a.e. (t, x) ∈ QT , all η ∈ R,
ζ, ζ? ∈ Rn

n∑
j=1

[aj(t, x, η, ζ)− aj(t, x, η, ζ?)](ζj − ζ?j ) ≥ c̃2|ζ − ζ?|p.

Remark 10.3. Assumption (B̃3) is analogous to (Ã3) in Section 4.

Theorem 10.4. Assume that Ω ⊂ Rn is a bounded domain, ∂Ω is sufficiently
smooth and (B1), (B2), (B̃3), (B4) hold. Then operator A of the form (8.1)
satisfies all the conditions of Theorem 9.2.

Proof. All the conditions easily follow from the above conditions (see Theo-
rem 8.1), we only have to show that A is pseudomonotone with respect to
W 1
p (0, T ;V,H). Assume that

(uk)→ u weakly in Lp(0, T ;V ), (10.19)

(u′k)→ u′ weakly in Lq(0, T ;V ?) and

lim sup
k→∞

[A(uk), uk − u] ≤ 0. (10.20)

Since W 1,p(Ω) is compactly imbedded into Lp(Ω) (for bounded Ω with suffi-
ciently smooth boundary, see Theorem 4.1), by Theorem 10.1 there is a subse-
quence of (uk), again denoted by (uk), for simplicity, such that

(uk)→ u in Lp(QT ) and a.e. in QT . (10.21)

The remaining part of the proof is similar to that of Theorem 4.6. Since (Djuk)
is bounded in Lp(QT ), we may assume (on the subsequence) that

(Djuk)→ Dju weakly in Lp(QT ), j = 1, ..., n. (10.22)

Further,

[A(uk), uk − u] =

∫
QT

a0(t, x, uk, Duk)(uk − u)dtdx+ (10.23)

n∑
j=1

∫
QT

[aj(t, x, uk, Duk)− aj(t, x, uk, Du)](Djuk −Dju)dtdx+

n∑
j=1

∫
QT

aj(t, x, uk, Du)(Djuk −Dju)dtdx.
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The first term on the right-hand side of (10.23) tends to 0 by (10.21) and
Hölder’s inequality, because the multipliers of (uk − u) are bounded in Lq(QT )
(by (B2)). Further, the third term on the right-hand side converges to 0, too,
because (10.21), (B1), (B2) and Vitali’s convergence theorem imply that

aj(t, x, uk, Du)→ aj(t, x, u,Du) in Lq(QT ).

Consequently, (10.20), (10.23) imply

lim sup
k→∞

n∑
j=1

∫
QT

[aj(t, x, uk, Duk)− aj(t, x, uk, Du)](Djuk −Dju)dtdx ≤ 0.

(10.24)
>From (B̃3), (10.24) we obtain

lim
k→∞

∫
QT

|Duk −Du|pdtdx = 0 (10.25)

and (for a subsequence)

(Duk)→ Du a.e. in QT . (10.26)

Therefore, by (B1), (B2), (10.25), (10.21), (10.26) and Vitali’s theorem
(Theorem 4.3)

aj(t, x, uk, Duk)→ aj(t, x, u,Du) in Lq(QT ), j = 0, 1, ..., n.

Thus by Hölder’s inequality

(A(uk))→ A(u) weakly in Lq(0, T ;V ?). (10.27)

Finally, from (10.21), (10.23), (10.25) and (B2) one gets

lim
k→∞

[A(uk), uk − u] = 0. (10.28)

Since (10.27), (10.28) hold for a subsequence of (uk), by using Cantor’s trick,
we obtain (10.27), (10.28) for the original sequence.

Remark 10.5. According to the proof of the above theorem, operator A belongs
to the class (S)+ and it is demicontinuous.

Now we formulate assumptions (B3′), (B4′), which are analogous to (A3′),
(A4′) in Section 4 which will also imply with (B1), (B2) that the conditions of
Theorem 9.2 hold.

(B3′) For a.e. (t, x) ∈ QT , all η ∈ R, ζ, ζ? ∈ Rn, ζ = (ξ1, ..., ξn) 6= ζ? =
(ξ?1 , ..., ξ

?
n) we have

n∑
j=1

[aj(t, x, η, ζ)− aj(t, x, η, ζ?)](ξj − ξ?j ) > 0.
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(B4′) There exist a constant c2 > 0 and a function k2 ∈ L1(QT ) such that for
a.e. (t, x) ∈ QT , all ξ = (η, ζ) ∈ Rn+1 (η = ξ0 ∈ R, ζ ∈ Rn)

n∑
j=0

aj(t, x, η, ζ)ξj ≥ c2|ζ|p − k2(t, x).

Theorem 10.6. Assume (B1), (B2), (B3′), (B4). Then the operator A, de-
fined by (8.1) satisfies the conditions of Theorem 9.2. Thus, for any F ∈
Lq(0, T ;V ?), u0 ∈ H = L2(Ω) there is a solution of (7.1) with the operator
(8.1).

In the case when V = W 1,p
0 (Ω), instead of (B4) it is sufficient to assume

(B4′), because then (B4′) implies coercivity. (See Remarks 3.9, 4.11.)

Proof. As in Section 3, one proves that (B1), (B2) imply (9.5), (9.7) and (B4)
implies (9.6). Further, by Theorem 4.9, the operator Ã(t) : V → V ? (defined
in (8.1)) is pseudomonotone for a.a. t ∈ [0, T ] (since (B3′), (B4′) imply: (A3′),
(A4′) hold for a.a. fixed t ∈ [0, T ]). Thus, for a.a. t ∈ [0, T ], the bounded
operator A is demicontinuous (see Proposition 2.7).

Finally, we have to prove that A : Lp(0, T ;V ) → Lq(0, T ;V ?) (defined by
(8.1)) is pesudomonotone with respect to W 1

p (0, T ;V,H). The proof of this fact
is similar to that of Theorem 4.9 (elliptic case) and we use only (B4′) instead
of (B4).

According to Definition 9.1, assume (9.1) – (9.3), i.e.

uk ∈W 1
p (0, T ;V,H), (uk)→ u weakly in Lp(0, T ;V ), (10.29)

(u′k)→ u weakly in Lq(0, T ;V ?), (10.30)

lim sup
k→∞

[A(uk), uk − u] ≤ 0. (10.31)

We have to show (9.4), i.e.

lim
k→∞

[A(uk), uk − u] = 0 and (A(uk))→ A(u) weakly in Lq(0, T ;V ?). (10.32)

Since Ω ⊂ Rn is bounded and ∂Ω is sufficiently smooth, by Theorem 4.1 V is
compactly imbedded into Lp(Ω) and thus by Theorem 10.1 the imbedding

W 1
p (0, T ;V,H) ⊂ Lp(0, T ;Lp(Ω)) = Lp(QT )

is compact. Hence, by (10.29), (10.30) there is a subsequence of (uk), again
denoted by (uk) (for simplicity) with the properties

(uk)→ u in Lp(QT ) and a.e. in QT . (10.33)

Then the proof of (10.32) is almost the same as that of (4.20) in the proof
of Theorem 4.9. Introduce the notation

pk(t, x) =

n∑
j=1

[aj(t, x, uk, Duk)− aj(t, x, u,Du)](Djuk −Dju)+
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[a0(t, x, uk, Duk)− a0(t, x, u,Du)](uk − u)

which is similar to the formula (4.23) of pk(x). Then

[A(uk)−A(u), uk − u] =

∫
QT

pk(t, x)dtdx

and by (10.29), (10.30) (10.31) we have

lim sup
k→∞

∫
QT

pk(t, x)dtdx ≤ 0.

By using the arguments of the proof of Theorem 4.9, we find

lim
k→∞

∫
QT

pk(t, x)dtdx = 0 and (10.34)

(pk)→ 0 a.e. in QT . (10.35)

The equality (10.34) directly implies the first part of (10.32). Further, (10.35),
(10.33) and (B3′) imply (as in the proof of Theorem 4.9)

(Duk)→ Du a.e. in QT . (10.36)

Finally, by using (10.33), (10.36), (B1), (B2) and Vitali’s theorem (Theorem
4.3) we obtain the second part of (10.32) which completes the proof of Theorem
10.6.

Remark 10.7. One can formulate and prove a generalization of Theorem 10.6
to the case when Ã(t) is a 2m order nonlinear elliptic operator which is analogous
to (4.37). (See Remark 4.12.)

Functional parabolic equations
Now we shall show some applications of Theorem 9.4 which is a generaliza-
tion of Theorem 9.2. In Theorem 9.4 A : Lp(0, T ;V ) → Lq(0, T ;V ?) is such
that [A(u)](t) is depending not only on u(t), thus also “functional parabolic
equations” (e.g. equations with delay) can be treated. The following theorem
will be a generalization of Theorem 10.4 to functional parabolic equations with
nonlinear and “non-local” third boundary conditions.

Let V ⊂ W 1,p(Ω) be a closed linear subspace (2 ≤ p < ∞, Ω ⊂ Rn a
bounded domain with sufficiently smooth boundary), H = L2(Ω). We shall
consider operators of the following form.

Definition 10.8. Define operator A by

[A(u), v] = (10.37)

∫
QT


n∑
j=1

aj(t, x, u(x), Du(x);u)Djv(x) + a0(t, x, u(x), Du(x);u)v(x)

 dtdx+
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∫ T

0

{∫
∂Ω

h(t, x;u)vdσx

}
dt, u, v ∈ Lp(0, T ;V ).

Assume that the following conditions are fulfilled.
(C1) The functions aj : QT × Rn+1 × Lp(0, T ;V ) → R (j = 0, 1, ..., n)

satisfy the Carathéodory conditions for arbitrary fixed u ∈ Lp(0, T ;V ) and
h : (0, T )× ∂Ω× Lp(0, T ;V )→ R is measurable for each fixed u ∈ Lp(0, T ;V ).

(C2) There exist (nonlinear) operators g1 : Lp(0, T ;V ) → R+ and k1 :
Lp(0, T ;V )→ Lq(QT ) such that

|aj(t, x, η, ζ;u)| ≤ g1(u)[1 + |η|p−1 + |ζ|p−1] + [k1(u)](t, x)

for a.e. (t, x) ∈ QT , each (η, ζ) ∈ Rn+1, u ∈ Lp(0, T ;V ) where

|g1(u)| ≤ const
[
1 + ‖u‖Lp(0,T ;V )

]−σ?
,

‖k1(u)‖Lq(QT ) ≤ const
[
1 + ‖u‖Lp(0,T ;V )

]σ
and the constants σ?, σ satisfy 0 ≤ σ? < p− 1, 0 < σ < p− σ?.

(C3) The inequality

n∑
j=1

[aj(t, x, η, ζ;u)− aj(t, x, η, ζ?;u)](ξj − ξ?j ) ≥ [g2(u)](t)|ζ − ζ?|p

holds where the operator g2 satisfies

[g2(u)](t) ≥ c?
[
1 + ‖u‖Lp(0,t;V )

]−σ?
and c? is some positive constant.

(C4) The inequality

n∑
j=1

aj(t, x, η, ζ;u)ξj ≥ [g2(u)](t)[1 + |η|p + |ζ|p]− [k2(u)](t, x) (10.38)

holds where k2(u) ∈ L1(QT ) satisfies for all t ∈ [0, T ]

‖k2(u)‖L1(Qt) ≤ const
[
1 + ‖u‖Lp(0,t;V )

]σ
, u ∈ Lp(0, T ;V ). (10.39)

Further, for all t ∈ [0, T ], u ∈ Lp(0, T ;V )

‖h(t, x;u)‖Lq((0,t)×∂Ω) ≤ const
[
1 + ‖u‖Lp(0,t;V )

]σ−1
. (10.40)

(In the case V = W 1,p
0 (Ω) h is considered to be identically 0.)

(C5) There exists δ > 0 satisfying δ < 1− 1/p such that if (uk)→ u weakly
in Lp(0, T ;V ) and strongly in Lp(0, T ;W 1−δ,p(Ω)), (ηk)→ η in R, (ζk)→ ζ in
Rn then for a.a. (t, x) ∈ QT , j = 0, 1, ..., n

lim
k→∞

aj(t, x, η
k, ζk;uk) = aj(t, x, η, ζ;u)
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for a subsequence and for a.a. t ∈ (0, T ), x ∈ ∂Ω

lim
k→∞

h(t, x;uk) = h(t, x;u)

for a suitable subsequence.

Theorem 10.9. Assume (C1) – (C5). Then A : Lp(0, T ;V )→ Lq(0, T ;V ?) is
bounded, demicontinuous, pseudomonotone with respect to W 1

p (0, T ;V,H) and
coercive in the sense of Theorem 9.6. Thus for any F ∈ Lq(0, T ;V ?), u0 ∈
L2(Ω) there exists u ∈W 1

p (0, T ;V,H) satisfying

u′ +A(u) = F, u(0) = u0. (10.41)

Proof. Clearly, (C1), (C2) and (10.40) imply that A is bounded, because the
trace operator W 1−δ,p(Ω)→ Lp(∂Ω) is bounded if δ+1/p < 1 (see Remark 4.2)
and so by Hölder’s inequality for all v ∈ V

∫
∂Ω

h(t, x;u)vdσx

≤ [∫
∂Ω

|h(t, x;u)|qdσx
]1/q

· const‖v‖W 1−δ,p(Ω),

hence by (10.40) ∫ T

0

[∫
∂Ω

h(t, x;u)vdσx

]
dt
≤ (10.42)

const
[
1 + ‖u‖Lp(0,T ;V )

]σ−1 ‖v‖Lp(0,T ;V ).

Further, by using (C1), (C2), (C5), (10.40), Hölder’s inequality and Vitali’s
theorem (Theorem 4.3) one obtains that A is demicontinuous. Assumptions
(C2), (C4) imply that A is coercive in the sense of Theorem 9.6, because (for
sufficiently large ‖u‖Lp(0,T ;V ))

[A(u), u]− c‖A(u)‖Lq(0,T ;V ?)

‖u‖Lp(0,T ;V )
≥ c?

2

[
1 + ‖u‖Lp(0,T ;V )

]p−1−σ? −

const
[
1 + ‖u‖Lp(0,T ;V )

]σ−1 → +∞
as ‖u‖Lp(0,T ;V ) →∞ since p− σ? > σ.

Now we show (similarly to the proof of Theorem 4.15) that A is pseudomono-
tone with respect to W 1

p (0, T ;V,H). Assume that

(uk)→ u weakly in Lp(0, T ;V ), (10.43)

(u′k)→ u′ weakly in Lq(0, T ;V ?) and (10.44)

lim sup
k→∞

[A(uk), uk − u] ≤ 0. (10.45)
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Since W 1,p(Ω) is compactly imbedded into W 1−δ,p(Ω) (for bounded Ω with
“sufficiently good” boundary, see Remark 4.2), by Theorem 10.1 there is a sub-
sequence of (uk), again denoted by (uk), for simplicity, such that

(uk)→ u in Lp(0, T ;W 1−δ,p(Ω)) and a.e. in QT . (10.46)

Further, since the trace operator W 1−δ,p(Ω) → Lp(∂Ω) is continuous, the se-
quence of functions

(t, x) 7→ uk(t, x), (t, x) ∈ (0, T )× ∂Ω converges to (10.47)

(t, x) 7→ u(t, x), (t, x) ∈ (0, T )× ∂Ω in Lp((0, T )× ∂Ω).

Since (Djuk) is bounded in Lp(QT ), we may assume (on the subsequence) that

(Djuk)→ Dju weakly in Lp(QT ), j = 1, ..., n. (10.48)

Further,

[A(uk), uk − u] =

∫
QT

a0(t, x, uk, Duk;uk)(uk − u)dtdx+ (10.49)

n∑
j=1

∫
QT

[aj(t, x, uk, Duk;uk)− aj(t, x, uk, Du;uk)](Djuk −Dju)dtdx+

n∑
j=1

∫
QT

aj(t, x, uk, Du;uk)(Djuk−Dju)dtdx+

∫
(0,T )×∂Ω

h(t, x;uk)(uk−u)dtdσx.

The first term on the right-hand side of (10.49) tends to 0 by (10.46) and Hölder’s
inequality, because the multiplier of (uk − u) is bounded in Lq(QT ). Further,
the third term on the right-hand side converges to 0, too, by (10.48) because
(10.43), (10.46), (C1), (C2), (C5) and Vitali’s theorem imply that

aj(t, x, uk, Du;uk)→ aj(t, x, u,Du;u) in Lq(QT ).

The last term on the right-hand side of (10.49) tends to 0, too, by Hölder’s
inequality, (10.47) and (10.40).

Consequently, (10.45), (10.49) imply

lim sup
k→∞

n∑
j=1

∫
QT

[aj(t, x, uk, Duk;uk)−aj(t, x, uk, Du;uk)](Djuk−Dju)dtdx ≤ 0.

(10.50)
Since (uk) is bounded in Lp(0, T ;V ), from (C3), (10.50) we obtain

lim
k→∞

∫
QT

|Duk −Du|pdtdx = 0 (10.51)

and (for a subsequence)

(Duk)→ Du a.e. in QT . (10.52)
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Therefore, by (C1), (C2), (C5), (10.40), (10.43), (10.46), (10.52) and Vitali’s
theorem (Theorem 4.3)

aj(t, x, uk, Duk;uk)→ aj(t, x, u,Du;u) in Lq(QT ), j = 0, 1, ..., n,

h(t, x;uk)→ h(t, x;u) in Lq((0, T )× ∂Ω).

Thus by Hölder’s inequality and Vitali’s theorem

(A(uk))→ A(u) weakly in Lq(0, T ;V ?). (10.53)

Finally, from (10.46), (10.49), (10.51) and (C2) one gets

lim
k→∞

[A(uk), uk − u] = 0. (10.54)

Since (10.53), (10.54) hold for a subsequence of (uk), by Cantor’s trick we obtain
(10.53), (10.54) for the original sequence.

So we have proved that A is bounded, demicontinuous, pseudomonotone
with respect toW 1

p (0, T ;V,H) and coercive, thus Theorem 9.6 implies Theorem
10.9.

Remark 10.10. According to the proof of Theorem 10.9, (C1) – (C5) imply
that A belongs to the class (S)+ with respect to W 1

p (0, T ;V,H), i.e.

(uk)→ u weakly in Lp(0, T ;V ), (u′k)→ u′ weakly in Lq(0, T ;V ?),

lim sup
k→∞

[A(uk), uk − u] ≤ 0 imply (uk)→ u in Lp(0, T ;V ).

(See (10.51).)

Remark 10.11. In the case of “non-local” operator A one may consider the
following modified problem (instead of (10.41)) which is a generalization of the
standard Cauchy problem for functional differential equations (delay equations)
in one variable:

û′(t) + Â(t, ût) = F (t) for a.a. t ∈ [0, T ], (10.55)

û(t) = ψ(t) for a.a. t ∈ [−a, 0] (10.56)

where ût is defined by

ût(s) = û(t+ s), s ∈ [−a, 0], t > 0 (10.57)

Here ψ ∈ Lp(−a, 0;V ), F ∈ Lq(0, T ;V ?) are given functions and we want to
find a function û ∈ Lp(−a, T ;V ) such that û′ ∈ Lq(0, T ;V ?) and û satisfies
(10.55), (10.56). The operator

Â : (0, T )× Lp(−a, 0;V )→ Lq(0, T ;V ?)

is defined by
[Â(t, ût), v] = (10.58)
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∫
QT


n∑
j=1

aj(t, x, û,Dû; ût)Djv + a0(t, x, û,Dû; ût)v

 dtdx,

where v ∈ Lp(0, T ;V ) and the functions

aj : QT × Rn+1 × Lp(−a, 0;V )→ R

satisfy conditions which are analogous to (C1) – (C5), with Lp(−a, 0;V ) instead
of Lp(0, T ;V ) and Lp(−a, 0;W 1−δ,p(Ω)) instead of Lp(0, T ;W 1−δ,p(Ω)).

Problem (10.55), (10.56) can be reduced to problem of the form (10.41), in
the case when ψ ∈ Lp(−a, 0;V ) satisfies ψ′ ∈ Lq(−a, 0;V ?). Indeed, assume
that û ∈ Lp(−a, T ;V ) satisfies (10.55), (10.56) such that û′ ∈ Lq(−a, T ;V ?)
and define u and ũ by

u(t) = û(t) for t ∈ (0, T ), (10.59)

ũ(t) = u(t) for t ∈ (0, T ) and ũ(t) = ψ(t) for t ∈ (−a, 0). (10.60)

Further, define operator A : Lp(0, T ;V )→ Lq(0, T ;V ?) by

[A(u)](t) = Â(t, ũt), u ∈ Lp(0, T ;V ) (10.61)

where ũ is defined by (10.60). Since for û ∈ Lp(−a, T ;V ) we have û′ ∈
Lq(−a, T ;V ?), function u ∈ Lp(0, T ;V ), defined by (10.59) satisfies

u′(t) + [A(u)](t) = F (t), t ∈ (0, T ) (10.62)

u(0) = ψ(0). (10.63)

Conversely, if u ∈ Lp(0, T ;V ) satisfies (10.62), (10.63) then û, defined by

û(t) = u(t), t ∈ (0, T ), û(t) = ψ(t), t ∈ (−a, 0)

satisfies (10.55), (10.56) and û ∈ Lp(−a, T ;V ), û′ ∈ Lq(−a, T ;V ?).
Further, if the functions aj in (10.58) satisfy the above mentioned conditions

(which are analogous to (C1) – (C5)), then the functions defining operator A
by (10.61), satisfy (C1) – (C5)). Consequently, by Theorem 10.9 we obtain
existence of solutions of (10.62), (10.63) (since ψ(0) ∈ L2(Ω)) which implies the
existence of solutions to (10.55), (10.56).

Example 10.12. Now we formulate examples satisfying (C1) – (C5)), i.e. as-
sumptions of Theorem 10.9. Let ai have the form

aj(t, x, η, ζ;u) = b(t, x, [H(u)](t, x))ξj |ζ|p−2, j = 1, . . . , n,

a0(t, x, η, ζ;u) = b0(t, x, [H0(u)](t, x))η|η|p−2 + b̂0(t, x, [F0(u)](t, x))α̂0(t, x, η, ζ)

where b, b0, b̂0, α̂0 are Carathéodory functions and they satisfy

const ≥ b(t, x, θ) ≥ c2
1 + |θ|σ? , const ≥ b0(t, x, θ) ≥ c2

1 + |θ|σ?
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with some positive constants c2 and 0 ≤ σ? < p− 1,

|b̂0(t, x, θ)| ≤ 1 + |θ|p−1−%? with 0 < %? < p− 1 and

|α̂0(t, x, η, ζ)| ≤ c1(1 + |η|%̂ + |ζ|ρ̂)
with some constants c1, %̂ ≥ 0, σ? + %̂ < %?.

