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Abstract

In this thesis we examine the functors DSV of Schneider and Vigneras
([17]) and D∨ξ of Breuil ([3]) generalizing the so called Montréal functor D of
Colmez ([4]).

Let G = G(F ) be the F -points of a F -split reductive group G defined
over Zp for a finite extension F |Qp with connected centre and split Borel
B = TN. Let o be the ring of integers in a finite extension K|Qp, and $ ∈ o
be an uniformizer.

In chapter 2 we compute DSV attaching a module over the Iwasawa al-
gebra Λ(N0) of certain compact subgroup N0 ≤ N to a B-representation for
irreducible modulo $ principal series of the group G = GLn(F ).

Chapter 3 and some parts of chapter 4 are joint work with Gergely
Zábrádi. We show that Breuil’s [3] pseudocompact (ϕ,Γ)-module D∨ξ (π)
attached to a smooth o-torsion representation π of B = B(Qp) is isomorphic
to the pseudocompact completion of the basechange OE ⊗Λ(N0),` D̃SV (π) to
Fontaine’s ring (via a Whittaker functional ` : N0 = N(Zp) → Zp) of the
étale hull D̃SV (π) of DSV .

Both in [17] and [3] the functional ` was generic. In the last chapter we
examine the case when ` is chosen to be ` = `α, the projection of N0 onto a
root subgroup of a simple root α of G, which is nongeneric. We extend the
results of Breuil to this situation, moreover we define an étale action of the
submonoid T+ ≤ T on the noncommutative multivariable version D∨ξ,`,∞(π)
of D∨ξ (π) enabling us to go backwards to the representations of G. We also
show some disadvantages of this choice of `.
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Chapter 1

Introduction

1.1 Local Langlands correspondence
At first, we catch a glimpse of local class field theory (see for example [19])
as an antecedent of the local Langlands conjectures.

Let p be a prime number and Qp be the p-adic field. Let F |Qp be a field
extension—in general it can be any local field—, F ∗ be the multiplicative
group of F , and E be an algebraically closed field.

The main theorem of local class field theory gives the Artin homomor-
phism θ : GL1(F ) ' F ∗ → Gal(F |F )ab, which induces an isomorphism on
the profinite completion F̂ ∗ of F ∗.

Since GL1(F ) is abelian, the irreducible E-representations of GL1(F )
are the homomorphisms GL1(F ) → E∗, which are this way related to the
homomorphisms Gal(F |F )ab → E∗ corresponding to one dimensional E-
representations of the absolute Galois group of F .

The precise statements depend on the field E, and we do not explain
them in details here.

The local Langlands conjectures are generalizations of this, namely for
GLn the aim is to relate certain irreducible E-representations of GLn(F )
with certain continuous n dimensional E-representations of Gal(F |F ). This
correspondence shall be compatible with different structures (such as ε- and
L-factors) on these representations.

In the situation E = Q` (` 6= p is a prime number) and hence also if E = C
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Harris and Taylor ([11]), and independently Henniart ([12]) estabilished the
correspondence.

However, the p-adic version E = Qp of the conjectures (which are closely
related to the p-characteristic version) seems to be much more involved. A
satisfactory explanation comes from the representation theory of GLn(F ):
there are many more p-adic representation than `-adic. By now the corres-
pondence for GL2(Qp) is very well understood through the work of Colmez
[4], [5] and others (see [1] for an overview). In other cases the conjecturial
picture is not clear yet.

One can see the problem even for GL2(F ) with F 6= Qp as follows: On
the Galois side nothing really different happens as we change from Qp to
F . On the other hand, the dimension of GL2(F ) as a p-adic analytic group
is bigger than that of GL2(Qp), consequently the representation theory of
GL2(F ) is much more complicated than that of GL2(Qp). In particular
there is no possible naive 1-1 correspondence (see [2]).

Since that many efforts have been done to generalize parts of Colmez’s
results. The aim of this thesis is to examine and compare the functors of
Schneider-Vigneras ([17]) and Breuil ([3]) going towards the Galois side (we
call these “generalized Montréal“ functors).

1.2 The correspondence for GL2(Qp)

To review Colmez’s work let K|Qp be a finite extension with ring of integers
o, uniformizer $ and residue field k.

The starting point is Fontaine’s [13] theorem that the category of o-torsion
Galois representations of Qp is equivalent to the category of torsion (ϕ,Γ)-
modules over OE = lim←−h o/$

h((X)).
Recall that a (ϕ,Γ)-module D is an OE -module with additional actions

of the Frobenius ϕ and the group Γ = Gal(Qp(µp∞)/Qp) which are commu-
tative, satisfying the étale property: the map OE ⊗ϕD → D, λ⊗ d 7→ λϕ(d)
is an isomorphism or equivalently

D '
⊕

λ∈OE/ϕ(OE)

λϕ(D) =

p−1⊕
i=0

(1 +X)iϕ(D).

Let AQp be those elements f ∈ OE which have coefficients in Zp (the ring
of p-adic integers) and A be the p-adic completion of the maximal unramified
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extension AnrQp of AQp . We have actions of ϕ and Γ on A. Let Γ and χ : Γ→ Z∗p
be the cyclotomic character with kernel H.

The category equivalence of Fontaine is realized by these exact functors:
For an étale (ϕ,Γ)-module D, V (D) = (o · A ⊗OE D)ϕ=1 is a Galois repre-
sentation of Qp. For a Galois representation V , D(V ) = (A ⊗Zp V )H is an
étale (ϕ,Γ)-module.

One of Colmez’s breakthroughs was that he managed to relate p-adic (and
mod p) representations of G(2) = GL2(Qp) to (ϕ,Γ)-modules, too.

The so-called “Montréal-functor” D associates to a smooth o-torsion rep-
resentation π of the standard Borel subgroup B(2) of G(2) a torsion (ϕ,Γ)-
module over OE . We can construct it in the following way:

Let T (2) ≤ B(2) be the maximal torus and N0 =

(
1 Zp
0 1

)
be a com-

pact open subgroup of the unipotent radical of B(2), T+ be the submonoid
{t ∈ T |tN0t

−1 ⊆ N0} in T , and B+ = N0T+.
Let Π be a smooth (the action of G(2) is locally constant) o-representation

of G(2) of finite length. For a certain (sufficiently small) generating B+-
subrepresentationM of Π (which is denoted by IΠ

Zp(W ) in [4])D(Π) is defined
as the localization M∨[1/X] of the Pontryagin dual of M . The functor
Π 7→ D(Π) is contravariant and exact.

The way Colmez goes back to representations ofG(2) requires the following
construction.

Let D be an étale (ϕ,Γ)-module over E = OE [1/p]. For all d ∈ D there
are unique di ∈ D such that d =

∑p−1
i=0 (1 + X)iϕ(di). Set ψ(d) = d0, thus ψ

is a left inverse of ϕ. With the help of that we can define a
(
Qp \ {0} Qp

0 1

)
-

equivariant sheaf of K-vectorspaces over Qp, with global sections

D �Qp = {(d(n))n∈N|∀n : d(n) ∈ D,ψ(d(n)) = d(n−1)}

This can be done for the smallest compact ψ-invariant generating
OE+ = o[[X]]-submodule D\ ≤ D as well.

After choosing a character δ : Q∗p → o∗ we can extend this sheaf to a G(2)-
equivariant sheaf Y : U 7→ D �δ U (U ⊆ P1 open) of K-vectorspaces on the
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projective space P1(Qp) ∼= G(2)/B(2). This sheaf has the following properties:
(i) the centre of G(2) acts via δ on D �δ P1; (ii) we have D �δ Zp ∼= D as

a module over the monoid
(
Zp \ {0} Zp

0 1

)
(where we regard Zp as an open

subspace in P1 = Qp ∪ {∞}).
Whenever D is 2-dimensional and δ is the character corresponding to the

Galois representation of
∧2D via local class field theory, we set

Π(D) = D �δ P1/D\ �δ P1, where

D\ �δ P1 = {x ∈ D �δ P1|ResQp(x) ∈ D\ �δ Qp}

is a G-invariant submodule of D �δ P1. Π(D) is an irreducible smooth rep-
resentation of G(2).

We have D(Π(D)) = Ď, where Ď = Hom(D, E) is the dual (ϕ,Γ)-module.
Moreover the G-representation of global sectionsD�δP1 admits a short exact
sequence

0→ Π(Ď)∨ → D �δ P1 → Π(D)→ 0.

It also turns out, that this relation has the other required properties as
well.

1.3 Generalized Montréal functors
By now there are more different approaches to generalize Colmez’s functor
D to reductive groups G other than GL2(Qp). We briefly recall these gener-
alized Montréal functors here.

The approach by Schneider and Vigneras [17] starts with the set B+(π) of
generating B+-subrepresentations W ≤ π. The Pontryagin dual
W∨ = Homo(W,K/o) of each W admits a natural action of the inverse
monoid B−1

+ . Moreover, the action of N0 ≤ B−1
+ on W∨ extends to an action

of the Iwasawa algebra Λ(N0) = o[[N0]]. For W1,W2 ∈ B+(π) we also have
W1 ∩W2 ∈ B+(π) (Lemma 2.2 in [17]) therefore we may take the inductive
limit DSV (π) = lim−→W∈B+(π)

W∨. In [17] it is denoted by D(π), however, in
order to avoid confusion we denote it by DSV (π) (also note that the notation
V is used for the o-torsion representation that we denote by π). In gen-
eral, DSV (π) does not have good properties: for instance it may not admit a
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canonical right inverse of the T+-action making DSV (π) an étale T+-module
over Λ(N0). However, by taking a resolution of π by compactly induced
representations of B, one may consider the derived functors Di

SV of DSV

for i ≥ 0 producing étale T+-modules Di
SV (π) over Λ(N0). Note that the

functor DSV is neither left- nor right exact, but takes injective (resp. sur-
jective) maps to surjective (resp. injective) maps. The fundamental open
question of [17] whether the topological localizations Λ`(N0) ⊗Λ(N0) D

i
SV (π)

are finitely generated over Λ`(N0) in case when π comes as a restriction of a
smooth admissible representation of G of finite length. One can pass to usual
1-variable étale (ϕ,Γ)-modules—still not necessarily finitely generated—over
OE via the map ` : Λ`(N0) → OE which step is an equivalence of categories
for finitely generated étale (ϕ,Γ)-modules (Thm. 8.20 in [18]).

More recently, Breuil [3] managed to find a different approach, producing
a pseudocompact (ie. projective limit of finitely generated) (ϕ,Γ)-module
D∨ξ (π) over OE when π is killed by a power $h of the uniformizer $. In [3]
(and also in [17]) ` is a generic Whittaker functional, namely ` is chosen to
be the composite map

` : N0 → N0/(N0 ∩ [N,N ]) ∼=
∏
α∈∆

Nα,0

∑
α∈∆

u−1
α

−→ Zp .

To emphasize the dependence of the latter on the kernel of ` we denote by
D∨ξ,` = D∨ξ . Breuil passes right away to the space of H0-invariants πH0 of
π where H0 is the kernel of the group homomorphism ` : N0 → Zp. By the
assumption that π is smooth, the invariant subspace πH0 has the structure of
a module over the Iwasawa algebra Λ(N0/H0)/$h ∼= o/$h[[X]]. Moreover,
it admits a semilinear action of F which is the Hecke action of s = ξ(p): For
any m ∈ πH0 we define

F (m) = TrH0/sH0s−1(sm) =
∑

u∈J(H0/sH0s−1)

usm .

So πH0 is a module over the skew polynomial ring Λ(N0/H0)/$h[F ] (defined
by the identity FX = (sXs−1)F = ((X + 1)p − 1)F ). We consider those
(i) finitely generated Λ(N0/H0)/$h[F ]-submodules M ⊂ πH0 that are (ii)
invariant under the action of Γ and are (iii) admissible as a Λ(N0/H0)/$h-
module, ie. the Pontryagin dual M∨ = Homo(M, o/$h) is finitely generated
over Λ(N0/H0)/$h. Note that this admissibility condition (iii) is equivalent
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to the usual admissibility condition in smooth representation theory, ie. that
for any (or equivalently for a single) open subgroup N ′ ≤ N0/H0 the fixed
points MN ′ form a finitely generated module over o. We denote byM(πH0)
the—via inclusion partially ordered—set of those submodules M ≤ πH0 sat-
isfying (i), (ii), (iii). Note that whenever M1,M2 are in M(πH0) then so is
M1 + M2. It is shown in [4] (see also [6] and Lemma 2.6 in [3]) that for
M ∈ M(πH0) the localized Pontryagin dual M∨[1/X] naturally admits a
structure of an étale (ϕ,Γ)-module over o/$h((X)). Therefore Breuil [3]
defines

D∨ξ,`(π) = lim←−
M∈M(πH0 )

M∨[1/X] .

By construction this is a projective limit of usual (ϕ,Γ)-modules. Moreover,
D∨ξ,` is right exact and compatible with parabolic induction [3]. It can be
characterized by the following universal property: For any (finitely gener-
ated) étale (ϕ,Γ)-module over o/$h((X)) ∼= o/$h[[Zp]][([1] − 1)−1] (here
[1] is the image of the topological generator of Zp in the Iwasawa algebra
o/$h[[Zp]]) we may consider continuous Λ(N0)-homomorphisms π∨ → D via
the map ` : N0 → Zp (in the weak topology of D and the compact topology
of π∨). These all factor through (π∨)H0

∼= (πH0)∨. So we may require these
maps be ψs- and Γ-equivariant where Γ = ξ(Zp\{0}) acts naturally on (πH0)∨

and ψs : (πH0)∨ → (πH0)∨ is the dual of the Hecke-action F : πH0 → πH0 of s
on πH0 . Any such continuous ψs- and Γ-equivariant map f factors uniquely
through D∨ξ,`(π). However, it is not known in general whether D∨ξ,`(π) is
nonzero for smooth irreducible representations π of G (restricted to B).

Even more recently Scholze and Grosse-Klönne proposed different meth-
ods, which are just mentioned here. For G = GLn(F ) Scholze ([20]) uses a
finiteness result of the p-adic cohomology of the Lubin-Tate tower to get a
representation of the Galois group GalF , he also gets an additional action of
a central division algebra D/F . Grosse-Klönne ([14]) uses the G-equivariant
coefficient system on the Bruhat Tits building attached to π with some ad-
ditional information to construct a functor of this type, which is also exact
and for GL2(Qp) is the same as the classical functor D.

1.4 Summary of results
The thesis is mostly based on the papers [9] and [10].
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In chapter 2 we compute DSV for principal series representations of
G = GLn(F ).

In order to that, we need to understand the B+-module structure of
the principal series. In section 2.2 we decompose G into open N0-invariant
subsets Uw, indexed by the elements w of Weyl group. The action of B+

respects this structure in the following sense: if w,w′ ∈ W , y ∈ Uw and
b ∈ B+ such that b−1y ∈ Uw′ , then w′ � w for certain ordering on W .

With the help of this we prove in section 2.3 that there exists a minimal
element M0 in the set of generating B+-subrepresentations of π: namely the
B+-submodules generated by the "characteristic functions" of the sets Uww
for w in W .

Now we have DSV (π) = M∨
0 - the dual of this minimal B+-subrepresen-

tation. We do not know whether it is finitely generated or it has rank 1 as a
module over the modulo p Iwasawa algebra Ω(N0). However, we show that
in some sense only a rank 1 quotient of DSV (π) is relevant if we want to get
an étale (ϕ,Γ)-module.

In the last section we point out some properties of M0, which sheds some
light on why the picture for principal series is more difficult compared to the
case of subquotients defined by the Bruhat filtration.

In chapter 3 we relate the functors DSV and D∨ξ,`.
Our first result is the construction of a noncommutative multivariable

version of D∨ξ,`(π). Let π be a smooth o-torsion representation of B such
that $hπ = 0. The idea here is to take the invariants πHk for a family
of open normal subgroups Hk ≤ H0 with

⋂
k≥0Hk = {1}. Now Γ and

the quotient group N0/Hk act on πHk (we choose Hk so that it is normal-
ized by both Γ and N0). Further, we have a Hecke-action of s given by
Fk = TrHk/sHks−1 ◦ (s·). As in [3] we consider the set Mk(π

Hk) of finitely
generated Λ(N0/Hk)[Fk]-submodules of πHk that are stable under the action
of Γ and admissible as a representation of N0/Hk. In section 3.1 we show
that for any Mk ∈ Mk(π

Hk) there is an étale (ϕ,Γ)-module structure on
M∨

k [1/X] over the ring Λ(N0/Hk)/$
h[1/X]. So the projective limit

D∨ξ,`,∞(π) = lim←−
k≥0

lim←−
Mk∈Mk(πHk )

M∨
k [1/X]

is a pseudocompact étale (ϕ,Γ)-module over Λ`(N0)/$h =
lim←−k Λ(N0/Hk)/$

h[1/X]. Moreover, we also give a natural isomorphism
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D∨ξ,`,∞(π)H0
∼= D∨ξ,`(π) showing that D∨ξ,`,∞(π) corresponds to D∨ξ,`(π) via

(the projective limit of) the equivalence of categories in Thm. 8.20 in [18].
Moreover, the natural map π∨ → D∨ξ,`(π) factors through the projection map
D∨ξ,`,∞(π) � D∨ξ,`(π) = D∨ξ,`,∞(π)H0 . Note that this shows that D∨ξ,`,∞(π) is
naturally attached to π—not just simply via the equivalence of categories
(loc. cit.)—in the sense that any ψ- and Γ-equivariant map from π∨ to an
étale (ϕ,Γ)-module over o/$h((X)) factors uniquely through the correspond-
ing multivariable (ϕ,Γ)-module.

In section 3.2 we develop these ideas further and show that the nat-
ural map π∨ → D∨ξ,`,∞(π) factors through the map π∨ → DSV (π). In
fact, we show (Prop. 3.2.4) that D∨ξ,`,∞(π) has the following universal prop-
erty: Any continuous ψs- and Γ-equivariant map f : DSV → D into a fi-
nitely generated étale (ϕ,Γ)-module D over Λ`(N0) factors uniquely through
pr = prπ : DSV (π)→ D∨ξ,`,∞(π). The association π 7→ prπ is a natural trans-
formation between the functors DSV and D∨ξ,`,∞. One application is that
Breuil’s functor D∨ξ vanishes on compactly induced representations of B (see
Corollary 3.2.3).

In order to be able to computeD∨ξ,`,∞(π) (hence alsoD∨ξ,`(π)) fromDSV (π)
we introduce the notion of the étale hull of a Λ(N0)-module with a ψ-action
of T+ (or of a submonoid T∗ ≤ T+). Here a Λ(N0)-module D with a ψ-action
of T+ is the analogue of a (ψ,Γ)-module over o[[X]] in this multivariable
noncommutative setting. The étale hull D̃ of D (together with a canonical
map ι : D → D̃) is characterized by the universal property that any ψ-
equivariant map f : D → D′ into an étale T+-module D′ over Λ(N0) factors
uniquely through ι. It can be constructed as a direct limit lim−→t∈T+

ϕ∗tD where
ϕ∗tD = Λ(N0)⊗ϕt,Λ(N0)D (Prop. 3.3.4). We show (Thm. 3.3.9 and the remark
thereafter) that the pseudocompact completion of Λ`(N0) ⊗Λ(N0) D̃SV (π) is
canonically isomorphic to D∨ξ,`,∞(π) as they have the same universal property.

In order to go back to representations of G we need an étale action of T+

on D∨ξ,`,∞(π), not just of ξ(Zp \ {0}). This is only possible if tH0t
−1 ≤ H0 for

all t ∈ T+ which is not the case for generic `. So in the last chapter we equip
D∨ξ,`,∞(π) with an étale action of T+ (extending that of ξ(Zp \ {0}) ≤ T+)
in case ` = `α is the projection of N0 onto a root subgroup Nα,0

∼= Zp for
some simple root α in ∆. Moreover, we show (Prop. 4.1.5) that the map
pr : DSV (π)→ D∨ξ,`,∞(π) is ψ-equivariant for this extended action, too. Note
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that D∨ξ,`,∞(π) may not be the projective limit of finitely generated étale
T+-modules over Λ`(N0) as we do not necessarily have an action of T+ on
M∨
∞[1/X] for M ∈M(πH0), only on the projective limit.
Let P ≤ G be a parabolic subgroup with Levi decomposition P = LPNP .

