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1. Introduction. It is partly known [1], partly easy to prove that for
the divisor function

d(n) :=
∑

d|n
1,(1)

it is true that for all ω > 0 there is an n ∈ N such that

d(n) > ω + max(d(n− 1), d(n+ 1))(2)

and also there is an m ∈ N such that

d(m) + ω < min(d(m− 1), d(m+ 1)).(3)

P. Erdős [1] proved (2) in the following stronger form: for all k ∈ N there
are infinitely many n ∈ N such that

d(n) >
k∏

i=1

d(n− i)d(n+ i).(4)

We will extend these theorems to generalized divisor functions d(A, n) de-
fined for any set A ⊆ N as

d(A, n) :=
∑

a∈A, a|n
1.(5)

These functions were introduced by Erdős and Sárközy [2]. Among other
results they proved that for any infinite A the large values of d(A, n) are
much greater than its average:

lim sup
N→∞

maxn≤N d(A, n)∑
a∈A,a≤N 1/a

=∞.(6)

A. Sárközy posed the following three related problems in [5] (Problems
25–27):
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Problem 1. Is it true that |d(A, n+1)−d(A, n)| cannot be bounded for
an infinite set A ⊆ N?

Problem 2. Is it true that for any infinite set A ⊆ N there are infinitely
many n with

d(A, n) > max(d(A, n+ 1), d(A, n− 1))?

Problem 3. What assumption is needed to ensure that

d(A, n) < min(d(A, n− 1), d(A, n+ 1))

for infinitely many n?

This article solves these problems and also generalizes Erdős’s theorem.

2. Notation and the lemma. Following [4], we will use the following
notations: Let B ⊂ N be an arbitrary finite sequence, X := |B|. Let P ⊂ N
be an arbitrary set of primes. Set

P (z) :=
∏

p∈P, p≤z
p.(7)

S(B,P, z) := |{b : b ∈ B, (b, P (z)) = 1}|.(8)

Let ω be a multiplicative arithmetical function such that ω(n) = 0 if n is
not squarefree and also if n has a prime factor not in P, and ω(1) := 1. Let
γ be Euler’s constant and Γ be the well-known Gamma function, µ be the
Möbius function, and ν(d) be the number of distinct prime divisors of d. We
define

(9) W (z) :=
∏

p≤z

(
1− ω(p)

p

)
.

(10) σκ(u) := 2−κ
e−γκ

Γ (κ+ 1)
uκ if 0 ≤ u ≤ 2,

(11) (u−κσκ(u))′ := −κu−κ−1σκ(u− 2) if u > 2,

with σκ required to be continuous at u = 2. We set

ηκ(u) := κu−κ
∞�

u

tκ−1
(

1
σκ(t− 1)

− 1
)
dt (u > 1).(12)

Rd := |{b ∈ B : d | b}| − ω(d)
d

X if µ(d) 6= 0.(13)

Let us now define four properties as in [4]:

(Ω1): There exists A1 such that 0 ≤ ω(p)/p ≤ 1− 1/A1 for all primes p.
(Ω2(κ,A2, A3)): There exist κ ≥ 0 and A2, A3 ≥ 1 such that
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− A2 ≤
∑

w≤p<z prime

ω(p) log p
p

− κ log
z

w
≤ A3 if 2 ≤ w ≤ z.(14)

(R): |Rd| ≤ ω(d) if µ(d) 6= 0, and (d, p) = 1 for all p 6∈ P.
(R(κ, α)): There exist constants 0 < α < 1 and A4, A5 ≥ 1 such that if

X ≥ 2 then
∑

d<Xα/(logX)A4

∀p6∈P (d,p)=1

µ2(d)3ν(d)|Rd| ≤ A5
X

logκ+1X
.(15)

It is not difficult to see that (R(κ, α)) is less restrictive than (R) beside
(Ω1) (see [4]). The strongest lower bound for S(B,P, z) in [4] is the following:

Lemma 1 (see [4, p. 219]). If (Ω1), (Ω2(κ,A2, A3)) and (R(κ, α)) hold
and

z2 ≤ Xα/(logX)A4 (X ≥ 2),

then

S(B,P, z) ≥ XW (z)
(

1− ηκ
(
α

logX
log z

)
− A6

A2(log log 3X)3κ+2

logX

)

where A6 ≥ 1 is a constant which depends only on κ, α,A1, A2, A3, A4, A5.