Finally,

H,H0 : Lp(0, T ;W 1−δ,p(Ω))→ C(QT ), F0 : Lp(0, T ;W 1−δ,p(Ω))→ Lp(QT ),

are linear and continuous operators. Thus, [H(u)](t, x) and [H0(u)](t, x) may
have one of the forms∫

Qt

d(t, x, τ, ξ)u(τ, ξ)dτdξ where d is continuous in (t, x),

sup
(t,x)∈QT

∫
QT

|d(t, x, τ, ξ)|qdτdξ <∞,∫
Γt

d(t, x, τ, ξ)u(τ, ξ)dτdσξ where d is continuous in (t, x),

sup
(t,x)∈QT

∫
ΓT

|d(t, x, τ, ξ)|qdτdσξ <∞, Γt = [0, t)× ∂Ω.

To prove that examples of the above type satisfy the conditions (C1) – (C5)),
we apply similar arguments as in Example 4.19.

Clearly, assumptions (C1), (C3), (C5) hold. In order to show (C2), we
only have to show that the second term in a0(t, x, η, ζ;u) satisfies the desired
inequality. By Young’s inequality we obtain

|b̂0(t, x, [F0(u)](t, x))α̂0(t, x, η, ζ)| ≤ [1 + |F0(u)|p−1−%? ]c1(1 + |η|%̂ + |ζ|%̂) ≤

const(1 + |η|%̂ + |ζ|%̂)p1 + const[1 + |F0(u)|(p−1−%?)q1 ]

where
p1 =

p− 1

%̂
> 1 and q1 =

p1

p1 − 1
=

p− 1

p− 1− %̂ .

Consequently, we obtain for this term (C2) with

k1(u) = const[1 + |F0(u)|(p−1−%?)q1 ]

since by Hölder’s inequality we have for this term∫
QT

|k1(u)|qdtdx = const
∫
QT

[1 + |F0(u)|(p−1−%?)q1q]dtdx ≤

const
[
1 +

∫
QT

|F0(u)|pdtdx
]µ/p

≤ const
[
1 + ‖u‖µLp(0,T ;V )

]
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where
µ = (p− 1− %?)q1q =

p− 1− %?
p− 1− %̂ p < p.

Now we prove that (C4) is satisfied. Clearly, for our example we have in
(10.38)

[g2(u)](t) = min

{
const

1 + ‖H(u)‖σ?
C(QT )

,
const

1 + ‖H0(u)‖σ?
C(QT )

}
≥

const
[
1 + ‖u‖Lp(0,T ;V )

]−σ?
.

Further, by Young’s inequality

|b̂0(t, x, [F0(u)](t, x))α̂0(t, x, η, ζ)η| ≤

[1 + |F0(u)|p−1−%? ]const(1 + |η|%̂+1 + |ζ|%̂+1) ≤
εp

p
(1 + |η|p−σ? + |ζ|p−σ?) + C(ε)[1 + |F0(u)|(p−1−%?)q1 ]

for any ε > 0 (because %̂+ 1 < p− σ?) where

q1 =
p1

p1 − 1
=

p− σ?
p− σ? − %̂− 1

, p1 =
p− σ?
%̂+ 1

,

and C(ε) is a constant depending on ε. Choosing sufficiently small ε > 0, we
obtain (C4) with

[k2(u)](t, x) = C(ε)[1 + |F0(u)|(p−1−%?)q1 ]

since
‖k2(u)‖L1(Qt) = const

∫
Qt

[1 + |F0(u)|(p−1−%?)q1 ] =

const
∫
Qt

[1 + |F0(u)|(p−σ?)λ] ≤

const
[
1 + ‖F0(u)‖(p−σ

?)λ
Lp(Qt)

]
≤ const

[
1 + ‖u‖(p−σ

?)λ

Lp(0,t;W 1−δ,p(Ω))

]
≤

const
[
1 + ‖u‖Lp(0,t;V )

]σ with σ = (p− σ?)λ where

λ =
p− 1− %?

p− 1− σ? − %̂ < 1, because

σ? + %̂ < %? and thus (p− σ?)λ < p− σ?.
If the functions b, b0 are between two positive constants, then, it is not

difficult to show that (C1) – (C5) are fulfilled when

H,H0 : Lp(0, T ;W 1−δ,p(Ω))→ Lp(QT )
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are continuous linear operators (like F0). So in this case [H(u)](t, x), [H0(u)](t, x)
(and also [F0(u)](t, x)) may have also the forms∫ t

0

d(t, x, τ)u(τ, x)dτ,

∫
Ω

d(t, x, ξ)u(t, ξ)dξ

where∫ T

0

sup
x∈Ω

[∫ T

0

|d(t, x, τ)|qdτ
]p/q

dt <∞,
∫

Ω

sup
t∈[0,T ]

[∫
Ω

|d(t, x, ξ)|qdξ
]p/q

dx <∞,

respectively, or

u(χ(t), x) where χ ∈ C1[0, T ], χ′ > 0, 0 ≤ χ(t) ≤ t.

Problems
1. Prove Remark 10.5.

2. Prove Remark 10.10.

3. Show that if the functions aj satisfy (B1), (B2), (B̃3), (B4) and there is
w0 ∈W 1,p(Ω) such that w0|∂Ω = g then there is a weak solution u = ũ+u0

of the initial-boundary value problem with nonhomogeneous boundary
condition, formulated in Problem 4 of Section 8 (where u0(t, x) = w0(x)).

4. Let V = Wm,p
0 (Ω) where m ≥ 1, p ≥ 2 and Ω ⊂ Rn is a bounded domain

with sufficiently smooth boundary. Consider the operator A defined by

[A(u), v] =

∫ T

0

〈[Ã(t)][u(t)], v(t)〉dt =

∫ T

0


∫

Ω

 ∑
|α|=m

(Dαu)|Dαu|p−2Dαv

 dx
 dt+

∫ T

0


∫

Ω

 ∑
|α|<m

aα(t, x, . . . , Dβu, . . . )Dαv

 dx
 dt, |β| ≤ m,

u, v ∈ Lp(0, T ;V ) where the functions aα (|α| < m) satisfy the Carathéodory
conditions and there exist a constant c1 > 0 and k1 ∈ Lq(Ω) such that

|aα(t, x, ξ)| ≤ c1|ξ|p−1 + k1(x) for ξ ∈ RN , a.a. x ∈ Ω.

Further,
aα(t, x, ξ)ξα ≥ 0 for ξ ∈ RN , a.a. x ∈ Ω.

(See the notations in Problem 5 in Section 4.)
By using the arguments of the proof of Theorem 10.4, show that for ar-
bitrary F ∈ Lq(0, T ;V ?), u0 ∈ L2(Ω) there exists a solution u of problem
(7.1).



82 CHAPTER 2. FIRST ORDER EVOLUTION EQUATIONS

11 Existence of solutions for t ∈ (0,∞)

In this section we shall prove existence of solutions to nonlinear evolution equa-
tions in infinite time horizon. These results will be applied to nonlinear parabolic
differential equations and functional parabolic equations which were considered
in Sections 8 and 10.

First we formulate some basic definitions.

Definition 11.1. Let V be a Banach space, 1 ≤ p <∞. The set Lploc(0,∞;V )
consists of all functions f : (0,∞)→ V for which the restriction f |(0,T ) of f to
(0, T ) belongs to Lp(0, T ;V ) for each finite T > 0.

Further, by using the notations Q∞ = (0,∞)×Ω, Γ∞ = (0,∞)×∂Ω, denote
by Lploc(Q∞) and Lploc(Γ∞) the set of functions f : Q∞ → R and g : Γ∞ → R,
respectively, for which f |QT ∈ Lp(QT ), g|ΓT ∈ Lp(ΓT ) for arbitrary finite T > 0.

First we consider the case when A : Lploc(0,∞;V )→ Lqloc(0,∞;V ?) is “local”,
i.e. it has the form [A(u)](t) = [Ã(t)][u(t)] where for fixed t, Ã(t) maps V into
V ?.

Theorem 11.2. Let V ⊂ H ⊂ V ? be an evolution triple, 1 < p < ∞.
Assume that for almost all t > 0, Ã(t) : V → V ? is such that operator
A : Lploc(0,∞;V ) → Lqloc(0,∞;V ?), defined by [A(u)](t) = [Ã(t)][u(t)] satis-
fies the assumptions of Theorems 7.1, 9.2, respectively for each fixed T > 0.

Then for any F ∈ Lqloc(0,∞;V ?) and u0 ∈ H there exists u ∈ Lploc(0,∞;V )
such that u′ ∈ Lqloc(0,∞;V ?),

u′(t) + [A(u)](t) = F (t) for a.a. t ∈ (0,∞), u(0) = u0. (11.1)

In the case when the conditions of Theorem 7.1 are fulfilled (monotone case),
the solution of (11.1) is unique.

Proof. Let (Tj) be an increasing sequence of positive numbers with lim(Tj) =
+∞. Due to Theorems 7.1, 9.2, respectively, there exist uj ∈ Lp(0, Tj ;V ) such
that u′j ∈ Lq(0, Tj ;V ?) and

u′j(t) + [A(uj)](t) = F (t) for a.a. t ∈ [0, Tj ], uj(0) = u0. (11.2)

The coercivity assumptions (7.3), (9.6), respectively, imply that for all fixed T >
0 (and sufficiently large j) uj |[0,Tj ] is bounded in Lp(0, T ;V ). The (boundedness)
assumptions (7.2), (9.5) imply that [A(uj)]|[0,Tj ] is bounded in Lq(0, T ;V ?) for
all fixed finite T > 0.

Therefore, by using a “diagonal process”, one can select a subsequence of
(uj) (again denoted by (uj), for simplicity) such that for each fixed k, uj |[0,Tk] is
weakly convergent in Lp(0, Tk;V ) and the sequence u′j |[0,Tk] is weakly convergent
in Lq(0, Tk;V ?) as j → ∞. Thus we obtain a function u ∈ Lploc(0,∞;V ) such
that u′ ∈ Lqloc(0,∞;V ?), u(0) = u0, further, for each fixed k

(uj |[0,Tk])→ u|[0,Tk] weakly in Lp(0, Tk;V ), (11.3)
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(u′j |[0,Tk])→ u′|[0,Tk] weakly in Lq(0, Tk;V ?). (11.4)

Thus, similarly to the proof of (7.16) (see Lemma 7.3), one obtains u(0) = u0

(by using uj(0) = u0). Further, by (11.2) for j ≥ k

u′j(t) + [A(uj)](t) = F (t) for a.a. t ∈ [0, Tk], uj(0) = u0, (11.5)

thus by Remark 6.7 and (11.4)∫ Tk

0

〈[A(uj)](t), uj(t)− u(t)〉dt =

∫ Tk

0

〈F (t), uj(t)− u(t)〉dt−
∫ Tk

0

〈u′j(t), uj(t)− u(t)〉dt =∫ Tk

0

〈F (t), uj(t)− u(t)〉dt− 1

2
‖uj(Tk)− u(Tk)‖2H+∫ Tk

0

〈u′(t), uj(t)− u(t)〉dt,

hence

lim sup
j→∞

∫ Tk

0

〈[A(uj)](t), uj(t)− u(t)〉dt ≤ 0.

Since for fixed k A is pseudomonotone with respect to W 1
p (0, Tk;V,H) (as op-

erator from Lp(0, Tk;V ) into Lq(0, Tk;V ?)),

(A(uj))→ A(u) weakly in Lq(0, Tk;V ?)

and so from (11.4), (11.5) we obtain as j → ∞ that (11.1) holds for a.a. t ∈
[0, Tk]. Since it holds for all k and limk→∞ Tk = +∞, we obtain (11.1) for a.a.
t ∈ (0,∞).

In the case when the conditions of Theorem 7.1 are fulfilled (monotone case),
uj is unique for all j and thus the solution u of (11.1) is unique, too. (The
restriction of a solution in (0,∞) to (0, Tj) satisfies the initial value problem in
(0, Tj).)

Now we consider the case when operator A is “non-local”, i.e. [A(u)](t)
depends not only on u(t). Then it is important to assume that A has the
“Volterra property”.

Definition 11.3. An operator A : Lploc(0,∞;V )→ Lqloc(0,∞;V ?) is of Volterra
type (it has the Volterra property) if for each u ∈ Lploc(0,∞;V ) and t > 0,
[A(u)](t) depends only on u|(0,t), i.e. the restriction of u to (0, t).

If A : Lploc(0,∞;V )→ Lqloc(0,∞;V ?) is of Volterra type, then the “restriction
of A to [0, T ]”, denoted by AT , is the operator AT : Lp(0, T ;V )→ Lq(0, T ;V ?),
defined by

AT (u) = A(uT ), u ∈ Lp(0, T ;V ) where

uT (t) = u(t) for t ∈ [0, T ] and uT (t) = 0 for t > T.
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Theorem 11.4. Let the operator A : Lploc(0,∞;V ) → Lqloc(0,∞;V ?) be an
operator of Volterra type such that for each finite T > 0, the restriction of A
to [0, T ], AT : Lp(0, T ;V ) → Lq(0, T ;V ?) satisfies the assumptions of Theo-
rem 9.6, i.e. it is bounded, demicontinuous, pseudomonotone with respect to
W 1
p (0, T ;V,H) and it is coercive in the sense of Theorem 9.6.
Then for arbitrary F ∈ Lqloc(0,∞;V ?), u0 ∈ H there exists u ∈ Lploc(0,∞;V )

such that u′ ∈ Lqloc(0,∞;V ?) and

u′(t) + [A(u)](t) = F (t) for a.a. t ∈ (0,∞), u(0) = u0. (11.6)

Proof. Similarly to the proof of Theorem 11.2, let (Tj) be an increasing se-
quence of positive numbers with lim(Tj) = +∞. Due to Theorem 9.6 there
exist functions uj ∈ Lp(0, Tj ;V ) such that u′j ∈ Lq(0, Tj ;V ?) and

u′j(t) + [ATj (uj)](t) = F (t) for a.e. t ∈ [0, Tj ], uj(0) = u0.

The Volterra property implies that v = uj |[0,Tk] satisfies

v′(t) + [ATk(v)](t) = F (t) for a.a. t ∈ [0, Tk] (11.7)

if Tk < Tj . Coercivity of AT implies that for all fixed finite T > 0 (and
sufficiently large j), uj |[0,T ] is bounded in Lp(0, T ;V ). From the boundedness
of AT it follows that AT

(
uj |[0,T ]

)
is bounded in Lq(0, T ;V ?).

Therefore, by a “diagonal process”, one can select a subsequence of (uj)
(again denoted by (uj)) such that for each fixed k,(

uj |[0,Tk]

)
is weakly convergent in Lp(0, Tk;V ) and(

u′j |[0,Tk]

)
is weakly convergent in Lq(0, Tk;V ?) as j →∞.

Thus we obtain a function u ∈ Lploc(0,∞;V ) such that u′ ∈ Lqloc(0,∞;V ?). By
using the arguments of the proof of (7.16) (see Lemma 7.3), we obtain u(0) = u0.
Further, (

uj |[0,Tk]

)
→ u|[0,Tk] weakly in Lp(0, Tk;V ) and (11.8)(

u′j |[0,Tk]

)
→ u′|[0,Tk] weakly in Lq(0, Tk;V ?) as j →∞. (11.9)

Since by (11.7)

u′j(t) + [ATk(uj)](t) = F (t) for a.a. t ∈ [0, Tk], uj(0) = u0, (11.10)

by Remark 6.7 ∫ Tk

0

〈[ATk(uj)](t), uj(t)− u(t)〉dt =

∫ Tk

0

〈F (t), uj(t)− u(t)〉dt−
∫ Tk

0

〈u′j(t), uj(t)− u(t)〉dt =
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∫ Tk

0

〈F (t), uj(t)− u(t)〉dt−

1

2
‖uj(Tk)− u(Tk)‖2H +

∫ Tk

0

〈u′(t), uj(t)− u(t)〉dt,

hence

lim sup
j→∞

∫ Tk

0

〈[ATk(uj)](t), uj(t)− u(t)〉dt ≤ 0. (11.11)

Since (for fixed k) ATk : Lp(0, Tk;V ) → Lq(0, Tk;V ? is pseudomonotone with
respect to W 1

p (0, T ;V,H), the inequality (11.11), (11.8), (11.9) imply that

(ATk(uj))→ ATk(u) weakly in Lq(0, Tk;V ?) as j →∞.

Thus from (11.10) we obtain as j →∞

u′(t) + [ATk(u)](t) = F (t) for a.a. t ∈ [0, Tk], u(0) = u0, (11.12)

(11.12) holds for all k, so we have (11.6).

Now we apply Theorem 11.2 to operators of the form (8.1) where V is a
closed linear subspace of W 1,p(Ω), 2 ≤ p < ∞, Ω ⊂ Rn is a bounded domain
with “sufficiently good” boundary, H = L2(Ω).

Assume that
(B∞1) Functions aj : Q∞×Rn+1 → R (j = 1, ..., n) satisfy the Carathéodory

conditions.
(B∞2) There exist a constant c1 and a function k1 ∈ Lqloc(Q∞) (1/p+ 1/q =

1) such that for a.a. (t, x) ∈ Q∞, all ξ ∈ Rn+1

|aj(t, x, ξ)| ≤ c1|ξ|p−1 + k1(t, x).

(B∞3) For a.a. (t, x) ∈ Q∞, all ξ, ξ? ∈ Rn+1

n∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξj − ξ?j ) ≥ 0.

(B∞4) There exist a constant c2 > 0, k2 ∈ L1
loc(Q∞) such that for a.e.

(t, x) ∈ Q∞, all ξ ∈ Rn+1

n∑
j=0

aj(t, x, ξ)ξj ≥ c2|ξ|p − k2(t, x).

From Theorems 7.1, 11.2 directly follows

Theorem 11.5. Assume (B∞1) – (B∞4). Then for all F ∈ Lqloc(0,∞;V ?),
u0 ∈ L2(Ω) there is a unique u ∈ Lploc(0,∞;V ) such that u′ ∈ Lqloc(0,∞;V ?)
and

u′(t) + [A(u)](t) = F (t) for a.a. t ∈ (0,∞), u(0) = u0 (11.13)

with the operator (8.1).
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Instead of (B∞3) assume
(B̃∞3) There exists a constant c̃ > 0 such that for a.a. (t, x) ∈ Q∞, all

η ∈ R, ζ, ζ? ∈ Rn

n∑
j=1

[aj(t, x, η, ζ)− aj(t, x, η, ζ?)](ξj − ξ?j ) ≥ c̃|ζ − ζ?|p.

From Theorems 10.4, 11.2 one obtains

Theorem 11.6. Assume (B∞1), (B∞2), (B̃∞3) (B∞4). Then for all F ∈
Lqloc(0,∞;V ?), u0 ∈ L2(Ω) there is a solution u ∈ Lploc(0,∞;V ) of (11.13) with
the operator (8.1).

If instead of (B∞3) we assume
(B∞3′) For a.a. (t, x) ∈ Q∞, all η ∈ R, ζ, ζ? ∈ Rn, ζ 6= ζ?

n∑
j=1

[aj(t, x, η, ζ)− aj(t, x, η, ζ?)](ξj − ξ?j ) > 0

we obtain from Theorems 10.6, 11.2

Theorem 11.7. Assume (B∞1), (B∞2), (B∞3′) (B∞4). Then for all F ∈
Lqloc(0,∞;V ?), u0 ∈ L2(Ω) there is a solution u ∈ Lploc(0,∞;V ) of (11.13) with
the operator (8.1).

Remark 11.8. If V = W 1,p
0 (Ω) and Ω is bounded then instead of (B∞4) it is

sufficient to assume
(B∞4′) For a.e. (t, x) ∈ Q∞, all ξ = (η, ζ) ∈ Rn+1

n∑
j=0

aj(t, x, ξ)ξj ≥ c2|ζ|p − k2(t, x)

with some constant c2 > 0, k2 ∈ L1
loc(Q∞). (See Remarks 3.9, 4.11.)

Now we apply Theorem 11.4 to operators of the form (10.37) (see Definition
10.8) where V is a closed linear subspace of W 1,p(Ω), 2 ≤ p < ∞, Ω ⊂ Rn is a
bounded domain (with sufficiently smooth boundary).

Theorem 11.9. Assume that the functions

aj : Q∞ × Rn+1 × Lploc(0,∞;V )→ R, j = 0, 1, ..., n

have the Volterra property, i.e. for all t > 0, aj(t, x, η, ζ;u) depends only on the
restriction u |(0,t) of u to (0, t). Further, for all finite T > 0, the restrictions of
aj to QT ×Rn+1×Lp(0, T ;V ) satisfy (C1) – (C5), i.e. assumptions of Theorem
10.9.

Then for arbitrary F ∈ Lqloc(0,∞;V ?), u0 ∈ L2(Ω) there exists a function
u ∈ Lploc(0,∞;V ) such that u′ ∈ Lqloc(0,∞;V ?) and (11.6) holds with the oper-
ator A of the form (10.37) with h = 0, i.e. when A is defined by

〈[A(u)](t), w〉 = (11.14)
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∫
Ω

 n∑
j=1

aj(t, x, u,Du;u)Djw + a0(t, x, u,Du;u)w

 dx,
where u ∈ Lploc(0,∞;V ), v ∈ V .

Problems

1. Prove Theorem 11.5.

2. Prove Theorem 11.6.

3. Prove Remark 11.8.

4. Consider the functions

αj : Q∞ × R× R, j = 0, 1, . . . , n

which satisfy the conditions of Problem 1 in Section 8 for all t ∈ (0,∞),
with the same constants. Prove that there exists a unique solution of
problem (11.1) with the operator Ã(t) defined by functions αj in Problem
1 of Section 8.

5. Formulate and prove an existence and uniqueness theorem for the solution
of (11.1) where the operator Ã(t) is defined in Problem 3 of Section 8.

6. Formulate and prove an existence and uniqueness theorem for the solution
of (11.1) where the operator Ã(t) is defined in Problem 6 of Section 8.

7. Formulate and prove an existence theorem for the solution of (11.1) where
the operator Ã(t) is defined in Problem 4 of Section 10.

12 Qualitative properties of the solutions

Boundedness of solutions

First we formulate and prove theorems on the boundedness of ‖u(t)‖H , t ∈
(0,∞) for the solutions u of (11.1) and (11.6).