We show in section 4.2 that the compatibility with parabolic induction [3]
Theorem 6.1 goes through in this situation:

D∨ξ,`
(
IndGP−πP

) ∼= {D∨ξ,`(πP ) if Nα ⊆ LP

o/$h((X))⊗̂o/$hOrdsZNLP (πP )∨ if Nα ⊆ NP

,

where Ord is the ordinary part similar to the definition of Emerton (cf Defini-
tion 3.1.9 in [7]).

We present the results of section 4 in [10], where a G-equivariant sheaf
Y on G/B is attached to D∨ξ,`,∞(π) and a natural transformation βG/B from
(·)∨ to π → Y is constructed, which is compatible with a reverse functor.

In section 4.4 we show some disadvantages of the choice ` = `α:
D∨ξ,` vanishes for the twist of a modulo p supercuspidal representation π(2) of
GL2(Qp) by a character χ. Moreover D∨ξ,` is not exact even for extensions of
principal series πP = π(2) ⊗ χ.

The mostly folklore computation with (ϕ,Γ)-modules which is needed for
the latter result is carried out in section 4.5.

1.5 Notations
Let F,K ≤ Qp finite extensions of Qp. Let oF , respectively oK be the rings of
integers in F , respectively in K, $F ∈ oF and $K ∈ oK be the uniformizers,
νF and νK be the standard valuations and kF = oF/$FoF , kK = oK/$KoK
be the residue fields.

Let G = G(F ) be the F -points of a F -split connected reductive group
G defined over Zp with connected centre and a fixed split Borel subgroup
B = TN. Put B = B(F ), T = T(F ), and N = N(F ). We denote by
Φ+ the set of roots of T in N , by ∆ ⊂ Φ+ the set of simple roots, and by
uα : Ga → Nα, for α ∈ Φ+, a F -homomorphism onto the root subgroup
Nα of N such that tuα(x)t−1 = uα(α(t)x) for x ∈ F and t ∈ T(F ), and
N0 =

∏
α∈Φ+

uα(oF ) is a subgroup of N . We put Nα,0 = uα(oF ) for the
image of uα on oF .
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Let W = NG(T )/ZG(T ) denote the Weyl group of G and ≺ denote
the strong Bruhat ordering of W (see [15] II. 13.7): we say w′ ≺ w for
w 6= w′ ∈ W if there exist transpositions w1, w2, . . . , wi ∈ W such that
w′ = ww1w2 . . . wi and l(w) > l(ww1) > l(ww1w2) > · · · > l(ww1w2 . . . wi).

We denote by T+ the monoid of dominant elements t in T(Qp) such
that νF (α(t)) ≥ 0 for all α ∈ Φ+, by T0 ⊂ T+ the maximal subgroup,
by T++ the subset of strictly dominant elements, i.e. νF (α(t)) > 0 for all
α ∈ Φ+, and we put B+ = N0T+, B0 = N0T0. The natural conjugation
action of T+ on N0 extends to an action on the Iwasawa oK-algebra Λ(N0) =
oK [[N0]]. For t ∈ T+ we denote this action of t on Λ(N0) by ϕt. The map
ϕt : Λ(N0)→ Λ(N0) is an injective ring homomorphism with a distinguished
left inverse ψt : Λ(N0)→ Λ(N0) satisfying ψt ◦ϕt = idΛ(N0) and ψt(uϕt(λ)) =
ψt(ϕt(λ)u) = 0 for all u ∈ N0 \ tN0t

−1 and λ ∈ Λ(N0).
Each simple root α gives a F -homomorphism xα : N → Ga with section

uα. We denote by `α : N0 → F
TrF/Qp→ Zp, resp. ια : oF → N0, the restriction

of xα, resp. uα, to N0, resp. oF .
Since the centre of G is assumed to be connected, there exists a cochar-

acter ξ : F ∗ → T such that α ◦ ξ is the identity on F ∗ for each α ∈ ∆. If
F = Qp we put Γ = ξ(Z∗p) ≤ T and often denote the action of s = ξ(p) by
ϕ = ϕs.

For an oK-representation π let π∨ = HomoK (π,K/oK) be the
Pontryagin dual of π. Pontryagin duality sets up an anti-equivalence between
the category of torsion oK-modules and the category of all compact linear-
topological oK-modules.

By a smooth oK-torsion representation of G (resp. of B = B(F )) we mean
a torsion oK-module π together with a smooth (ie. stabilizers are open) and
linear action of the group G (resp. of B). π is admissible if for any U ≤ G
open subgroup, the vector space kK ⊗oK πU is finite dimensional.

For example, if G = GLn and F = Qp, B is the subgroup of upper
triangular matrices, N consists of the strictly upper triangular matrices
(1 on the diagonal), T is the diagonal subgroup, N0 = N(Zp), the simple
roots are α1, . . . , αn−1 where αi(diag(t1, . . . , tn)) = tit

−1
i+1, xαi sends a matrix

to its (i, i+ 1)-coefficient, uαi(·) is the strictly upper triangular matrix, with
(i, i+ 1)-coefficient · and 0 everywhere else.

10



Let C∞(G) (respectively C∞c (G)) denote the set of locally constant
G → kK functions (respectively locally constant functions with compact
support), with the group G acting by left multiplication (gf : x 7→ f(g−1x)
for f ∈ C∞(G) and g, x ∈ G).

Let G0 ≤ G be a compact open subgroup and Λ(G0) denote the completed
group ring of the profinite group G0 over oK . Any smooth oK-representation
π is the union of its finite G0-subrepresentations, therefore π∨ is a left Λ(G0)-
module (through the inversion map on G0).

Let Ω(G0) = Λ(G0)/$KΛ(G0). Ω(N0) is noetherian and has no zero
divisors, so it has a fraction (skew) field. If M is a Ω(N0)-module, by the
rank of M we mean dimkK (Frac(Ω(N0))⊗Ω(N0) M).

Let ` : N0 → Zp (for now) any surjective group homomorphism and denote
by H0 �N0 the kernel of `. The ring Λ`(N0), denoted by ΛH0(N0) in [17], is
a generalisation of the ring OE , which corresponds to Λid(N

(2)
0 ) where N (2)

0 is
the Zp-points of the unipotent radical of a split Borel subgroup in GL2. We
refer the reader to [17] for the proofs of some of the following claims.

The maximal ideal M(H0) of the completed group oK-algebra
Λ(H0) = oK [[H0]] is generated by $k and by the kernel of the augmenta-
tion map oK [[H0]]→ oK .

The ring Λ`(N0) is the M(H0)-adic completion of the localization of
Λ(N0) with respect to the Ore subset S`(N0) of elements which are not in the
ideal M(H0)Λ(N0). The ring Λ(N0) can be viewed as the ring Λ(H0)[[X]]
of skew Taylor series over Λ(H0) in the variable X = [u] − 1 where u ∈
N0 and `(u) is a topological generator of `(N0) = Zp. Then Λ`(N0) is
viewed as the ring of infinite skew Laurent series

∑
n∈Z anX

n over Λ(H0)
in the variable X with limn→−∞ an = 0 for the compact topology of Λ(H0).
For a different characterization of this ring in terms of a projective limit
Λ`(N0) ∼= lim←−n,k Λ(N0/Hk)[1/X]/$n

K for Hk � N0 normal subgroups con-
tained and open in H0 satisfying

⋂
k≥0Hk = {1} see also [23].

For a finite index subgroup G2 in a group G1 we denote by J(G1/G2) ⊂ G1

a (fixed) set of representatives of the left cosets in G1/G2.
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Chapter 2

The Schneider-Vigneras functor
for principal series

2.1 Principal series
In this chapter fix n ∈ N, and let G = GLn(F), and G0 = GLn(oF ).

Let B be the set of upper triangular matrices in G, T the set of diagonal
matrices, N the set of upper triangular unipotent matrices. Let N− be
the lower unipotent matrices - the opposite of N - and N0 = N ∩ G0 - a
totally decomposed compact open subgroup of N - those matrices wich have
coefficients in oF .

By the abuse of notation let w ∈ W denote also the permutation matrices
- representatives ofW in G (with wij = 1 if w(j) = i, and wij = 0 otherwise),
and also the corresponding permutations of the set {1, 2, . . . , n}. For w ∈ W
denote length of w—the length of the shortest word representing w in the
terms of the standard generators of W—by l(w).

Let the kernel of the projection pr : G0 → GLn(kF ) be U (1). This is
a compact open pro-p normal subgroup of G0. We have G = G0B and
U (1) ⊂ (N− ∩ U (1))B.

Let
χ = χ1 ⊗ χ2 ⊗ · · · ⊗ χn : T → k∗K

be a locally constant character of T with χi : F ∗ → k∗K multiplicative. Note
that for all i we have χi(1 + πFoF ) = 1 and χi(o∗F ) ⊂ k∗F ∩ k∗K ≤ Fp

∗. Since
T ' B/[B,B], also denote the correspondig B → k∗K character by χ. Let

π = IndGB(χ) = {f ∈ C∞(G)|∀g ∈ G, b ∈ B : f(gb) = χ−1(b)f(g)}

12



π is called a principal series representation of G. π is irreducible exactly when
for all i we have χi 6= χi+1 ([16], theorem 4). For any open right B-invariant
subset X ⊂ G we write IndXB = {f ∈ IndGB(χ)|f |G\X ≡ 0}.

We can understand the stucture of π better (see [21], section 4.), by the
Bruhat decomposition G =

⋃
w∈W BwB. Fix a total ordering ≺T refining

the Bruhat ordering ≺ of W , and let

w1 = idW ≺T w2 ≺T w3 ≺T · · · ≺T wn! = w0.

Let us denote by Gm =
⋃

1≤l≤mBwlB - a closed subset of G. We obtain a
descending B-invariant filtration of π by

πm = Ind
G\Gm
B (χ) = {F ∈ IndGB(χ)|F |Gm ≡ 0} (0 < m ≤ n!),

with quotients πm−1/πm via f 7→ f(·wm) isomorphic to
π(wm, χ) = C∞c (N/N ′wm) (see [17], section 12), where N ′wm = N ∩ wmNw−1

m ,
with N acting by left translations and T acting via

(tφ)(n) = χ(w−1
m twm)φ(t−1nt).

For any w ∈ W put

Nw = {n ∈ N |∀i < j, w−1(i) < w−1(j) : nij = 0} = N ∩ wN−w−1 ≤ N,

and N0,w = N0∩Nw. Then we have the following form of the Bruhat decom-
position G =

∐
w∈W NwwB.

2.2 The action of B+ on G

The first goal is to partition G to N0-invariant open subsets {Uw|w ∈ W}
indexed by the Weyl-group, which are respected by the B+-action in the
sense that B−1

+ Uw ⊆ ∪w′≺wUw′ .

Definition Let for any w ∈ W rw : N− ∩G0 → G(kF ), n− 7→ pr(wn−w−1),
Rw = wr−1

w (N(kF )), R = ∪w∈WRw.

We have that

Rw =

(aij) ∈ G|∀i, j : aij


= 1, if w−1(i) = j
= 0, if w−1(i) < j
∈ oF , if w−1(i) > j and w(j) > i
∈ $FoF , if w−1(i) > j and w(j) < i


13



For n = 3 in details (with o = oF and $ = $F ):

w Rw w Rw

id =

(
1 0 0
0 1 0
0 0 1

) (
1 0 0
$o 1 0
$o $o 1

)
(23) =

(
0 1 0
1 0 0
0 0 1

) (
1 0 0
$o o 1
$o 1 0

)

(12) =

(
0 1 0
1 0 0
0 0 1

) (
o 1 0
1 0 0
$o $o 1

)
(123) =

(
0 0 1
1 0 0
0 1 0

)(
o o 1
1 0 0
$o 1 0

)

(132) =

(
0 1 0
0 0 1
1 0 0

) (
o 1 0
o $o 1
1 0 0

)
(13) =

(
0 0 1
0 1 0
1 0 0

) (
o o 1
o 1 0
1 0 0

)

LetN(kF ) be the kF -points ofN (the upper triangular unipotent matrices
with coefficients in kF ). kF has canonical (multiplicative) injection to
oF ⊂ F , hence any subgroup H(kF ) ≤ N(kF ) is mapped injectively to N0 by
applying the previous map to each matrix entry (however this is not a group
homomorphism). We denote this subset of N0 by H̃(kF ).

Proposition 2.2.1 A set of double coset representatives of U (1) \ G/B is
∪w∈W Ñw(kF )w. Every element of G can be written uniquely in the form rb
with r ∈ R and b ∈ B.

Proof By the Bruhat decomposition of G(kF ) a set of double coset repre-
sentatives of U (1) \G0/(B∩G0) is the set as above. Since G = G0B, we have
the first part of proposition.

Let g = unwb ∈ G with u ∈ U (1), w ∈ W , n ∈ Ñw(kF ) and b ∈ B.
Then g = w(w−1nw)u′b with u′ = w−1n−1unw ∈ U (1). But then there exist
n′ ∈ N− ∩ U (1) and b′ ∈ B such that u′ = n′b′. Then g = w(w−1nwn′)(b′b),
where w−1nwn′ ∈ r−1

w (N(kF )) because of the definition of Nw.
For any w ∈ W we clearly have U (1)Ñw(kF )wB = RwB. Hence the

uniqueness follows: if rb = r′b′ then there exists w ∈ W such that r, r′ ∈ Rw

and b′b−1 = (r′−1w−1)(wr) ∈ B ∩N− = {id}. �

Definition For any w ∈ W let Uw = U (1)Ñw(kF )wB. This way we parti-
tioned G into open subsets indexed by the Weyl group. We obviously have
Uw = RwB.

Corollary 2.2.2 For any w ∈ W we have that Uw is (left) N0-invariant.
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Proof Let n′ ∈ N0 and x = unwb ∈ U (1)Ñw(kF )wB. We have
N0 = N0,w(N ′w ∩N0), thus n′n = mm′ for some m ∈ N0,w and m′ ∈ N ′w ∩N0,
moreover we can write m = m1m0 ∈ (Nw ∩ U (1))Ñw(kF ). By the definition
of N ′w

n′x = (n′un′−1m1)m0w(w−1m′wb) ∈ U (1)Ñw(kF )wB,

meaning that Uw is N0-invariant. �

Proposition 2.2.3 Let y ∈ Uw = RwB, nt ∈ B+ = N0T+, and
x = t−1n−1y ∈ Uw′ = Rw′B. Then w′ � w.

Proof Let y = rb with r ∈ Rw and b ∈ B. By the previous proposition we
may assume that n = id. If t = diag(t1, t2, . . . , tn) ∈ G0, then

x = w(w−1t−1w(w−1r)w−1tw)(w−1t−1wb),

where w−1t−1w(w−1r)w−1tw ∈ r−1
w (N(kF )), because it is in N− and the

coefficients under the diagonal have the same valuation as those in w−1r.
T+ as a monoid is generated by T ∩ G0, the center Z(G) and the elements
with the form ($F , $F , . . . , $F , 1, 1, . . . , 1), hence it is enough to prove the
proposition for such t-s.

So fix t = (t1 = $F , t2 = $F , . . . , tl = $F , tl+1 = 1, tl+2 = 1, . . . , tn = 1),
r = (rij) and try to write x in the form as in Proposition 2.2.1. For all
j = 0, 1, 2, . . . , n we construct inductively a decomposition x = (t(j))−1r(j)b(j)

together with w(j) ∈ W , where

• w(j+1) � w(j) for j < n and such that the first j columns of w(j) are
the same as the first j columns of w(j+1),

• t(j) = diag(t
(j)
i ) ∈ T with

t
(j)
i =

{
1, if (w(j))−1(i) ≤ j
ti, if (w(j))−1(i) > j

,

• r(j) ∈ Rw(j) , and if we change the first j columns of r(j) to the first j
columns of (t(j))−1r(j) it is still in Rw(j) (by de definition of t(j) it is
enough to verify the condition for (t(j))−1r(j)),

• b(j) ∈ B.
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Then w(n) � w(n−1) � w(n−2) � · · · � w(1) = w. However for j = n we have
t(n) = id, hence w(n) = w′ by disjointness of the sets RvB for v ∈ W , so we
have the proposition.

For j = 0 we have t(0) = t, r(0) = r, b(0) = b and w(0) = w. From j to
j + 1:

• If w(j)(j + 1) ≤ l, then let w(j+1) = w(j), so t(j+1) = e−1
w(j)(j+1)

t(j),
where for 1 ≤ k ≤ n we denote ek = ek($F ) the diagonal matrix
with $F in the k-th row and 1 everywhere else. We can choose
r(j+1) = e−1

w(j)(j+1)
r(j)ej+1, and b(j+1) = e−1

j+1b
(j).

Then the first j columns of (t(j+1))−1r(j+1) are equal of those of
(t(j))−1r(j), and the entries at place (i, j + 1) with i 6= w(j+1)(j + 1) are
multiplied by $F . Because of the conditions for r(j), this is in Rw(j+1) .
The other conditions for w(j+1), t(j+1), r(j+1) and b(j+1) obviously hold.

• If w(j)(j + 1) > l and if νF (r
(j)
i,j+1) ≥ 1 for all i ≤ l, then it suffices to

choose w(j+1) = w(j), t(j+1) = t(j), r(j+1) = r(j) and b(j+1) = b(j).

• Assume that w(j)(j + 1) > l and that there exists i ≤ l such that
νF (r

(j)
i,j+1) = 0. Let i0 be the maximal such i. Then choose

w(j+1)(j + 1) = i0, and t(j+1) = e−1
i0
t(j).

Let r′ = e−1
i0
r(j)ej+1((r

(j)
i0,j+1)−1 ·$), where ej(α) is the diagonal matrix

with α ∈ F in the j-th row and 1 everywhere else. Note that r′i0,j+1 = 1

and r′ differs from r(j) only in the i0-th row and the j+1-st column. But
(t(j+1))−1r′ is not in GLn(oF ) - for example νF (r′

i0,(w(j))−1(i0)
) = −1, and

there might be some other elements of r′ in the i0-th row and columns
between the j + 2-nd and j′ = (w(j))−1(i0)-th.

To see this note first that w(j)(j+1) > l ≥ i0, so (w(j))−1(i0) 6= j+1. In
particular the right multiplication with ej+1 does not change the entry
at place (i0, (w

(j))−1(i0)). Since r(j) ∈ Rw(j) , the defining conditions of
Rw(j) and that (w(j))−1(i0) 6= j + 1 imply (w(j))−1(i0) > j + 1. Thus
(t

(j)
i0

)−1 = (ti0)−1 = $−1
F , since i0 ≤ l. By the definition of Rw(j) we have

r
(j)

i0,(w(j))−1(i0)
= 1 . Therefore r′

i0,(w(j))−1(i0)
= $−1

F which has valuation
-1.

But note, that in the j+1-st column of r′ the i0-th element is 1, all the
other has valuation at least 1. Thus the first j+1 columns of (t(j+1))−1r′
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satisfy the condition for the first j + 1 columns of (t(j+1))−1r(j+1) - this
is meaningful, because we already fixed the first j+1 columns of w(j+1).

So we want to find r(j+1) = r′b′ with b′ ∈ B such that the first j + 1
columns of b′ is those of the identity matrix, and
(t(j+1))−1r(j+1) ∈ Rw(j+1) for some w(j) � w(j+1).

Let j0 = j + 1, and if ji < j′ then

ji+1 = min{h|j + 1 < h, r′i0,h /∈ oF , w
(j)(ji) > w(j)(h)}.

We claim that the set on the right hand side contains j′ if ji < j′. We
prove it by induction on i. For i = 0 we already verified it. Assume
by contradiction that w(j)(ji) < i0 = w(j)(j′). Since j′ > ji we get
r

(j)
i0,ji
∈ $FoF , because r(j) ∈ Rw(j) . But then r′i0,ji ∈ oF , because

r′ ∈ e−1
i0
r(j) ·Mat(oF ), contradicting the defining conditions of ji. Thus

we have w(j)(ji) ≥ i0 = w(j)(j′).

Let s be minimal such that js = j′ and set js+1 = n+ 1. We claim that
r(j+1) will be inRw(j+1) with w(j+1) = w(j)(js−1, js)(js−2, js−1) . . . (j0, j1).
Then the condition w(j+1) ≺ w(j) holds, because the multiplication from
right with each transposition (ji, ji+1) decreases the inversion number
and the length respectively, by the definition of ji+1.