3. The results

Theorem 1. Let A = {a1 < a2 < . . .} ⊆ N and k ∈ N. Then there exist
infinitely many n ∈ N such that

d(A, n) >
k∏

i=1

d(A, n− i)d(A, n+ i).

Proof. We are going to prove that there exists a constant C = C(k) > 0
such that there are infinitely many n for which

k∏

i=1

d(A, n− i)d(A, n+ i) < C(16)

and d(A, n) can be arbitrarily large for these n’s. Define

X :=
∏

p≤2k+1 prime

p1+[logp k]
N∏

j=1

aj ,(17)

B :=
{ k∏

i=1

(jX − i)(jX + i) : j ∈ {1, . . . ,X}
}
,(18)

P := {p : (p,X) = 1 prime},(19)

ω(p) := 2k if p ∈ P,(20)
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and extend ω multiplicatively to squarefree d’s for which (d, p) = 1 if p 6∈ P.
It is easy to see that |B| = X. Now we should check the conditions we need
for the lemma:

(Ω1): Since 0 ≤ ω(p) ≤ 2k and p > 2k + 1 if ω(p) 6= 0, we have

0 ≤ ω(p)
p
≤ 1− 1

2k + 1
.(21)

(Ω2(κ,A2, A3)): This condition is trivial by the following well-known
statement:

∑

w≤p<z prime

log p
p

= log
(
z

w

)
+O(1) if 2 ≤ w ≤ z(22)

because 0 ≤ ω(p) ≤ 2k, and ω(p) = 2k if p > 2k + 1.
(R(κ, α)): It is enough to prove (R) because it is more restrictive beside

(Ω1). Suppose that d =
∏l
r=1 pr where pr ∈ P are distinct primes. We can

get |{b ∈ B : d | b}| by counting how many j ∈ {1, . . . ,X} there exist such
that pr | jX + ir for fixed ir ∈ {1, . . . , k,−1,−2, . . . ,−k} for all 1 ≤ r ≤ l.
Now (X, d) = 1 and this condition holds for j if and only if it does for j+d,
so there are [X/d] or [X/d] + 1 pieces of such j’s. Hence if we take it X/d
then the bias is at most 1. There are (2k)l = ω(d) choices for the ir’s and
therefore |Rd| ≤ ω(d).

Now we can use the lemma. Let z = X1/c and choose c such that

(23) z2 ≤ Xα

(logX)A4
,

(24) ηκ

(
α

logX
log z

)
= ηκ(αc) < 1

for X large enough. Such a c exists because ηκ is a decreasing function with
limit 0 at +∞. Now we choose N large enough and

N >
(

24kc
∏

p≤k prime

(2[k/p][logp k] + 1)
)2k

.

Then

1− ηκ
(
α

logX
log z

)
− A6

A2(log log 3X)3κ+2

logX
> 0.(25)

So we can conclude from the lemma that S(B,P, z) > 0, which means
that there exists b ∈ B with (b, p) = 1 if p ∈ P and p ≤ z, and b =∏k
i=1(jX− i)(jX+ i) for some j ∈ {1, . . . ,X}. In view of the lemma below,

n = jX is a good choice for the theorem.

Lemma 2. We have

d(A, jX ± i) ≤ d(A, b) ≤ d(b) ≤ 24kc
∏

p≤k prime

(2[k/p][logp k] + 1).
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Proof. The first two inequalities are trivial. For the third one we use the
formula d(

∏m
i=1 p

αi
i ) =

∏m
i=1(αi + 1):

1. If p ≤ k then p1+[logp k] |X so only 2[k/p] factors in

b =
k∏

i=1

(jX − i)(jX + i)

are divisible by p and all of them contain at most [logp k] factors p because
p1+[logp k] > k.

2. If k < p and p |X then (p, b) = 1.
3. If k < p and (p,X) = 1 then p ∈ P. So if p ≤ z then (p, b) = 1 else

these primes give at most a multiplier of 24kc in d(b) because b < X4k =
z4kc ≤ p4kc.

Now the proof of the theorem can be completed: For n = jX,

d(A, n) ≥ N >
(

24kc
∏

p≤k prime

(2[k/p][logp k] + 1)
)2k

(26)

≥
k∏

i=1

d(A, n− i)d(A, n+ i).

From this theorem we know that the generalized divisor functions have
isolated large values. One may ask: what about the isolated small values?
The set A = {a : a ∈ N, 3 | a} shows that it may occur that

d(A, n) < min(d(A, n− 1), d(A, n+ 1))(27)

never holds. The following two theorems answer the question by giving a
necessary and sufficient condition on A.