Theorem 12.1. Assume that the operator A : Lploc(0,∞;V ) → Lqloc(0,∞;V ?)
is given by

[A(u)](t) = [Ã(t)][u(t)] with Ã(t) : V → V ?

and the assumptions of Theorem 11.2 are fulfilled such that for a.a. t ∈ (0,∞),
v ∈ V

〈[Ã(t)](v), v〉 ≥ c2‖v‖pV − k2(t) where k2 ∈ L∞(0,∞) (12.1)

(i.e. the function k2 in (9.6) is essentially bounded) and ‖F (t)‖V ? is bounded
for a.e. t ∈ (0,∞), i.e. F ∈ L∞(0,∞;V ?).
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Then for a solution u of (11.1), ‖u(t)‖H is bounded for t ∈ (0,∞), so u ∈
L∞(0,∞;H) and∫ T2

T1

‖u(t)‖pV dt ≤ c3(T2 − T1) for 0 < T1 < T2 (12.2)

with some constant c3 (not depending on T1, T2).

Proof. Let u be a solution of (11.1) and y(t) = ‖u(t)‖2H . Then by (11.1), (12.1)
and Young’s inequality for arbitrary ε > 0

〈u′(t), u(t)〉+ 〈[Ã(t)][u(t)], u(t)〉 = 〈F (t), u(t)〉,

hence
〈u′(t), u(t)〉+ c2‖u(t)‖pV − k2(t) ≤ ‖F (t)‖V ?‖u(t)‖V ≤ (12.3)

ε‖u(t)‖pV + C(ε)‖F (t)‖qV ? .
Since by Remark 6.7∫ T2

T1

〈u′(t), u(t)〉dt =
1

2
[‖u(T2)‖2H − ‖u(T1)‖2H ],

choosing sufficiently small ε > 0 and integrating (12.3) with respect to t over
[T1, T2], we obtain

1

2
[‖u(T2)‖2H − ‖u(T1)‖2H ] +

c2
2

∫ T2

T1

‖u(t)‖pV dt ≤ (12.4)

∫ T2

T1

k2(t)dt+ c4

∫ T2

T1

‖F (t)‖qV ?dt ≤ c5(T2 − T1).

Since the imbedding V ⊂ H is continuous,

y(t) = ‖u(t)‖2H ≤ const‖u(t)‖2V ,

thus (12.4) implies

y(T2)− y(T1) + c?
∫ T2

T1

[y(t)]p/2dt ≤ 2c5(T2 − T1) (12.5)

with some positive constant c?.
We show that the inequality (12.5) implies that y(t) is bounded for t ∈

(0,∞). Indeed, assuming that the (continuous) function y is not bounded, for
any M > 0 there are t0 > 0 and t1 ∈ [0, t0] such that

y(t1) = max
[0,t0]

y > M.

Since y is continuous, there is δ > 0 such that

y(t) > M if t1 − δ ≤ t < t1,
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hence by (12.5)
y(t1)− y(t1 − δ) + c?δMp/2 ≤ 2c5δ

which is impossible for all M > 0, because y(t1) − y(t1 − δ) ≥ 0 and p > 1.
Finally, from (12.4) and the boundedness of y(t) we obtain (12.2).

Theorem 12.2. Assume that the conditions of Theorem 11.4 are fulfilled such
that for a.a. t ∈ (0,∞), v ∈ Lploc(0,∞;V ) with v′ ∈ Lqloc(0,∞;V ?)

〈[Ã(t)][v(t)], v(t)〉 ≥ c2‖v(t)‖pV − c3
[

sup
τ∈[0,t]

‖v(τ)‖p1H + ϕ(t) sup
τ∈[0,t]

‖v(τ)‖pH + 1

]
holds where c2, c3 > 0, 0 < p1 < p are constants, ϕ ≥ 0 is a function with the
property lim∞ ϕ = 0. Further, ‖F (t)‖V ? is bounded for a.a. t ∈ (0,∞).

Then for a solution u of (11.6) (with arbitrary initial condition), ‖u(t)‖H is
bounded for t ∈ (0,∞) and (12.2) holds.

Proof. Similarly to the proof of Theorem 12.1, we have for a solution of (11.6)

〈u′(t), u(t)〉+ c2‖u(t)‖pV − c3
[

sup
τ∈[0,t]

‖u(τ)‖p1H + ϕ(t) sup
τ∈[0,t]

‖u(τ)‖pH + 1

]
≤

ε‖u(t)‖pV + C(ε)‖F (t)‖qV ? .
Choosing sufficiently small ε > 0 and integrating over [T1, T2], by Remark 6.7
we obtain

1

2
[‖u(T2)‖2H − ‖u(T1)‖2H ] +

c2
2

∫ T2

T1

‖u(t)‖pV dt ≤ (12.6)

c̃3

∫ T2

T1

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1

]
dt

with some constant c̃3 > 0. Since y(t) = ‖u(t)‖2H ≤ const‖u(t)‖2V , we obtain
from (12.6)

y(T2)− y(T1) + c?
∫ T2

T1

[y(t)]p/2dt ≤ (12.7)

2c̃3

∫ T2

T1

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1

]
dt

with some positive constant c?. We show that (12.7) implies the boundedness
of y.

Assume that y(t) is not bounded. Then for any M > 0 there are t0 > 0 and
t1 ∈ [0, t0] such that

M + 1 ≥ y(t1) = sup
[0,t0]

y > M.

As y is continuous, there is a δ > 0 such that

y(t) > M if t1 − δ ≤ t ≤ t1.
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Hence by (12.7)
y(t1)− y(t1 − δ) + c?δMp/2 ≤

2c̃3

[
δ(M + 1)p1/2 + (M + 1)p/2

∫ t1

t1−δ
ϕ(t)dt+ δ

]
which is impossible for all M > 0 because y(t1) − y(t1 − δ) ≥ 0, p1 < p and
lim∞ ϕ = 0. From the boundedness of y(t) and (12.6) we obtain (12.2).

Now consider the case when V is a closed linear subspace of W 1,p(Ω), 2 ≤
p <∞, H = L2(Ω). Similarly to the proof of Theorem 12.2, one proves

Theorem 12.3. Assume that the conditions of Theorem 11.9 are fulfilled such
that for all for a.a. t ∈ (0,∞), v ∈ Lploc(0,∞;V ) with v′ ∈ Lqloc(0,∞;V ?) the
inequalities

[g2(v)](t) ≥ const

[
1 + sup

τ∈[0,t]

‖v(τ)‖L2(Ω)

]−σ?
, (12.8)

∫
Ω

[k2(v)](t, x)dx ≤ (12.9)

const

[
1 + sup

τ∈[0,t]

‖v(τ)‖σL2(Ω) + ϕ(t) sup
τ∈[0,t]

‖v(τ)‖p−σ
?

L2(Ω)

]
hold with some constants, 0 ≤ σ? < p − 1, 1 ≤ σ < p − σ?, lim∞ ϕ = 0 and
‖F (t)‖V ? is bounded for a.e. t ∈ (0,∞).

Then for a solution u of (11.6) with operator A given by

〈[A(u)](t), w〉 = (12.10)

∫
Ω

 n∑
j=1

aj(t, x, u,Du;u)Djw + a0(t, x, u,Du;u)w

 dx,
u ∈ Lploc(0,∞;V ), w ∈ V,

‖u(t)‖H is bounded for t ∈ (0,∞) and (12.2) holds.

Stabilization of the solutions

Now we shall formulate conditions which imply results on the stabilization of
solutions u to (11.6) as t→∞. First consider operators defined by

[A(u)](t) = [Ã(t)][u(t)] where Ã(t) : V → V ? (12.11)

is defined for all t > 0.
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Theorem 12.4. Assume that the operator Ã(t) : V → V ? satisfies the condi-
tions of Theorem 7.1 for all t > 0 such that for any v, w ∈ V

〈[Ã(t)](v)− [Ã(t)](w), v − w〉 ≥ c2‖v − w‖pV + c3‖v − w‖2H (12.12)

with some constants c2 > 0, c3 ≥ 0. (In this case Ã(t) is uniformly monotone,
see Definition 2.15.) Further, there exist A∞ : V → V ? and F∞ ∈ V ?, a
continuous function Φ with the property lim∞ Φ = 0 and for all R > 0 there is
a positive number cR such that for all v ∈ V with ‖v‖V ≤ R, t > 0 we have

‖[Ã(t)](v)−A∞(v)‖V ? ≤ cRΦ(t) and ‖F (t)− F∞‖V ? ≤ Φ(t). (12.13)

Then for a solution u of (11.1) with operator A of the form (12.11) we have

lim
t→∞

‖u(t)− u∞‖H = 0, lim
T→∞

∫ T+a

T−a
‖u(t)− u∞‖pV dt = 0 (12.14)

for arbitrary fixed a > 0, where u∞ ∈ V is the unique solution to

A∞(u∞) = F∞. (12.15)

If ∫ ∞
0

Φ(t)qdt <∞ (12.16)

is satisfied, too, then we have∫ ∞
0

‖u(t)− u∞‖pV dt <∞,
∫ ∞

0

‖u(t)− u∞‖2Hdt <∞. (12.17)

Further, if c3 > 0, ∫ ∞
T

‖u(t)− u∞‖2Hdt ≤ (12.18)

const

{
e−γT +

∫ T

0

[
e−γ(T−t)

∫ ∞
t

Φ(τ)qdτ

]
dt

}
holds with some constant γ > 0.

Proof. By (7.2), (12.12), (12.13) the operator A∞ : V → V ? is bounded, strictly
monotone and coercive, too, according to Remark 3.7. Further, it is easy to show
that by (12.13) A∞ is hemicontinuous, because Ã(t) is hemicontinuous and in
(12.13) Φ is not depending on v.

Therefore, Theorem 2.14 implies that (12.15) has a unique solution u∞ for
all F∞ ∈ V ?. Further, by Theorem 11.2 there exists a unique solution u of
(11.1) in (0,∞). Then by (12.15) one obtains

〈Dt[u(t)− u∞], u(t)− u∞〉+ 〈[A(u)](t)−A∞(u∞), u(t)− u∞〉 = (12.19)

〈F (t)− F∞(u∞), u(t)− u∞〉.
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The second term on the left-hand side of (12.19) can be estimated by (12.12)
and Young’s inequality as follows:

〈[A(u)](t)−A∞(u∞), u(t)− u∞〉 ≥ (12.20)

〈[A(u)](t)−A(u∞), u(t)− u∞〉 − |〈A(u∞)−A∞(u∞), u(t)− u∞〉| ≥
c2‖u(t)− u∞‖pV + c3‖u(t)− u∞‖2H

−ε
p

p
‖u(t)− u∞‖pV − C(ε)‖[A(u∞)](t)−A∞(u∞)‖qV ? .

Further, for the right-hand side of (12.19) we have

|〈F (t)− F∞(u∞), u(t)− u∞〉| ≤ (12.21)

εp

p
‖u(t)− u∞‖pV + C(ε)‖F (t)− F∞‖qV ? .

Thus, choosing sufficiently small ε > 0, integrating (12.19) over [T1, T2], we
obtain by Remark 6.7, (12.13), (12.20), (12.21)

1

2
‖u(T2)− u∞‖2H −

1

2
‖u(T1)− u∞‖2H+ (12.22)

c2
2

∫ T2

T1

‖u(t)− u∞‖pV dt+ c3

∫ T2

T1

‖u(t)− u∞‖2Hdt ≤

const
∫ T2

T1

[‖[A(u∞)](t)−A∞(u∞)‖qV ? + ‖F (t)− F∞‖qV ? ] dt ≤

const
∫ T2

T1

Φ(t)qdt.

Hence, by using the notation y(t) = ‖u(t)− u∞‖2H , we obtain with some c? > 0

y(T2)− y(T1) + c?
∫ T2

T1

[y(t)]p/2dt+ 2c3

∫ T2

T1

y(t)dt ≤ c4
∫ T2

T1

[Φ(t)]qdt. (12.23)

Since Φ(t)q is bounded and the last term on the left-hand side of (12.23) is
nonnegative, we obtain form (12.23), as from (12.5), that y(t) is bounded for
t ∈ (0,∞).

Further, since lim∞ Φ = 0, (12.23) implies that

lim
∞
y = 0. (12.24)

First we show that
lim inf
∞

y = 0. (12.25)

Assuming that (12.25) is not valid, there exist t0 > 0 and δ > 0 such that

y(t) ≥ δ for t > t0.
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Further, since lim∞ Φ = 0, for arbitrary ε > 0 there exists t1 such that

0 ≤ [Φ(t)]q < ε for t > t1.

Choosing sufficiently large T1, T2, by using the boundedness of y, we obtain from
(12.23)

c?δp/2(T2 − T1) ≤ c4ε(T2 − T1) + c5, i.e. c?δp/2 ≤ c4ε+
c5

T2 − T1

with some constant c5, which is impossible if ε is sufficiently small and T2 − T1

is sufficiently large. Thus we have (12.25).
Assume that (12.24) is not true. Then there exist ε0 > 0 and

t1 < t?1 < t2 < t?2 < ... converging to +∞

such that
lim
k→∞

y(tk) = 0, y(tk) < ε0, y(t?k) > ε0.

Since y is continuous, there is t̃k ∈ (tk, tk+1) with

y(t̃k) = sup
t∈[tk,tk+1]

y(t) and y(t̃k) > ε0.

Applying (12.23) to T1 = t̃k − δk, T2 = t̃k with sufficiently small δk > 0, we
obtain from (12.23)

y(t̃k)− y(t̃k − δk) + c?δkε
p
0 ≤ c4δk sup

t∈[t̃k−δk,t̃k]

[Φ(t)]q

and since y(t̃k)− y(t̃k − δk) ≥ 0, we have

c?εp0 ≤ c4 sup
t∈[t̃k−δk,t̃k]

[Φ(t)]q

which is impossible because lim∞ Φ = 0.
So we have proved (12.24), i.e. the first part of (12.14). The second part of

(12.14) follows from (12.23) with T1 = T − a, T2 = T + a. If (12.16) is satisfied,
too, then we obtain from (12.22), as T2 → +∞, the first part of (12.17) and in
the case when c3 > 0, we find the second part of (12.17).

Finally, we obtain from (12.23) as T2 → +∞

−y(T1) + 2c3

∫ ∞
T1

y(t)dt ≤
∫ ∞
T1

[Φ(t)]qdt.

Hence, by using the notation Y (T ) =
∫∞
T
y(t)dt, we get

Y ′(T ) + 2c3Y (T ) ≤ c4
∫ ∞
T

[Φ(t)]qdt.

This linear differential inequality implies (12.18) which completes the proof of
Theorem 12.4.
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It is easy to formulate conditions which imply that the operator Ã(t), defined
by (8.1), satisfies the assumptions of Theorem 12.4 in the case when V is a closed
linear subspace of W 1,p(Ω). So by Theorem 12.4 we find

Theorem 12.5. Assume that the operator Ã(t) : V → V ? satisfies the condi-
tions of Theorem 8.1 such that with some constants c2 > 0, c3 ≥ 0

n∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξj − ξ?j ) ≥ c2|ξ − ξ?|p + c3|ξ − ξ?|2. (12.26)

Further, there exist a continuous function Φ and Carathéodory functions

aj,∞ : Ω× Rn+1 → R

such that for a.a. (t, x) ∈ Q∞, all ξ ∈ Rn+1, j = 0, 1, ..., n

|aj(t, x, ξ)− aj,∞(x, ξ)| ≤ Φ(t)(|ξ|p−1 + 1) where lim
∞

Φ = 0

and there exists F∞ ∈ V ? such that

‖F (t)− F∞‖V ? ≤ Φ(t) for a.a. t > 0.

Then for a solution u of (11.1) we have (12.14) where u∞ ∈ V is the unique
solution of (12.15) with operator A∞ : V → V ?, defined by

〈A∞(z), v〉 =

n∑
j=1

∫
Ω

aj,∞(x, z,Dz)Djvdx+

∫
Ω

a0,∞(x, z,Dz)vdx. (12.27)

Further, (12.16) implies the first part of (12.17), if c3 > 0, we have the second
part of (12.17) and the estimate (12.18).

Now we formulate and prove a stabilization result on the (“non-local”) solu-
tion of (11.6), considered in Theorem 11.4.

Theorem 12.6. Assume that the (“non-local”) operator A : Lploc(0,∞;V ) →
Lqloc(0,∞;V ?) has the form A(u) = B(u, u) where the operator

B : Lploc(0,∞;V )× Lploc(0,∞;V )→ Lqloc(0,∞;V ?)

is such that for each fixed w ∈ Lploc(0,∞;V ), [B(u,w)](t) depends only on u(t)
and this operator, mapping V into V ?, satisfies the assumptions of Theorem 7.1
for a.a. t > 0. Further, for all u1, u2, w ∈ Lploc(0,∞;V ), a.a. t > 0

〈[B(u1, w)](t)− [B(u2, w)](t), u1(t)− u2(t)〉 ≥ (12.28)

c2‖u1(t)− u2(t)‖pV + c3‖u1(t)− u2(t)‖2H
with some constants c2 > 0, c3 ≥ 0.
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Finally, there exist A∞ : V → V ? and F∞ ∈ V ?, a continuous function Φ
and for all R > 0 there is a positive constant cR such that for all v ∈ V with
‖v‖V ≤ R, w ∈ Lploc(0,∞;V ) ∩ L∞(0,∞;H), a.a. t > 0 we have

‖[B(v, w)](t)−A∞(v)‖V ? ≤ cRΦ(t) and (12.29)

‖F (t)− F∞‖V ? ≤ Φ(t) (12.30)
where lim∞ Φ = 0.

Then for a solution of (11.6) we have the conclusions of Theorem 12.4, i.e.
we have (12.14) and if (12.16) holds then we have (12.17), (12.18).

Proof. Similarly to the proof of Theorem 12.4, one obtains that A∞ : V → V ?

is bounded, strictly monotone, coercive and hemicontinuous. Thus the equation
(12.15) has a unique solution u∞ for each F∞ ∈ V ?. Further, by Theorem 11.4
there exists a unique solution u of (11.6). Thus one obtains

〈Dt[u(t)− u∞], u(t)− u∞〉+ 〈[A(u)](t)−A∞(u∞), u(t)− u∞〉 = (12.31)

〈F (t)− F∞, u(t)− u∞〉.
The second term on the left hand side of (12.31) can be estimated as follows:

〈[A(u)](t)−A∞(u∞), u(t)− u∞〉 ≥ c2‖u(t)− u∞‖pV + (12.32)

c3‖u(t)− u∞‖2H − |〈[B(u∞, u)](t)−A∞(u∞), u(t)− u∞〉| ≥
c2‖u(t)− u∞‖pV + c3‖u(t)− u∞‖2H−

εp

p
‖u(t)− u∞‖pV − C(ε)‖[B(u∞, u)](t)−A∞(u∞)‖qV ? .

For the right hand side of (12.31) we have (12.21).
Thus, choosing sufficiently small ε > 0, integrating (12.31) over [T1, T2], we

obtain by Remark 6.7, (12.21), (12.29), (12.30), (12.32)

1

2
‖u(T2)− u∞‖2H −

1

2
‖u(T1)− u∞‖2H+ (12.33)

c2
2

∫ T2

T1

‖u(t)− u∞‖pV dt+ c3

∫ T2

T1

‖u(t)− u∞‖2Hdt ≤ const
∫ T2

T1

[Φ(t)]qdt.

Inequality (12.33) is the same as (12.22), so we can finish the proof of Theorem
12.6 as in the proof of Theorem 12.4.

It is easy to formulate assumptions on functions

aj : Q∞ × Rn+1 × Lploc(0,∞;V )→ R

which imply that the operator A of the form (11.14) satisfies the conditions of
Theorem 12.6 with

〈[B(u,w)](t), v〉 =

n∑
j=1

∫
Ω

aj(t, x, u,Du;w)Djvdx+

∫
Ω

a0(t, x, u,Du;w)vdx, u, w ∈ Lploc(0,∞;V ), v ∈ V.
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Theorem 12.7. Let V be a closed linear subspace of W 1,p(Ω), 2 ≤ p < ∞,
H = L2(Ω) and assume that the operator A of the form (11.14) satisfies the
conditions of Theorem 11.9 such that for all u ∈ Lploc(0,∞;V ), a.a. (t, x) ∈ Q∞,
all ξ, ξ? ∈ Rn+1

n∑
j=0

[aj(t, x, ξ;u)− aj(t, x, ξ?;u)](ξj − ξ?j ) ≥

[g2(u)](t)|ξ − ξ?|p + c3|ξ − ξ?|2

where c3 is a nonnegative constant. Further, there exist a continuous function
Φ and Carathéodory functions

aj,∞ : Ω× Rn+1 → R

such that for a.a. (t, x) ∈ Q∞, all ξ ∈ Rn+1

|aj(t, x, ξ;u)− aj,∞(x, ξ)| ≤ Φ(t)(|ξ|p−1 + 1), j = 0, 1, ..., n

where lim∞ Φ = 0 and there exists F∞ ∈ V ? such that

‖F (t)− F∞‖V ? ≤ Φ(t) for a.a. t > 0.

Then for a solution u of (11.6) we have the conclusion of Theorem 12.4, i.e.
(12.14) and (12.17), (12.18), respectively, where the operator A∞ : V → V ? is
defined by (12.27).

Now we consider Examples 10.12 and we formulate additional conditions
which imply that assumptions of theorems in Sections 11 and 12 are fulfilled.

According to Example 10.12 let

aj(t, x, η, ζ;u) = b(t, x, [H(u)](t, x))ξj |ζ|p−2, j = 1, ..., n,

a0(t, x, η, ζ;u) = b0(t, x, [H0(u)](t, x))η|η|p−2+

b̂0(t, x, [F0(u)](t, x))α̂0(t, x, η, ζ)

where b, b0, b̂0, α̂0 are Carathéodory functions, defined for a.a. (t, x) ∈ Q∞
satisfying

const ≥ b(t, x, θ) ≥ c2
1 + |θ|σ? , const ≥ b(t, x, θ) ≥ c2

1 + |θ|σ?

with some constants c2 > 0, 0 ≤ σ? < p− 1,

|b̂0(t, x, θ)| ≤ 1 + |θ|p−1−%? with 0 < %? < p− 1 and

|α̂0(t, x, η, ζ)| ≤ c1(1 + |η|%̂ + |ζ|%̂), σ? + %̂ < %?, %̂ ≥ 0.