For the existence of a b′ ∈ B such that r′b′ ∈ Rw(j+1) we prove the
following statements inductively:

Lemma 2.2.4 For all j + 1 ≤ k ≤ n there exist

– b′(k) ∈ B such that the first k column of r′(k) = r′b′(k) satisfy the
defining condition for the first k column in Rw(j+1), and if we have
k < n then r′(k) and r′(k+1) differ only in the k + 1-st column.

– a linear combination s(k) of the columns j + 1, j + 2, . . . , k in r′(k)

for which we have

s
(k)
i =


1, if i = i0
0, if (w(j+1))−1(i) ≤ k, and i 6= i0
$Fx, for some x ∈ oF otherwise

and the maximal i such that νF (s
(k)
i ) = 1 is w(j)(ji′), where i′ is

so, that ji′ ≤ k < ji′+1.
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Proof This holds for k = j + 1 with b′(j+1) = id, r′(j+1) = r′ and s(j+1)

the j + 1-st column of r′. To verify the condition for s(j+1) note that
r′

(w(j)(j+1),j+1)
= $F and if i > j + 1, then by the definition of Rw(j) we

have that r(j)
i,j+1 has valuation at least 1 and r′(i,j+1) = $F (r

(j)
i0,j+1)−1r

(j)
i,j+1

has valuation at least 2.

Assume that we have r′(k), b′(k) and s(k). Let i′ be so that
ji′ ≤ k < ji′+1 and s′ be the k + 1-st column of r′(k) (which is equal
with the k+ 1-st column of r′, thus for i 6= i0 we have s′i = r

(j)
i,k+1) and

s′′ = s′ − r
′(k)
(i0,k+1)s

(k). Then by the conditions on s′ we can change
the k + 1-st column of r′(k) to s′′ with multiplication from right by an
element b′′ ∈ B. Moreover s′′i0 = 0, and the element in s′′ with minimal
valuation and biggest row index is the w(j+1)(k + 1)-st:

– If νF (r
′(k)
(i0,k+1)) ≥ 0 then for i 6= i0 we have s′i ≡ s′′i = s′i−r

′(k)
(i0,k+1)s

(k)
i

mod $F , hence the element with minimal valuation is in the row
w(j+1)(k+1) = w(j)(k+1) (because r(j) ∈ Rw(j) and ji′+1 6= k+1).

– If νF (r
′(k)
(i0,k+1)) < 0 then it is -1 and for i 6= i0 we have

s′′i = r
(j)
(i,k+1) − r

′(k)
(i0,k+1) · s

(k)
i . Where on the right hand side the

first term has positive valuation for i > w(j)(k + 1) and 0 valu-
ation for i = w(j)(k+1) (because r(j) ∈ Rw(j)), and the second has
valuation 0=-1+1 for i = w(j)(ji′) and at least 1 for i > w(j)(ji′)
(by the induction hypothesis on s(k)). Moreover ji′ 6= k + 1, be-
cause ji′ ≤ k, hence w(j)(ji′) 6= w(j)(k + 1).
If w(j)(ji′) < w(j)(k + 1) then ji′+1 6= k + 1 and
w(j)(k + 1) = w(j+1)(k + 1). If w(j)(ji′) > w(j)(k + 1) then
ji′+1 = k + 1 and w(j+1)(k + 1) = w(j+1)(ji′+1) = w(j)(ji′).

By multiplying this column with (s′′
w(j+1)(k+1)

)−1 we get the element
r′(k+1) (we also have to multiply the k+ 1-st row of b′′ with s′′

w(j+1)(k+1)
,

this is b′(k+1)). This satisfies the condition for the k+1-st row of Rw(j+1)

because the defining conditions for r(j) ∈ Rw(j) , s(k) and the equality

{i|(w(j+1))−1(i) < k + 1} = {i|(w(j))−1(i) < k + 1} \ {w(j)(ji′)} ∪ {i0}.

The last thing to verify is the existence of an appropriate linear com-
bination s(k+1). Let s(k+1) = s(k) − s(k)

w(j+1)(k+1)
(s′′
w(j+1)(k+1)

)−1 · s′′. Since
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νF (s
(k)

w(j+1)(k+1)
) > 0, we have νF (s

(k+1)
i ) > 0 if i 6= i0, and by the previ-

ous argument also s(k+1)

w(j+1)(j′)
= 0 for j′ ≤ k + 1 and j′ 6= j + 1.

If w(j+1)(k + 1) > w(j)(ji′), then s
(k)

w(j+1)(k+1)
> 1 and s(k+1) ≡ s(k)

mod $2
F . If w(j+1)(k + 1) < w(j)(ji′) then by the definition of Rw(j+1)

for all i > w(j+1)(k + 1) we have ν(s′′i ) > 1 and again s
(k+1)
i ≡ s

(k)
i

mod $2
F . If w(j+1)(k+ 1) = w(j)(ji′), then by the definition of Rw(j) we

have s′
w(j)(ji′ )

= r′
(w(j)(ji′ ),k+1)

= 0, s′′
w(j+1)(k+1)

= 0− r′(k)
(i0,k+1)s

(k)

w(j)(ji′ )
and

s(k+1) =

= s(k)−s(k)

w(j)(ji′ )
(−r′(k)

(i0,k+1)s
(k)

w(j)(ji′ )
)−1 ·

(
s′−r′(k)

(i0,k+1)s
(k)
)

= (r
′(k)
(i0,k+1))

−1s′,

which satisfies the condition because s′ is the ji′+1 = k + 1-st column
of r′(k) and because of the definition of Rw(j) . �

To finish the proof we set b′ = b′(n), r(j+1) = r′b′(n) ∈ Rw(j+1) and
b(j+1) = (b′(n))−1(r

(j)
i0,j+1 · e−1

j+1)b(j) ∈ B.

�

Corollary 2.2.5 For any w ∈ W we have BwB = NwwB ⊂ ∪w′�wUw′. In
particular for any 0 < m0 ≤ n! we have that⋃

m≥m0

Uwm ⊂ G \Gm0−1 =
⋃

m≥m0

BwmB.

Proof Let x = nwwb ∈ NwwB. Then there exists t ∈ T+ such that
n′ = tnwt

−1 ∈ N0. Thus x = t−1n′w(w−1tw)b = t−1n′wb′′ with b′′ ∈ B.
By the previous proposition for w = w · id ∈ RwB and (n′)−1t ∈ B+,
there exist w′ ≺ w, rw′ ∈ Rw′ and b′ ∈ B such that t−1n′w = rw′b

′, hence
x = rw′(b

′b′′) ∈ Uw′ . The second assertion follows from that:⋃
m≥m0

Uwm = G \
⋃

1≤m<m0

Uwm ⊂ G \
⋃

1≤m<m0

BwmB = G \Gm0−1.

�

Remark We can achieve the results of this section not only for GLn, but
different groups: let G′ = G′(F ) be such that
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• G′ is isomorphic to a closed subgroup in G which we also denote by G′,

• In G′ a maximal torus is T ′ = T ∩ G′, a Borel subgroup B′ = B ∩ G′
with unipotent radical N ′ = N ∩G′, such that NG′(T

′) = NG(T ) ∩G′
and hence W ′ ≤ W with w0 ∈ W ′, with representatives w′ of W ′ in
G′0 ≤ G0 such that the representatives w of W in G can be written in
the form w = w′t such that t ∈ T ∩G0.

• G′0 = G0 ∩G′ with G′ = G′0B
′ and

• U ′(1) = U (1) ∩G′ such that U ′(1) ⊂ (N ′− ∩ U ′(1))B′ for N ′− = w0N
′w0.

For example these condititons are satisfied for the group SLn.
The proof of the first proposition works for such G′, and from a decom-

position x = r′b′ ∈ R′wB
′ ⊂ G′ we get some r ∈ Rw and b ∈ B such that

x = rb ∈ G. Hence the B′+-action on G′ respects the restriction of ≺ to W ′

in the sense that if x ∈ Rw′B
′ and b′ ∈ B′ then there exists w′′ � w′ in W ′

such that b′−1x ∈ R′w′′B′.

2.3 Generating B+-subrepresentations
For any torsion oK-module X with oK-linear B-action denote the (partially
ordered) set of generating B+-subrepresentations ofX (those B+-submodules
M of X for which BM = X) by B+(X).

For example Ind
Uw0
B (χ) ' C∞(N0) is the minimal generating B+-subrep-

resentation of the Steinberg representation πn!−1 = IndBw0B
B (χ) ' C∞c (N).

(cf [17], Lemma 2.6)

Proposition 2.3.1 Let X be a smooth admissible and irreducible torsion oK-
representation of G. Then M0 = B+X

U(1) is a generating B+-subrepresen-
tation of X. For any M ∈ B+(X) there exists a t+ ∈ T+ such that
t+M0 ⊂M .

Proof X is a kK vectorspace as well, because $KX ≤ X, hence by the
irreducibility it is either 0 or X, and since X is torsion $KX = X gives
X = 0.

BM0 is a B-subrepresentation, and also a G0-subrepresentation (because
U (1) �G0). G0B = BG0 = G, so BM0 is a G-subrepresentation of X. M0 is
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not {0}, since U (1) is pro-p and since X is irreducible BM0 = X, hence M0

is generating. And M0 is clearly a B+-submodule of X.
X is admissible, hence XU(1) has a finite generating set, say R. Let M

be as in the proposition. For any r ∈ R there exists an element tr ∈ T+ such
that trr ∈ M ([17], Lemma 2.1). The cardinality of R is finite, hence for
t+ =

∏
r∈R tr we have t−1

r t+ ∈ T+ for all r ∈ R, and then t+M0 ⊂M . �

From now on let π = IndGB(χ) as before and M0 = B+π
U(1) . Then πU(1)

(as a vector space) is generated by

fr :

{
urb 7→ χ−1(b)

y 6= urb 7→ 0

(
r ∈ U (1) \G/B =

⋃
w∈W

Ñw(kF )w

)
.

If we denote the coset U (1)wB also with w, then πU
(1) is generated by

{fw|w ∈ W} as an N0-module. Hence any f ∈ M0 can be written in the
form

∑s
i=1 λinitifwi for some λi ∈ kK , ni ∈ N0, ti ∈ T+ and wi ∈ W .

Proposition 2.3.2 M0 is minimal in B+(π).

Remark In [17] section 12 Schneider and Vigneras treated the case of the
subquotients πm−1/πm. Unfortunately M0 does not generally give the min-
imal generating B+-subrepresentation of πm−1/πm on this subqoutient, since
that their method does not work on the whole π. It is not true even for
GL3(Qp): an explicit example is shown in Corollary 2.5.2.

Proof By the previous proposition, it is enough to show, that for any t′ ∈ T+

we have M0 ⊂ B+t
′M0.

If t′ ∈ G0, then t′−1 ∈ T+ thus we have B+t
′ = B+, and

B+t
′M0 = B+M0 = M0. The same is true for central elements t′ ∈ Z(G). So

it is enough to prove for t′ = ($F , $F , . . . , $F , 1, 1, . . . , 1) that
M0 ⊂ B+t

′M0.
Let j0 ∈ N be such that t′j0 = $F and t′j0+1 = 1. We need to show, that

for all w ∈ W we have fw ∈ B+t
′M0. We prove it by descending induction

on w with respect to ≺.
Let us denote

N
(1)
j0

= {n ∈ N ∩ U (1)|∀i < j, (j0 − i)(j − (j0 + 1)) < 0 : nij = 0},

Nw,j0 = Nw ∩N (1)
j0

and Jw,j0 = J(Nw,j0/t
′Nw,j0t

′−1) ⊂ N0 ∩ U (1).
It is enough to prove the following:
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Lemma 2.3.3 Let g =
∑

m∈Jw,j0
mt′fw. Then χ(w−1t′w)fw − g is in∑

w′:w≺w′ N0fw′.

We claim that for r ∈ Rw we have

t′fw(r) =

{
χ(w−1t′w), if ∀i ≤ j0 < j,w−1(i) > w−1(j) : rij ∈ $2

FoF ,
0, otherwise.

t′fw(r) = fw(t′−1r) is nonzero if and only if t′−1r ∈ U (1)wB. Following
the proof of Proposition 2.2.3, it is equivalent to that for all 1 ≤ j ≤ n we
have w = w(j) and that the first j columns of (t(j))−1r(j) are as the first j
columns of U (1)w. This holds if and only if rij ∈ $2

FoF for all i and j as
above. Then we have r(n) = t′−1rw−1t′w and b(n) = w−1(t′)−1w, hence our
claim.

Therefore χ(w−1t′w)fw|Uw =
∑

m∈Jw,j0
mt′fw|Uw . Hence by the induction

hypothesis and Proposition 2.2.3 it suffices to prove that g is U (1)-invariant.
To do that, first notice that since fw is U (1)-invariant, we have that

t′fw is t′U (1)t′−1-invariant. Moreover, since for all m ∈ Jw,j0 we have
m ∈ N0 ∩ U (1) ⊆ t′N0t

′−1, m normalizes t′U (1)t′−1, mt′fw is also t′U (1)t′−1-
invariant, and so is g.

On the other hand, we can write

g =
∑

m∈Jw,j0

mt′fw =
∑

m∈Jw,j0

t′(t′−1mt′)fw = t′

( ∑
n∈t′−1Nw,j0 t

′/Nw,j0

nfw

)
,

where the sum in the bracket on the right hand side is obviously t′−1Nw,j0t
′-

invariant, hence g is Nw,j0-invariant.
Denote N ′w,j0 = N ′w ∩ N

(1)
j0

. Then Nw,j0 centralizes t′−1N ′w,j0t
′: let

n0 = id +m0 ∈ t′−1N ′w,j0t
′, n ∈ Nw,j0 ,

(n−1n0n− n0)xy = (n−1m0n−m0)xy =
∑

x≤s≤t≤y

(n−1)xs(m0)stnty − (m0)xy,

and by the definition of N (1)
j0

, (m0)st is 0, unless s ≤ j0 < t and hence
(n−1)xsmstnty = 0, unless x = s and y = t.

By the definition of N ′w we have w−1N ′w,j0w ⊂ B, so for any u ∈ U (1) and
n0 ∈ t′−1N ′w,j0t

′ ⊂ G0 we have n0uw = (n0un
−1
0 )w(w−1n0w) ∈ U (1)wB, and

hence fw is t′−1N ′w,j0t
′-invariant.
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Altogether for any representative n ∈ Jw,j0

nfw(n0x) = fw(n−1n0x) = fw(n0n
−1x) = fw(n−1x) = nfw(x),

meaning that nfw is t′−1N ′w,j0t
′-invariant, and t′nfw is N ′w,j0-invariant. So g

is also N ′w,j0-invariant.
U (1) is contained in

〈
t′U (1)t′−1, Nw,j0 , N

′
w,j0

〉
, so g is U (1)-invariant, and

we are done. �

Corollary 2.3.4 For any f ∈ M0 there exists t ∈ T+ such that f can be
written in form

∑s
i=1 λinitfwi for some λi ∈ kK , ni ∈ N0 and wi ∈ W .

Define the kK [B+]-submodules M0,m =
∑

m′>mB+fwm′ ≤ IndGmB (χ). We
obtain a descending filtration M0 = M0,0 ≥ M0,1 ≥ · · · ≥ M0,n! = 0. Then
M0,n!−1 = Ind

Uw0
B (χ) is the minimal generating subrepresentation of πn!−1.

Proposition 2.3.5 Let 1 < m ≤ n!, w = wm−1 and n′ ∈ N ′0,w = N ′w ∩ N0

and t ∈ T+. Then g = n′tfw − tfw ∈M0,m.

Proof For w′ ≺ w we have tfw|Uw′ = n′tfw|Uw′ = 0 and following the proof of
Proposition 2.2.3 we get n′tfw|Uw = tfw|Uw . Moreover g is tU (1)t−1-invariant,
thus it is contained in

∑
m′>m−1 tfwm′ ⊂M0,m. �

Corollary 2.3.6 For any f ∈ M0 there exists t ∈ T+ such that f can be
written in form

∑s
i=1 λinitfwi for some λi ∈ kK, wi ∈ W and ni ∈ N0,wi.

Remarks 1. π is the modulo $K reduction of the p-adic principal series
representation. This can be done with any l ∈ N for the modulo $l

K

reduction. Then the $K-torsion part of the minimal generating B+-
representation is exactly M0.

2. This can be carried out in the same way for groups G′ = G′(F ) as
in the previous section satisfying moreover N0 ⊂ G′. For example
G′ = SLn has this property (but its center is not connected), or G′ = P
for arbitary P ≤ G parabolic subgroup has also (but these are not
reduvtive).
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2.4 The Schneider-Vigneras functor
Following Schneider and Vigneras ([17], section 2) we introduce the functor
D from torsion oK-modules to modules over the Iwasawa algebra of N0.

Let us denote the completed group ring of N0 over oK by Λ(N0), and
define

DSV (ρ) = lim−−−−−−−→
M∈B+(ρ)

M∨,

as an Λ(N0)-module, equipped with a natural T−1
+ -action ψ.

On DSV (π) the action of $K is 0, hence we can view it as a
Ω(N0) = Λ(N0)/$KΛ(N0)-module.

By Proposition 2.3.2 we have

Proposition 2.4.1 The Ω(N0)-module DSV (π) is equal to M∨
0 .

Remarks 1. We do not know whether DSV (π) is finitely generated or it
has rank 1 as an Ω(N0)-module.

2. On M0 we have an action of U (1): if x ∈ U (1), n ∈ N0, t ∈ T+ and
w ∈ W then we can write n−1xn = n1n2 ∈ U (1) with n1 ∈ N0 and
n2 ∈ B−T ∩ U (1) (with B− = N−T ), thus

xntfw = n(n−1xn)tfw = (nn1)t(t−1n2t)fw = (nn1)tfw ∈M0,

since t−1n2t ∈ U (1) and fw is U (1)-invariant. Thus on DSV (π) there is
an action of Λ(U (1)), therefore an action of Λ(I) (with I denoting the
Iwahori subgroup).

Till this point we considered only the Λ(N0)-module structure of DSV (π).
Now we shall examine the ψ-action as well. We need to get an étale module
from DSV (π), thus we examine the ψ-invariant images of DSV (π) in an étale
module.

Let D be a topologically étale (see [18] the first lines of Section 4) (ϕ,Γ)-
module over Ω(N0), with the following properties:

• D is torsion-free as an Ω(N0)-module,

• on D the topology is Hausdorff,

• D has a basis of neighborhoods of 0, containing ϕ-invariant Ω(N0)-
submodules (O ≤ D open such that ϕt(O) ⊆ O for all t ∈ T+).
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Theorem 2.4.2 If D is as above and Φ : DSV (π) → D is a continuous
ψ-invariant map (where ψ is the canonical left inverse of ϕ on D), then Φ
factors through the natural map Φ0 : DSV (π) → DSV (πn!−1): there exists a
continuous ψ-invariant map Ψ : DSV (πn!−1)→ D such that Φ = Φ0 ◦Ψ.

Proof DSV (π)− tors is in the kernel of Φ (the torsion submodules exist,
because the rings are Ore rings).

In M0/(M0 ∩ πn!−1) there are no nontrivial kK [N0]-divisible elements,
because if f ∈ M0 the image of it in M0/(M0 ∩ πn!−1) is f ′ = f |G\Bw0B.
Assume by contradiction that f ′ is kK [N0]-divisible. If it is nontrivial, then
there exists bwmb ∈ G such that f(bwmb) 6= 0 with some m < n! Let
n′ ∈ N ′0,wm = N0 ∩wmN0w

−1
m with n′ 6= id, and [n′]− [id] ∈ kK [N0]. Then for

any g ∈M0 we have

([n′]− [id])g(wm) = g(n′−1wm)− g(wm) = g(wm(w−1
m n′−1wm))− g(wm) = 0,

because w−1
m n′−1wm ∈ N . Thus f ′ is not divisible by [n′]− [id].

It follows that Φ factors through (M0 ∩ πn!−1)∨: The fact that there are
no nontrivial divisible submodules in M0/(M0 ∩ πn!−1) implies that for any
(closed) submodule the maps f 7→ λf are not surjective for all
λ ∈ kK [N0]∨. Hence dual maps are not injective for all λ - it has no tor-
sionfree quotient arising as a dual of a submodule of M0/(M0 ∩ πn!−1), thus
(M0/(M0 ∩ πn!−1))∨ ≤ DSV (π)− tors. Now consider the exact sequence

0→M0 ∩ πn!−1 →M0 →M0/(M0 ∩ πn!−1)→ 0.