Theorem 2. There are infinitely many n ∈ N such that

d(A, n) < min(d(A, n− 1), d(A, n+ 1))

if and only if there exist a, b ∈ A (not necessarily distinct) such that a, b > 1
and (a, b) ≤ 2.

Proof. One direction is trivial because if there exists an n ∈ N such
that (27) holds then n− 1 and also n+ 1 must have a divisor in A; the two
divisors are greater than 1 and their greatest common divisor is at most 2.

For the other direction assume that a, b ∈ A are such that a, b > 1 and
(a, b) ≤ 2. From the Chinese Remainder Theorem we know that there is
a residue-class mod[a, b] which is congruent to 1 (moda) and −1 (mod b).
From Dirichlet’s theorem we see that there are infinitely many prime num-
bers in this residue-class. If infinitely many of these primes do not belong
to A then we are done. If all but finitely many of these primes belong to A
then let p1 < p2 < p3 < p4 be such primes from the set A.
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Applying again the Chinese Remainder Theorem and Dirichlet’s theorem
we find that there are infinitely many primes p such that p ≡ 1 (modp1p2)
and p ≡ −1 (mod p3p4) and for these primes n = p satisfies (27).

Theorem 3. For all ω > 0 there are infinitely many n ∈ N such that

d(A, n) + ω < min(d(A, n− 1), d(A, n+ 1))(28)

if and only if for all k ∈ N there exist a1, . . . , ak, b1, . . . , bk ∈ A so that
ai 6= aj and bi 6= bj for i 6= j, ([a1, . . . , ak], [b1, . . . , bk]) ≤ 2 and all ai, bj > 1.

Proof. One direction is trivial: if (28) holds for all ω with some n ∈ N
then we choose k = [ω] + 1, the numbers n + 1 and n − 1 have at least k
divisors (> 1) in A, and these 2k elements satisfy the condition.

To prove the other direction we use the Chinese Remainder Theorem and
Dirichlet’s theorem to deduce that there are infinitely many prime numbers p
for which the following two relations hold for all i, j ∈ {1, . . . , k}:
(29) ai | p− 1,

(30) bj | p+ 1.

Now n = p satisfies (28) with ω = k−1, and since k was an arbitrary natural
number, the proof is complete.

4. Corollaries

Corollary 1 (Theorem of Erdős, see [1] and [3, p. 277]). For the divi-
sor function d(n), for all k ∈ N there are infinitely many n ∈ N with

d(n) >
k∏

i=1

d(n− i)d(n+ i).

Proof. Choose A = N and apply Theorem 1.

Corollary 2. For all ω > 0 there are infinitely many n ∈ N with

d(n) + ω < min(d(n− 1), d(n+ 1)).

Proof. Choose A = N and apply Theorem 3.

Corollary 3. For the number ν(n) of distinct prime divisors, for all
k ∈ N there are infinitely many n ∈ N with

ν(n) >
k∏

i=1

ν(n− i)ν(n+ i).

Proof. Choose A = {p ∈ N : prime} and apply Theorem 1.

Corollary 4. For all ω > 0 there are infinitely many n ∈ N with

ν(n) + ω < min(ν(n− 1), ν(n+ 1)).

Proof. Choose A = {p ∈ N : prime} and apply Theorem 3.
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Corollary 5. For the total number Ω(n) of prime divisors, for all
k ∈ N there are infinitely many n ∈ N with

Ω(n) >
k∏

i=1

Ω(n− i)Ω(n+ i).

Proof. Choose A = {q ∈ N : prime or power of a prime} and apply
Theorem 1.

Corollary 6. For all ω > 0 there are infinitely many n ∈ N with

Ω(n) + ω < min(Ω(n− 1), Ω(n+ 1)).

Proof. Choose A = {q ∈ N : prime or power of a prime} and apply
Theorem 3.

Corollary 7 (Problem of Sárközy, see [5, Problem 25]). For every in-
finite set A ⊆ N, the sequence |d(A, n+ 1)− d(A, n)| cannot be bounded.

Proof. Apply Theorem 1 for the set A ∪ {1}.
Corollary 8. For every infinite set A ⊆ N and any ω > 0 there are

infinitely many n with

d(A, n) > ω + max(d(A, n− 1), d(A, n+ 1)).

Proof. Apply Theorem 1 for the set A ∪ {1}.
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[2] P. Erdős and A. Sárközy, Some asymptotic formulas on generalized divisor functions,

in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest, 1983, 165–179.
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