Further, let H,H0, F0 be operators of Volterra type such that for all T > 0,

H,H0 : Lp(0, T ;W 1−δ,p(Ω))→ C(QT ), F0 : Lp(0, T ;W 1−δ,p(Ω))→ Lp(QT )
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are linear continuous operators (of Volterra type).
Then clearly, the assumptions of Theorem 11.9 on existence are fulfilled and

in the case when b, b0, b̂0 are positive constants, the conditions of Theorem 11.5
are satisfied. If b, b0 are between two positive constants, the operators H,H0

may be linear continuous operators, mapping

Lp(0, T ;W 1−δ,p(Ω)) into Lp(QT ), as F0.

For examples of operators of the above types, see in Example 10.12.
The conditions of Theorem 12.1 on the boundedness of

∫
Ω
u(t, x)2dx are

fulfilled in the (“local”) case when b, b0, b̂0 are positive constants, because by
Young’s inequality and ρ̂ < p− 1

|α̂0(t, x, v,Dv)v| ≤ const(1 + |v|%̂+1 + |Dv|%̂+1) ≤ const εp[|v|p + |Dv|p] + C(ε)

hence with sufficiently small ε > 0 we obtain (12.1).
The conditions of Theorem 12.3 (on the boundedness of

∫
Ω
u(t, x)2dx) are

fulfilled in the “non-local” case for the above example if H,H0 are linear oper-
ators of Volterra type, mapping continuously L2(Qt) into C(Qt) for all t > 0.
Further, F0 is a linear operator of Volterra type, mapping Lp(Qt) continuously
into L2(Qt) for all t > 0. (If b, b0 are between two positive constants, H,H0

may map L2(Qt) continuously into L2(Qt) for all t > 0).
Because then

b(t, x, [H(u)](t, x)) ≥ c2
1 + |[H(u)](t, x)|σ? ≥

c2
1 + ‖H(u)‖σ?

C(Qt)

≥

c2
1 + const‖u‖σ?L2(Qt)

≥ c2

1 + const
(

sup[0,t]

∫
Ω
u(t, x)2dx

)σ?
and similarly can be estimated b0(t, x, [H0(u)](t, x)).

Further, by using the estimates in Example 10.12, we obtain by Young’s
inequality

|b̂0(t, x, [F0(u)](t, x))α̂0(t, x, u,Du)u| ≤[
1 + |[F0(u)]p−1−%?(t, x)|

]
c1|u|(1 + |u|%̂ + |Du|%̂) ≤

const
[
1 + |[F0(u)]p−1−%?(t, x)|

]
(1 + |u|%̂+1 + |Du|%̂+1) ≤

εp

p

[
|u|p−σ? + |Du|p−σ?

]
+ C(ε)

[
1 + |F0(u)|q1(p−1−%?)

]
where

q1 =
p1

p1 − 1
=

p− σ?
p− σ? − %̂− 1

, p1 =
p− σ?
%̂+ 1

< 1

and ∫
Ω

|F0(u)|(t, x)q1(p−1−%?)dx ≤ const

[
sup
τ∈[0,t]

∫
Ω

u2(τ, x)dx

]q1(p−1−%?)

.
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Thus, choosing sufficiently small ε > 0, we have (12.9) with

[k2(u)](t, x) = C(ε)
[
1 + |F0(u)|q1(p−1−%?)(t, x)

]
,

σ = q1(p− 1− %?) = (p− σ?) p− 1− %?
p− 1− σ? − %̂ < p− σ?

because σ? + %̂ < %?.
Finally, we formulate conditions which imply that our example satisfies the

assumptions of Theorems 12.5 and 12.7, respectively (on stabilization of u as
t → ∞). In the “local” case, when b, b0, b̂0 are positive constants, assume that
α̂0 has the form

α̂0(t, x, η, ζ) = [1 + ψ(t, x)]α̃0(η)

where |ψ(t, x)| ≤ Φ(t) and α̃0 is a monotone nondecreasing function, satisfying

|α̃0(η)| ≤ const(1 + |η|%̂) with %̂ < p− 1.

In this case (12.26) is satisfied with c3 = 0. If

α̃0(η)− α̃0(η?) ≥ c̃3(η − η?), c̃3 > 0

then we have (12.26) with some c3 > 0. In this case the conclusions of Theorem
12.5 hold, assuming also

‖F (t)− F∞‖ ≤ Φ(t) for a.e. t > 0

with some F∞ ∈ V ?.
In the “non-local” case assume that

b(t, x, θ) = c2[1 + ψ(t, x, θ)], b0(t, x, θ) = c̃2[1 + ψ̃(t, x, θ)]

where c2, c̃2 are positive constants and the Carathéodory functions satisfy for
a.a. (t, x) ∈ Q∞, all θ ∈ R

|ψ(t, x, θ)| ≤ Φ(t), |ψ̃(t, x, θ)| ≤ Φ(t) where sup Φ < 1, lim
∞

Φ = 0.

Further,

b̂0(t, x, θ) = 1 + ψ0(t, x, θ) where |ψ0(t, x, θ)| ≤ Φ(t) and

|α̂0(t, x, η, ζ)| ≤ [1 + ψ1(t, x)]β̃0(η), |ψ1(t, x)| ≤ Φ(t),

where β̃0 is a monotone nondecreasing function, satisfying

|β̃0(η)| ≤ const(1 + |η|%̂) with %̂ < p− 1.

In this case (12.26) holds with c3 = 0.
If

β̃0(η)− β̃0(η?) ≥ c̃3(η − η?), c̃3 > 0

then we have (12.26) with some c3 > 0. The conclusions of Theorem 12.7 hold
(with const Φ(t)), assuming also

‖F (t)− F∞‖V ? ≤ Φ(t), for a.a. t > 0, with some F∞ ∈ V ?.
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Problems

1. Let u ∈ Lploc(0,∞;V ) be a solution of problem (11.1) with the operator
Ã(t) in Problem 4 of Section 11 and assume that ‖F (t)‖V ? is bounded
for a.a. t ∈ (0,∞). Prove that ‖u(t)‖L2(Ω) is bounded for t ∈ (0,∞) and
(12.2) holds.

2. Let u ∈ Lploc(0,∞;V ) be a solution of problem (11.1) with the operator
Ã(t), t ∈ (0,∞) in Problem 3 of Section 8 (see also Problem 5 in Section
11) satisfying the conditions

c1 ≤ α(t, x) ≤ c2, c1 ≤ β(t, x) ≤ c2 for a.a. (t, x) ∈ Q∞

with some positive constants c1, c2. Assume that F ∈ L∞(0,∞;V ). Prove
that ‖u(t)‖L2(Ω) is bounded for t ∈ (0,∞) and (12.2) holds.

3. Let u ∈ Lploc(0,∞;V ) be a solution of problem (11.1) with the operator
Ã(t), t ∈ (0,∞) in Problem 6 of Section 8 (see also Problem 6 in Section
11). Assuming F ∈ L∞(0,∞;V ), prove that ‖u(t)‖L2(Ω) is bounded for
t ∈ (0,∞) and (12.2) holds.

4. Assume that the operator Ã(t), defined in Problem 4 of Section 10 satisfies
the conditions in that Problem for all t ∈ (0,∞). Prove that if u is a solu-
tion of problem (11.1) with the above operator Ã(t) and F ∈ L∞(0,∞;V )
then ‖u(t)‖L2(Ω) is bounded for t ∈ (0,∞) and (12.2) holds.

5. Assume that u ∈ Lploc(0,∞;V ) is a solution of problem (11.1) with the
operator Ã(t), t ∈ (0,∞) considered in Problem 3 of Section 8 (for 0 ≤
t ≤ T ) and in Problem 2 for t ∈ (0,∞). Further, assume that there exist
functions α∞, β∞ ∈ L∞(Ω) such that

lim
t→∞

‖α(t, ·)− α∞‖L∞(Ω) = 0, lim
t→∞

‖β(t, ·)− β∞‖L∞(Ω) = 0.

Further, there exists F∞ ∈ V ? such that

lim
t→∞

‖F (t)− F∞‖V ? = 0.

Prove that then

lim
t→∞

‖u(t)− u∞‖L2(Ω) = 0, lim
T→∞

∫ T+a

T−a
‖u(t)− u∞‖pV dt = 0

for arbitrary fixed a > 0 where u∞ is the unique solution to∫
Ω

[
α∞(x)(Dju∞)|Du∞|p−2Djw + β∞(x)u∞|u∞|p−2w

]
dx =

〈F∞, w〉, w ∈ V.
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6. Formulate and prove a theorem on the stabilization of the solution of
(11.1) (as t→∞) with the operator Ã defined by

〈[Ã(t)][u(t)], v(t)〉 =
∑
|α|≤m

∫
Ω

(Dαu)|Dαu|p−2Dαvdx, t ∈ (0,∞),

u, v ∈ Lploc(0,∞;V ), V is a closed linear subspace of Wm,p(Ω), if there
exists F∞ ∈ V ? such that

lim
t→∞

‖F (t)− F∞‖L∞(Ω) = 0.

13 Periodic solutions
In this section we shall formulate conditions which imply the existence of T -
periodic solutions of evolution equations in (0,∞). In the proofs we shall apply
the following maximal monotone operator. (See (9.11), Remark 9.5.)

Definition 13.1. Let V ⊂ H ⊂ V ? be an evolution triple and define operator
L by

Lu = u′, D(L) = {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ?), u(0) = u(T )} (13.1)

Theorem 13.2. The operator (13.1) is a closed, linear, densely defined, maxi-
mal monotone mapping from Lp(0, T ;V ) into Lq(0, T ;V ?). The maximal mono-
tonicity of L means that it is monotone and it has no proper monotone extension.

Proof. It is not difficult to show that L is a closed, linear, densely defined
operator, mapping from Lp(0, T ;V ) into Lq(0, T ;V ?). Further, the operator L
is monotone because by Remark 6.7 for arbitrary u ∈ D(L)

[Lu, u] =

∫ T

0

〈u′(t), u(t)〉dt =
1

2

[
‖u(T )‖2H − ‖u(0)‖2H

]
= 0.

Further, assume that for some v ∈ Lp(0, T ;V ), w ∈ Lq(0, T ;V ?)

[w − Lu, v − u] ≥ 0 for all u ∈ D(L). (13.2)

We have to show that v ∈ D(L) and w = Lv = v′. Apply (13.2) to u(t) = λψ(t)z
where z ∈ V , ψ ∈ C∞0 (0, T ) and λ ∈ R are arbitrary. Since

[Lu, u] =

∫ T

0

〈u′(t), u(t)〉dt =

∫ T

0

λ2ψ′(t)〈z, z〉dt = 0,

we obtain from (13.2)

[w, v − u]− [Lu, v] ≥ 0, i.e.
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∫ T

0

〈w(t), v(t)〉dt− λ
[∫ T

0

〈w(t), ψ(t)z〉dt−
∫ T

0

〈ψ′(t)z, v(t)〉dt
]
≥ 0.

This inequality may hold for arbitrary λ ∈ R, only if∫ T

0

〈w(t), ψ(t)z〉dt+

∫ T

0

〈ψ′(t)z, v(t)〉dt = 0

which implies according to Remark 6.5 that

v′ = w ∈ Lq(0, T ;V ?).

Further, by using the formula in Remark 6.7, we obtain from (13.2) and u(0) =
u(T )

0 ≤ 2[v′ − u′, v − u] = ‖v(T )− u(T )‖2H − ‖v(0)− u(0)‖2H = (13.3)

(v(T ), v(T )) + (u(T ), u(T ))− 2(u(T ), v(T ))− (v(0), v(0))− (u(0), u(0))+

2(u(0), v(0)) = ‖v(T )‖2H − ‖v(0)‖2H + 2(u(0), v(0)− v(T )).

The inequality (13.3) implies v(0) = v(T ), i.e. v ∈ D(L). Indeed, assuming
v(0) 6= v(T ), one could find u ∈ D(L) such that the right hand side of (13.3)
would be negative, since for arbitrary v ∈ V , the function

u(t) = v, t ∈ [0, T ]

belongs to D(L). So we have shown that L is maximal monotone.

Now consider evolution equations in (0,∞) with “local” operators A which
have the form

[A(u)](t) = [Ã(t)][u(t)]. (13.4)

Theorem 13.3. Assume that for a.a. t > 0, the function t 7→ Ã(t) is T -periodic
(i.e. Ã(t + T ) = Ã(t) for a.a. t > 0), and satisfies the conditions of Theorem
9.2, further, F ∈ Lqloc(0,∞;V ?) is T -periodic, too.

Then there exists a T -periodic function u ∈ Lploc(0,∞;V ) which satisfies
u′ ∈ Lqloc(0,∞;V ?) and

u′(t) + [Ã(t)][u(t)] = F (t) for a.a. t > 0. (13.5)

Proof. The assumptions of Theorem 13.3 imply that the operator

A : Lp(0, T ;V )→ Lq(0, T ;V ?),

, defined by
[A(u)](t) = [Ã(t)][u(t)], t ∈ [0, T ]

is bounded, coercive and pseudomonotone with respect to W 1
p (0, T ;V,H), and,

consequently, it is pseudomonotone with respect to D(L) (defined by (13.1)).
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Further, we claim that it is demicontinuous. Indeed, for a.a. fixed t, Ã(t) : V →
V ? is demicontinuous, thus, if (uk)→ u with respect to the norm of Lp(0, T ;V )
then for a.a. t ∈ [0, T ], (uk(t)) → u(t) with respect to the norm of V (for a
subsequence) which implies that for each fixed v ∈ Lp(0, T ;V ), a.a. t ∈ [0, T ]

〈[Ã(t)][uk(t)], v(t)〉 → 〈[Ã(t)][u(t)], v(t)〉 as k →∞

(since Ã(t) is demicontinuous), so Vitali’s theorem, Hölder’s inequality and the
boundedness assumption (9.5) imply

[A(uk), v]→ [A(u), v] as k →∞.

Thus by Theorems 9.4, 13.2 there exists a solution u ∈ D(L) of (13.5) in
[0, T ]. Since u ∈ D(L), we have u(0) = u(T ). Thus, defining u(t) for t ≥ 0 by

u(t+ kT ) = u(t), t ∈ [0, T ], k = 1, 2, ...

we obtain

u ∈ Lploc(0,∞;V ), u′ ∈ Lqloc(0,∞;V ?) and u is T -periodic.

(u′ ∈ Lqloc(0,∞;V ?) follows from u(0) = u(T ) and formula (6.9).) Thus u
satisfies (13.5) in (0,∞).

Applying Theorem 13.3 in the case when V is a closed linear subspace of
W 1,p(Ω), p ≥ 2, H = L2(Ω), to operators of the form (8.1), we obtain directly

Theorem 13.4. Assume that the functions aj : Q∞×Rn+1 → R are T -periodic,
i.e. for a.a. t > 0, x ∈ Ω and all ξ ∈ Rn+1

aj(t+ T, x, ξ) = aj(t, x, ξ)

and their restrictions to [0, T ] satisfy (B1), (B2), (B̃3) or (B3′) and (B4).
Further, F ∈ Lqloc(0,∞;V ?) is T -periodic, too.

Then there exists a T -periodic solution u ∈ Lploc(0,∞;V ) of (13.5) where the
operator Ã(t) : V → V ? is defined by (8.1).

In the case of “non-local” operators A, instead of the abstract Cauchy prob-
lem we consider the following modified problem, which is a generalization of
the Cauchy problem for functional differential equations in one variable (see
Remark 10.11):

u′(t) + Â(t, ut) = F (t) for a.a. t ∈ [0,∞], u(t) = ψ(t), for a.a. t ∈ [−a, 0]
(13.6)

where ut is defined by

ut(s) = u(t+ s), s ∈ [−a, 0], t ≥ 0 (13.7)

ψ ∈ Lp(−a, 0;V ), F ∈ Lqloc(0,∞;V ?) are given functions and we want to find a
function u ∈ Lploc(−a,∞;V ) such that u′ ∈ Lqloc(0,∞;V ?) and u satisfies (13.6).
Further,

Â : (0,∞)× Lp(−a, 0;V )→ Lqloc(0,∞;V ?) (13.8)
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is a given (nonlinear) operator. Observe that defining operator

A : Lploc(−a,∞;V )→ Lqloc(0,∞;V ?) by

[A(u)](t) = Â(t, ut), u ∈ Lploc(−a,∞;V ), t > 0

the differential equation in (13.6), i.e.

u′(t) + [A(u)](t) = F (t), t > 0, u′ ∈ Lqloc(0,∞;V ?)

has the form (11.6) which was considered in Section 11. We assume that A is
of Volterra type and [A(u)](t) depends only on u |[t,t−a].

We shall formulate conditions on Â and F which imply that for some ψ ∈
Lp(−a, 0;V ) there exists a T -periodic solution of problem (13.6).

Theorem 13.5. Assume that the operator

Â : (0,∞)× Lp(−a, 0;V )→ Lqloc(0,∞;V ?)

and F are T -periodic, i.e. for all v ∈ Lp(−a, 0;V )

Â(t+ T, v) = Â(t, v), F (t+ T ) = F (t) for a.a. t ∈ (0,∞),

and Â is of Volterra type. Further, assume that the operator Ã : Lp(0, T ;V )→
Lq(0, T ;V ?), defined by

[Ã(u)](t) = Â(t, (Pu)t), t ∈ [0, T ], u ∈ Lp(0, T ;V ) (13.9)

(Pu)(t) = u(t+ kT ) if t > −a and t+ kT ∈ (0, T ) for some k = 0, 1, 2, ...,
(13.10)

is bounded, demicontinuous, coercive and pseudomonotone with respect to

D(L) = {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ?), u(T ) = u(0)}. (13.11)

Then there exists u ∈ Lploc(−a,∞;V ) such that u′ ∈ Lqloc(−a,∞;V ?),

u′(t) + Â(t, ut) = F (t), u(t+ T ) = u(t) for a.a. t ∈ (0,∞).

Remark 13.6. Theorem 13.5 means that for all T > 0 there exists

ψ ∈ Lp(−a, 0;V ) with ψ′ ∈ Lq(−a, 0;V ?)

such that there exists a T -periodic solution of the Cauchy problem (13.6).

Proof of Theorem 13.5. Since by Theorem 13.2 L = Dt is a maximal mono-
tone, closed, densely defined linear operator with D(L), given in (13.11) and
Ã : Lp(0, T ;V )→ Lq(0, T ;V ?) is bounded, demicontinuous, coercive and pseu-
domonotone with respect to D(L), by Theorem 9.4 there is a solution u ∈ D(L)
of

u′ + Ã(u) = F.
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Then for P̃ u, defined by

(P̃ u)(t) = u(t+ kT ), t > −a and t+ kT ∈ [0, T ] for some integer k

we have P̃ u ∈ Lploc(−a,∞;V ), P̃ u is T -periodic, (P̃ u)′ ∈ Lqloc(−a,∞;V ?) and
satisfies

(P̃ u)′(t) + Â(t, (P̃ u)t) = F (t), for a.a. t ∈ (0,∞),

i.e. the statement of Theorem 13.5 holds for P̃ u.

Now we apply Theorem 13.5 in the particular case when Â has the form
analogous to the formula (10.37) and V is a closed linear subspace of W 1,p(Ω),
H = L2(Ω). Similarly to the conditions (C1) – (C5) and the conditions of
Theorem 11.9, assume

(C1?) The functions

aj : Q∞ × Rn+1 × Lp(−a, 0;V )→ R

satisfy the Carathéodory conditions for arbitrary fixed w ∈ Lp(−a, 0;V ) (j =
0, 1, ..., n)), and are T -periodic:

aj(t+ T, x, ξ;w) = aj(t, x, ξ;w)

for a.e. (t, x) ∈ Q∞, all ξ ∈ Rn+1, w ∈ Lp(−a, 0;V ).
(C2?) There exist bounded (nonlinear) operators g1 : Lp(−a, 0;V ) → R+

and k1 : Lp(−a, 0;V )→ Lq(QT ) such that

|aj(t, x, η, ζ;w)| ≤ g1(w)[1 + |η|p−1 + |ζ|p−1] + [k1(w)](t, x)

for a.e. (t, x) ∈ QT , each (η, ζ) ∈ Rn+1 and w ∈ Lp(−a, 0;V ).
(C3?) There holds the inequality

n∑
j=1

[aj(t, x, η, ζ;w)− aj(t, x, η, ζ?;w)](ξj − ξ?j ) ≥ [g2(w)]|ζ − ζ?|p

where
g2(w) ≥ c?

[
1 + ‖w‖Lp(−a,0;V )

]−σ?
,

c? is some positive constant and 0 ≤ σ? < p− 1.
(C4?) There holds the inequality

n∑
j=0

aj(t, x, η, ζ;w)ξj ≥ [g2(w)][1 + |η|p + |ζ|p]− [k2(w)](t, x)

where k2(w) ∈ L1(QT ) satisfies for some positive σ < p− σ?

‖k2(w)‖L1(QT ) ≤ const
[
1 + ‖w‖Lp(−a,0;V )

]σ
.

(C5?) There exists δ > 0 such that if (wk)→ w in Lp(−a, 0;V ), strongly in
Lp(−a, 0;W 1−δ(Ω)), (ηk) → η in R, (ζk) → ζ in Rn, then for a.a. (t, x) ∈ QT ,
j = 0, 1, ..., n,

lim
k→∞

aj(t, x, η
k, ζk;wk) = aj(t, x, η, ζ;w),

for a subsequence.
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Definition 13.7. Assuming (C1?) – (C5?), we define operator

A : Lploc(−a,∞;V )→ Lqloc(0,∞;V ?) by

〈[A(u)](t), v〉 =

∫
Ω


n∑
j=1

aj(t, x, u,Du;ut)Djv + a0(t, x, u,Du;ut)v

 dx,

(13.12)
u ∈ Lploc(−a,∞;V ), v ∈ V.

Theorem 13.8. Let V be a closed linear subspace of W 1,p(Ω), H = L2(Ω),
assume (C1?) – (C5?) and let F ∈ Lqloc(0,∞;V ?) be T -periodic. Then there
exists u ∈ Lploc(−a,∞;V ) such that u′ ∈ Lqloc(−a,∞;V ?) and

u′(t) + [A(u)](t) = F (t), u(t+ T ) = u(t) for a.a. t ∈ (0,∞).