We claim that Φ factors throughM∨
0,n!−1 as well. If f ∈ (M0∩πn!−1)∨ such

that f |M0,n!−1
≡ 0, then ψt(u−1f)|t−1M0,n!−1

≡ 0 for all u ∈ N0: the ψ-action on
DSV (π) comes from the T+-action on π, hence
ψt(u

−1f)(t−1x) = (u−1f)(tt−1x) = f(ux) = 0 if x ∈M0,n!−1.
For all O ⊆ D open subset there exists t ∈ T+ such that

Ker(f 7→ f |t−1M0,n!−1
) ⊂ Φ−1(O), since Φ is continuous and⋃

t∈T+
t−1M0,n!−1 = π0,n!−1. If O is ϕ and N0-invariant as well, then

Φ(f) =
∑

u∈N0/tN0t−1

uϕt(Φ(ψt(u
−1f)) ⊆ O.

Then Φ(f) = 0 by the Hausdorff property.
By [17], Proposition 12.1, we haveDSV (πn!−1) = M∨

0,n!−1, which completes
the proof. �
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Remarks 1. For this we do not need the Γ-action of D, the statement is
true for D étale ϕ-modules with continuous N0 and ϕ-action.

2. Let D′ be the maximal quotient of DSV (π), which is torsionfree, Hauss-
dorff and on which the action of ψ is nondegenerate in the following
sense: for all d ∈ D′ \ {0} and t ∈ T+ there exists u ∈ N0 such that
ψt(ud) 6= 0. Then the natural map from D′ to DSV (πn!−1) is bijective.

3. By [22] section 4 if F = Qp, we have that D0(πn!−1) = DSV (πn!−1) and
Di(πn!−1) = 0 for i > 0.

Following [17] we choose a surjective homomorphism
` : N0 → Zp. Then we can get (ϕ,Γ)-modules from DSV (π): Let Λ`(N0) de-
note the ring ΛN1(N0) of [17] with N1 = Ker(`), with maximal idealM`(N0),
Ω`(N0) = Λ`(N0)/$KΛ`(N0) and D`(π) = Ω`(N0)⊗Ω(N0) DSV (π).

Corollary 2.4.3 Let D be a finitely generated topologically étale (ϕ,Γ)-module
over Ω`(N0), and Φ′ : D`(π)→ D a continuous map. Then Φ′ factors through
the natural map Φ′0 : D`(π)→ D`(πn!−1).

Proof If D is a finitely generated topologically étale (ϕ,Γ)-module over
Ω`(N0), then it automatically satisfies the conditions above:

D is étale, hence Ω`(N0)-free (Theorem 8.20 in [18]), thus Ω(N0)-free and
thus torsionfree as well. It is Hausdorff, since finitely generated and the weak
topology is Haussdorff on Ω`(N0) (Lemma 8.2.iii in [17]).

We only need to verify the condition for the neighborhoods. The sets
M`(N0)kD+ Ω(N0)⊗k[[X]]X

n`(D)++ (where `(D) is the étale (ϕ,Γ)-module
attached to D at the category equivalence [18] Theorem 8.20) are open ϕ-
invariant Ω(N0) submodules and form a basis of neighborhoods of 0 in the
weak topology of D.

Thus DSV (π) → D`(π) → D factors through DSV (π) → DSV (πn!−1),
hence the corollary. �

2.5 Some properties of M0

In this section we point out some properties of M0, which make the picture
more difficult than the known case of subqoutients πm−1/πm. Recall ([17]
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section 12) that πm−1/πm ' π(wm, χ), which has a minimal generating B+-
subrepresentation

M(wm, χ) = C∞(N0/N
′
wm ∩N0) ∈ B+(π(wm, χ)).

Proposition 2.5.1 Let n = 3, F = Qp, then M0 ∩ πn!−1 )M0,n!−1.

Corollary 2.5.2 Thus M0 ∩ πn!−1 is not equal to the minimal generating
B+-subrepresentation of πn!−1, which is C∞(N0) = M0,n!−1 ([17] section 12).

Proof Assume that χ = χ1 ⊗ χ2 ⊗ χ3 : T → k∗K is a character, such that
neither χ1/χ2, nor χ2/χ3 is trivial on o∗K . Similar construction can be carried
out in the other cases.

Let ≺T be the following total ordering of the Weyl group of G refining
the Bruhat ordering:

w1 =

 1 0 0
0 1 0
0 0 1

 ≺T w2 =

 0 1 0
1 0 0
0 0 1

 ≺T w3 =

 1 0 0
0 0 1
0 1 0

 ≺T
≺T w4 =

 0 1 0
0 0 1
1 0 0

 ≺T w5 =

 0 0 1
1 0 0
0 1 0

 ≺T w6 =

 0 0 1
0 1 0
1 0 0

 = w0.

And let

h =

p2−1∑
a=0

p2−1∑
b=0

 1 a b
0 1 0
0 0 1

 p2 0 0
0 1 0
0 0 1

 fw2 ∈M0,

f = h− 1

χ3(p2)

p3−1∑
a=0

p3−1∑
b=0

h

( a b 1
1 0 0
0 1 0

) 1 a b
0 1 0
0 0 1

 fw5 .

Then it is easy to verify that f ∈M0 ∩ π5, and that f(z) 6= 0 for

z =

 p2 0 1
1 0 0
p 1 0

 ∈ Bw0B \N0w0B.

Thus f /∈M0,5 = B+f6 ⊆ {f ∈ π|supp(f) ≤ N0w0B}. �

27



However, if f ∈M0 ∩ π5 then supp(f) is contained in Bw0B ∩
⋃
i>3RiB:

A straightforward computation shows that for any n ∈ N0, t ∈ T+, w ∈ W
and

• for any r ∈ Rw1 we have ntfw(r) = ntfw(w1). Let r′ = w1 ∈ G5,

• for any r ∈ Rw2 we have ntfw(r) = ntfw(r′) for

r′ =

 α 1 0
1 0 0
β′ 0 1

 ∈ G5, where r =

 α 1 0
1 0 0
β′ γ′ 1

 ,

• for any r ∈ Rw3 we have ntfw(r) = ntfw(r′) for

r′ =

 1 0 0
α′ − β′γ γ 1

0 1 0

 ∈ G5, where r =

 1 0 0
α′ γ 1
β′ 1 0

 .

Thus if i < 4 and r ∈ Rwi , then since r′ /∈ Bw0B we have f(r) = f(r′) = 0.

Proposition 2.5.3 The quotients M0,m−1/M0,m−1 ∩ πm via f 7→ f(·wm) are
isomorphic to M(wm, χ).

Proof It is obvious, that f(·wm) ≡ 0 implies f |Gm\Gm−1 ≡ 0 and
f ∈ M0,m−1 ∩ πm. Hence the map M0,m−1/M0,m−1 ∩ πm → M(wm, χ),
f 7→ f(·wm) is injective.

Let t0 = diag($n−1
F , $n−2

F , . . . , $F , 1) ∈ T+, and for any l ∈ N let
U (l) = Ker(G0 → G(oF/$

l
FoF )). For x = rb ∈ RwmB we have∑

n∈(N0∩U(l))/tl0N0t
−l
0

ntl0fwm(rb) =

{
χ−1(b), if r ∈ U (l)wm,
0, if not.

The image of these generate M(wm, χ) as an N0-module, so f 7→ f(·wm) is
surjective. �

Since M0,m ≤ πm, M(wm, χ) is naturally a quotient of M0,m−1/M0,m, we
have DSV (πm−1/πm) ≤ (M0,m−1/M0,m)∨.

Proposition 2.5.4 For m = 1 and m = n! − n + 1, n! − n + 2, . . . , n!
(M0,m−1/M0,m)∨ = DSV (πm−1/πm). For other m-s it is not true, for example
if n = 3, F = Qp and m = 2, 3.
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Proof By the previous proposition it is enough to show that
M0,m = M0,m−1 ∩ πm for m = 1 and m > n!− n.

For m = 1 the quotient is obviously kK , for m > n! − n we have
w ≺ wm implies w = wn!, so if f ∈ B+fwm ∩ πm−1 = B+fwm ∩ πn!−1, then
supp(f) ⊂ U (1)R

(1)
wn!−1B. But

M0,n!−1 ' C∞(N0) ' {f ∈ πn!−1|supp(f) ⊂ U (1)Rwn!−1
B}.

The fuction f constructed in the beginning of this section is in
M0,1 ∩ π2 \M0,2. The same can be done for m = 3. �
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Chapter 3

Comparison of functors

3.1 A Λ`(N0)-variant of Breuil’s functor
Our first goal is to associate a (ϕ,Γ)-module over Λ`(N0) (not just overOE) to
a smooth o-torsion representation π of G in the spirit of [3] that corresponds
to D∨ξ,`(π) via the equivalence of categories of [18] between (ϕ,Γ)-modules
over OE and over Λ`(N0).

From now on let o = oK , $ = $K . Let Hk be the normal subgroup of N0

generated by skH0s
−k, ie. we put

Hk = 〈n0s
kH0s

−kn−1
0 | n0 ∈ N0〉 .

Hk is an open subgroup of H0 normal in N0 and we have
⋂
k≥0Hk = {1}. De-

note by Fk the operator TrHk/sHks−1 ◦(s·) on π and consider the skew polyno-
mial ring Λ(N0/Hk)/$

h[Fk] where Fkλ = (sλs−1)Fk for any
λ ∈ Λ(N0/Hk)/$

h. The set of finitely generated Λ(N0/Hk)[Fk]-submodules
of πHk that are stable under the action of Γ and admissible as a representation
of N0/Hk is denoted byMk(π

Hk).
Recall the the definiton of Breuil ([3]) is uses this submodules for k = 0:

D∨ξ,`(π) = lim←−
M∈M0(πH0 )

M∨[1/X].

Lemma 3.1.1 We have F = F0 and Fk ◦ TrHk/skH0s−k ◦ (sk·) =
TrHk/skH0s−k ◦ (sk·) ◦ F0 as maps on πH0.
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Proof We compute

Fk ◦ TrHk/skH0s−k ◦ (sk·) = TrHk/sHks−1 ◦ (s·) ◦ TrHk/skH0s−k ◦ (sk·) =

TrHk/sHks−1 ◦ TrsHks−1/sk+1H0s−k−1 ◦ (sk+1·) =

TrHk/sk+1H0s−k−1 ◦ (sk+1·) =

TrHk/skH0s−k ◦ TrskH0s−k/sk+1H0s−k−1 ◦ (sk+1·) =

TrHk/skH0s−k ◦ (sk·) ◦ TrH0/sH0s−1 ◦ (s·) =

TrHk/skH0s−k ◦ (sk·) ◦ F0 .

�

Note that if M ∈ M(πH0) then TrHk/skH0s−k ◦ (skM) is a skN0s
−kHk-

subrepresentation of πHk . So in view of the above Lemma we define Mk to
be the N0-subrepresentation of πHk generated by TrHk/skH0s−k ◦ (skM), ie.
Mk = N0TrHk/skH0s−k ◦ (skM). By Lemma 3.1.1 Mk is a Λ(N0/Hk)/$

h[Fk]-
submodule of πHk .

Lemma 3.1.2 For any M ∈ M(πH0) the N0-subrepresentation Mk lies in
Mk(π

Hk).

Proof Let {m1, . . . ,mr} be a set of generators of M as a Λ(N0/H0)/$h[F ]-
module. We claim that the elements TrHk/skH0s−k(s

kmi) (i = 1, . . . , r) gen-
erate Mk as a module over Λ(N0/Hk)/$

h[Fk]. Since both Hk and skH0s
−k

are normalized by skN0s
−k, for any u ∈ N0 we have

TrHk/skH0s−k ◦ (skus−k·) = (skus−k·) ◦ TrHk/skH0s−k . (3.1)

Therefore by continuity we also have

TrHk/skH0s−k ◦ (skλs−k·) = (skλs−k·) ◦ TrHk/skH0s−k

for any λ ∈ Λ(N0/H0)/$h. Now writing any m ∈ M as m =
∑r

j=1 λjF
ijmj

we compute

TrHk/skH0s−k ◦ (sk
r∑
j=1

λjF
ijmj) =

r∑
j=1

(skλs−k)F
ij
k TrHk/skH0s−k(s

kmj) ∈

∈
r∑
j=1

Λ(N0/Hk)/$
h[Fk]TrHk/skH0s−k(s

kmj) .
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For the stability under the action of Γ note that Γ normalizes both Hk

and skH0s
−k and the elements in Γ commute with s.

Since M is admissible as an N0-representation, skM is admissible as a
representation of skN0s

−k. Further by (3.1) the map TrHk/skH0s−k is s
kN0s

−k-
equivariant therefore its image is also admissible. Finally, Mk can be written
as a finite sum ∑

u∈J(N0/skN0s−kHk)

uTrHk/skH0s−k(s
kM)

of admissible representations of skN0s
−k therefore the statement. �

Lemma 3.1.3 Fix a simple root α ∈ ∆ such that `(Nα,0) = Zp. Then for
any M ∈M(πH0) the kernel of the trace map

TrH0/Hk : Yk =
∑

u∈J(Nα,0/skNα,0s−k)

uTrHk/skH0s−k(s
kM)→ N0F

k(M) (3.2)

is finitely generated over o. In particular, the length of Y ∨k [1/X] as a module
over o/$h((X)) equals the length of M∨[1/X].

Proof Since any u ∈ Nα,0 ≤ N0 normalizes both H0 and Hk and we have
Nα,0H0 = N0 by the assumption that `(Nα,0) = Zp, the image of the map
(3.2) is indeed N0F

k(M). Moreover, by the proof of Lemma 2.6 in [3]
the quotient M/N0F

k(M) is finitely generated over o. Therefore we have
M∨[1/X] ∼= (N0F

k(M))∨[1/X] as a module over o/$h((X)). In particular,
their length are equal:

l = lengtho/$h((X))M
∨[1/X] = lengtho/$h((X))(N0F

k(M))∨[1/X] .

We compute

l = lengtho/$h((X))M
∨[1/X] = lengtho/$h((ϕk(X)))(s

kM)∨[1/X] ≥
≥ lengtho/$h((ϕk(X)))(TrHk/skH0s−k(s

kM))∨[1/X] =

= lengtho/$h((X))(o/$
h[[X]]⊗o/$h[[ϕk(X)]] TrHk/skH0s−k(s

kM))∨[1/X] ≥
≥ lengtho/$h((X))Y

∨
k [1/X] .

By the existence of a surjective map (3.2) we must have equality in the above
inequality everywhere. Therefore we have Ker(TrH0/Hk)

∨[1/X] = 0, which
shows that Ker(TrH0/Hk) is finitely generated over o, becauseM is admissible,
and so is Ker(TrH0/Hk) ≤M . �
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The kernel of the natural homomorphism

Λ(N0/Hk)/$
h → Λ(N0/H0)/$ ∼= k[[X]]

is a nilpotent prime ideal in the ring Λ(N0/Hk)/$
h. We denote the local-

ization at this ideal by Λ(N0/Hk)/$
h[1/X]. For the justification of this

notation note that any element in Λ(N0/Hk)/$
h[1/X] can uniquely be writ-

ten as a formal Laurent-series
∑

n�−∞ anX
n with coefficients an in the finite

group ring o/$h[H0/Hk]. Here X—by an abuse of notation—denotes the ele-
ment [u0]− 1 for an element u0 ∈ Nα,0 ≤ N0 with `(u0) = 1 ∈ Zp. The ring
Λ(N0/Hk)/$

h[1/X] admits a conjugation action of the group Γ that com-
mutes with the operator ϕ defined by ϕ(λ) = sλs−1 (for
λ ∈ Λ(N0/Hk)/$

h[1/X]). A (ϕ,Γ)-module over Λ(N0/Hk)/$
h[1/X] is a

finitely generated module over Λ(N0/Hk)/$
h[1/X] together with a semilin-

ear commuting action of ϕ and Γ. Note that ϕ is no longer injective on the
ring Λ(N0/Hk)/$

h[1/X] for k ≥ 1, in particular it is not flat either. How-
ever, we still call a (ϕ,Γ)-module Dk over Λ(N0/Hk)/$

h[1/X] étale if it is
finitely generated and the natural map

1⊗ ϕ : Λ(N0/Hk)/$
h[1/X]⊗ϕ,Λ(N0/Hk)/$h[1/X] Dk → Dk

is an isomorphism of Λ(N0/Hk)/$
h[1/X]-modules. For any M ∈ M(πH0)

we put
M∨

k [1/X] = Λ(N0/Hk)/$
h[1/X]⊗Λ(N0/Hk)/$h M

∨
k

where (·)∨ denotes the Pontryagin dual Homo(·, K/o).
The group N0/Hk acts by conjugation on the finite H0/Hk � N0/Hk.

Therefore the kernel of this action has finite index. In particular, there
exists a positive integer r such that srNα,0s

−r ≤ N0/Hk commutes with
H0/Hk. Therefore the group ring o/$h((ϕr(X)))[H0/Hk] is contained as a
subring in Λ(N0/Hk)/$

h[1/X].

Lemma 3.1.4 As modules over the group ring o/$h((ϕr(X)))[H0/Hk] we
have an isomorphism

M∨
k [1/X]→ o/$h((ϕr(X)))[H0/Hk]⊗o/$h((ϕr(X))) Y

∨
k [1/X] .

In particular, M∨
k [1/X] is induced as a representation of the finite group

H0/Hk, so the reduced (Tate-) cohomology groups H̃ i(H ′,M∨
k [1/X]) vanish

for all subgroups H ′ ≤ H0/Hk and i ∈ Z.
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Proof By the definition of Mk we have a surjective o/$h[[ϕr(X)]][H0/Hk]-
linear map

f : o/$h[[ϕr(X)]][H0/Hk]⊗o/$h[[ϕr(X)]] Yk →Mk

sending λ ⊗ y to λy for λ ∈ o/$h[[ϕr(X)]][H0/Hk] and y ∈ Yk. Further, by
Lemma 3.1.3 the kernel of the restriction of f to the H0/Hk-invariants

(o/$h[[ϕr(X)]][H0/Hk]⊗o/$h[[ϕr(X)]] Yk)
H0/Hk = (

∑
h∈H0/Hk

h)⊗ Yk

is finitely generated over o. By taking the Pontryagin dual of f and inverting
X we obtain an injective o/$h((ϕr(X)))[H0/Hk]-homomorphism

f∨[1/X] : M∨
k [1/X]→ (o/$h[[ϕr(X)]][H0/Hk]⊗o/$h[[ϕr(X)]] Yk)

∨[1/X] ∼=
∼= o/$h((ϕr(X)))[H0/Hk]⊗o/$h((ϕr(X))) (Y ∨k [1/X])

that becomes surjective after taking H0/Hk-coinvariants. Since M∨
k [1/X] is

a finite dimensional representation of the finite p-group H0/Hk over the local
artinian ring o/$h((X)) with residual characteristic p, the map f∨[1/X] is
in fact an isomorphism as its cokernel has trivial H0/Hk-coinvariants. �

Denote by Hk,−/Hk the kernel of the group homomorphism

s(·)s−1 : N0/Hk → N0/Hk .

It is a finite normal subgroup contained in H0/Hk ≤ N0/Hk. If k is big
enough so that Hk is contained in sH0s

−1 then we have Hk,− = s−1Hks,
otherwise we always have Hk,− = H0 ∩ s−1Hks. The ring homomorphism

ϕ : Λ(N0/Hk)/$
h → Λ(N0/Hk)/$

h

factors through the quotient map Λ(N0/Hk)/$
h � Λ(N0/Hk,−)/$h. We

denote by ϕ̃ the induced ring homomorphism

ϕ̃ : Λ(N0/Hk,−)/$h → Λ(N0/Hk)/$
h .

Note that ϕ̃ is injective and makes Λ(N0/Hk)/$
h a free module of rank

ν = |Coker(s(·)s−1 : N0/Hk → N0/Hk)| =
= p|Coker(s(·)s−1 : H0/Hk → H0/Hk)| =

= p|Ker(s(·)s−1 : H0/Hk → H0/Hk)| = p|Hk,−/Hk|

over Λ(N0/Hk,−)/$h.
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Lemma 3.1.5 We have a series of isomorphisms of Λ(N0/Hk)/$
h[1/X]-

modules

Tr−1 = Tr−1
Hk,−/Hk

: (Λ(N0/Hk)/$
h ⊗ϕ,Λ(N0/Hk)/$h Mk)

∨[1/X]
(1)→

(1)→ HomΛ(N0/Hk),ϕ(Λ(N0/Hk),M
∨
k [1/X])

(2)→
(2)→ HomΛ(N0/Hk,−),ϕ̃(Λ(N0/Hk), (M

∨
k [1/X])Hk,−)

(3)→
(3)→ Λ(N0/Hk)⊗Λ(N0/Hk,−),ϕ̃M

∨
k [1/X]Hk,−

(4)→
(4)→ Λ(N0/Hk)⊗Λ(N0/Hk,−),ϕ̃ (M∨

k [1/X])Hk,−
(5)→

(5)→ Λ(N0/Hk)/$
h ⊗Λ(N0/Hk)/$h,ϕM

∨
k [1/X] .

Proof (1) follows from the adjoint property of ⊗ and Hom. The second iso-
morphism follows from noting that the action of the ring Λ(N0/Hk) over itself
via ϕ factors through the quotient Λ(N0/Hk,−) thereforeHk,− acts trivially on
Λ(N0/Hk) via this map. So any module-homomorphism
Λ(N0/Hk) → M∨

k [1/X] lands in the Hk,−-invariant part M∨
k [1/X]Hk,− of

M∨
k [1/X]. The third isomorphism follows from the fact that Λ(N0/Hk) is a

free module over Λ(N0/Hk,−) via ϕ̃. The fourth isomorphism is given by (the
inverse of) the trace map TrHk,−/Hk : (M∨

k [1/X])Hk,− → M∨
k [1/X]Hk,− which

is an isomorphism by Lemma 3.1.4. The last isomorphism follows from the
isomorphism (M∨

k [1/X])Hk,−
∼= Λ(N0/Hk,−)⊗Λ(N0/Hk) M

∨
k [1/X]. �

Remark Here ϕ always acted only on the ring Λ(N0/Hk), hence denoting
ϕt the action n 7→ tnt−1 for a fixed t ∈ T+ and choosing k large enough such
that tH0t

−1 ≥ Hk we get analogously an isomorphism

Tr−1
t−1Hkt/Hk

: (Λ(N0/Hk)/$
h ⊗ϕt,Λ(N0/Hk)/$h Mk)

∨[1/X]→
→ Λ(N0/Hk)/$

h ⊗Λ(N0/Hk)/$h,ϕt M
∨
k [1/X] .

We denote the composite of the five isomorphisms in Lemma 3.1.5 by
Tr−1 emphasising that all but (4) are tautologies. Our main result in this
section is the following generalization of Lemma 2.6 in [3].

Proposition 3.1.6 The map

Tr−1 ◦ (1⊗ Fk)∨[1/X] : (3.3)
M∨

k [1/X]→ Λ(N0/Hk)/$
h[1/X]⊗ϕ,Λ(N0/Hk)/$h[1/X] M

∨
k [1/X]
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is an isomorphism of Λ(N0/Hk)/$
h[1/X]-modules. Therefore the natural

action of Γ and the operator

ϕ : M∨
k [1/X] → M∨

k [1/X]

f 7→ (Tr−1 ◦ (1⊗ Fk)∨[1/X])−1(1⊗ f)

makeM∨
k [1/X] into an étale (ϕ,Γ)-module over the ring Λ(N0/Hk)/$

h[1/X].

Proof Since Mk is finitely generated over Λ(N0/Hk)/$
h[Fk] by Lemma

3.1.2, the cokernel C of the map

1⊗ Fk : Λ(N0/Hk)/$
h ⊗ϕ,Λ(N0/Hk)/$h Mk →Mk (3.4)

is finitely generated as a module over Λ(N0/Hk)/$
h. Further, it is admissible

as a representation of N0 (again by Lemma 3.1.2), therefore C is finitely
generated over o. In particular, we have C∨[1/X] = 0 showing that (3.3) is
injective.

For the surjectivity put Yk =
∑

u∈J(Nα,0/skNα,0s−k) uTrHk/skH0s−k(s
kM).

This is an o/$h[[X]]-submodule of Mk. By Lemma 3.1.3 we have

lengtho/$h((ϕr(X)))(Y
∨
k [1/X]) =

= |Nα,0 : srNα,0s
−r|lengtho/$h((X))(Y

∨
k [1/X]) = prl .

By Lemma 3.1.4 we obtain

lengtho/$h((ϕr(X)))M
∨
k [1/X] =

= |H0 : Hk| · lengtho/$h((ϕr(X)))Y
∨
k [1/X] = |H0 : Hk|prl .

Consider the ring homomorphism

ϕ : Λ(N0/Hk)/$
h[1/X]→ Λ(N0/Hk)/$

h[1/X] . (3.5)

Its image is the subring Λ(sN0s
−1Hk/Hk)/$

h[1/ϕ(X)] over which the ring
Λ(N0/Hk)/$

h[1/X] is a free module of rank ν = |N0 : sN0s
−1Hk| = p|Hk,− :

Hk|. So we obtain

plengtho((ϕr(X)))Λ(N0/Hk)/$
h[1/X]⊗ϕ,Λ(N0/Hk)/$h[1/X] M

∨
k [1/X] =

= lengtho((ϕr+1(X)))Λ(N0/Hk)/$
h[1/X]⊗ϕ,Λ(N0/Hk)/$h[1/X] M

∨
k [1/X] =

= νlengtho((ϕr+1(X)))Λ(sN0s
−1Hk/Hk)/$

h[1/ϕ(X)]⊗ϕ,Λ(N0/Hk)/$h[1/X]

⊗M∨
k [1/X]

(∗)
= νlengtho((ϕr(X)))M

∨
k [1/X]Hk,− =

= νlengtho((ϕr(X)))(o/$
h[H0/Hk,−]⊗o/$h Y ∨k [1/X]) =

= ν|H0 : Hk,−|prl = p|H0 : Hk|prl = plengtho/$h((ϕr(X)))M
∨
k [1/X] .
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Here the equality (∗) follows from the fact that the map ϕ induces an iso-
morphism between Λ(N0/Hk,−)/$h[1/X] and Λ(sN0s

−1Hk/Hk)/$
h[1/ϕ(X)]

sending the subring o((ϕr(X))) isomorphically onto o((ϕr+1(X))).
This shows that (3.3) is an isomorphism as it is injective and the two

sides have equal length as modules over the artinian ring o/$h((X)). �

Remark We also obtain in particular that the map (3.4) has finite kernel and
cokernel. Hence there exists a finite Λ(N0/Hk)/$

h-submodule Mk,∗ of Mk

such that the kernel of 1 ⊗ Fk is contained in the image of
Λ(N0/Hk)/$

h⊗ϕMk,∗ in Λ(N0/Hk)/$
h⊗ϕMk. We denote byM∗

k the image
of 1⊗ Fk.

Note that for k = 0 we haveM0 = M . Let now 0 ≤ j ≤ k be two integers.
By Lemma 3.1.4 the space of Hj-invariants of Mk is equal to TrHj/Hk(Mk)
upto finitely generated modules over o. On the other hand, we compute

N0F
k−j
j (Mj) = N0TrHj/sk−jHjsj−k ◦ (sk−j·) ◦ TrHj/sjH0s−j(s

jM) =

= N0TrHj/skH0s−k(s
kM) = N0TrHj/Hk ◦ TrHk/skH0s−k(s

kM) =

= TrHj/Hk(N0TrHk/skH0s−k(s
kM)) = TrHj/Hk(Mk)

since both Hk and Hj are normal in N0 whence we have
(u·) ◦ TrHj/Hk = TrHj/Hk ◦ (u·) for all u ∈ N0. So taking Hj/Hk-coinvariants
of M∨

k [1/X], we have a natural identification

M∨
k [1/X]Hj/Hk

∼= (M
Hj/Hk
k )∨[1/X] ∼=

∼= (TrHj/Hk(Mk))
∨[1/X] = (N0F

k−j
j (Mj))

∨[1/X] ∼= M∨
j [1/X] (3.6)

induced by the inclusion N0F
k−j
j (Mj) ⊆M

Hj
k ⊆Mk.

Lemma 3.1.7 We have TrHj/Hk ◦ Fk = Fj ◦ TrHj/Hk .

Proof We compute

TrHj/Hk ◦ Fk = TrHj/Hk ◦ TrHk/sHks−1 ◦ (s·) =

TrHj/sHks−1 ◦ (s·) = TrHj/sHjs−1 ◦ TrsHjs−1/sHks−1(s·) =

TrHj/sHjs−1 ◦ (s·)TrHj/Hk = Fj ◦ TrHj/Hk .

�
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Proposition 3.1.8 The identification (3.6) is ϕ and Γ-equivariant.

Proof It suffices to treat the case when k is large enough so that we have
Hk,− = s−1Hks. So from now on we assume Hk ≤ sH0s

−1 ≤ sN0s
−1. As Γ

acts both on Mk and Mj by multiplication coming from the action of Γ on
π, the map (3.6) is clearly Γ-equivariant. In order to avoid confusion we are
going to denote the map ϕ on M∨

k [1/X] (resp. on M∨
j [1/X]) temporarily by

ϕk (resp. by ϕj). Let f be in M∨
k such that its restriction to Mk,∗ is zero (see

the Remark after Prop. 3.1.6).
We regard f as an element in (M∗

k/Mk,∗)
∨ ≤ (M∗

k )∨. We are going to
compute ϕk(f) and ϕj(f|TrHj/Hk (M∗k )) explicitly and find that the restric-
tion of ϕk(f) to TrHj/Hk(M

∗
k ) is equal to ϕj(f|TrHj/Hk (M∗k )). Note that we

have an isomorphism M∨
k [1/X] ∼= M∗

k
∨[1/X] ∼= (M∗

k/Mk,∗)
∨[1/X] (resp.

M∨
j [1/X] ∼= TrHj/Hk(M

∗
k )∨[1/X]).

Let m ∈M∗
k ≤Mk be in the form

m =
∑

u∈J((N0/Hk)/s(N0/Hk)s−1)

uFk(mu)

with elements mu ∈ Mk for u ∈ J((N0/Hk)/s(N0/Hk)s
−1). By the remark

after Proposition 3.1.6 M∗
k is a finite index submodule of Mk. Note that the

elements mu are unique upto Mk,∗ + Ker(Fk). Therefore ϕk(f) ∈ (M∗
k )∨ is

well-defined by our assumption that f|Mk,∗ = 0 noting that the kernel of Fk
equals the kernel of TrHk,−/Hk since the multiplication by s is injective and
we have Fk = s ◦ TrHk,−/Hk . So we compute

ϕk(f)(m) = ((1⊗ Fk)∨)−1(TrHk,−/Hk(1⊗ f))(m) =

= ((1⊗ Fk)∨)−1(1⊗ TrHk,−/Hk(f))(
∑

u∈J((N0/Hk)/s(N0/Hk)s−1)

uFk(mu)) =

= TrHk,−/Hk(f)(F−1
k (u0Fk(mu0))) = f(TrHk,−/Hk((s

−1u0s)mu0))

(3.7)

where u0 is the single element in J(N0/sN0s
−1) corresponding to the coset of

1. In order to simplify notation put f∗ for the restriction of f to TrHj/Hk(Mk)
and

U = J(N0/sN0s
−1) ∩HjsN0s

−1 .

Note that we have 0 = ϕj(f∗)(uFj(m
′)) for all m′ ∈Mj and

u ∈ J(N0/sN0s
−1) \ U .
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Therefore using Lemma 3.1.7 we obtain

ϕj(f∗)(TrHj/Hkm) = ϕj(f∗)(TrHj/Hk
∑

u∈J(N0/sN0s−1)

uFk(mu)) =

= ϕj(f∗)(
∑

u∈J(N0/sN0s−1)

uFj ◦ TrHj/Hk(mu)) =

=
∑
u∈U

f(TrHj,−/Hj(s
−1usTrHj/Hk(mu))) =

=
∑
u∈U

f(s−1usTrHj,−/Hk(mu)) (3.8)

where for each u ∈ U we choose a fixed u in sN0s
−1 ∩ Hju. Note that

f(s−1usTrHj,−/Hk(mu)) does not depend on this choice: If u1 ∈ sN0s
−1∩Hju

is another choice then we have (u1)−1u ∈ sN0s
−1 ∩ Hj whence s−1(u1)−1us

lies in Hj,− = N0 ∩ s−1Hjs so we have

s−1usTrHj,−/Hk(mu) = s−1u1ss
−1(u1)−1usTrHj,−/Hk(mu) =

= s−1u1sTrHj,−/Hk(mu) .

Moreover, the equation (3.8) also shows that ϕj(f∗) is a well-defined ele-
ment in (TrHj/Hk(M

∗
k ))∨. On the other hand, for the restriction of ϕk(f) to

TrHj/Hk(Mk) we compute

ϕk(f)(TrHj/Hkm) = ϕk(f)(
∑

w∈J(Hj/Hk)

w
∑

u∈J(N0/sN0s−1)

uFk(mu)) =

=
∑

w∈J(Hj/Hk)

∑
u∈J(N0/sN0s−1)

ϕk(f)(wuFk(mu)) =

=
∑
u∈U

w∈J(Hj/Hk)∩(sN0s−1u−1)

f(TrHk,−/Hk((s
−1wus)mu)) =

= f(
∑

v=s−1wuu−1s∈J(Hj,−/Hk,−)

TrHk,−/Hk
∑
u∈U

vs−1usmu) =

=
∑
u∈U

f(s−1usTrHj,−/Hk(mu))

that equals ϕj(f∗)(TrHj/Hkm) by (3.8). Finally, let now f ∈ M∨
k be ar-

bitrary. Since Mk,∗ is finite, there exists an integer r ≥ 0 such that Xrf
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vanishes on Mk,∗. By the above discussion we have ϕk(Xrf)(TrHj/Hkm) =
ϕj(X

rf∗)(TrHj/Hkm). The statement follows noting that ϕ(Xr) is invertible
in the ring Λ(N0/Hj)/$

h[1/X]. �

So we may take the projective limit M∨
∞[1/X] = lim←−kM

∨
k [1/X] with

respect to these quotient maps. The resulting object is an étale (ϕ,Γ)-module
over the ring

lim←−
k

Λ(N0/Hk)/$
h[1/X] ∼= Λ`(N0)/$h .

M∨
∞[1/X] is étale, because we can interchange the order projective limit and

tensor product, since (i) Λ`(N0) is free over itself via the map ϕ, hence it
is finitely presented, and (ii) the modules M∨

k [1/X] are of finite length over
Λ`(N0).

Moreover, by taking the projective limit of (3.6) with respect to k we
obtain a ϕ- and Γ-equivariant isomorphism (M∨

∞[1/X])Hj
∼= M∨

j [1/X]. So
we just proved

Corollary 3.1.9 For any object M ∈ M(πH0) the (ϕ,Γ)-module M∨[1/X]
over o/$h((X)) corresponds to M∨

∞[1/X] via the equivalence of categories in
Theorem 8.20 in [18].

Note that whenever M ⊂ M ′ are two objects in M(πH0) then we have
a natural surjective map M ′∨

∞[1/X] � M∨
∞[1/X]. So in view of the above

corollary we define

D∨ξ,`,∞(π) = lim←−
k≥0,M∈M(πH0 )

M∨
k [1/X] = lim←−

M∈M(πH0 )

M∨
∞[1/X] .

Even though Breuil only states it for generic `, his proof works in general
without any change ([3], Proposition 2.7ii).

We call two elementsM,M ′ ∈M(πH0) equivalent (M ∼M ′) if the inclu-
sions M ⊆ M + M ′ and M ′ ⊆ M + M ′ induce isomorphisms
M∨[1/X] ∼= (M + M ′)∨[1/X] ∼= M ′∨[1/X]. This is equivalent to the con-
dition that M equals M ′ upto finitely generated o-modules. In particular,
this is an equivalence relation on the set M(πH0). Similarly, we say that
Mk,M

′
k ∈ Mk(π

Hk) are equivalent if the inclusions Mk ⊆ Mk + M ′
k and

M ′
k ⊆Mk +M ′

k induce isomorphisms

M∨
k [1/X] ∼= (Mk +M ′

k)
∨[1/X] ∼= M ′

k
∨
[1/X].
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Proposition 3.1.10 The maps

M 7→ N0TrHk/skH0s−k(s
kM)

TrH0/Hk(Mk) ←[ Mk

induce a bijection between the setsM(πH0)/ ∼ andMk(π
Hk)/ ∼. In partic-

ular, we have
D∨ξ,`,∞(π) = lim←−

k≥0

lim←−
Mk∈Mk(πHk )

M∨
k [1/X] .

Proof We have TrH0/Hk(N0TrHk/skH0s−k(s
kM)) = N0TrH0/skH0s−k(s

kM) =
N0F

k(M) which is equivalent to M . Conversely,

N0TrHk/skH0s−k(s
kTrH0/Hk(Mk)) = N0TrHk/skHks−k(s

kMk) = N0F
k
k (Mk)

is equivalent to Mk as it is the image of the map

1⊗ F k
k : Λ(N0/Hk)/$

h⊗ϕk,Λ(N0/Hk)/$h →Mk

having finite cokernel. �

We equip the pseudocompact Λ`(N0)-module D∨ξ,`,∞(π) with the weak
topology, ie. with the projective limit topology of the weak topologies of
M∨
∞[1/X]. (The weak topology on Λ`(N0) is defined in section 8 of [17].)

Recall that the sets

O(M, l, l′) = f−1
M,l(Λ(N0/Hl)⊗uα X l′M∨[1/X]++) (3.9)

for l, l′ ≥ 0 and M ∈ M(πH0) form a system of neighbourhoods of 0 in
the weak topology of D∨ξ,`,∞(π). Here fM,l is the natural projection map
fM,l : D

∨
ξ,`,∞(π) � M∨

l [1/X] and M∨[1/X]++ denotes the set of elements
d ∈M∨[1/X] with ϕn(d)→ 0 in the weak topology of M∨[1/X] as n→∞.

3.2 A natural transformation fromDSV toD∨ξ,`,∞
Lemma 3.2.1 LetW be in B+(π) andM ∈M(πH0). There exists a positive
integer k0 > 0 such that for all k ≥ k0 we have skM ⊆ W . In particular,
both Mk = N0TrHk/skH0s−k(s

kM) and N0F
k(M) are contained in W for all

k ≥ k0.
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Proof By the assumption thatM is finitely generated over Λ(N0/H0)/$h[F ]
andW is a B+-subrepresentation it suffices to find an integer sk0 such that we
have sk0mi lies in W for all the generators m1, . . . ,mr of M . This, however,
follows from Lemma 2.1 in [17] noting that the powers of s are cofinal in T+.
�

In particular, we have a homomorphism W∨ � M∨
k of Λ(N0)-modules in-

duced by this inclusion. We compose this with the localization map
M∨

k → M∨
k [1/X] and take projective limits with respect to k in order to

obtain a Λ(N0)-homomorphism

prW,M : W∨ →M∨
∞[1/X] .

Lemma 3.2.2 The map prW,M is ψs- and Γ-equivariant.

Proof The Γ-equivariance is clear as it is given by the multiplication by ele-
ments of Γ on both sides. For the ψs-equivariance let k > 0 be large enough so
that Hk is contained in sH0s

−1 ≤ sN0s
−1 (ie. Hk,− = s−1Hks) andMk is con-

tained in W . Let f be in W∨ = Homo(W, o/$
h) such that f|N0sMk,∗ = 0. By

definition we have ψs(f)(w) = f(sw) for any w ∈ W . Denote the restriction
of f to Mk by f|Mk

and choose an element
m ∈M∗

k ≤Mk written in the form

m =
∑

u∈J(N0/sN0s−1)

uFk(mu) =
∑

u∈J(N0/sN0s−1)

usTrHk,−/Hk(mu) .