Proof. Let Â(t, ut) = [A(u)](t) where [A(u)](t) is given by (13.12), then the
operator

Ã : Lp(0, T ;V )→ Lq(0, T ;V ?),

given in (13.9), has the form

〈[Ã(u)](t), v〉 = 〈Â(t, (Pu)t), v〉 =∫
Ω


n∑
j=1

aj(t, x, u,Du; (Pu)t)Djv + a0(t, x, u,Du; (Pu)t)v

 dx,

u ∈ Lp(0, T ;V ), v ∈ V
where Pu is defined by (13.10). By Theorem 10.9 the assumptions (C1?), (C2?),
(C4?) imply that Ã is bounded, demicontinuous and coercive. Further, (C1?) –
(C5?) imply that Ã is pseudomonotone with respect to D(L), given by (13.11).
This statement can be proved by using the arguments of the proof of Theorem
10.9. Thus Theorem 13.8 directly follows from Theorem 13.5.

Now we formulate conditions which imply that the Examples 10.12 satisfy
the conditions of Theorem 13.8.

Example 13.9. Assume that the functions b, b0, b̂0, α̂0 are T -periodic. Further,
operators H,H0, F0 have the form

H(u) = H̃(ut), H0(u) = H̃0(ut), F0(u) = F̃0(ut)

where

H̃, H̃0 : Lp(−a, 0;W 1−δ(Ω))→ C(QT ), F̃0 : Lp(−a, 0;W 1−δ(Ω))→ Lp(QT )

are linear continuous operators. Then the conditions of Theorem 13.8 on aj are
fulfilled.
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Problems
1. Show that for the Example 13.9 the assumptions of Theorem 13.8 are

fulfilled.

2. Consider the functions

αj : Q∞ × R→ R, j = 0, 1, . . . , n

which satisfy the assumptions of Problem 1 in Section 8 for all t ∈ (0,∞)
(see also Problem 4 in Section 11) and

αj(t+ T, x, ξj) = αj(t, x, ξj) for a.a. t ≥ 0, x ∈ Ω, ξj ∈ R.

Further, F ∈ Lqloc(0,∞;V ?) satisfies

F (t+ T ) = F (t) for a.a. t ≥ 0.

Prove that there exists a T -periodic solution u ∈ Lp(0,∞;V ) of the equa-
tion (13.5) with the operator Ã(t) defined by functions αj in Problem 1
of Section 8.

3. Formulate and prove a theorem on the existence of a T -periodic solution
of the equation (13.5) where the operator Ã(t) is defined in Problem 3 of
Section 8.

4. Formulate and prove a theorem on the existence of a T -periodic solution
of the equation (13.5) where the operator Ã(t) is defined in Problem 6 of
Section 8.

5. Formulate and prove a theorem on the existence of a T -periodic solution
of the equation (13.5) where the operator Ã(t) is defined in Problem 4 of
Section 10.



Chapter 3

SECOND ORDER
EVOLUTION EQUATIONS

In this chapter we shall consider certain nonlinear hyperbolic differential equa-
tions and functional equations which can be treated by means of monotone type
operators. Namely, we shall consider equations of the form

u′′ +N(u′) +Qu+M(u′, u) = F

where N is a nonlinear operator of monotone type, Q is a linear operator having
some particular properties andM is a nonlinear operator with some compactness
properties, finally, F ∈ Lq(0, T ;V ?).

14 Existence of solutions in (0, T )

As before, let V ⊂ H ⊂ V ? be an evolution triple, 1 < p < ∞ and let the
operator L be defined by

Lu = u′, D(L) = {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ?), u(0) = 0}.

Assume that
(D1) N : Lp(0, T ;V ) → Lq(0, T ;V ?) is bounded, demicontinuous, pseu-

domonotone with respect to D(L) and coercive such that

[N(v), v] =

∫ T

0

〈[N(v)](t), v(t)〉dt ≥ c2‖v‖pLp(0,T ;V ) − c3, v ∈ Lp(0, T ;V )

with some constants c2 > 0, c3.
(D2) Q̃ : V → V ? is a linear continuous operator with the properties:

〈Q̃ũ, ṽ〉 = 〈Q̃ṽ, ũ〉, 〈Q̃ũ, ũ〉 ≥ 0 for any ũ, ṽ ∈ V

107
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and define Q : Lp(0, T ;V )→ Lq(0, T ;V ?) by

(Qu)(t) = Q̃u(t), u ∈ Lp(0, T ;V ).

(D3) The operator

M : Lp(0, T ;V )× Lp(0, T ;V )→ Lq(0, T ;V ?)

is bounded, demicontinuous, it has the following compactness property: if
(uk)→ u weakly in Lp(0, T ;V ), (u′k)→ u′ weakly in Lp(0, T ;V ) and (u′′k)→ u′′

weakly in Lq(0, T ;V ?) then for a subsequence

(M(u′k, uk))→M(u′, u) weakly in Lq(0, T ;V ?) and

lim
k→∞

∫ T

0

〈M(u′k, uk)(t), u′k(t)− u′(t)〉dt = 0.

Finally,

lim
‖(u,v)‖→∞

‖M(v, u)‖pLq(0,TV ?)

‖u‖pLp(0,T ;V ) + ‖v‖pLp(0,T ;V )

= 0

where ‖(u, v)‖ = ‖u‖Lp(0,T ;V ) + ‖v‖Lp(0,T ;V ).

Theorem 14.1. Assume (D1) – (D3). Then for arbitrary F ∈ Lq(0, T ;V ?)
there exists u ∈ C1([0, T ];H) ∩ C([0, T ];V ) such that u′ ∈ Lp(0, T ;V ), u′′ ∈
Lq(0, T ;V ?) and

u′′ +N(u′) +Qu+M(u′, u) = F in [0, T ], (14.1)

u(0) = 0, u′(0) = 0. (14.2)

Proof. Define operator S : Lp(0, T ;V )→ C([0, T ];V ) by

(Sv)(t) =

∫ t

0

v(s)ds.

Clearly, S is a linear and continuous operator. If u is a solution of (14.1), (14.2)
then v = u′ satisfies v ∈ Lp(0, T ;V ), v′ ∈ Lq(0, T ;V ?) and

v′ +N(v) +QSv +M(v, Sv) = F (14.3)

v(0) = 0. (14.4)

Further, if v ∈ Lp(0, T ;V ) satisfies (14.3), (14.4) then u = Sv is a solution of
(14.1), (14.2), since u = Sv is absolutely continuous and u′(t) = v(t) for a.a.
t ∈ [0, T ]. Thus, due to Theorem 9.4, it is sufficient to show that the operator
A : Lp(0, T ;V )→ Lq(0, T ;V ?), defined by

A(v) = N(v) +QSv +M(v, Sv)
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is bounded, demicontinuous, pseudomonotone with respect to D(L) and it is
coercive.

Since the operator S : Lp(0, T ;V ) → Lp(0, T ;V ) is linear and continuous,
from assumptions (i) - (iii) directly follows that A : Lp(0, T ;V )→ Lq(0, T ;V ?)
is bounded and demicontinuous.

Now we show that A is pseudomonotone with respect to D(L). Let (vk) be
a sequence in D(L) such that

(vk)→ v weakly in Lp(0, T ;V ), (v′k)→ v′ weakly in Lq(0, T ;V ?), (14.5)

lim sup
k→∞

[A(vk), vk − v] ≤ 0. (14.6)

By (ii) the linear operatorQS : Lp(0, T ;V )→ Lq(0, T ;V ?) is monotone. Indeed,
by using the notation u = Sv, we have v = u′ and thus

[QSv, v] = [Qu, u′], (14.7)

so

[Qu, u′] =

∫ T

0

〈Q̃u(t), u′(t)〉dt =
1

2
〈Q̃u(T ), u(T )〉 − 1

2
〈Q̃u(0), u(0)〉 = (14.8)

1

2
〈Q̃u(T ), u(T )〉 ≥ 0.

To obtain formula (14.8) we choose a sequence of polynomials ql : [0, T ] → V
such that

q′l → u′ in W 1
p (0, T ;V,H), ql → u in C([0, T ];V ) as l→∞.

Then
〈Q̃ql(t), ql(t)〉′ = 〈Q̃q′l(t), ql(t)〉+ 〈Q̃ql(t), q′l(t)〉 =

2〈Q̃ql(t), q′l(t)〉,
and after integrating over [0, T ] we obtain∫ T

0

〈Q̃ql(t), q′l(t)〉dt =
1

2
〈Q̃ql(T ), ql(T )〉 − 1

2
〈Q̃ql(0), ql(0)〉

and so (14.8) follows as l→∞.
Consequently,

[QSvk −QSv, vk − v] ≥ 0,

hence
[QSvk, vk − v] ≥ [QSv, vk − v]→ 0 as k →∞,

which implies
lim inf
k→∞

[QSvk, vk − v] ≥ 0. (14.9)
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Set uk = Svk, u = Sv then vk = u′k, v = u′ and

(Svk)→ Sv weakly in Lp(0, T ;V ), i.e. uk → u weakly in Lp(0, T ;V ) (14.10)

and by (14.5)

(u′k)→ u′ weakly in Lp(0, T ;V ), (u′′k)→ u′′ weakly in Lq(0, T ;V ?). (14.11)

Thus by assumption (D3) for a subsequence (denoted in the same way) we
obtain

M(vk, Svk)→M(v, Sv) weakly in Lq(0, T ;V ?), (14.12)

lim
k→∞

[M(vk, Svk), vk − v] = 0. (14.13)

Now (14.6), (14.9), (14.13) imply

lim sup
k→∞

[N(vk), vk − v] ≤ 0, (14.14)

for a subsequence. By using Cantor’s trick one obtains that (14.14) holds for
the original sequence, too.

Since according to (D1) N is pseudomonotone with respect to D(L), by
(14.5), (14.14) we have

(N(vk))→ N(v) weakly in Lq(0, T ;V ?), (14.15)

lim
k→∞

[N(vk), vk − v] = 0. (14.16)

>From (14.6), (14.13), (14.16) one gets

lim sup
k→∞

[QS(vk), vk − v] ≤ 0

for a subsequence and so by (14.9)

lim
k→∞

[QS(vk), vk − v] = 0, (14.17)

whence
lim
k→∞

[A(vk), vk − v] = 0 (14.18)

for a subsequence, thus by using Cantor’s trick we find (14.18) for the original
sequence, too.

Since QS : Lp(0, T ;V ) → Lq(0, T ;V ?) is linear, continuous and monotone,
by Proposition 2.5 it is pseudomonotone which implies by (14.17)

(QS(vk))→ QS(v) weakly in Lq(0, T ;V ?). (14.19)

Therefore, (14.12), (14.15), (14.19) imply

(A(vk))→ A(v) weakly in Lq(0, T ;V ?)
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(for a subsequence), so by (14.18) we have shown that A is pseudomonotone
with respect to D(L).

Finally, we prove that A is coercive. By assumption (i) and the monotonicity
of QS

[A(v), v]

‖v‖pLp(0,T ;V )

≥ c2 −
c3

‖v‖pLp(0,T ;V )

− |[M(v, Sv), v]|
‖v‖pLp(0,T ;V )

(14.20)

and for the last term we have

|[M(v, Sv), v]|
‖v‖pLp(0,T ;V )

≤
[
‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V )

]1/q

, (14.21)

‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V )

= (14.22)

‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V ) + ‖Sv‖pLp(0,T ;V )

×
‖v‖pLp(0,T ;V ) + ‖Sv‖pLp(0,T ;V )

‖v‖pLp(0,T ;V )

.

According to assumption (D3), for arbitrary ε > 0 there exists a > 0 such that

‖v‖pLp(0,T ;V ) + ‖Sv‖pLp(0,T ;V ) > a implies
‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V ) + ‖Sv‖pLp(0,T ;V )

< ε.

Thus by the boundedness of S and (14.22)

‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V )

≤ Cε+
1

‖v‖pLp(0,T ;V )

sup
‖v‖p+‖u‖p≤a

‖M(v, u)‖qLq(0,T ;V ?) =

Cε+
C?(a)

‖v‖pLp(0,T ;V )

with some constant C > 0 and a constant C? > 0, depending on a. Choosing
sufficiently small ε > 0, we obtain

‖M(v, Sv)‖qLq(0,T ;V ?)

‖v‖pLp(0,T ;V )

≤ (c2/2)q

if ‖v‖Lp(0,T ;V ) is sufficiently large, whence by (14.20), (14.21) we find

[A(v), v]

‖v‖pLp(0,T ;V )

≥ c2/2−
c3

‖v‖pLp(0,T ;V )

if ‖v‖Lp(0,T ;V ) is sufficiently large. Thus, A is coercive which completes the
proof of Theorem 14.1.
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Now assume that instead of (D1) the following (stronger) condition is ful-
filled.

(D1′) N : Lp(0, T ;V ) → Lq(0, T ;V ?) is bounded, demicontinuous, coercive
(as in (D1)) and is of (S)+ with respect to D(L) (see, e.g. [8], [93]): if for
vk ∈ D(L)

(vk)→ v weakly in Lp(0, T ;V ), (v′k)→ v′ weakly in Lq(0, T ;V ?),

lim sup
k→∞

[N(vk), vk − v] ≤ 0 then (vk)→ v in Lp(0, T ;V ).

(Then, clearly, N is pseudomonotone with respect to D(L).)
In this case we may assume a weaker condition on M :
(D3′) The operatorM : Lp(0, T ;V )×Lp(0, T ;V )→ Lq(0, T ;V ?) is bounded,

demicontinuous. Further,

if (uk)→ u, (u′k)→ u′ weakly in Lp(0, T ;V ),

(u′′k)→ u′′ weakly in Lq(0, T ;V ?)

then for a subsequence

lim
k→∞

∫ T

0

〈[M(u′k, uk)](t), u′k(t)− u′(t)〉dt = 0.

Finally,

lim
‖(u,v)‖→∞

‖M(v, u)‖qLq(0,T ;V ?)

‖u‖pLp(0,T ;V ) + ‖v‖pLp(0,T ;V )

= 0. (14.23)

Theorem 14.2. Assume (D1′), (D2), (D3′). Then for arbitrary F ∈ Lq(0, T ;V ?)
there exists u ∈ C([0, T ];V ) such that u′ ∈ Lp(0, T ;V ), u′′ ∈ Lq(0, T ;V ?) and
(14.1), (14.2) hold.

The proof of this Theorem follows from the proof of Theorem 14.1.

Remark 14.3. One can prove the following generalization of Theorem 14.1
to problems with nonhomogeneous initial conditions. Assume (D1) - (D3) or
(D1′), (D2), (D3′) such that the coercivity of N holds in the sense of Theorem
9.6. Then for arbitrary F ∈ Lq(0, T ;V ?), u0 ∈ V , u1 ∈ H there exists u such
that u ∈ C([0, T ];V ), u′ ∈ Lp(0, T ;V ), u′′ ∈ Lq(0, T ;V ?), u satisfies (14.1) and

u(0) = u0, u′(0) = u1. (14.24)

Indeed, if u is a solution of (14.1), (14.24) then ṽ = u′ ∈ Lp(0, T ;V ), ṽ′ ∈
Lq(0, T ;V ?) and ṽ satisfies

ṽ′ +N(ṽ) +QSṽ +M(ṽ, Sṽ + u0) = F − Q̃u0, (14.25)

ṽ(0) = u1. (14.26)
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Conversely, if ṽ ∈ Lp(0, T ;V ) satisfies (14.25), (14.26) then u = Sṽ+u0 satisfies
(14.1), (14.24), u ∈ C([0, T ];V ).

It is not difficult to show that if M satisfies (D3) or (D3′) then the operator

(ṽ, ũ) 7→M(ṽ, ũ+ u0)

also satisfies (iii) or (iii’). Consequently, by Theorems 9.5, 14.1, 14.2 there is a
solution of (14.25), (14.26) and so there is a solution of (14.1), (14.24).

Remark 14.4. Assume that (D1) is satisfied such that N is uniformly mono-
tone in the sense

〈[N(v)](t)− [N(w)](t), v(t)− w(t)〉 ≥ c2‖v(t)− w(t)‖pV and (14.27)

〈Q̃(ũ), ũ〉 ≥ c3‖ũ‖2V
with some positive constants c2, c3, further,M = 0. Then the solution of (14.1),
(14.24) is unique and it depends continuously on F, u0, u1.

Indeed, then for solutions ṽj of (14.25), (14.26) with f = Fj , u0 = uj0,
u1 = uj1 (j = 1, 2) we have∫ t

0

〈ṽ′1(τ)− ṽ′2(τ), ṽ1(τ)− ṽ2(τ)〉dτ+ (14.28)

∫ t

0

〈[N(ṽ1)](τ)− [N(ṽ2)](τ), ṽ1(τ)− ṽ2(τ)〉dτ+∫ t

0

〈QS(ṽ1(τ)− ṽ2(τ)), ṽ1(τ)− ṽ2(τ)〉dτ =∫ t

0

〈F̃1(τ)− F̃2(τ), ṽ1(τ)− ṽ2(τ)〉dτ −
∫ t

0

〈Q̃(u1
0 − u2

0), ṽ1(τ)− ṽ2(τ)〉dτ.

Since by Remark 6.7∫ t

0

〈ṽ′1(τ)− ṽ′2(τ), ṽ1(τ)− ṽ2(τ)〉dτ =
1

2
‖ṽ1(t)− ṽ2(t)‖2H −

1

2
‖ṽ1(0)− ṽ2(0)‖2H ,

we obtain from (14.27), (14.28) by Young’s inequality for the solutions ũj =

Sṽj + uj0

1

2
‖ũ′1(t)− ũ′2(t)‖2H +

c2
2
‖ũ′1 − ũ′2‖pLp(0,t;V ) +

c3
2
‖ũ1(t)− ũ2(t)‖2V ≤

c4‖F1 − F2‖qLq(0,t;V ?) + c5‖u1
1 − u2

1‖2H + c6‖u1
0 − u2

0‖2V
with some positive constants c4, c5, c6.

Applying Theorems 10.1, 10.9, one easily gets from Theorem 14.1 and Re-
mark 14.3
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Theorem 14.5. Let V be a closed linear subspace of W 1,p(Ω), (p ≥ 2, Ω ⊂ Rn
a bounded domain with sufficiently smooth boundary), H = L2(Ω). Assume
that N : Lp(0, T ;V ) → Lq(0, T ;V ?) has the form (10.37) and (C1) – (C5) are
fulfilled such that g2(u) and k2(u) are not depending on u. Further, operator Q̃
has the form

〈Q̃ũ, ṽ〉 =

∫
Ω

 n∑
j,l=1

ajl(x)(Dlũ)(Dj ṽ) + d(x)ũṽ

 dx+ (14.29)

∫
Ω×Ω

K(x, z)ũ(x)ṽ(z)dxdz, ũ, ṽ ∈ V,

where ajl, d ∈ L∞(Ω), ajl = alj,
∑n
j,l=1 ajl(x)ξjξl ≥ 0, d(x) ≥ 0 for a.a. x ∈ Ω,

all ξ ∈ Rn,
K ∈ L2(Ω× Ω), K(x, z) = K(z, x) and∫

Ω×Ω

K(x, z)ũ(x)ũ(z)dxdz ≥ 0. (14.30)

Finally, there is δ > 0 with δ < 1/p such that

M : Lp(0, T ;V )× Lp(0, T ;V )→ Lq(0, T ;W 1−δ,p(Ω)?) (14.31)

is bounded, demicontinuous,

‖M(v, u)‖Lq(0,T ;W 1−δ,p(Ω)?) ≤ const
[
‖v‖σLp(0,T ;V ) + ‖u‖σLp(0,T ;V )

]
(14.32)

with some constant 0 < σ < p− 1.
Then there exists a solution of (14.1), (14.24).

Proof. By Theorem 10.9, and Remark 10.10 N satisfies (D1′). Clearly, Q̃ sat-
isfies (D2). Finally, we show that M satisfies (D3′). By (14.31)

M : Lp(0, T ;V )× Lp(0, T ;V )→ Lq(0, T ;V ?)

is bounded and demicontinuous. Further, if

(uk)→ u, (u′k)→ u′ weakly in Lp(0, T ;V ),

(u′′k)→ u′′ weakly in Lq(0, T ;V ?)

then by Theorem 10.1 for a subsequence

(u′k)→ u′ in Lp(0, T ;W 1−δ,p(Ω)),

thus by Hölder’s inequality

[M(u′k, uk), u′k − u′]→ 0

sinceM(u′k, uk) is bounded in Lq(0, T ;W 1−δ,p(Ω)?) by (14.31). The assumption
(14.32) implies (14.23). Therefore, from Theorem 14.2 we obtain Theorem 14.5.
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Remark 14.6. The assumption (14.30) means that the selfadjoint and compact
operator K̃ : L2(Ω)→ L2(Ω), defined by

(K̃ṽ)(x) =

∫
Ω

K(x, z)ṽ(z)dz, ṽ ∈ L2(Ω)

is positive which is equivalent to the fact that all eigenvalues of K̃ are nonneg-
ative which holds if and only if the function K has the form

K(x, z) =
∑
j

ψj(x)ψj(z) with some ψj ∈ L2(Ω). (14.33)

Indeed, by the Hilbert–Schmidt theorem

K̃ṽ =
∑
j

λj(ṽ, ϕj)ϕj

where λj are the eigenvalues and ϕj , j = 1, 2, ... is the orthonormal system of the
corresponding eigenfunctions of K̃ (this system is finite or countably infinite).
Thus ∫

Ω×Ω

K(x, z)ũ(x)ũ(z)dxdz = (K̃ũ, ũ) =
∑
j

λj |(ũ, ϕj)|2.

Further, since ∫
Ω×Ω

K(x, z)ũ(x)ṽ(z)dxdz =

∫
Ω

(K̃ṽ)(x)ũ(x)dx =

∫
Ω

ũ(x)

∑
j

λj(ṽ, ϕj)ϕj(x)

 dx =

∫
Ω×Ω

∑
j

λjϕj(x)ϕj(z)

 ũ(x)ṽ(z)dxdz,

and λj ≥ 0, we have
K(x, z) =

∑
j

λjϕj(x)ϕj(z),

i.e. we have (14.33) with ψj = λ
1/2
j ϕj .

Problems
1. Prove Theorem 14.2.