Then we compute

f|Mk
(m) =

∑
u∈J(N0/sN0s−1)

f(usTrHk,−/Hk(mu)) =

=
∑

u∈J(N0/sN0s−1)

(u−1f)(sTrHk,−/Hk(mu)) =

=
∑

u∈J(N0/sN0s−1)

ψs(u
−1f)(TrHk,−/Hk(mu)) =

(3.7)
=

∑
u∈J(N0/sN0s−1)

ϕ(ψs(u
−1f)|Mk

)(Fk(mu)) =

=
∑

u∈J(N0/sN0s−1)

uϕ(ψs(u
−1f)|Mk

)(uFk(mu)) =

=
∑

u∈J(N0/sN0s−1)

uϕ(ψs(u
−1f)|Mk

)(m)
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as for distinct u, v ∈ J(N0/sN0s
−1) we have uϕ(f0)(vFk(mv)) = 0 for any

f0 ∈ (M∗
k )∨. So by inverting X and taking projective limits with respect to

k we obtain

prW,M(f) =
∑

u∈J(N0/sN0s−1)

uϕ(prW,M(ψs(u
−1f)))

as we have (M∗
k )∨[1/X] ∼= M∨

k [1/X]. However, since M∨
∞[1/X] is an étale

(ϕ,Γ)-module over Λ`(N0)/$h we have a unique decomposition of prW,M(f)
as

prW,M(f) =
∑

u∈J(N0/sN0s−1)

uϕ(ψ(u−1prW,M(f)))

so we must have ψ(prW,M(f)) = prW,M(ψs(f)). For general f ∈ W∨ note
that N0sMk,∗ is killed by ϕ(Xr) for r ≥ 0 big enough, so we have

Xrψ(prW,M(f)) = ψ(prW,M(ϕ(Xr)f)) =

= prW,M(ψs(ϕ(Xr)f)) = XrprW,M(ψs(f)).

The statement follows since Xr is invertible in Λ`(N0). �

By taking the projective limit with respect to M ∈ M(πH0) and the
injective limit with respect to W ∈ B+(π) we obtain a ψs- and Γ-equivariant
Λ(N0)-homomorphism

pr = lim−→
W

lim←−
M

prW,M : DSV (π)→ D∨ξ,`,∞(π) .

Remarks 1. The natural maps π∨ → D∨ξ,`(π) and π∨ → D∨ξ,`,∞(π) both
factor through the map π∨ � DSV (π).

2. The natural topology on DSV obtained as the quotient topology from
the compact topology on π∨ via the surjective map π∨ � DSV (π) is
compact, but may not be Hausdorff in general. However, if B+(π)
contains a minimal element (as in the case of the principal series see
Proposition 2.3.2) then it is also Hausdorff. However, the map pr
factors through the maximal Hausdorff quotient of DSV (π), namely
DSV (π) = (

⋂
W∈B+(π) W )∨. Indeed, pr is continuous and D∨ξ,`,∞(π) is

Hausdorff, so the kernel of pr is closed in DSV (π) (and contains 0).
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3. Assume that h = 1, ie. π is a smooth representation in characteristic p.
Then D∨ξ,`,∞(π) has no nonzero Λ(N0)/$-torsion. Hence the Λ(N0)/$-
torsion part of DSV (π) is contained in the kernel of pr.

4. If DSV (π) has finite rank and its torsion free part is étale over Λ(N0)
then Λ`(N0)⊗Λ(N0)DSV (π) is also étale and of finite rank r over Λ`(N0).
Moreover, the map Λ`(N0)⊗Λ(N0)pr : Λ`(N0)⊗Λ(N0)DSV (π)→ Dξ,`,∞(π)
has dense image by Lemma 3.2.1. Thus D∨ξ,`,∞(π) has rank at most r
over Λ`(N0).

One can show the above Remark 2 algebraically, too. Let M ∈ M(πH0)
be arbitrary. Then the map 1 ⊗ idM∨ : M∨ → M∨[1/X] has finite kernel,
so the image (1 ⊗ idM∨)(M∨) is isomorphic to M∨

0 for some finite index
submodule M0 ≤ M . Moreover, M∨

0 is a ψ- and Γ-invariant treillis in
D = M∨[1/X] = M∨

0 [1/X]. Therefore the map (1 ⊗ F )∨ is injective on
M∨

0 since it is injective after inverting X and M∨
0 has no X-torsion. This

means that 1⊗ F : o/$h[[X]]⊗o/$h[[X]],ϕM0 →M0 is surjective, ie. we have
M0 = N0F

k(M0) for all k ≥ 0. However, for any W ∈ B+(π) and k large
enough (depending a priori on W ) we have N0F

k(M0) ⊆ W , so we deduce
M0 ⊂ ∩W∈B+W .

Corollary 3.2.3 If π = IndBB0
π0 is a compactly induced representation of B

for some smooth o/$h-representation π0 of B0 then we have D∨ξ,`(π) = 0. In
particular, D∨ξ is not exact on the category of smooth o/$h-representations
of B. (However, it may still be exact on a smaller subcategory with additional
finiteness conditions.)

Proof By the 2nd remark above the map π∨ → D∨ξ,`(π) factors through the
maximal Hausdorff quotient DSV (π) of DSV (π). By Lemma 3.2 in [17], we
have DSV (π) = (

⋂
σWσ)∨ where the B+-subrepresentations Wσ are indexed

by order-preserving maps σ : T+/T0 → Sub(π0) where Sub(π0) is the partially
order set of B0-subrepresentations of π0. The explicit description of the B+-
subrepresentationsWσ (there denoted byMσ) before Lemma 3.2 in [17] shows
that we have in fact

⋂
σWσ = {0} whence the natural map π∨ → D∨ξ,`(π)

is zero. However, by the construction of this map this can only be zero if
D∨ξ,`(π) = 0.

Since the principal series arises as a quotient of a compactly induced
representation, the exactness of D∨ξ would imply the vanishing of D∨ξ on the
principal series, too—which is not the case by Ex. 7.6 in [3]. �
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Proposition 3.2.4 Let D be an étale (ϕ,Γ)-module over Λ`(N0)/$h, and
f : DSV (π)→ D be a continuous ψs and Γ-equivariant Λ(N0)-homomorphism.
Then f factors uniquely through pr, ie. there exists a unique ψ- and Γ-equiv-
ariant Λ(N0)-homomorphism f̂ : D∨ξ,`,∞(π)→ D such that f = f̂ ◦ pr.

Proof Note that the uniqueness of f̂ follows from Lemma 3.2.1 since any
continuous Λ`(N0)-homomorphism of D∨ξ,`,∞(π) factors throughM∨

∞[1/X] for
some M ∈ M(πH0). Indeed, if f̂ ′ is another lift then the image of pr is
contained in the kernel of f̂ − f̂ ′.

At first we construct a homomorphism f̂H0 : D∨ξ,` = (D∨ξ,`,∞)H0 → DH0

such that the following diagram commutes:

DSV (π)

f
&&LLLLLLLLLLLL

pr // D∨ξ,`,∞(π)
(·)H0 // D∨ξ,`(π)

f̂H0
��

D
(·)H0

// DH0

Consider the composite map f ′ : π∨ → DSV (π)
f→ D → DH0 . Note that

f ′ is continuous and DH0 is Hausdorff, so Ker(f ′) is closed in π∨. Therefore
M0 = (π∨/Ker(f ′))∨ is naturally a subspace in π. We claim that M0 lies
in M(πH0). Indeed, M∨

0 is a quotient of π∨H0
, hence M0 ≤ πH0 and it is

Γ-invariant since f ′ is Γ-equivariant. M0 is admissible because it is discrete,
henceM∨

0 is compact, equivalently finitely generated over o/$h[[X]], because
M∨

0 can be identified with a o/$h[[X]]-submodule of DH0 which is finitely
generated over o/$h((X)). The last thing to verify is that M is finitely
generated over o/$h[[X]][F ], which follows from the following

Lemma 3.2.5 Let D be an étale (ϕ,Γ)-module over o/$h((X)) and D0 ⊂ D
be a ψ and Γ-invariant compact (or, equivalently, finitely generated) o/$h[[X]]
submodule. Then D∨0 is finitely generated as a module over o/$h[[X]][F ]
where for any m ∈ D∨0 = Homo(D0, o/$

h) we put F (m)(f) = m(ψ(f)) (for
all f ∈ D0).

Proof As the extension of finitely generated modules over a ring is again
finitely generated, we may assume without loss of generality that h = 1
and D is irreducible, ie. D has no nontrivial étale (ϕ,Γ)-submodule over
o/$((X)).
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If D0 = {0} then there is nothing to prove. Otherwise D0 contains the
smallest ψ and Γ stable o[[X]]-submodule D\ of D. So let 0 6= m ∈ D∨0
be arbitrary such that the restriction of m to D\ is nonzero and consider
the o/$[[X]][F ]-submodule M = o/$[[X]][F ]m of D∨0 generated by m. We
claim that M is not finitely generated over o. Suppose for contradiction
that the elements F rm are not linearly independent over o/$. Then we
have a polynomial P (x) =

∑n
i=0 aix

i ∈ o/$[x] such that 0 = P (F )m(f) =
m(
∑
aiψ

i(f)) = m(P (ψ)f) for any f ∈ D\ ⊂ D0. However, P (ψ) : D\ → D\

is surjective by Prop. II.5.15. in [5], so we obtain m|D\ = 0 which is a con-
tradiction. In particular, we obtain that M∨[1/X] 6= 0. However, note
that M∨[1/X] has the structure of an étale (ϕ,Γ)-module over o/$((X))
by Lemma 2.6 in [3]. Indeed, M is admissible, Γ-invariant, and finitely
generated over o/$[[X]][F ] by construction. Moreover, we have a natural
surjective homomorphism D = D0[1/X] = (D∨0 )∨[1/X] → M∨[1/X] which
is an isomorphism as D is assumed to be irreducible. Therefore we have
(D∨0 /M)∨[1/X] = 0 showing that D∨0 /M is finitely generated over o. In par-
ticular, both M and D∨0 /M are finitely generated over o/$[[X]][F ] therefore
so is D∨0 . �

Now D0 = M∨
0 is a ψ- and Γ-invariant o/$h[[X]]-submodule of D there-

fore we have an injection f0 : M∨
0 [1/X] ↪→ D of étale (ϕ,Γ)-modules. The

map f̂H0 : D∨ξ,` → DH0 is the composite map D∨ξ,` � M∨
0 [1/X] ↪→ D. It is

well defined and makes the above diagram commutative, because the map

π∨ → DSV (π)
pr→ D∨ξ,`,∞(π)

(·)H0→ D∨ξ,`(π)→M∨
0 [1/X]

is the same as π∨ →M∨
0 →M∨

0 [1/X].
Finally, by Corollary 3.1.9M∨[1/X] (resp. DH0) corresponds toM∨

∞[1/X]
(resp. toD) via the equivalence of categories in Theorem 8.20 in [18] therefore
f0 can uniquely be lifted to a ϕ- and Γ-equivariant Λ`(N0)-homomorphism
f∞ : M∨

∞[1/X] ↪→ D. The map f̂ is defined as the composite
D∨ξ,`,∞ � M∨

∞[1/X] ↪→ D. Now the image of f − f̂ ◦ pr is a ψs-invariant
Λ(N0)-submodule in (H0 − 1)D therefore it is zero by Lemma 8.17 and the
proof of Lemma 8.18 in [18]. Indeed, for any x ∈ DSV (π) and k ≥ 0 we may
write (f− f̂ ◦pr)(x) in the form

∑
u∈J(N0/skN0s−k) uϕ

k((f− f̂ ◦pr)(ψk(u−1x)))

that lies in (Hk − 1)D. �
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3.3 Étale hull
In this section we construct the étale hull of DSV (π): an étale T+-module
D̃SV (π) over Λ(N0) with an injection ι : DSV (π)→ D̃SV (π) with the following
universal property: For any étale (ϕ,Γ)-module D′ over Λ(N0), and ψs- and
Γ-equivariant map f : DSV (π) → D′, f factors through D̃SV (π), ie. there
exists a unique ψ- and Γ-equivariant Λ(N0)-homomorphism f̃ : D̃SV (π)→ D′

making the diagram
DSV (π) ι //

f

��

D̃SV (π)

f̃yyrrrrrrrrrr

D′

commutative. Moreover, if we assume further that D′ is an étale T+-module
over Λ(N0) and the map f is ψt-equivariant for all t ∈ T+ then the map f̃ is
T+-equivariant.

Definition LetD be a Λ(N0)-module and T∗ ≤ T+ be a submonoid. Assume
moreover that the monoid T∗ (or in the case of ψ-actions the inverse monoid
T−1
∗ ) acts o-linearly on D, as well.
We call the action of T∗ a ϕ-action (relative to the Λ(N0)-action) and

denote the action of t by d 7→ ϕt(d), if for any λ ∈ Λ(N0), t ∈ T∗ and d ∈ D
we have ϕt(λd) = ϕt(λ)ϕt(d). Moreover, we say that the ϕ-action is injective
if for all t ∈ T∗ the map ϕt is injective. The ϕ-action of T∗ is nondegenerate
if for all t ∈ T∗ we have

D =
∑

u∈J(N0/tN0t−1)

Im(u ◦ ϕt) =
∑

u∈J(N0/tN0t−1)

u(ϕt(D)) .

We call the action of T−1
∗ a ψ-action of T∗ (relative to the Λ(N0)-action)

and denote the action of t−1 ∈ T−1
∗ by d 7→ ψt(d), if for any λ ∈ Λ(N0),

t ∈ T∗ and d ∈ D we have ψt(ϕt(λ)d) = λψt(d). Moreover, we say that the
ψ-action of T∗ is surjective if for all t ∈ T∗ the map ψt is surjective. The
ψ-action of T∗ is nondegenerate if for all t ∈ T∗ we have

{0} =
⋂

u∈J(N0/tN0t−1)

Ker(ψt ◦ u−1) .

The nondegeneracy is equivalent to the condition that for any t ∈ T∗ Ker(ψt)
does not contain any nonzero Λ(N0)-submodule of D.

We say that a ϕ- and a ψ-action of T∗ are compatible on D, if
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(ϕψ) for any t ∈ T∗, λ ∈ Λ(N0), and d ∈ D we have ψt(λϕt(d)) = ψt(λ)d.

Note that with λ = 1 we also have ψt ◦ ϕt = idD for any t ∈ T∗ assuming
(ϕψ).

We also consider ϕ- and ψ-actions of the monoid Zp \ {0} on Λ(N0)-
modules via the embedding ξ : Zp \ {0} → T+. Modules with a ϕ-action
(resp. ψ-action) of Zp \ {0} are called (ϕ,Γ)-modules (resp. (ψ,Γ)-modules).

For example, the natural ϕ- and ψ-actions of T+ on Λ(N0) are compatible.

Remarks 1. Note that the ψ-action of the monoid T∗ is in fact an action
of the inverse monoid T−1

∗ . However, we assume T+ to be commutative
so it may also be viewed as an action of T∗.

2. Pontryagin duality provides an equivalence of categories between com-
pact Λ(N0)-modules with a continuous ψ-action of T∗ and discrete
Λ(N0)-modules with a continuous ϕ-action of T∗. The surjectivity of
the ψ-action corresponds to the injectivity of ϕ-action. Moreover, the
ψ-action is nondegenerate if and only if so is the corresponding ϕ-action
on the Pontryagin dual.

If D is a Λ(N0)-module with a ϕ-action of T∗ then there exists a homo-
morphism

Λ(N0)⊗Λ(N0),ϕt D → D,λ⊗ d 7→ λϕt(d) (3.10)
of Λ(N0)-modules. We say that the T∗-action on D is étale if the above
map is an isomorphism. The ϕ-action of T∗ on D is étale if and only if it is
injective and for any t ∈ T∗ we have

D =
⊕

u∈J(N0/tN0t−1)

uϕt(D) . (3.11)

Similarly, we call a Λ(N0)-module together with a ϕ-action of the monoid
Zp \ {0} an étale (ϕ,Γ)-module over Λ(N0) if the action of ϕ = ϕs is étale.

If D is an étale T∗-module over Λ(N0) then there exists a ψ-action of T∗
compatible with the étale ϕ-action (see [17] Section 6).

Dually, if D is a Λ(N0)-module with a ψ-action of T∗ then there exists a
map

ιt : D → Λ(N0)⊗Λ(N0),ϕt D

d 7→
∑

u∈J(N0/tN0t−1)

u⊗ ψt(u−1d) .
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Lemma 3.3.1 For any t ∈ T∗ the map ιt is a homomorphism of Λ(N0)-
modules. It is injective for all t ∈ T∗ if and only if the ψ-action of T∗ on D
is nondegenerate.

Proof Fix t ∈ T∗. For any λ ∈ Λ(N0) and u, v ∈ N0 we put λu,v = ψt(u
−1λv).

Note that for any fixed v ∈ N0 we have

λv =
∑

u∈J(N0/tN0t−1)

uϕt(λu,v)

and for any fixed u ∈ N0 we have

u−1λ =
∑

v∈J(N0/tN0t−1)

ϕt(λu,v)v
−1 .

So we compute

ιt(λx) =
∑

u∈J(N0/tN0t−1)

u⊗ ψt(u−1λx) =

=
∑

u,v∈J(N0/tN0t−1)

u⊗ ψt(ϕt(λu,v)v−1x) =

=
∑

u,v∈J(N0/tN0t−1)

u⊗ λu,vψt(v−1x) =

=
∑

u,v∈J(N0/tN0t−1)

uϕt(λu,v)⊗ ψt(v−1x) =

=
∑

v∈J(N0/tN0t−1)

λv ⊗ ψt(v−1x) = λιt(x) .

The second statement follows from noting that Λ(N0) is a free right module
over itself via the map ϕt with free generators u ∈ J(N0/tN0t

−1). �

Lemma 3.3.2 Let D be a Λ(N0)-module with a ψ-action of T∗ and t ∈ T∗.
Then there exists a ψ-action of T∗ on ϕ∗tD = Λ(N0) ⊗Λ(N0),ϕt D making the
homomorphism ιt ψ-equivariant. Moreover, if we assume in addition that the
ψ-action on D is nondegenerate then so is the ψ-action on ϕ∗tD.

Proof Let t′ ∈ T∗ be arbitrary and define the action of ψt′ on ϕ∗tD by putting

ψt′(λ⊗ d) =
∑

u′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))⊗ ψt′(u′−1d) for λ ∈ Λ(N0), d ∈ D ,
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and extending ψt′ to ϕ∗tD o-linearly. Note that we have

ψt′(ϕt′(µ)λ⊗ d) =

=
∑

u′∈J(N0/t′N0t′−1)

ψt′(ϕt′(µ)λϕt(u
′))⊗ ψt′(u′−1d) = µψt′(λ⊗ d) .

Moreover, the map ψt′ is well-defined since we have

ψt′(λϕt(µ)⊗ d) =
∑

v′∈J(N0/t′N0t′−1)

ψt′(λϕt(µ)ϕt(v
′))⊗ ψt′(v′−1d) =

=
∑

v′∈J(N0/t′N0t′−1)

ψt′(λϕt(µv
′))⊗ ψt′(v′−1d) =

=
∑

u′,v′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′ϕt′(µu′,v′)))⊗ ψt′(v′−1d) =

=
∑

u′,v′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))ϕt(µu′,v′)⊗ ψt′(v′−1d) =

=
∑

u′,v′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))⊗ µu′,v′ψt′(v′−1d) =

=
∑

u′,v′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))⊗ ψt′(ϕt′(µu′,v′)v′−1d) =

=
∑

u′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))⊗ ψt′(u′−1µd) = ψt′(λ⊗ µd) ,

where µu′,v′ = ψt′(u
′−1µv′). Introducing the notation J ′ = J(N0/t

′N0t
′−1)

and J ′′ = J(N0/t
′′N0t

′′−1) we further compute

ψt′′(ψt′(λ⊗ d)) = ψt′′(
∑

u′∈J(N0/t′N0t′−1)

ψt′(λϕt(u
′))⊗ ψt′(u′−1d)) =

=
∑
u′′∈J ′′

∑
u′∈J ′

ψt′′(ψt′(λϕt(u
′))ϕt(u

′′))⊗ ψt′′(u′′−1ψt′(u
′−1d)) =

=
∑
u′′∈J ′′

∑
u′∈J ′

ψt′′(ψt′(λϕt(u
′ϕt′(u

′′))))⊗ ψt′′(ψt′(ϕt′(u′′)−1u′−1d)) =

= ψt′′t′(λ⊗ d)

showing that it is indeed a ψ-action of the monoid T∗.
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For the second statement of the Lemma we compute

ψt′(ιt(x)) =

=
∑

u′∈J(N0/t′N0t′−1)

∑
u∈J(N0/tN0t−1)

ψt′(uϕt(u
′))⊗ ψt′(u′−1ψt(u

−1x)) =

=
∑

u′∈J(N0/t′N0t′−1)

∑
u∈J(N0/tN0t−1)

ψt′(uϕt(u
′))⊗ ψt′(ψt(ϕt(u′)−1u−1x)) .