2. Consider the initial-boundary value problem

D2
t u−

n∑
j=1

Dj [aj(t, x,Dtu,DDtu)] + a0(t, x,Dtu,DDtu)− (14.34)

n∑
j,l=1

Dj [ajl(x)Dlu] + d(x)u = f(t, x), (t, x) ∈ QT ,
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u(0, x) = u0(x), Dtu(0, x) = u1(x), xinΩ, (14.35)

u|ΓT = 0 where ΓT = [0, T )× ∂Ω. (14.36)

Prove that u is a (“sufficiently smooth”) classical solution of (14.34) –
(14.36) if and only if the function U , defined by U(t) = x 7→ u(t, x)
satisfies (14.1), (14.24) where V = W 1,p

0 (Ω), H = L2(Ω), M = 0,

[N(v), w] =

∫
QT

 n∑
j=1

aj(t, x, v,Dv)Djw + a0(t, x, v,Dv)w

 dtdx,
(14.37)

[Qu,w] =

∫
QT

 n∑
j,l=1

ajl(x)(Dlu)Djw + d(x)uw

 dtdx, (14.38)

u, v, w ∈ Lp(0, T ;V ),

[F,w] =

∫
QT

fwdtdx, w ∈ Lp(0, T ;V ). (14.39)

If this function U satisfies (14.1), (14.24) with the operators (14.37),
(14.38) and with F defined in (14.39), it is called a weak solution of (14.34)
– (14.36).

3. Assume that M = 0,

[N(v), w] =

∫
QT

 n∑
j=1

fj(t, x,Djv)Djw + f0(t, x,Djv)w

 dtdx
where the functions fj satisfy the Carathéodory conditions,

ξj 7→ fj(t, x, ξj) is monotone nondecreasing

for a.a. (t, x) ∈ QT , V = W 1,p
0 (Ω), H = L2(Ω),

β1|ξj |p−1 ≤ |fj(t, x, ξj)| ≤ β2|ξj |p−1 for a.a. (t, x) ∈ QT

with some positive constants β1, β2 and p ≥ 2. Further, Q has the form
(14.38) where

ajl, d ∈ L∞(Ω), ajl = alj ,

n∑
j,l=1

ajl(x)ξjξl ≥ 0, d(x) ≥ 0 (14.40)

for a.a. x ∈ Ω, all ξ ∈ Rn.
Prove that then for each F ∈ Lq(0, T ;V ?), u0 ∈ V , u1 ∈ H there exists a
solution of (14.1), (14.24) (i.e. a weak solution of (14.34) – (14.36) with
aj(t, x, ξ) = fj(t, x, ξj), j = 0.1, . . . , n).
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4. Let M = 0 and

[N(v), w] =

∫
QT

 n∑
j=1

(Djv)|Dv|p−2Djw + v|v|p−2w

 dtdx,
where v, w ∈ Lp(0, T ;V ), V = W 1,p

0 (Ω), p ≥ 2, H = L2(Ω). Further,
assume that Q has the form (14.38) such that conditions (14.40) hold.
Prove that then for each F ∈ Lq(0, T ;V ?), u0 ∈ V , u1 ∈ H there exists a
solution of (14.1), (14.24), i.e. a weak solution of (14.34) – (14.36) with

aj(t, x, η, ζ) = ζj |ζ|p−2 for j = 1, . . . , n,

a0(t, x, η, ζ) = η|η|p−2, η ∈ R, ζ ∈ Rn.

15 Solutions in (0,∞)

Now we consider equation (14.1) for t ∈ (0,∞). By using the notations of
Section 11 we have

Theorem 15.1. Assume that Q̃ : V → V ? satisfies (ii). Let

N : Lploc(0,∞;V )→ Lqloc(0,∞;V ?),

M : Lploc(0,∞;V )× Lploc(0,∞;V )→ Lqloc(0,∞;V ?)

be operators of Volterra type and assume that for each finite T > 0 their restric-
tions to (0, T ) satisfy (D1) and (D3) such that the coercivity of N holds in the
sense of Theorem 9.6.

Then for arbitrary F ∈ Lq(0,∞;V ?), u0 ∈ V , u1 ∈ H there exists u such
that u ∈ C([0,∞);V ), u′ ∈ Lploc(0,∞;V ), u′′ ∈ Lqloc(0,∞;V ?) and

u′′(t) + [N(u′)](t) + Q̃u(t) + [M(u′, u)](t) = F (t) for a.a. t ∈ (0,∞), (15.1)

u(0) = u0, u′(0) = u1. (15.2)

The proof is similar to that of Theorem 11.4, based on Remark 14.3.
From Theorems 14.5, 11.9 we obtain

Theorem 15.2. Let V be a closed linear subspace of W 1,p(Ω), 2 ≤ p < ∞,
Ω ⊂ Rn a bounded domain with sufficiently smooth boundary. Assume that the
functions

aj : Q∞ × Rn+1 × Lploc(0,∞;V )→ R, j = 0, 1, ..., n

satisfy the assumptions of Theorem 11.9, N has the form (11.14), Q̃ : V → V ?

satisfies the assumptions of Theorem 14.5,

M : Lploc(0,∞;V )× Lploc(0,∞;V )→ Lqloc(0,∞;W 1−δ,p(Ω)?)
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is of Volterra type and satisfies the assumptions of Theorem 14.5 for arbitrary
finite T > 0.

Then for arbitrary F ∈ Lqloc(0,∞;V ?), u0 ∈ V , u1 ∈ L2(Ω) there exists
u ∈ Lploc(0,∞;V ) such that u′ ∈ Lploc(0,∞;V ), u′′ ∈ Lqloc(0,∞;V ?),

u′′ +N(u′) +Qu+M(u′, u) = F in (0,∞), u(0) = u0, u′(0) = u1.

Now we formulate a theorem on boundedness of the solutions u of (15.1),
(15.2).

Theorem 15.3. Let the assumptions of Theorem 15.1 be satisfied such that
with some c2 > 0

〈[N(v)](t), v(t)〉 ≥ c2‖v(t)‖pV , t ∈ (0,∞) (15.3)

for all u, v ∈ Lploc(0,∞;V ), and with some nonnegative Φ1,Φ2 ∈ L1(0,∞), a
positive constant σ̃ < 1, y(τ) = ‖v(τ)‖2H we have

‖[M(v, u)](t)‖qV ? ≤ Φ1(t) sup
[0,t]

yσ̃ + Φ2(t), t ∈ (0,∞) (15.4)

Finally, let F ∈ Lq(0,∞;V ?).
Then for a solution u of (15.1), (15.2), y(t) = ‖u′(t)‖2H is bounded in (0,∞),

u′ ∈ Lp(0,∞;V ) and

〈Q̃[u(t)], u(t)〉 is bounded for t ∈ (0,∞). (15.5)

If
〈Q̃ũ, ũ〉 ≥ c3‖ũ‖2W 1,2(Ω) for all ũ ∈ V (15.6)

with some constant c3 > 0 then

‖u(t)‖W 1,2(Ω) is bounded for t ∈ (0,∞). (15.7)

Proof. Applying both sides of (15.1) to u′ and integrating over [0, T ], we obtain

[u′′, u′] + [N(u′), u′] + [Qu, u′] + [M(u′, u), u′] = [F, u′]. (15.8)

By Remark 6.7 and (6.9)

[u′′, u′] =
1

2
‖u′(T )‖2H −

1

2
‖u′(0)‖2H =

1

2
y(T )− 1

2
y(0) (15.9)

and by (14.8)

[Qu, u′] =
1

2
〈Q̃u(T ), u(T )〉 − 1

2
〈Q̃u(0), u(0)〉. (15.10)
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Further, by Young’s inequality

|[M(u′, u), u′]| ≤ εp

p

∫ T

0

‖u′(t)‖pV dt+
1

εqq

∫ T

0

‖[M(u′, u)](t)‖qV ?dt, (15.11)

|[F, u′]| ≤ εp

p

∫ T

0

‖u′(t)‖pV dt+
1

εqq

∫ T

0

‖F (t)‖qV ?dt. (15.12)

Choosing sufficiently small ε > 0, from (15.3), (15.4), (15.8) – (15.12) we obtain
the inequality

1

2
y(T ) +

c2
2

∫ T

0

‖u′(t)‖pV dt+
1

2
〈Q̃u(T ), u(T )〉 ≤ (15.13)

const

[∫ T

0

‖[M(u′, u)](t)‖qV ?dt+

∫ T

0

‖F (t)‖qV ?dt
]

+
1

2
y(0)+

1

2
〈Q̃u(0), u(0)〉 ≤ const

[
1 + sup

[0,T ]

yσ̃
∫ T

0

Φ1(t)dt+

∫ T

0

Φ2(t) +

∫ T

0

‖F (t)‖qV ?dt
]
.

Since σ̃ < 1, Φ1,Φ2 ∈ L1(0,∞), F ∈ Lq(0,∞;V ?), we obtain from (15.13)
that y(T ) and 〈Q̃u(T ), u(T )〉 are bounded for T ∈ (0,∞) and u′ ∈ Lp(0,∞;V ).
Finally, (15.6) implies (15.7).

Now we consider examples for operators N,M, Q̃ which satisfy the assump-
tions of Theorems 14.5 - 15.3.

The operator in Example 10.12 satisfies the conditions on N in Theorem 14.5
and the operator in Example, considered in Section 12 satisfies the conditions
on N in Theorem 15.2. In the case b, b0 ≥ c2 with some positive constant c2
and b̂0 = 0 the assumption on N in Theorem 15.3 are fulfilled.

It is easy to show that the assumptions on M in Theorem 14.5 are fulfilled
if e.g.

[M(v, u)](w) =

∫
QT

g(t, x, [G1(v)](t), [G2(v)](t))wdtdx+

∫
ΓT

h2(t, x;u)wdσ

(15.14)
u, v ∈ Lp(0, T ;V ), w ∈ Lp(0, T ;W 1−δ,p(Ω))

where g is a Carathéodory function satisfying with some positive constant σ <
p− 1

|g(t, x, θ1, θ2)| ≤ const[1 + |θ1|σ + |θ2|σ], (15.15)

G1, G2 : Lp(0, T ;V ) → Lp(QT ) are linear and continuous operators, 0 < δ <
1/p, ΓT = (0, T )× ∂Ω,

h2 : ΓT × Lp(0, T ;V )→ R

is a measurable function, satisfying

‖h2(t, x;u)‖Lq(ΓT ) ≤ const
[
1 + ‖u‖Lp(0,T ;V )

]σ
.
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Further, the assumptions on M in Theorem 15.2 are satisfied if (15.14),
(15.15) hold for all t ∈ (0,∞),

G1, G2 : Lploc(0,∞;V )→ Lploc(Q∞)

are linear operators of Volterra type and for all fixed finite T > 0, they map
Lp(0, T ;V ) into Lp(QT ) continuously.

The assumptions on M in Theorem 15.3 are satisfied if

|g(t, x, θ1, θ2)| ≤ Φ1(t)|θ1|λ + Φ2(t), t ∈ (0,∞)

with Φ1,Φ2 ∈ Lq(0,∞) ∩ L∞(0,∞), 0 ≤ λ < 2/q and for all v ∈ Lploc(Q∞)

‖G1(v)‖Lp(Qt) ≤ const‖v‖L2(Qt), t ∈ (0,∞).

Finally, (15.6) is satisfied for the operator Q̃ of the form (14.29) if for a.a.
x ∈ Ω, all ξ = (ξ0, ξ1, ..., ξn) ∈ Rn+1

n∑
j,l=1

ajl(x)ξjξl + d(x)ξ2
0 ≥ c3|ξ|2 (15.16)

with some constant c3 > 0.
Now we shall formulate conditions which imply a result on the stabilization

of solutions u of (15.1) as t → ∞. For simplicity we consider the case when N
is “local”, i.e. [N(u)](t) = [Ñ(t)](u(t)) where Ñ(t) : V → V ? is defined for all
t > 0 and M = 0.

Theorem 15.4. Assume that the operator N : Lploc(0,∞;V ) → Lqloc(0,∞;V ?)

is given by [N(u)](t) = [Ñ(t)](u(t)) where Ñ(t) : V → V ? satisfies the assump-
tions of Theorem 7.1 such that for all ṽ ∈ V

〈[Ñ(t)](ṽ), ṽ〉 ≥ c2(t+ 1)µ‖ṽ‖pV (15.17)

with some constants µ > p− 1 (p ≥ 2), c2 > 0. (In this case Ñ(t) is uniformly
monotone, see Definition 2.15.) The operator M = 0 and Q̃ satisfies (D2) and
(15.6). Further, there exist F∞ ∈ V ?, a continuous function Φ ≥ 0 with

lim
∞

Φ = 0,

∫ ∞
0

Φ(t)qdt <∞ (15.18)

such that
‖F (t)− F∞‖V ? ≤ Φ(t) (15.19)

and there exists a solution u∞ ∈ V of

Q̃u∞ = F∞ (15.20)

Then for a solution u of (15.1) with M = 0 we have

lim
t→∞

‖u′(t)‖H = 0, (15.21)
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0

(t+ 1)β‖u′(t)‖2Hdt <∞,
∫ ∞

0

(t+ 1)µ‖u′(t)‖pV dt <∞ (15.22)

where 0 ≤ β < [2µ− (p− 2)]/p and there exists w ∈ V such that

‖u(t)− w‖qV ≤
const
λ− 1

1

(t+ 1)λ−1
(15.23)

where λ = µ/(p− 1) > 1.

Proof. Since u∞ ∈ V and so its derivative with respect to t is 0, we may apply
(15.1) to u′ = (u− u∞)′, and thus, integrating over [0, T ] we obtain by (15.20)∫ T

0

〈u′′(t), u′(t)〉dt+

∫ T

0

〈[N(u′)](t), u′(t)〉dt+ (15.24)

∫ T

0

〈Q̃[u(t)− u∞], [u(t)− u∞]′〉dt =

∫ T

0

〈F (t)− F∞, u′(t)〉dt.

By using the notation y(t) = ‖u′(t)‖2H , we obtain by Remark 6.7 and (6.9)∫ T

0

〈u′′(t), u′(t)〉dt =
1

2
y(T )− 1

2
y(0) (15.25)

(see (15.9)) and by (14.8)∫ T

0

〈Q̃[u(t)− u∞], [u(t)− u∞]′〉dt = (15.26)

1

2
〈Q̃[u(T )− u∞], u(T )− u∞〉 −

1

2
〈Q̃[u(0)− u∞], u(0)− u∞〉.

Further, by Young’s inequality∫ T

0

〈F (t)− F∞, u′(t)〉dt
≤ (15.27)

εp

p

∫ T

0

‖u′(t)‖pV dt+
1

εqq

∫ T

0

‖F (t)− F∞‖qV ?dt.

Choosing sufficiently small ε > 0, by (15.17), (15.19), (15.24) - (15.27) we find

1

2
y(T ) +

c2
2

∫ T

0

(t+ 1)µ‖u′(t)‖pV dt+
1

2
〈Q̃[u(T )− u∞], u(T )− u∞〉 ≤ (15.28)

const
∫ T

0

[Φ(t)]qdt+
1

2
y(0) +

1

2
〈Q̃[u(0)− u∞], u(0)− u∞〉.

Since the right hand side is bounded for all T > 0 by (15.18), we obtain the
second part of (15.22), i.e.∫ ∞

0

(t+ 1)µ‖u′(t)‖pV dt <∞. (15.29)
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Consequently, for any T1 < T2 we have

‖u(T2)− u(T1)‖V = ‖(Su′)(T2)− (Su′)(T1)‖V = ‖
∫ T2

T1

u′(t)dt‖V ≤ (15.30)

∫ T2

T1

‖u′(t)‖V dt =

∫ T2

T1

1

(t+ 1)λ/q
(t+ 1)λ/q‖u′(t)‖V dt ≤

{∫ T2

T1

1

(t+ 1)λ
dt

}1/q {∫ T2

T1

(t+ 1)µ‖u′(t)‖pV dt
}1/p

where λ = µ/(p− 1) > 1 and thus pλ/q = λ(p− 1) = µ.
Thus, for any ε > 0 there exists T0 such that for T0 < T1 < T2

‖u(T2)− u(T1)‖V < ε.

Hence, there exists w ∈ V such that

lim
T→∞

‖u(T )− w‖V = 0. (15.31)

In order to prove (15.23), take the limit T2 → +∞ in (15.30), then we find

‖w − u(T1)‖V ≤
∫ ∞
T1

‖u′(t)‖V dt ≤

{∫ ∞
T1

1

(t+ 1)λ
dt

}1/q {∫ ∞
T1

(t+ 1)µ‖u′(t)‖pV dt
}
≤

{
1

λ− 1

1

(T1 + 1)λ−1

}1/q ∫ ∞
0

(t+ 1)µ‖u′(t)‖pV dt,

i.e. we have (15.23).
The first estimate in (15.22) can be obtained as follows. If 0 ≤ β < [2µ −

(p− 2)]/p then by Hölder’s inequality∫ ∞
0

(t+ 1)β‖u′(t)‖2Hdt ≤ const
∫ ∞

0

(t+ 1)β‖u′(t)‖2V dt =

const
∫ ∞

0

(t+ 1)β−2µ/p
[
(t+ 1)2µ/p‖u′(t)‖2V

]
dt ≤

const
{∫ ∞

0

(t+ 1)
βp−2µ
p−2 dt

}(p−2)/p{∫ ∞
0

(t+ 1)µ‖u′(t)‖pV dt
}2/p

<∞

because of the second part of (15.22) and βp−2µ
p−2 < −1. In the case p = 2

the first multiplier in the last term is the L∞(0,∞) norm of the function t 7→
(t+ 1)β−2µ/p.
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Now we apply again (15.1) to u′ = (u − u∞)′ and integrate over [T1, T2],
then we obtain by (15.20)∫ T2

T1

〈u′′(t), u′(t)〉dt+

∫ T2

T1

〈[N(u′)](t), u′(t)〉dt+

∫ T2

T1

〈Q̃[u(t)− u∞], [u(t)− u∞]′〉dt =

∫ T2

T1

〈F (t)− F∞, u′(t)〉dt,

whence, similarly to (15.28), we find

1

2
[y(T2)− y(T1)] +

c2
2

∫ T2

T1

(t+ 1)µ‖u′(t)‖pV dt+ (15.32)

1

2
〈Q̃[u(T2)−u∞], u(T2)−u∞〉−

1

2
〈Q̃[u(T1)−u∞], u(T1)−u∞〉 ≤ const

∫ T2

T1

[Φ(t)]qdt.

Since Q̃ : V → V ? is a continuous and linear operator, by (15.31)

lim
T1,T2→∞

{〈Q̃[u(T2)− u∞], u(T2)− u∞〉 − 〈Q̃[u(T1)− u∞], u(T1)− u∞〉} = 0,

thus (15.18), (15.29) imply

lim
T1,T2→∞

[y(T1)− y(T2)] = 0.

Thus limT→∞ y(T ) exists and is finite, further, by the first estimate in (15.22),
it must be 0, i.e. we have (15.21) which completes the proof of Theorem 15.4

The following example satisfies the assumptions of Theorem 15.4.

Example 15.5. Set [N(u)](t) = [Ñ(t)][u(t)] where

〈[Ñ(t)](ũ), ṽ〉 = (t+ 1)µ
∫

Ω

|∇ũ|p−2
n∑
j=1

(Dj ũ)(Dj ṽ) + |ũ|p−2ũṽ

 ,
ũ, ṽ ∈ V where V = W 1,p

0 (Ω) or V = W 1,p(Ω), µ > p− 1, p ≥ 2, M = 0 and

〈Q̃ũ, ṽ〉 =

∫
Ω

 n∑
j,l=1

ajl(Dj ũ)(Dlṽ) + dũṽ

 , ũ, ṽ ∈ V

where the functions ajl, d ∈ C(Ω) satisfy the (uniform ellipticity) condition
(15.16). Finally,

F (t) = F∞ + Φ(t)g where F∞ ∈ Lp(Ω), g ∈ Lq(Ω).
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It is well-known (see, e.g. [2]) that for a bounded domain Ω ⊂ Rn with
sufficiently smooth boundary and F∞ ∈ Lp(Ω), there exists a unique solution
ũ ∈W 2,p(Ω) solution of the linear equation

−
n∑

j,l=1

Dl(ajlDj ũ) + dũ = F∞ in Ω

with the boundary condition

ũ |∂Ω= 0, (∂Aν ũ) |∂Ω= 0,

respectively, where ∂Aν denotes the “conormal derivative” of ũ on ∂Ω (with re-
spect to the differential operator in the differential equation). Thus we have a
solution of (15.20).

Problems
1. Show that the operator M defined by (15.14) satisfies the assumptions of

Theorem 14.5.

2. Show that the Example 15.5 satisfies the assumptions of Theorem 15.4.

3. Formulate and prove an existence theorem on problem (15.1), (15.2) with
the operators M = 0, N,Q considered in Problem 3 of Section 14 with
arbitrary t ∈ (0,∞).

4. Formulate and prove an existence theorem on problem (15.1), (15.2) with
the operators M = 0, N,Q considered in Problem 4 of Section 14 with
arbitrary t ∈ (0,∞).

16 Semilinear hyperbolic equations
In this section we shall consider the equation (14.1) in the case when N = 0
and operator M has a particular form (see (16.2)), further, V is a closed linear
subspace of W 1,2(Ω), (p = 2), H = L2(Ω).

Existence of solutions in [0, T ]

Theorem 16.1. Let V ⊂ W 1,2(Ω) be a closed linear subspace, p = 2, H =
L2(Ω). Assume that Q̃ : V → V ? satisfies (D2) (see Section 14) and

〈Q̃ũ, ũ〉 ≥ c0‖ũ‖2W 1,2(Ω) for all ũ ∈ V (16.1)

with some constant c0 > 0 (i.e. Q̃ satisfies (15.6)).
Let operator M(u, u′) have the form

[M(u, u′)](t, x) = ϕ(x)h′(u(t)) + ψ(t, x;u)u′(t) where (16.2)
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ϕ : Ω→ R, ψ : QT × L2(QT )→ R

are measurable in x and (t, x), respectively, ψ has the Volterra property and

(uk)→ u in L2(QT ) implies ψ(t, x;uk)→ ψ(t, x;u) for a.a. (t, x) ∈ QT ,

for a subsequence. Further, there exist positive constants c1, c2, c3 such that

c1 ≤ ϕ(x) ≤ c2, 0 ≤ ψ(t, x;u) ≤ c3; (16.3)

h : R→ R is continuously differentiable function satisfying

h(η) ≥ 0, |h′(η)| ≤ const |η|%+1 where 0 ≤ % ≤ 2

n− 2
. (16.4)

(In the case n = 2, %+ 1 may be any nonnegative number.)
Then for any F ∈ L2(0, T ;H), u0 ∈ V , u1 ∈ H there exists u ∈ L∞(0, T ;V )

such that
u′ ∈ L∞(0, T ;H), u′′ ∈ L2(0, T ;V ?), (16.5)

u′′(t)+(Qu)(t)+ϕ(x)h′(u(t))+ψ(t, x;u)u′(t) = F (t) for a.a. t ∈ [0, T ], (16.6)

u(0) = u0, u′(0) = u1. (16.7)

Remark 16.2. One can show (see, e.g [93]) that H is dense in the Hilbert space
V ?, thus

H ⊂ V ? ⊂ H? (16.8)

is an evolution triple, hence

L2(0, T ;H) ⊂ L2(0, T ;V ?) ⊂ L2(0, T ;H?).

Consequently, since

u′′ ∈ L2(0, T ;V ?), we have (u′)′ ∈ L2(0, T ;H?)

which implies by u′ ∈ L2(0, T ;H) and (16.8)

u′ ∈ C([0, T ];V ?).

Since u1 ∈ H ⊂ V ?, the initial condition u(0) = u1 makes sense.

Proof of Theorem 16.1. We apply Galerkin’s method. Let w1, w2, ... be a lin-
early independent system in V such that the linear combinations are dense in
V . We want to find the m-th approximation of u in the form

um(t) =

m∑
l=1

glm(t)wl where glm ∈W 2,2(0, T ) = H2(0, T ) (16.9)
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such that for all j = 1, ...,m

〈u′′m(t), wj〉+ 〈(Qum)(t), wj〉+ (16.10)

〈ϕ(x)h′(um), wj〉+ 〈ψ(t, x;um)u′m(t), wj〉 = 〈F (t), wj〉,

um(0) = um0, u′m(0) = um1 (16.11)

where um0, um1 are linear combinations of w1, w2, ... satisfying

(um0)→ u0 in V, (um1)→ u1 in H. (16.12)

By the existence theorem for a system of functional differential equations with
Carathéodory conditions (see [32]) there exists a solution of (16.10), (16.11) in a
neighborhood of 0. The maximal solution of (16.10), (16.11) is defined in [0, T ].
Indeed, multiplying (16.10) by g′jm(t) and taking the sum with respect to j, we
obtain

〈u′′m(t), u′m(t)〉+ 〈(Qum)(t), u′m(t)〉+

〈ϕ(x)h′(um), u′m(t)〉+ 〈ψ(t, x;um)u′m(t), u′m(t)〉 = 〈F (t), u′m(t)〉.
Integrate the above equality over [0, t], we find by (14.8), Remark 6.7 and
Young’s inequality

1

2
‖u′m(t)‖2H +

1

2
〈(Qum)(t), um(t)〉+ (16.13)

∫
Ω

ϕ(x)h(um(t))dx+

∫ t

0

∫
Ω

ψ(τ, x;um)[u′m(τ)]2dxdτ =

∫ t

0

〈F (τ), u′m(τ)〉dτ +
1

2
‖u′m(0)‖2H +

1

2
〈Qum(0), um(0)〉+

∫
Ω

ϕ(x)h(um(0))dx ≤ 1

2

∫ T

0

‖F (τ)‖2Hdτ +
1

2

∫ t

0

‖u′m(τ)‖2Hdτ + const

where the constant is not depending on m and t, because of (D2), (16.3), (16.4),
(16.12)

|h(η)| ≤ const(1 + |η|%+2)

and by Sobolev’s imbedding theorem (see [1] and also Theorem 4.17), L%+2(Ω)
is continuously imbedded into W 1,2(Ω) since

%+ 2 ≤ 2

n− 2
+ 2 =

2n− 2

n− 2
<

2n

n− 2
.

By (D2), (16.3), (16.4), (16.13) implies

‖u′m(t)‖2H ≤ c4
[
1 +

∫ t

0

‖u′m(τ)‖2Hdτ
]

(16.14)
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with some constant c4, not depending on t and m (but depending on ‖u0‖V ,
‖u1‖H , ‖F‖L2(QT ).) Thus by Gronwall’s inequality

‖u′m(t)‖2H ≤ const , t ∈ [0, T ]. (16.15)

The constant is not depending on t and m (but depending on ‖u0‖V , ‖u1‖H ,
‖F‖L2(QT )). Thus (16.1), (16.13) imply

‖um(t)‖2V ≤ const , t ∈ [0, T ]. (16.16)

By (16.15), (16.16) the maximal solution um of (16.10), (16.11) is defined on
[0, T ] and (um) is bounded in L∞(0, T ;V ), (u′m) is bounded in L∞(0, T ;H).

Consequently, there are a subsequence of (um), again denoted by (um), and
u ∈ L∞(0, T ;V ) such that

(um)→ u weakly in L∞(0, T ;V ), (16.17)

(u′m)→ u′ weakly in L∞(0, T ;H), (16.18)

which means that for any fixed g ∈ L1(0, T ;V ?) and g1 ∈ L1(0, T ;H)∫ T

0

〈g(t), um(t)〉dt→
∫ T

0

〈g(t), u(t)〉dt,

∫ T

0

(g1(t), u′m(t))dt→
∫ T

0

(g1(t), u′(t))dt,

because um, u (and u′m, u
′) are linear continuous functionals on L1(0, T ;V ?)

(and L1(0, T ;H), respectively).
Since the imbedding of W 1,2(Ω) into L2(Ω) is compact (if Ω is bounded and

its boundary is “sufficiently good”, see Theorem 4.1), by Theorem 10.1, (16.17),
(16.18), for a subsequence

(um)→ u in L2(0, T ;H) = L2(QT ) and a.e. in QT . (16.19)

As Q̃ : V → V ? is a linear and continuous operator, by (16.17), for all v ∈ V

〈Qum(t), v〉 → 〈Qu(t), v〉 weakly in L∞(0, T ) (16.20)

and by (16.18)

〈u′′m(t), v〉 =
d

dt
〈u′m(t), v〉 → 〈u′′(t), v〉 (16.21)

with respect to the weak convergence of the space of distributions D′(0, T ).
Further, by (16.19) and the continuity of h′

ϕ(x)h′(um(t))→ ϕ(x)h′(u(t)) for a.e. (t, x) ∈ QT . (16.22)

By (16.3), (16.4)

‖ϕ(x)h′(um(t))‖L2(Ω) ≤ const‖h′(um(t))‖L2(Ω) ≤ (16.23)
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const
[∫

Ω

|um(t)|2(%+1)dx

]1/2

= const
[∫

Ω

|um(t)|q0dx
]1/2

≤ const‖um(t)‖q0/2V

because for 2(%+ 1) = q0 ≤ 2n
n−2 we have by Sobolev’s imbedding theorem (see,

e.g [1] and also Theorem 4.17)

Lq0(Ω) ⊂ V since
1

q0
≥ 1

2
− 1

n
=
n− 2

2n
.

Thus by the Cauchy–Schwarz inequality the sequence of functions ϕ(x)h′(um(t))v
is equiintegrable in Ω for each fixed v ∈ V and a.a. t ∈ [0, T ]. So by Vitali’s
theorem for a.a. t ∈ [0, T ]

lim
m→∞

∫
Ω

ϕ(x)h′(um(t))vdx =

∫
Ω

ϕ(x)h′(u(t))vdx. (16.24)

Further, by the assumption of our theorem, for a.e. t ∈ [0, T ], for a subsequence

ψ(t, x;um)→ ψ(t, x;u) in L2(Ω), (16.25)

hence for all fixed v ∈ V ⊂ H, a.a. t ∈ [0, T ]∫
Ω

ψ(t, x;um)u′m(t)vdx =

∫
Ω

[ψ(t, x;um)− ψ(t, x;u)]u′m(t)vdx+ (16.26)

∫
Ω

ψ(t, x;u)u′m(t)vdx→
∫

Ω

ψ(t, x;u)u′(t)vdx

because for a.a. t ∈ [0, T ], u′m(t) is bounded in L2(Ω) and

u′m(t)→ u′(t) weakly in H.

Let v ∈ V be an arbitrary element and vN =
∑N
j=1 βjwj a sequence, ap-

proximating v with respect to the norm of V . By (16.10) we have

〈u′′m(t), vN 〉+ 〈Qum(t), vN 〉+ 〈ϕ(x)h′(um(t)), vN 〉+

〈ψ(t, x;um)u′m(t), vN 〉 = 〈F (t), vN 〉
which implies as N →∞

〈u′′m(t), v〉+ 〈Qum(t), v〉+ 〈ϕ(x)h′(um)(t), v〉+

〈ψ(t, x;um)u′m(t), v〉 = 〈F (t), v〉 for a.a. t ∈ [0, T ].

By using (16.20), (16.21), (16.24), (16.26) we obtain from the above equality as
m→∞

lim
m→∞

〈u′′m(t), v〉+ 〈Qu(t), v〉+ 〈ϕ(x)h′(u)(t), v〉+ (16.27)

〈ψ(t, x;u)u′(t), v〉 = 〈F (t), v〉.



16. SEMILINEAR HYPERBOLIC EQUATIONS 129

Equality (16.27) means that for a.a. t ∈ [0, T ], u′′m(t) is weakly converging to
an element of V ? and this limit as a function of t belongs to L2(0, T ;V ?). Thus
u′′ ∈ L2(0, T ;V ?) and it is not difficult to show that

(u′′m)→ u′′ weakly in L2(0, T ;V ?). (16.28)

According to (16.17), (16.18) u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;H) thus Theorem
6.6 implies u ∈ C(0, T ;H) and for ψ ∈ C∞[0, T ] with the property ψ(0) = 1,
ψ(T ) = 0 we have for all j∫ T

0

〈u′(t), wj〉ψ(t)dt = −〈u(0), wj〉 −
∫ T

0

〈u(t), wj〉ψ′(t)dt,

∫ T

0

〈u′m(t), wj〉ψ(t)dt = −〈um(0), wj〉 −
∫ T

0

〈um(t), wj〉ψ′(t)dt.

Hence by (16.11), (16.12), (16.17), (16.18) we obtain as m→∞

〈u0, wj〉 = lim
m→∞

〈um0, wj〉 = lim
m→∞

〈um(0), wj〉 = 〈u(0), wj〉

for all j which implies u(0) = u0.
Similarly, since u′ ∈ L∞(0, T ;H), u′′ ∈ L2((0, T ;V ?), by using Remark 16.2,

we obtain u′(0) = u1 and so by (16.27) Theorem 16.1 is proved.

Uniqueness and smoothness of solutions

Now we formulate and prove a theorem on the uniqueness and continuous de-
pendence of the solution on F , u0, u1.

Theorem 16.3. Assume that the conditions of Theorem 16.1 are fulfilled so
that ψ(t, x;u) = ψ̃(x) with the property

0 ≤ ψ̃(x) ≤ const, (16.29)

h′′ is continuous and satisfies

|h′′(η)| ≤ const|η|%. (16.30)

Then the solution of (16.6), (16.7) is unique. Further, if uj is a solution of
(16.6), (16.7) with F = Fj, u0 = uj0, u1 = uj1 (j = 1, 2) then for

w = u1 − u2 and w1(s) =

∫ s

0

[u1(τ)− u2(τ)]dτ

we have
‖w(s)‖2H + ‖w1(s)‖2V ≤ (16.31)

χ0(Fj , u
j
0, u

j
1)es

[
‖f1 − f2‖2L2(Qs)

+ ‖u1
0 − u2

0‖2H + ‖u1
1 − u2

1‖2V
]
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where χ0 is a function, the values of which are bounded if ‖Fj‖L2(QT ), ‖uj0‖V ,
‖uj1‖H are bounded and

fj(t) =

∫ t

0

Fj(τ)dτ.

Proof. Assume that uj is a solution of (16.6), (16.7) with F = Fj , u0 = uj0,
u1 = uj1 (j = 1, 2). Let s ∈ [0, T ] be an arbitrary fixed number and apply (16.6)
(with uj) to v, defined by

v(t) =

∫ s

t

[u1(τ)− u2(τ)]dτ if 0 ≤ t ≤ s and

v(t) = 0 if s < t ≤ T.
It is not difficult to show that

v ∈ C(0, T ;V ), v′ ∈ L∞(0, T ;V ), (16.32)

v′(t) = −w(t) = u2(t)− u1(t) if t < s and v′(t) = 0 if t > s

and thus

〈w′′(t), v(t)〉+ 〈Qw(t), v(t)〉+ 〈ϕ(x)[h′(u1(t))− h′(u2(t))], v(t)〉+

〈ψ̃(x)w′(t), v(t)〉 = 〈F1(t)− F2(t), v(t)〉.
Integrating over (0, s), by (16.32) we obtain∫ s

0

〈w′′(t), v(t)〉dt−
∫ s

0

〈Qv′(t), v(t)〉dt+

∫ s

0

〈ψ̃(x)w′(t), v(t)〉dt = (16.33)

∫ s

0

〈F1(t)− F2(t), v(t)〉dt−
∫ s

0

〈ϕ(x)[h′(u1(t))− h′(u2(t))], v(t)〉dt.

By Remarks 6.7, 16.2 and (16.32)∫ s

0

〈w′′(t), v(t)〉dt =

∫ s

0

〈w′(t), w(t)〉dt− 〈w′(0), v(0)〉 =

1

2
‖w(s)‖2H −

1

2
‖w(0)‖2H − 〈w′(0), v(0)〉.

Since v(s) = 0, integrating by parts, by (14.8) we get from (16.33)

1

2
‖w(s)‖2H +

1

2
〈Qv(0), v(0)〉+

∫ s

0

[∫
Ω

ψ̃(x)w2(t)dx

]
dt = (16.34)

∫ s

0

〈F1(t)− F2(t), v(t)〉+

∫
Ω

w′(0)v(0)dx+

∫
Ω

ψ̃(x)w(0)v(0)dx−∫ s

0

〈ϕ(x)[h′(u1(t))− h′(u2(t))], v(t)〉dt+
1

2
‖w(0)‖2H .
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By using the definition of w and the notation w1(s) =
∫ s

0
w(τ)dτ we have

v(0) =

∫ s

0

w(τ)dτ = w1(s) (16.35)

and so by (16.1)

〈Qv(0), v(0)〉 ≥ c0‖v(0)‖2V = c0‖w1(s)‖2V . (16.36)

By using the notation fj(t) =
∫ t

0
Fj(τ)dτ , we obtain by integration by parts and

Young’s inequality∫ s

0

〈F1(t)− F2(t), v(t)〉dt
=

∫
Ω

{∫ s

0

[f ′1(t)− f ′2(t)]v(t)dt

}
dx
= (16.37)

∫
Ω

{∫ s

0

[f1(t)− f2(t)]w(t)dt

}
dx
≤ 1

2

∫ s

0

‖w(t)‖2Hdt+
1

2
‖f1 − f2‖2L2(Qs)

.

Similarly, by (16.35)∫
Ω

w′(0)v(0)dx
≤ ε‖w1(s)‖2V dt+ C2(ε)‖w′(0)‖2H (16.38)

and by (16.3)∫
Ω

ψ̃(x)w(0)v(0)dx
≤ ε‖w1(s)‖2V dt+ C3(ε)‖w(0)‖2H . (16.39)

(Cj(ε) denote constants, depending on ε.)
Finally, the last term on the right hand side of (16.34) can be estimated as

follows: by (16.3), (16.30) and Lagrange’s mean value theorem∫ s

0

〈ϕ(x)[h′(u1(t))− h′(u2(t))], v(t)〉dt
≤ (16.40)

const
∫ s

0

{∫
Ω

|h′(u1(t))− h′(u2(t))||v(t)|dx
}
dt =

const
∫ s

0

{∫
Ω

sup{|h′′(η)| : η ∈ (a, b)}|u1(t)− u2(t)||v(t)|dx
}
dt ≤

const
∫ s

0

{∫
Ω

[|u1(t)|% + |u2(t)|%]|u1(t)− u2(t)||v(t)|dx
}
dt

where
a = min{u1(t), u2(t)}, b = max{u1(t), u2(t)}.

Since
%n ≤ 2n

n− 2
= q,
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V is continuously imbedded into Lρn(Ω) and Lq(Ω), and so we may apply
Hölder’s inequality by 1

n + 1
2 + 1

q = 1:∫ s

0

{∫
Ω

[|u1(t)|% + |u2(t)|%]|w(t)||v(t)|dx
}
dt ≤ (16.41)

const
∫ s

0

[
‖|u1(t)|%‖Ln(Ω) + ‖|u2(t)|%‖Ln(Ω)

]
‖w(t)‖H‖v(t)‖Lq(Ω)dt.

const
∫ s

0

[‖u1(t)‖%V + ‖u2(t)‖%V ] ‖w(t)‖H‖v(t)‖Lq(Ω)dt

Since u1, u2 ∈ L∞(0, T ;V ) and according to the proof of Theorem 16.1, their
L∞(0, T ;V ) norm can be estimated by a function of ‖Fj‖L2(QT ), ‖uj0‖V , ‖uj1‖H ,
the values of which are bounded if ‖Fj‖L2(QT ), ‖uj0‖V , ‖uj1‖H are bounded (see
(16.14) – (16.16)), we obtain from (16.40), (16.41) and v(t) = w1(s)−w1(t) (for
t ≤ s) that ∫ s

0

〈ϕ(x)[h′(u1(t))− h′(u2(t))], v(t)〉dt
≤ (16.42)

χ(Fj , u
j
0, u

j
1)

∫ s

0

‖w(t)‖H‖v(t)‖Lq(Ω)dt ≤

χ(Fj , u
j
0, u

j
1)

∫ s

0

‖w(t)‖H
[
‖w1(t)‖Lq(Ω) + ‖w1(s)‖Lq(Ω)

]
dt ≤

χ(Fj , u
j
0, u

j
1)

[
ε‖w1(s)‖2V + C(ε)

∫ s

0

(
‖w(t)‖2H + ‖w1(t)‖2V

)
dt

]
where χ(Fj , u

j
0, u

j
1) is bounded if ‖Fj‖L2(QT ), ‖uj0‖V , ‖uj1‖H are bounded.

Choosing sufficiently small ε > 0, we obtain from (16.34), (16.36) – (16.39),
(16.42) with some χ̃(Fj , u

j
0, u

j
1)

‖w(s)‖2H + ‖w1(s)‖2V ≤ χ̃(Fj , u
j
0, u

j
1)

∫ s

0

[‖w(t)2
H + ‖w1(t)‖2V ]dt+

c6

[
‖f1 − f2‖2L2(Qs)

+ ‖w(0)‖2H + ‖w′(0)‖2V
]
.

Hence by Gronwall’s lemma

‖w(s)‖2H + ‖w1(s)‖2V ≤

χ0(Fj , u
j
0, u

j
1)es

[
‖f1 − f2‖2L2(Qs)

+ ‖w(0)‖2H + ‖w′(0)‖2V
]
.

Thus we have (16.31) and, consequently, the uniqueness of the solution of (16.6),
(16.7).

If F , u0, u1 satisfy certain smoothness conditions then we have smoother
solutions of (16.6), (16.7).
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Theorem 16.4. Assume that the conditions of Theorem 16.3 are fulfilled so
that the restriction of (the linear and continuous operator) Q̃ : V → V ? to
V ∩H2(Ω) is continuous operator from H2(Ω) into H = L2(Ω);

F ′ ∈ L2(QT ), u0 ∈ V ∩H2(Ω), u1 ∈ V. (16.43)

Then there exists a (unique) solution

u ∈ L∞(0, T ;V ) (16.44)

of (16.6), (16.7) satisfying

u′ ∈ L∞(0, T ;V ), u′′ ∈ L∞(0, T ;H). (16.45)

If Q̃ : V → V ? is such that for any

f ∈ L2(Ω), Q̃ũ = f imply ũ ∈ H2(Ω) and (16.46)

‖ũ‖H2(Ω) ≤ const‖f‖L2(Ω)

then for the solution u of (16.6), (16.7) we have

u ∈ L∞(0, T ;V ∩H2(Ω)). (16.47)

Proof. We apply Galerkin’s method and, similarly to the proof of Theorem 16.1,
we want to find the solution u of (16.6), (16.7) as the limit of functions um given
by (16.9) with glm ∈ H3(0, T ), satisfying (16.10), (16.11) and instead of (16.12)
we have

(um0)→ u0 in V ∩H2(Ω), (um1)→ u1 in V. (16.48)

Since h′′ is continuous, we may differentiate (16.10) with respect to t, so we
obtain

〈u(3)
m (t), wj〉+ 〈Qu′m(t), wj〉+ 〈ϕ(x)h′′(um)u′m(t), wj〉+ (16.49)

〈ψ̃(x)u′′m(t), wj〉 = 〈F ′(t), wj〉.
Multiplying (16.49) with g′′jm(t) and taking the sum with respect to j, we find

〈u(3)
m (t), u′′m(t)〉+ 〈Qu′m(t), u′′m(t)〉+ 〈ϕ(x)h′′(um)u′m(t), u′′m(t)〉+ (16.50)

〈ψ̃(x)u′′m(t), u′′m(t)〉 = 〈F ′(t), u′′m(t)〉.
Integrating both sides of (16.50) over (0, t), we obtain (similarly to (16.13))

1

2
‖u′′m(t)‖2H +

1

2
〈Qu′m(t), u′m(t)〉+ (16.51)

∫ t

0

∫
Ω

ϕ(x)h′′(um)u′m(τ)u′′m(τ)dxdτ +

∫ t

0

∫
Ω

ψ̃(x)[u′′m(τ)]2dxdτx =
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∫ t

0

〈F ′(τ), u′′m(τ)〉dτ +
1

2
‖u′′m(0)‖2H +

1

2
〈Qu′m(0), u′m(0)〉.

Further, multiplying (16.10) by g′′jm(t) and summing with respect to j, we
obtain

‖u′′m(t)‖2H + 〈Qum(t), u′′m(t)〉+ 〈ϕ(x)h′(um), u′′m(t)〉+
〈ψ̃(x)u′m(t), u′′m(t)〉 = 〈F (t), u′′m(t)〉,

thus
‖u′′m(0)‖2H ≤[

‖F (0)‖H + ‖Q̃um(0)‖H + c2‖h′(um(0))‖H + c3‖u′m(0)‖H
]
‖u′′m(0)‖H .

So by (16.48) and Sobolev’s imbedding theorem (see (16.23))

‖u′′m(0)‖H ≤ const for all m (16.52)

since by the assumption of our theorem

‖Q̃um(0)‖H ≤ const‖um(0)‖H2(Ω).