Note that in the above sum uϕt(u
′) runs through a set of representatives

for the cosets N0/tt
′N0t

′−1t−1. Moreover, v = ψt′(uϕt(u
′)) is nonzero if and

only if uϕt(u′) lies in t′N0t
′−1 and the nonzero values of v run through a set

J ′(N0/tN0t
−1) of representatives of the cosets N0/tN0t

−1. In case v 6= 0 we
have ψt′(ϕt(u′)−1u−1x) = ψt′(ϕt(u

′)−1u−1)ψt′(x). So we obtain

ψt′(ιt(x)) =
∑

v∈J ′(N0/tN0t−1)

v ⊗ ψt(ψt′(ϕt′(v)x)) =

=
∑

v∈J ′(N0/tN0t−1)

v ⊗ ψt(v−1ψt′(x)) = ιt(ψt′(x)) .

Assume now that the ψ-action of T∗ on D is nondegenerate. Any element
in x ∈ ϕ∗tD can be uniquely written in the form

∑
u∈J(N0/tN0t−1) u ⊗ xu.

Assume that for a fixed t′ ∈ T∗ we have ψt′(u′−1
0 x) = 0 for all u′0 ∈ N0. Then

we compute

0 = ψt′(u
′−1
0 x) =

=
∑

u′∈J(N0/t′N0t′−1)

∑
u∈J(N0/tN0t−1)

ψt′(u
′−1
0 uϕt(u

′))⊗ ψt′(u′−1xu) .

Put y = u′−1
0 uϕt(u

′). For any fixed u′0 the set

{y | u ∈ J(N0/tN0t
−1), u′ ∈ J(N0/t

′N0t
′−1)}

forms a set of representatives of N0/tt
′N0(tt′)−1, and we have ψt′(y) 6= 0 if

and only if y lies in t′N0t
′−1 in which case we have ψt′(y) = t′−1yt′. So the

nonzero values of ψt′(y) run through a set of representatives of N0/tN0t
−1.

Since we have the direct sum decomposition ϕ∗tD =
⊕

v∈J(N0/tN0t−1) v ⊗ D

we obtain ψt′(u′−1xu) = 0 for all u′ ∈ J(N0/t
′N0t

′−1) and u ∈ J(N0/tN0t
−1)

such that y = u′−1
0 uϕt(u

′) is in t′N0t
′−1. However, for any choice of u′ and u

there exists such a u′0, so we deduce x = 0. �
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Proposition 3.3.3 Let D be a Λ(N0)-module with a ψ-action of T∗. The
following are equivalent:

1. There exists a unique ϕ-action on D, which is compatible with ψ and
which makes D an étale T∗-module.

2. The ψ-action is surjective and for any t ∈ T∗ we have

D =
⊕

u0∈J(N0/tN0t−1)

⋂
u∈J(N0/tN0t−1)

u6=u0

Ker(ψt ◦ u−1) . (3.12)

In particular, the action of ψ is nondegenerate.

3. The map ιt is bijective for all t ∈ T∗.

Proof 1 =⇒ 3 In this case the map ιt is the inverse of the isomorphism
(3.10) so it is bijective by the étale property.

3 =⇒ 2: The injectivity of ιt shows the nondegeneracy of the ψ-action.
Further if 1⊗ d = ιt(x) then we have ψt(x) = d so the ψ-action is surjective.
Moreover, ι−1

t (u0 ⊗ D) equals
⋂
u0 6=u∈J(N0/tN0t−1) Ker(ψt ◦ u−1) therefore D

can be written as a direct sum (3.12).
2 =⇒ 1: Fix t ∈ T∗. For any d ∈ D we have to choose ϕt(d) such that

ψt(ϕt(d)) = d. By the surjectivity of ψt we can choose x ∈ D such that
ψt(x) = d. Using the assumption we can write x =

∑
u0∈J(N0/tN0t−1) xu0 , with

xu0 ∈
⋂

u∈J(N0/tN0t−1)
u6=u0

Ker(ψt ◦ u−1) .

By the compatibility (ϕψ) we should have

ϕt(d) ∈
⋂

u∈J(N0/tN0t−1)
u6=1

Ker(ψt ◦ u−1)

as we have ψt(u) = 0 for all u ∈ N0 \ tN0t
−1.

A convenient choice is ϕt(d) = x1, and there exists exactly one such
element in D: if x′ would be an other, then

x1 − x′ ∈
⋂

u∈J(N0/tN0t−1)

Ker(ψt ◦ u−1) = {0} .
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This shows the uniqueness of the ϕ-action. Further, x1 = ϕt(d) = 0 would
mean that x lies in Ker(ψt) whence d = ψt(x) = 0—therefore the injectiv-
ity. Similarly, by definition we also have xu0 = u0ϕt ◦ ψt(u−1

0 x) for all
u0 ∈ J(N0/tN0t

−1). By the surjectivity of the ψ-action any element in D
can be written of the form ψt(u

−1
0 x) for any fixed u0 ∈ J(N0/tN0t

−1) so we
obtain

u0ϕt(D) =
⋂

u0 6=u∈J(N0/tN0t−1)

Ker(ψt ◦ u−1) .

The étale property (3.11) follows from this using our assumption 2. Moreover,
this also shows ψt(uϕt(d)) = 0 for all u ∈ N0 \ tN0t

−1 which implies (ϕψ)
using that ψt ◦ϕt = idD by construction. Finally, ϕt(λ)ϕt(d)−ϕt(λd) lies in
the kernel of ψt ◦ u−1

0 for any u0 ∈ J(N0/tN0t
−1), λ ∈ Λ(N0) and d ∈ D, so

it is zero. �

From now on if we have an étale T∗-module over Λ(N0) we a priori equip
it with the compatible ψ-action, and if we have a Λ(N0)-module with a ψ-
action, which satisfies the above property 2, we equip it with the compatible
ϕ-action, which makes it étale. The construction of the étale hull and its
universal property is given in the following

Proposition 3.3.4 For any Λ(N0)-module D, with a ψ-action of T∗ there
exists an étale T∗-module D̃ over Λ(N0) and a ψ-equivariant Λ(N0)-homomor-
phism ι : D → D̃ with the following universal property: For any ψ-equivariant
Λ(N0)-homomorphism f : D → D′ into an étale T∗-module D′ we have a
unique morphism f̃ : D̃ → D′ of étale T∗-modules over Λ(N0) making the
diagram

D
ι //

f

��

D̃

f̃��~~
~~

~~
~~

D′

commutative. D̃ is unique upto a unique isomorphism. If we assume the
ψ-action on D to be nondegenerate then ι is injective.

Proof We will construct D̃ as the injective limit of ϕ∗tD for t ∈ T∗. Consider
the following partial order on the set T∗: we put t1 ≤ t2 whenever we have
t2t
−1
1 ∈ T∗. Note that by Lemma 3.3.2 we obtain a ψ-equivariant isomorphism

ϕ∗
t2t
−1
1

ϕ∗t1D
∼= ϕ∗t2D for any pair t1 ≤ t2 in T∗. In particular, we obtain a ψ-

equivariant map ιt1,t2 : ϕ∗t1D → ϕ∗t2D. Applying this observation to ϕ∗t1D for
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a sequence t1 ≤ t2 ≤ t3 we see that the Λ(N0)-modules ϕ∗tD (t ∈ T∗) with
the ψ-action of T∗ form a direct system with respect to the connecting maps
ιt1,t2 . We put

D̃ = lim−→
t∈T∗

ϕ∗tD

as a Λ(N0)-module with a ψ-action of T∗. For any fixed t′ ∈ T∗ we have

ϕ∗t′D̃ = Λ(N0)⊗Λ(N0),ϕt′
lim−→
t∈T∗

ϕ∗tD
∼=

∼= lim−→
t∈T∗

Λ(N0)⊗Λ(N0),ϕt′
ϕ∗tD

∼= lim−→
t′t∈T∗

ϕ∗t′tD
∼= D̃

showing that there exists a unique ϕ-action of T∗ on D̃ making D̃ an étale
T∗-module over Λ(N0) by Proposition 3.3.3.

For the universal property, let f : D → D′ be an ψ-equivariant map into
an étale T∗-module D′ over Λ(N0). By construction of the map ϕt on D̃
(t ∈ T∗) we have ϕt(ι(x)) = (1 ⊗ x)t where (1 ⊗ x)t denotes the image of
1⊗ x ∈ ϕ∗tD in D̃. So we put

f̃((λ⊗ x)t) = λϕt(f(x)) ∈ D′

and extend it o-linearly to D̃. Note right away that f̃ is unique as it is
ϕt-equivariant. The map f̃ : D̃ → D′ is well-defined as we have

f̃(ιt,tt′(1⊗t x)) = f̃(
∑

u′∈N0/t′N0t′−1

u′ ⊗t′ ψt′(u′−1 ⊗t x)) =

=
∑

u′,v′∈N0/t′N0t′−1

f̃(u′ ⊗t′ ψt′(u′−1ϕt(v
′))⊗t ψt′(v′−1x)) =

=
∑

u′,v′∈N0/t′N0t′−1

f̃(u′ϕt′ ◦ ψt′(u′−1ϕt(v
′))⊗tt′ ψt′(v′−1x)) =

=
∑

v′∈N0/t′N0t′−1

f̃(ϕt(v
′)⊗tt′ ψt′(v′−1x)) =

=
∑

v′∈N0/t′N0t′−1

ϕt(v
′)ϕtt′(f(ψt′(v

′−1x))) =

=
∑

v′∈N0/t′N0t′−1

ϕt(v
′ϕt′ ◦ ψt′(v′−1f(x))) = ϕt(f(x)) = f̃(1⊗t x)
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noting that ιt,tt′ is a Λ(N0)-homomorphism. Here the notation ⊗t indicates
that the tensor product is via the map ϕt. By construction f̃ is a homo-
morphism of étale T∗-modules over Λ(N0) satisfying f̃ ◦ ι = f .

The injectivity of ι in case the ψ-action on D is nondegenerate follows
from Lemmata 3.3.1 and 3.3.2. �

Example If D itself is étale then we have D̃ = D.

Corollary 3.3.5 The functor D 7→ D̃ from the category of Λ(N0)-modules
with a ψ-action of T∗ to the category of étale T∗-modules over Λ(N0) is exact.

Proof Λ(N0) is a free ϕt(Λ(N0))-module, so Λ(N0)⊗Λ(N0),ϕt − is exact, and
so is the direct limit functor. �

Corollary 3.3.6 Assume that D is a Λ(N0)-module with a nondegenerate
ψ-action of T∗ and f : D → D′ is an injective ψ-equivariant Λ(N0)-homomor-
phism into the étale T∗-module D′ over Λ(N0). Then f̃ is also injective.

Proof SinceD is nondegenerate we may identify ϕ∗tD with a Λ(N0)-submodule
of D̃. Assume that x =

∑
u∈J(N0/tN0t−1) u ⊗t xu ∈ ϕ∗tD lies in the kernel of

f̃ . Then xu = ψt(u
−1x) ∈ D ⊆ ϕ∗tD ⊆ D̃ (u ∈ J(N0/tN0t

−1)) also lies in
the kernel of f̃ . However, we have f̃(xu) = f(xu) showing that xu = 0 for all
u ∈ J(N0/tN0t

−1) as f is injective. �

Example Let D be a (classical) irreducible étale (ϕ,Γ)-module over k((X))

and D0 ⊂ D a ψ- and Γ-invariant treillis in D. Then we have D̃0
∼= D unless

D is 1-dimensional and D0 = D\ in which case we have D̃0 = D0.

Proof If D is 1-dimensional then D\ = D+ is an étale (ϕ,Γ)-module over
k[[X]] (Prop. II.5.14 in [5]) therefore it is equal to its étale hull. If dimD > 1
then we have D\ = D# ⊆ D0 by Cor. II.5.12 and II.5.21 in [5]. By Corollary
3.3.6 D̃# ⊆ D̃0 injects into D and it is ϕ- and ψ-invariant. Since D# is
not ϕ-invariant (Prop. II.5.14 in [5]) and it is the maximal compact o[[X]]-
submodule of D on which ψ acts surjectively (Prop. II.4.2 in [5]) we obtain
that D̃0 is not compact. In particular, itsX-divisible part is nonzero therefore
equals D as the X-divisible part of D̃0 is an étale (ϕ,Γ)-submodule of the
irreducible D. �
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Proposition 3.3.7 The T−1
+ action on DSV (π) is a surjective nondegenerate

ψ-action of T+.

Proof Let d ∈ DSV (π) and t ∈ T+. Since the action of both t and Λ(N0)
on DSV (π) comes from that on π∨ we have t−1ϕt(λ)d = t−1tλt−1d = λt−1d,
so this is indeed a ψ-action. The surjectivity of each ψt follows from the
injectivity of the multiplication by t on each W ∈ B+(π). Finally, if W is
in B+(π) then so is t∗W =

∑
u∈J(N0/tN0t−1) utW for any t ∈ T+. Take an

element d ∈ DSV (π) lying in the kernel of ψt(u−1·) for all u ∈ J(N0/tN0t
−1).

Then there exists a generating B+-subrepresentation W of π such that the
restriction of t−1u−1d to W is zero for all u ∈ J(N0/tN0t

−1). Then the
restriction of d to t∗W is zero showing that d is zero in DSV (π) therefore the
nondegeneracy. Alternatively, the nondegeneracy of the ψ-action also follows
from the existence of a ψ-equivariant injective map DSV (π) ↪→ D0

SV (π) into
an étale T+-module D0

SV (π) ([17] Proposition 3.5 and Remark 6.1). �

Question Let D(0)
SV (π) as in [17]. We have that D(0)

SV (π) is an étale T∗-
module over Λ(N0) ([17] Proposition 3.5) and f : DSV (π) ↪→ D

(0)
SV (π) is a

ψ-equivariant map ([17] Remark 6.1). By the universal property of the étale
hull and Corollary 3.3.6 D̃SV (π) also injects into D(0)

SV (π). Whether or not
this injection is always an isomorphism is an open question. In case of the
Steinberg representation this is true by Proposition 11 in [22].

We call the submonoid T ′∗ ≤ T∗ ≤ T+ cofinal in T∗ if for any t ∈ T∗ there
exists a t′ ∈ T ′∗ such that t ≤ t′. For example ξ(Zp \ {0}) is cofinal in T+.

Corollary 3.3.8 Let D be a Λ(N0)-module with a ψ-action of T∗ and de-
note by D̃ (resp. by D̃′) the étale hull of D for the ψ-action of T∗ (resp. of
T ′∗). Then we have a natural isomorphism D̃′

∼→ D̃ of étale T ′∗-modules over
Λ(N0). More precisely, if f : D → D1 is a ψ-equivariant Λ(N0)-homomorphism
into an étale T ′∗-module D1 then f factors uniquely through ι : D → D̃.

Proof Since T ′∗ ≤ T∗ is cofinal in T∗ we have

lim−→
t′∈T ′∗

ϕ∗t′D
∼= lim−→

t∈T∗
ϕ∗tD = D̃.

�
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By Corollary 3.3.8 there exists a homomorphism p̃r : D̃SV (π)→ D∨ξ,`,∞(π)
of étale (ϕ,Γ)-modules over Λ(N0) such that pr = p̃r ◦ ι. Our main result in
this section is the following

Theorem 3.3.9 D∨ξ,`,∞(π) is the pseudocompact completion of
Λ`(N0) ⊗Λ(N0) D̃SV (π) in the category of étale (ϕ,Γ)-modules over Λ`(N0),
ie. we have

D∨ξ,`,∞(π) ∼= lim←−
D

D

where D runs through the finitely generated étale (ϕ,Γ)-modules over Λ`(N0)

arising as a quotient of Λ`(N0) ⊗Λ(N0) D̃SV (π) by a closed submodule. This
holds in any topology on Λ`(N0) ⊗Λ(N0) D̃SV (π) making both the maps
1 ⊗ ι : DSV (π) → Λ`(N0) ⊗Λ(N0) D̃SV (π), d 7→ 1 ⊗ ι(d) and
1⊗ p̃r : Λ`(N0)⊗Λ(N0) D̃SV (π)→ D∨ξ,`,∞(π) continuous.

Remark Since the map pr : DSV (π)→ D∨ξ,`,∞(π) is continuous, there exists
such a topology on Λ`(N0)⊗Λ(N0) D̃SV (π). For instance we could take either
the final topology of the map DSV (π)→ Λ`(N0)⊗Λ(N0) D̃SV (π) or the initial
topology of the map Λ`(N0)⊗Λ(N0) D̃SV (π)→ D∨ξ,`,∞(π).

Proof The homomorphism p̃r factors through the map
1 ⊗ id : D̃SV (π) → Λ`(N0) ⊗Λ(N0) D̃SV (π) since D∨ξ,`,∞(π) is a module over
Λ`(N0), so we obtain a homomorphism

1⊗ p̃r : Λ`(N0)⊗Λ(N0) D̃SV (π)→ D∨ξ,`,∞(π)

of étale (ϕ,Γ)-modules over Λ`(N0). At first we claim that 1⊗ p̃r has dense
image. Let M ∈ M(πH0) and W ∈ B+(π) be arbitrary. Then by Lemma
3.2.1 the map prW,M,k : W∨ →M∨

k is surjective for k ≥ 0 large enough. This
shows that the natural map

1⊗ prW,M,k : Λ`(N0)⊗Λ(N0) W
∨ → Λ`(N0)⊗Λ(N0) M

∨
k
∼= M∨

k [1/X]

is surjective. However, 1⊗ prW,M,k factors through Λ`(N0)⊗Λ(N0) DSV (π) by
the Remarks after Lemma 3.2.2. In particular, the natural map

1⊗ prM,k : Λ`(N0)⊗Λ(N0) DSV (π)→M∨
k [1/X]
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is surjective for all M ∈M(πH0) and k ≥ 0 large enough (whence in fact for
all k ≥ 0). This shows that the image of the map

1⊗ pr : Λ`(N0)⊗Λ(N0) DSV (π)→ D∨ξ,`,∞(π)

is dense whence so is the image of 1⊗ p̃r. By the assumption that 1⊗ p̃r is
continuous we obtain a surjective homomorphism

1̂⊗ p̃r : lim←−
D

D → D∨ξ,`,∞(π)

of pseudocompact (ϕ,Γ)-modules over Λ`(N0) where D runs through the
finitely generated étale (ϕ,Γ)-modules over Λ`(N0) arising as a quotient of
Λ`(N0)⊗Λ(N0) D̃SV (π).

Let 0 6= (xD)D be in the kernel of 1̂⊗ p̃r. Then there exists a finitely
generated étale (ϕ,Γ)-module D over Λ`(N0) with a surjective continuous
homomorphism Λ`(N0) ⊗Λ(N0) D̃SV (π) � D such that xD 6= 0. By Proposi-
tion 3.2.4 this map factors through D∨ξ,`,∞(π) contradicting to the assumption
1̂⊗ p̃r((xD)D) = 0. �

Remark Breuil’s functor D∨ξ can therefore be computed from DSV the fol-
lowing way: For a smooth o/$h-representation π we have

D∨ξ,`(π) ∼= (lim←−
D

D)H0
∼= lim←−

D

DH0

where D runs through the finitely generated étale (ϕ,Γ)-modules over Λ`(N0)

arising as a quotient of Λ`(N0)⊗Λ(N0) D̃SV (π) by a closed submodule.
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Chapter 4

Nongeneric `

Assume from now on that ` = `α is a nongeneric Whittaker functional defined
by the projection of N0 onto Nα,0

∼= Zp for some simple root α ∈ ∆.