Finally, the third term on the left hand side of (16.51) can be estimated as
follows: (similarly to (16.41), (16.42)) by Hölder’s inequality with 1

n + 1
2 + 1

q = 1∫ t

0

[∫
Ω

ϕ(x)h′′(um(τ))u′m(τ)u′′m(τ)dx

]
dτ
≤ (16.53)

const
∫ t

0

[∫
Ω

|um(τ)|%|u′m(τ)||u′′m(τ)|dx
]
dτ ≤

const
∫ t

0

[
‖um(τ)%‖Ln(Ω)‖u′m(τ)‖Lq(Ω)‖u′′m(τ)‖H

]
dτ ≤

const
∫ t

0

[‖um(τ)‖%V ‖u′m(τ)‖V ‖u′′m(τ)‖H ] dτ ≤

const
∫ t

0

‖u′m(τ)‖V ‖u′′m(τ)‖Hdτ ≤ const
∫ t

0

[
‖u′m(τ)‖2V + ‖u′′m(τ)‖2H

]
dτ

since (um) is bounded in L∞(0, T ;V ).
Thus, (16.51) - (16.53) (16.1), (ii) and Young’s inequality imply

‖u′′m(t)‖2H + ‖u′m(t)‖2V ≤ const
{

1 +

∫ t

0

[
‖u′′m(τ)‖2H + ‖u′m(τ)‖2V

]
dτ

}
and so by Gronwall’s lemma for all m, t ∈ [0, T ]

‖u′′m(t)‖2H + ‖u′m(t)‖2V ≤ const. (16.54)

Hence, similarly to the proof of Theorem 16.1 we obtain

(u′m)→ u′ weakly in L∞(0, T ;V ),
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(u′′m)→ u′′ weakly in L∞(0, T ;H),

we have (16.17), too, for the (unique) solution of (16.6), (16.7).
If (16.46) holds then from the equation (16.6) and (16.44), (16.45) we obtain

directly (16.47).

Remark 16.5. According to [51] the operator Q̃ given in (14.29) satisfies
(16.46).

Solutions in (0.∞)

Similarly to the previous existence theorems, one can prove existence of solutions
to (16.6), (16.7) for t ∈ (0,∞).

Theorem 16.6. Assume that the conditions of Theorem 16.1 are fulfilled for
all T > 0 with

ψ : Q∞ × L2(Q∞)→ R,

satisfying (16.3) for all t ∈ (0,∞). Then for any F ∈ L2
loc(0,∞;H), u0 ∈ V ,

u1 ∈ H there exists u ∈ L∞loc(0,∞;V ) such that u′ ∈ L∞loc(0,∞;H), u′′ ∈
L2
loc(0,∞;V ?) and for a.a. t ∈ (0,∞), (16.6) and (16.7) hold.

Theorem 16.7. Assume that the conditions of Theorem 16.4 are fulfilled for
all finite T > 0 and the conditions of Theorem 16.6 are satisfied, too. If

F ′ ∈ L2
loc(0,∞;H), u0 ∈ V ∩H2(Ω), u1 ∈ V

then there exists a (unique) solution of (16.6), (16.7)

u ∈ L∞loc(0,∞;V ) satisfying u′ ∈ L∞loc(0,∞;V ), u′′ ∈ L∞loc(0,∞;H).

Further, (16.46) implies u ∈ L∞loc(0,∞;V ∩H2(Ω)).

Now we formulate and prove a theorem on the “boundedness” of the solution
of (16.6), (16.7) for t ∈ (0,∞).

Theorem 16.8. Assume that the conditions of Theorem 16.7 are fulfilled such
that ψ̃(x) ≥ c̃ ≥ 0, on F assuming only F ∈ L2

loc(0,∞;H) and u is a solution
of (16.6), (16.7) for t ∈ (0,∞).

If with some T0 > 0, F (t) = 0 for a.a. t > T0 then

‖u′(t)‖2H + c0‖u(t)‖2V + 2c1

∫
Ω

h(u(t))dx+ (16.55)

c̃

∫ t

0

[∫
Ω

|u′(τ)|2dx
]
dτ ≤ const, t ∈ (0,∞).

Consequently,

u ∈ L∞(0,∞;V ), u′ ∈ L∞(0,∞;H) and ψ̃1/2u′ ∈ L2(0,∞;H).
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Further,
F ∈ L2(0,∞;H) and c̃ > 0 (16.56)

also imply (16.55). Consequently,

‖u′(t)‖H ≤ const e−c̃t, t ∈ (0,∞). (16.57)

Finally, if F ∈ L∞(0,∞;H) and c̃ > 0 then

1

t

∫ t

0

‖u′(τ)‖2Hdτ ≤ const

and thus

‖u′(t)‖2H+c0‖u(t)‖2V +2c1

∫
Ω

h(u(t))dx+2c̃

∫ t

0

[∫
Ω

|u′(τ)|2dx
]
dτ ≤ ĉt (16.58)

with some constant ĉ.

Proof. Let u be a solution of (16.6), (16.7) for t ∈ (0,∞). By (16.1), (16.13) we
obtain for a.a. t ∈ (0,∞)

1

2
‖u′m(t)‖2H +

1

2
c0‖um(t)‖2V +

∫
Ω

ϕ(x)h(um(t))dx+ (16.59)

c̃

∫ t

0

[∫
Ω

|u′m(τ)|2dx
]
dτ ≤

1

2

∫ T0

0

‖F (τ)‖2Hdτ +
1

2

∫ T0

0

‖u′m(τ)‖2Hdτ + ĉ

where the constant ĉ is independent of t. Thus

‖u′m(t)‖2H ≤ c4 +

∫ t

0

b(τ)‖u′m(τ)‖2Hdτ (16.60)

with some constant c4 (independent of t) and

b(τ) = 1 for 0 ≤ τ ≤ T0, b(τ) = 0 for τ > T0.

From (16.60) by Gronwall’s lemma we find

‖u′m(t)‖2H ≤ c4 + c4

∫ T0

0

eT0−sds ≤ const, t ∈ (0, T0). (16.61)

Since by (16.17), (16.18)

‖u(t)‖2V ≤ lim inf ‖um(t)‖2V , ‖u′(t)‖2H ≤ lim inf ‖u′m(t)‖2H ,

by (16.19), Vitali’s theorem, from (16.59) we obtain as m→∞ (16.55).
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If F ∈ L2(0,∞;H) and c̃ > 0, we obtain similarly to (16.59)

1

2
‖u′m(t)‖2H +

1

2
c0‖um(t)‖2V +

∫
Ω

ϕ(x)h(um(t))dx+ (16.62)

c̃

∫ t

0

[∫
Ω

|u′m(τ)|2dx
]
dτ ≤ ε

∫ t

0

‖u′m(τ)‖2Hdτ + C(ε)

∫ t

0

‖F (τ)‖2Hdτ + ĉ.

By (16.56) and (16.62) with sufficiently small ε > 0, we obtain∫ t

0

‖u′m(τ)‖2Hdτ ≤ const, t ∈ (0,∞)

and so we obtain from (16.62) (16.55). Further, by (16.55)

‖u′(t)‖2H + 2c̃

∫ t

0

‖u′(τ)‖2Hdτ ≤ c?

with some positive constant c?. Thus by using Gronwall’s lemma we obtain

‖u′(t)‖2H ≤ c?e−2c̃t

which implies (16.57).
Finally, if F ∈ L∞(0,∞;H) and c̃ > 0, we have similarly to (16.62),

1

2
‖u′m(t)‖2H +

1

2
c0‖um(t)‖2V +

∫
Ω

ϕ(x)h(um(t))dx+ (16.63)

c̃

∫ t

0

[∫
Ω

|u′m(τ)|2dx
]
dτ ≤ ‖F‖L∞(0,∞;H)

∫ t

0

‖u′m(τ)‖Hdτ ≤

const · t1/2
[∫ t

0

‖u′m(τ)‖2Hdτ
]1/2

.

By using the notation

Y (t) =

∫ t

0

‖u′m(τ)‖2Hdτ, we have Y ′(t) = ‖u′m(t)‖2H

and thus
Y ′(t) + c4Y (t) ≤ c5t1/2[Y (t)]1/2 + c6 (16.64)

with constants c4, c5, c6 > 0. Set z(t) = Y (t)/t, then from (16.64) we obtain

z′(t) +

(
c4 +

1

t

)
z(t) ≤ c5[z(t)]1/2 +

c6
t
,

whence
z′(t) + c4z(t) ≤ c5[z(t)]1/2 +

c6
t
≤ 2c5[z(t)]1/2
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if t ≥ c5c6 = t0 and z(t) ≥ 1. Thus, assuming z(t) ≥ 1, we obtain for t > t0

z′(t) ≤ d1[z(t)]1/2 − d2z(t) where d2 > 0. (16.65)

Inequality (16.65) implies that z(t) is bounded for t > t0 because if z(t) >
(d1/d2)2 then the right hand side of (16.65) is negative, thus the nonnegative
function z is decreasing.

Consequently, there is a constant c? such that

0 ≤ z(t) ≤ c?, t ∈ (0,∞), i.e.

1

t

∫ t

0

‖u′(τ)‖2Hdτ ≤ c?

and by (16.63) we have (16.58).

Remark 16.9. Assume that the conditions of Theorem 16.8 are fulfilled in the
following form: there exist F∞ ∈ H and u∞ ∈ V such that

F − F∞ ∈ L2(0,∞;H) and

u∞ ∈ V is a solution of Q̃u∞ = F∞. (16.66)

(Such u∞ ∈ V exists if Q̃ is an elliptic operator with K = 0, considered in
Theorem 14.5) Then (16.55) holds. Indeed, taking the difference of (??) and
(16.66), we obtain (16.62) with w = u− u∞, instead of u (in the third term on
the left hand side with u) and with F − F∞, instead of F .

Theorem 16.10. Assume that the conditions of Theorem 16.8 are satisfied in
the more general form, formulated in Remark 16.9, i.e. there exists F∞ ∈ H
such that F − F∞ ∈ L2(0,∞;H) and u∞ is a solution of (16.66), i.e. Q̃u∞ =
F∞. Further,

ψ̃(x) ≥ c̃ with a constant c̃ > 0. (16.67)

Then for the solution u of (16.6), (16.7)∫ ∞
0

‖u′(τ)‖Hdτ <∞, i.e. u′ ∈ L1(0,∞;H)

and there exists w0 ∈ H such that

u(T )→ w0 in H as T →∞, ‖u(T )− w0‖H ≤ const e−c̃T .

Proof. According to Theorem 16.8

‖u′(t)‖H ≤ const e−c̃t, (16.68)

thus ∫ ∞
0

‖u′(t)‖Hdτ <∞. (16.69)
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Further, applying Theorem 6.6 to v = u(T2) − u(T1) (which is constant in t),
we obtain by using u′(t) ∈ H
‖u(T2)− u(T1)‖2H = (u(T2), u(T2)− u(T1))− (u(T1), u(T2)− u(T1)) =∫ T2

T1

〈u′(t), u(T2)− u(T1)〉dt =

∫ T2

T1

(u′(t), u(T2)− u(T1))dt ≤

‖u(T2)− u(T1)‖H
∫ T2

T1

‖u′(t)‖Hdt

which implies

‖u(T2)− u(T1)‖H ≤
∫ T2

T1

‖u′(t)‖Hdt.

Hence by (16.69)
‖u(T2)− u(T1)‖H → 0

as T1, T2 →∞, i.e. there is some w0 ∈ H such that

u(T )→ w0 in H as T →∞
and by (16.68)

‖u(T )− w‖H ≤
∫ ∞
T

‖u′(t)‖Hdt ≤ const
∫ ∞
T

e−c̃tdt = const e−c̃T .

Theorem 16.11. Assume that the conditions of Theorem 16.10 are satisfied,
further, F ′ ∈ L2(0,∞;H), h ∈ C2 and h′′ is bounded. Then

‖u′′(t)‖H ≤ const e−c̃t, t ∈ (0,∞) and (16.70)

u′ ∈ L∞(0,∞;V ).

Further, if limt→∞ ‖F (t) − F∞‖H = 0 then for the function w0 satisfying
limt→∞ ‖u(t) − w0‖H = 0 (see Theorem 16.10) we have with arbitrary χ ∈
V ∩H2(Ω) ∫

Ω

w0Q̃χdx+

∫
Ω

ϕ(x)h(w0(x))χdx =

∫
Ω

F∞χdx. (16.71)

If Q̃ is defined by

〈Q̃ũ, ṽ〉 =

∫
Ω

 n∑
j,l=1

ajl(x)(Dlũ)(Dj ṽ) + d(x)ũṽ

 dx
(see Theorem 14.5) then equation (16.71) means that w0 is a weak (distribu-
tional) solution of

−
n∑

j,l=1

Dj [ajl(x)Dlw0] + ϕ(x)h(w0(x)) = F∞

(with some homogeneous boundary conditions).
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Sketch of the proof. One applies the arguments in the proof of Theorem 16.4.
Since h′′ is bounded, the third term on the left hand side of (16.51) can be
estimated as follows∣∣∣∣∫ t

0

[∫
Ω

ϕ(x)h′′(um(τ))u′m(τ)u′′m(τ)dx

]
dτ

∣∣∣∣ ≤
const

∫ t

0

‖u′m(τ)‖H‖u′′m(τ)‖Hdτ ≤ ε
∫ t

0

‖u′′m(τ)‖2H + C(ε)

∫ t

0

‖u′m(τ)‖2Hdτ.

Choosing sufficiently small ε > 0, we obtain from (16.51)

‖u′′m(t)‖2H + c̃

∫ t

0

‖u′′m(τ)‖2Hdτ ≤ const, t ∈ (0,∞).

Thus Gronwall’s lemma implies (16.70). Applying (16.6) to χ ∈ V ∩H2(Ω), we
obtain (16.71) as t→∞.

Problems
1. Prove Theorem 16.6.

2. Prove Theorem 16.7.

3. Prove Theorem 16.11
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an array of cells with semi-permeable membranes, Math. Modelling
Num. Anal. 28 (1994), 59-94.

[39] W. Jäger and N. Kutev, Discontinuous solutions of the nonlin-
ear transmission problem for quasilinear elliptic equations, Preprint
IWR der Univ. Heidelberg 98-22 (1998), 1-37.

[40] W. Jäger and L. Simon, On transmission problems for nonlinear
parabolic differential equations, Annales Univ. Sci. Budapest 45
(2002), 143-158.

[41] W. Jäger and L. Simon, On a system of quasilinear parabolic func-
tional differential equations, Acta Math. Hung. 112 (2006), 39-55.

[42] V. Komornik, Lectures on Real Analysis I-II (in French and Hun-
garian), Ellipses, 2001 and Typotex, 2003.



144 BIBLIOGRAPHY

[43] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear
and Quasilinear Equations of Parabolic Type, American Math. Soc.,
Providence, R.I., 1968.

[44] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear ans Quasilinear El-
liptic Equations, Academic Press, New York, 1968.

[45] R. Landes, Quasilinear elliptic operators and weak solutions of the
Euler equation, Manuscripta Math. 27 (1979), 47-72.

[46] R. Landes, On Galerkin’s method in the existence theory of quasi-
linear elliptic equations, J. Functional Analysis 39 (1980), 123-148.

[47] R. Landes and V. Mustonen, On pseudomonotone operators and
nonlinear noncoercive variational problems on unbounded domains,
Math. Ann. 248 (1980), 241-246.

[48] R. Landes and V. Mustonen, Boundary value problems for strongly
nonlinear second order elliptic equations, Bolletino U.M.I. (6) 4-B
(1985), 15-32.

[49] G. M. Liebermann, Second Order Parabolic Differential Equations,
World Scientific, 1996.

[50] J. L. Lions, Quelques Métodes de Résolution des Problèmes aux Lim-
ites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[51] J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Prob-
lems and Applications I, Springer, New York, 1972.

[52] J. D. Logan, M. R. Petersen and T. S. Shores, Numerical study of
reaction-mineralogy-porosity changes in porous media, Appl. Math.
Comput. 127 (2002), 149-164.

[53] G. Mahler, Nonlinear parabolic problems in unbounded domains,
Proc. Roy. Soc. Edinburgh, Sect. A 82 (1978/79), 201-209.

[54] V. Mustonen, On pseudo-monotone operators and nonlinear
parabolic initial-boundary value problems on unbounded domains,
Ann. Acad. Sci. Fenn. Ser. A I. Math. 6 (1981), 225-232.

[55] V. Mustonen and C. G. Simader, On the existence and uniqueness
of solutions for strongly nonlinear elliptic variational problems, Ann.
Acad. Sci. Fenn. Ser. A I. Math. 6 (1981), 233-253.

[56] V. Mustonen, Mappings of monotone type and nonlinear obstacle
problem, Bayreuther Math. Schriften 17 (1984), 171-183.

[57] V. Mustonen, Mappings of monotone type: Theory and applications,
Proc. Int. Spring School “Nonlinear Analysis, Function Spaces and
Applications” 4, Teubner Texte zur Math. 119 (1990), 104-126.



BIBLIOGRAPHY 145

[58] A. D. Myshkis, General Theory of Differential Equations with Re-
tarded Argument, A.M.S. Translations, Series I, 4, American Math.
Soc., Providence, R.I., 1962.

[59] A. D. Myshkis, Linear Differential Equations with Retarded Argu-
ment (in Russian), 2nd edition, Nauka, Moscow, 1972.

[60] R. Nagel, One-parameter Semigroups of Positive Operators,
Springer, 1986.

[61] S. M. Oliva, Boundary delay in reaction-diffusion equations: ex-
istence and convergence to equilibrium, Journal of Dynamics and
Differential Equations, 11 (1999), 279-296.

[62] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Equations, Springer, 1983.

[63] J. Rauch, Discontinuous semilinear differential equations and mul-
tiple valued maps, Proc. American Math. Soc. 64 (1977), 277-282.

[64] M. Renardy, R. C. Rogers, An Introduction to Partial Differential
Equations, Springer, 2004.

[65] M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in
Viscoelasticity, Pitman Monographs and Surveys in Pure and Appl.
Math. 35, Longman Sci. and Techn. - John Wiley and Sons, Inc.,
New York, 1987.

[66] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[67] L. Simon, E. Baderko, Second Order Linear Partial Differential
equations (in Hungarian), Tankönyvkiadó, Budapest, 1982.

[68] L. Simon, Strongly nonlinear elliptic variational inequalities with
nonlocal boundary conditions, Coll. Math. Soc. J. Bolyai 53, Quali-
tative Theory of Diff. Eqns., Szeged (1988), 605-620.

[69] L. Simon, Nonlinear elliptic differential equations with nonlocal
boundary conditions, Acta Math. Hung. 56 (1990), 343-352.

[70] L. Simon, Existence results for strongly nonlinear functional-elliptic
problems, Coll. Math. Soc. J. Bolyai 62, Diff. Eqns., Budapest
(1991), 271-287.

[71] L. Simon, Strongly nonlinear parabolic functional differential equa-
tions, Annales Univ. Sci. Budapest 37 (1994), 215-228.

[72] L. Simon, On systems of strongly nonlinear parabolic functional dif-
ferential equations, Periodica Math. Hung. 33 (1996), 135-151.



146 BIBLIOGRAPHY

[73] L. Simon, On different types of nonlinear parabolic functional differ-
ential equations, Pure Math. and Appl. 9 (1998), 181-192.

[74] L. Simon, On the stabilization of solutions of nonlinear parabolic
functional differential equations, Proc. of the Conference FSDONA,
Syöte (1999), 239-250.

[75] L. Simon, Attractivity properties of solutions to a system of strongly
nonlinear parabolic functional differential equations, Math. Comp.
Modelling 31 (2000), 189-197.

[76] L. Simon, On approximation of solutions of parabolic functional dif-
ferential equations in unbounded domains, Proc. of the Conference
FSDONA, Teistungen, Birkhäuser (2003), 439-451.

[77] L. Simon, On nonlinear parabolic functional differential equations
with nonlocal linear contact conditions, Functional Diff. Eqns. 11
(2004), 153-162.

[78] L. Simon, On contact problems for nonlinear parabolic functional dif-
ferential equations, E. J. Qualitative Theory of Diff. Eqns., Proc.7’th
Coll. Qualitative Theory of Diff. Eqns., 22 (2003), 1-11.

[79] L. Simon, On quasilinear parabolic functional differential equations
of general divergence form, Proc. of the Conference FSDONA,
Milovy (2004), 280-291.

[80] L. Simon, On quasilinear parabolic functional differential equations
with discontinuous terms, Annales Univ. Sci. Budapest 47 (2004),
211-229.

[81] L. Simon and W. Jäger, On non-uniformly parabolic functional dif-
ferential equations, Studia Sci. Math. Hungar. 45 (2008), 285-300.

[82] L. Simon, On qualitative properties of a system containing a singular
parabolic functional equation, EJQTDE, Proc. 8th Coll. QTDE 20
(2008), 1-13.

[83] L. Simon, Application of monotone type operators to parabolic and
functional parabolic PDE’s, Chapter 6 in Handbook on Evolutionary
Differential Equations, Elsevier, 2008.

[84] L. Simon, Nonlinear functinal parabolic equations, Integral Methods
in Science and Engineering 2, Birkhäuser (2010), 321-326.

[85] L. Simon, On some properties of nonlinear functional parabolic equa-
tions, Internat J. Qualitative Theory Differential Equations Appl. 3
(2009), 140-149.

[86] L. Simon, On some singular systems of parabolic functional equa-
tions, Math. Bohemica 135 (2010), 123-132.



BIBLIOGRAPHY 147

[87] A. L. Skubachevskii, Elliptic Functional Differential Equations and
Applications, Birkhäuser, 1997.

[88] J. Tóth, P.L. Simon, Differential Equations (in Hungarian), Typo-
tex, Budapest, 2005.

[89] I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman
Monographs and Surveys in Pure and Appl. Math. 32, Longman Sci.
and Techn., Harlow (1987).

[90] J. R. L. Webb, Boundary value problems for strongly nonlinear el-
liptic equations, J. London Math. Soc. 21 (1980), 123-132.

[91] J. Wu, Theory and Applications of Partial Functional Differential
Equations, Springer, 1996.

[92] K. Yosida, Functional Analysis, Springer, 1965.

[93] E. Zeidler, Nonlinear Functional Analysis and its Applications II A
and II B, Springer, 1990.


	NONLINEAR STATIONARY PROBLEMS
	Introduction
	Existence and uniqueness theorems
	Application of monotone operators
	Application of pseudomonotone operators
	Nonlinear elliptic variational inequalities

	FIRST ORDER EVOLUTION EQUATIONS
	Formulation of the abstract problem
	Cauchy problem with monotone operators
	Application to nonlinear parabolic equations
	Cauchy problem with pseudomonotone operators
	Parabolic equations and functional equations
	Existence of solutions for t(0,)
	Qualitative properties of the solutions
	Periodic solutions

	SECOND ORDER EVOLUTION EQUATIONS
	Existence of solutions in (0,T)
	Solutions in (0,)
	Semilinear hyperbolic equations