4.1 The action of T+

Our goal in this section is to define a ϕ-action of T+ on D∨ξ,`,∞(π) or equiv-
alently, on D∨ξ,`(π) extending the action of ξ(Zp \ {0}) ≤ T+ and making
D∨ξ,`,∞(π) an étale T+-module over Λ`(N0). Let t ∈ T+ be arbitrary. Note
that by the choice of this ` we have tH0t

−1 ⊆ H0. In particular, T+ acts via
conjugation on the ring Λ(N0/H0) ∼= o[[X]]; we denote the action of t ∈ T+ by
ϕt. This action is via the character αmapping T+ onto Zp\{0}. In particular,
o[[X]] is a free module of finite rank over itself via ϕt. Moreover, we define
the Hecke action of t ∈ T+ on πH0 by the formula Ft(m) := TrH0/tH0t−1(tm)
for any m ∈ πH0 . For t, t′ ∈ T+ we have

Ft′ ◦ Ft = TrH0/t′H0t′−1 ◦ (t′·) ◦ TrH0/tH0t−1 ◦ (t·) =

= TrH0/t′H0t′−1 ◦ Trt′H0t′−1/t′tH0t−1t′−1 ◦ (t′t·) = Ft′t .

For any M ∈M(πH0) we put F ∗t M := N0Ft(M).

Lemma 4.1.1 For any M ∈M(πH0) we have F ∗t M ∈M(πH0).

Proof We have

F (F ∗t M) = F (N0Ft(M)) ⊂ N0FFt(M) =

= N0Fst(M) = N0Ft(F (M)) ⊆ F ∗t M .
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So F ∗t M is a module over Λ(N0/H0)/$h[F ]. Moreover, ifm1, . . .mr generates
M , then the elements Ft(mi) (1 ≤ i ≤ r) generate F ∗t M , so it is finitely
generated. The admissibility is clear as F ∗t M =

∑
u∈J(N0/tN0t−1) uFt(M) is

the sum of finitely many admissible submodules. Finally, F ∗t M is stable
under the action of Γ as Ft commutes with the action of Γ. �

By the definition of F ∗t M we have a surjective o/$h[[X]]-homomorphism

1⊗ Ft : o/$h[[X]]⊗o/$h[[X]],ϕt M � F ∗t M

which gives rise to an injective o/$h((X))-homomorphism

(1⊗ Ft)∨[1/X] : (F ∗t M)∨[1/X] ↪→ o/$h((X))⊗o/$h((X)),ϕt M
∨[1/X] . (4.1)

Moreover, there is a structure of an o/$h[[X]][F ]-module on

o/$h[[X]]⊗o/$h[[X]],ϕt M

by putting F (λ ⊗m) := ϕt(λ) ⊗ F (m). Similarly, the group Γ also acts on
o/$h[[X]]⊗o/$h[[X]],ϕtM semilinearly. The map 1⊗Ft is F and Γ-equivariant
as Ft, F , and the action of Γ all commute. We deduce that (1 ⊗ Ft)∨[1/X]
is a ϕ- and Γ-equivariant map of étlae (ϕ,Γ)-modules.

Note that for any t ∈ T+ there exists a positive integer k ≥ 0 such
that t ≤ sk, ie. t′ := t−1sk lies in T+. So we have F ∗t (F ∗t′M) = F ∗

sk
M =

N0F
k(M) ⊆M . So we obtain an isomorphism M∨[1/X] ∼= (F ∗

sk
M)∨[1/X] =

(F ∗t (F ∗t′M))∨[1/X] as M/N0F
k(M) is finitely generated over o.

Lemma 4.1.2 The map (4.1) is an isomorphism of étale (ϕ,Γ)-modules for
any M ∈M(πH0) and t ∈ T+.

Proof The composite (1⊗Ft′)∨[1/X]◦(1⊗Ft)∨[1/X] = (1⊗F k)∨[1/X] is an
isomorphism by Lemma 2.6 in [3]. So (1⊗Ft)∨[1/X] is also an isomorphism
as both (1⊗ Ft)∨[1/X] and (1⊗ Ft′)∨[1/X] are injective. �

Now taking projective limits we obtain an isomorphism of pseudocompact
étale (ϕ,Γ)-modules

(1⊗ Ft)∨[1/X] : D∨ξ,`(π) → lim←−
M∈M(πH0 )

(o/$h((X))⊗o/$h((X)),ϕt M
∨[1/X])

(m)(F ∗t M)∨[1/X] 7→ ((1⊗ Ft)∨[1/X](m))M∨[1/X] .
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Moreover, since o((X)) is finite free over itself via ϕt, we have an identification

lim←−
M∈M(πH0 )

(o/$h((X))⊗o/$h((X)),ϕt M
∨[1/X]) ∼=

∼= o/$h((X))⊗o/$h((X)),ϕt D
∨
ξ,`(π) .

Using the maps (1⊗ Ft)∨[1/X] we define a ϕ-action of T+ on D∨ξ,`(π) by
putting ϕt(d) := ((1⊗ Ft)∨[1/X])−1(1⊗ d) for d ∈ D∨ξ,`(π).

Proposition 4.1.3 The above action of T+ extends the action of
ξ(Zp \{0}) ≤ T+ and makes D∨ξ,`(π) into an étale T+-module over o/$h[[X]].

Proof By the definition of the T+-action it is indeed an extension of the
action of the monoid Zp \ {0}. For t, t′ ∈ T+ we compute

ϕt′ ◦ ϕt(d) = ((1⊗ Ft′)∨[1/X])−1 ◦ ((1⊗ Ft)∨[1/X])−1(1⊗ d) =

= ((1⊗ Ft)∨[1/X] ◦ (1⊗ Ft′)∨[1/X])−1(1⊗ d) =

= ((1⊗ Ftt′)∨[1/X])−1(1⊗ d) = ϕtt′(d) = ϕt′t(d) .

Further, we have

ϕt(λd) = ((1⊗ Ft)∨[1/X])−1(1⊗ λd) = ((1⊗ Ft)∨[1/X])−1(ϕt(λ)⊗ d) =

= ϕt(λ)((1⊗ Ft)∨[1/X])−1(1⊗ d) = ϕt(λ)ϕt(d)

showing that this is indeed a ϕ-action of T+. The étale property follows from
the fact that (1⊗ Ft)∨[1/X] is an isomorphism for each t ∈ T+. �

The inclusion uα : Zp → Nα,0 ≤ N0 induces an injective ring homomor-
phism—still denoted by uα by a certain abuse of notation—
uα : ô((X))

p

↪→ Λ`(N0) where ô((X))
p

denotes the p-adic completion of the
Laurent-series ring o((X)). For each t ∈ T+ this gives rise to a commutative
diagram

ô((X))
p uα //

ϕt

��

Λ`(N0)

ϕt

��

ô((X))
p uα // Λ`(N0)
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with injective ring homomorphisms. On the other hand, by the equivalence
of categories in Thm. 8.20 in [18] we have a ϕ- and Γ-equivariant identi-
fication M∨

∞[1/X] ∼= Λ`(N0) ⊗
ô((X))

p
,uα

M∨[1/X]. Therefore tensoring the
isomorphism (4.1) with Λ`(N0) via uα we obtain an isomorphism

(1⊗ Ft)∨∞[1/X] : (F ∗t M)∨∞[1/X] ∼= Λ`(N0)⊗uα (F ∗t M)∨[1/X]→
→ Λ`(N0)⊗uα o/$h((X))⊗o/$h((X)),ϕt M

∨[1/X] ∼=
∼= Λ`(N0)⊗Λ`(N0),ϕt Λ`(N0)⊗uα M∨[1/X] ∼= Λ`(N0)⊗Λ`(N0),ϕt M

∨
∞[1/X] .

(4.2)

Taking projective limits again we deduce an isomorphism

(1⊗ Ft)∨∞[1/X] : D∨ξ,`,∞(π) → Λ`(N0)⊗Λ`(N0),ϕt D
∨
ξ,`,∞(π)

(m)(F ∗t M)∨∞[1/X] 7→ ((1⊗ Ft)∨∞[1/X](m))M∨∞[1/X]

for all t ∈ T+ using the identification

lim←−
M∈M(πH0 )

(Λ`(N0)⊗Λ`(N0),ϕt M
∨
∞[1/X]) ∼= Λ`(N0)⊗Λ`(N0),ϕt D

∨
ξ,`,∞(π) .

Using the maps (1 ⊗ Ft)∨∞[1/X] we define a ϕ-action of T+ on D∨ξ,`,∞(π) by
putting ϕt(d) := ((1⊗ Ft)∨∞[1/X])−1(1⊗ d) for d ∈ D∨ξ,`,∞(π).

Corollary 4.1.4 The above action of T+ extends the action of
ξ(Zp \ {0}) ≤ T+ and makes D∨ξ,`,∞(π) into an étale T+-module over Λ`(N0).
The reduction map D∨ξ,`,∞(π)→ D∨ξ,`(π) is T+-equivariant for the ϕ-action.

We can view this ϕ-action of T+ in a different way: Let us define
Ft,k := TrHk/tHkt−1 ◦ (t·). Then we have a map

1⊗Ft,k : Λ(N0/Hk)/$
h⊗Λ(N0/Hk)/$h,ϕtMk → F ∗t,kMk := N0Ft,k(Mk) , (4.3)

where we have F ∗t,kM ∈ Mk(π
Hk). Let k be large enough such that we have

tH0t
−1 ≥ Hk. After taking Pontryagin duals, inverting X, taking projective

limit and using the remark after Lemma 3.1.5 we obtain a homomorphism
of étale (ϕ,Γ)-modules

lim←−
k

Tr−1
t−1Hkt

◦ (1⊗ Ft,k)∨[1/X] : (F ∗t M)∨∞[1/X]→ Λ`(N0)⊗ϕt M∨
∞[1/X] .

(4.4)
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This map is indeed Γ- and ϕ-equivariant because we compute

Fk ◦ Ft,k = TrHk/sHks−1 ◦ (s·) ◦ TrHk/tHkt−1 ◦ (t·) =

= TrHk/sktHkt−1s−k ◦ (skt·) =

= TrHk/tHkt−1 ◦ (t·) ◦ TrHk/sHks−1 ◦ (s·) = Ft,k ◦ Fk .

Now we have two maps (4.2) and (4.4) between (F ∗t M)∨∞[1/X] and
Λ`(N0) ⊗ϕt M∨

∞[1/X] that agree after taking H0-coinvariants by definition.
Hence they are equal by the equivalence of categories in Thm. 8.20 in [18].

We obtain in particular that the map (4.3) has finite kernel and cokernel
as it becomes an isomorphism after taking Pontryagin duals and inverting X.
Hence there exists a finite Λ(N0/Hk)/$

h-submodule Mt,k,∗ of Mk such that
the kernel of 1⊗ Ft,k is contained in the image of Λ(N0/Hk)/$

h⊗ϕMt,k,∗ in
Λ(N0/Hk)/$

h ⊗ϕ Mk. We denote by M∗
t,k ≤ F ∗t,kMk the image of 1 ⊗ Ft,k.

We conclude that as in Proposition 3.1.6, we can describe the ϕt-action in
the following way:

ϕt : M
∨
k [1/X] → (F ∗t,kMk)

∨[1/X]

f 7→ (Tr−1
t−1Hkt/Hk

◦ (1⊗ Ft,k)∨[1/X])−1(1⊗ f) (4.5)

Being an étale T+-module over Λ`(N0) we equip D∨ξ,`,∞(π) with the ψ-
action of T+: ψt is the canonical left inverse of ϕt for all t ∈ T+.

Proposition 4.1.5 The map pr : DSV (π) → D∨ξ,`,∞(π) is ψ-equivariant for
the ψ-actions of T+ on both sides.

Proof We proceed as in the proofs of Proposition 3.1.8 and Lemma 3.2.2.
We fix t ∈ T+, W ∈ B+(π) and M ∈ M(πH0) and show that prW,M is
ψt-equivariant. Fix k such that F ∗t,kMk ≤ W and tH0t

−1 ≥ Hk.
At first we compute the formula analogous to (3.7). Let f be in M∨

k such
that its restriction to Mt,k,∗ is zero and m ∈M∗

t,k ≤ F ∗t,kMk be in the form

m =
∑

u∈J(N0/tN0t−1)

uFt,k(mu)

with elements mu ∈Mk for u ∈ J(N0/tN0t
−1). M∗

t,k is a finite index submod-
ule of F ∗t,kMk. Note that the elements mu are unique upto Mt,k,∗+ Ker(Ft,k).
Therefore ϕt(f) ∈ (M∗

t,k)
∨ is well-defined by our assumption that f|Mt,k,∗ = 0
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noting that the kernel of Ft,k equals the kernel of Trt−1Hkt/Hk since the multi-
plication by t is injective and we have Ft,k = t ◦ Trt−1Hkt/Hk . So we compute

ϕt(f)(m) = ((1⊗ Ft,k)∨)−1(Trt−1Hkt/Hk(1⊗ f))(m) =

= ((1⊗ Ft,k)∨)−1(1⊗ Trt−1Hkt/Hk(f))(
∑

u∈J((N0/Hk)/t(N0/Hk)t−1)

uFt,k(mu)) =

= Trt−1Hkt/Hk(f)(F−1
t,k (u0Ft,k(mu0))) = f(Trt−1Hkt/Hk((t

−1u0t)mu0))

(4.6)

where u0 is the single element in J(N0/tN0t
−1) corresponding to the coset of

1.
Now let f be in W∨ such that the restriction f|N0tMt,k,∗ = 0. By defi-

nition we have ψt(f)(w) = f(tw) for any w ∈ W . Choose an element
m ∈M∗

t,k ⊂ F ∗t,kMk written in the form

m =
∑

u∈J(N0/tN0t−1)

uFt,k(mu) =
∑

u∈J(N0/tN0t−1)

utTrt−1Hkt/Hk(mu) .

Then we compute

f|F ∗t,kMk
(m) =

∑
u∈J(N0/tN0t−1)

f(utTrt−1Hkt/Hk(mu)) =

=
∑

u∈J(N0/tN0t−1)

ψt(u
−1f)(Trt−1Hkt/Hk(mu)) =

(4.6)
=

∑
u∈J(N0/tN0t−1)

ϕt(ψt(u
−1f)|F ∗t,kMk

)(Ft,k(mu)) =

=
∑

u∈J(N0/tN0t−1)

uϕt(ψt(u
−1f)|Mk

)(uFt,k(mu)) =

=
∑

u∈J(N0/tN0t−1)

uϕt(ψt(u
−1f)|Mk

)(m)

as for distinct u, v ∈ J(N0/tN0t
−1) we have uϕt(f0)(vFt,k(mv)) = 0 for any

f0 ∈ (M∗
t,k)
∨. So by inverting X and taking projective limits with respect to

k we obtain

prW,F ∗t M(f) =
∑

u∈J(N0/tN0t−1)

uϕt(prW,M(ψt(u
−1f)))
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as we have (M∗
t,k)
∨[1/X] ∼= (F ∗t,kM)∨[1/X]. Since the map (4.2) is an iso-

morphism we may decompose prW,F ∗t M(f) uniquely as

prW,F ∗t M(f) =
∑

u∈J(N0/tN0t−1)

uϕt(ψt(u
−1prW,F ∗t M(f)))

so we must have ψt(prW,F ∗t M(f)) = prW,M(ψt(f)). For general f ∈ W∨ note
that N0sMt,k,∗ is killed by ϕt(Xr) for r ≥ 0 big enough, so we have

Xrψt(prW,F ∗t M(f)) = ψt(prW,F ∗t M(ϕt(X
r)f)) =

= prW,M(ψt(ϕt(X
r)f)) = XrprW,M(ψt(f)) .

Since Xr is invertible in Λ`(N0), we obtain

ψt(prW,F ∗t M(f)) = prW,M(ψt(f))

for any f ∈ W∨. The statement follows taking the projective limit with
respect to M ∈M(πH0) and the inductive limit with respect to W ∈ B+(π).
�

4.2 Compatibility with parabolic induction
Let P = LPNP be a parabolic subgroup of G containing B with Levi
component LP and unipotent radical NP and let πP be a smooth o/$h-
representation of LP that we view as a representation of P− via the quotient
map P− � LP where P− = LPNP− is the parabolic subgroup opposite
to P . Since T is contained in LP , we may consider the same cocharacter
ξ : Q∗p → T for the group LP instead of G. Further, we put NLP = N ∩ LP
and NLP ,0 = N0 ∩ LP .

As in [3] denote by W = NG(T )/T (resp. by WP = (NG(T ) ∩ LP )/T )
the Weyl group of G (resp. of LP ) and by w0 ∈ W the element of maximal
length. We have a canonical system

KP = {w ∈ W | w−1(Φ+
P ) ⊆ Φ+}

of representatives (the Kostant representatives) of the right cosets WP\W
where Φ+

P denotes the set of positivie roots of LP with respect to the Borel
subgroup LP ∩B. We have a generalized Bruhat decomposition

G =
∐
w∈KP

P−wB =
∐
w∈KP

P−wN .

65



Now let πP be a smooth representation of LP over o/$h. We regard
πP as a representation of P− via the quotient map P− � LP . Then the
parabolically induced representation IndGP−πP admits [21] (see also [7] §4.3)
a filtration by B-subrepresentations whose graded pieces are contained in

Cw(πP ) = c− IndP
−wN

P− πP

for w ∈ KP where c−Ind∗P− stands for the space of locally constant functions
on ∗ ⊇ P− with compact support modulo P−. B acts on Cw(πP ) by right
translations. Moreover, the first graded piece equals C1(πP ).

Lemma 4.2.1 Let π′ ≤ Cw(πP ) be any B-subrepresentation for some
w ∈ KP \ {1}. Then we have D∨ξ,`(π′) = 0.

Proof By the right exactness of D∨ξ,` (Prop. 2.7(ii) in [3]) it suffices to treat
the case π′ = Cw(πP ). For this the same argument works as in Prop. 6.2 [3]
with the following modification:

The particular shape of ` is only used in Lemma 6.5 in [3] (note that the
subgroup H0 = Ker(` : N0 → Zp) is denoted by N1 therein). For an element
w 6= 1 in the Weyl group we have (w−1NP−w∩N0)\N0/H0 = {1} if and only
if H0 does not contain w−1NP−w ∩N0. Whenever w−1NP−w ∩N0 6⊆ H0, the
statement of Lemma 6.5 in [3] is true and there is nothing to prove.

In case we have {1} 6= w−1NP−w ∩ N0 ⊆ H0, the statement of Lemma
6.5 is not true for ` = `α. However, the argument using it in the proof of
Prop. 6.2 can be replaced by the following: the operator F acts on the space
C((w−1NP−w∩N0)\N0, π

w
P )H0 nilpotently. Indeed, the trace map TrH0/sH0s−1

C((w−1NP−w ∩N0)\N0, π
w
P )sH0s−1 → C((w−1NP−w ∩N0)\N0, π

w
P )H0

is zero as each double coset (w−1NP−w ∩ H0)\H0/sH0s
−1 has size divisible

by p and any function in C((w−1NP−w ∩ N0)\N0, π
w
P )sH0s−1 is constant on

these double cosets. The statement follows from Prop. 2.7(iii) in [3]. �

In order to extend Thm. 6.1 in [3] (the compatibility with parabolic induc-
tion) to our situation (` = `α) we need to distinguish two cases: whether the
root subgroup Nα is contained in LP or in NP . Similarly to [7] we define the
sZNLP -ordinary part OrdsZNLP (πP ) of a smooth representation πP of LP as

follows. We equip πNLP ,0P with the Hecke action FP = TrNLP ,0/sNLP ,0s−1 ◦ (s·)
of s making πNLP ,0P a module over the polynomial ring o/$h[FP ] and put

OrdsZNLP (πP ) = Homo/$h[Fp](o/$
h[FP , F

−1
P ], π

NLP ,0
P )FP−fin
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where FP − fin stands for those elements in the Hom-space whose orbit
under the action of FP is finite. By Lemmata 3.1.5 and 3.1.6 in [7] we may
identify OrdsZNLP (πP ) with an o/$h[FP ]-submodule in πNLP ,0P by sending a

map f ∈ OrdsZNLP (πP ) to its value f(1) ∈ πNLP ,0P at 1 ∈ o/$h[FP , F
−1
P ].

Proposition 4.2.2 Let πP be a smooth locally admissible representation of
LP over o/$h which we view by inflation as a representation of P−. We have
an isomorphism

D∨ξ,`
(
IndGP−πP

) ∼= {D∨ξ,`(πP ) if Nα ⊆ LP

o/$h((X))⊗̂o/$hOrdsZNLP (πP )∨ if Nα ⊆ NP

as étale (ϕ,Γ)-modules. In particular, for P = B we have
D∨ξ,`(IndGB−πB) ∼= o/$h((X))⊗̂o/$hπ∨B, ie. the value of D∨ξ,` at the principal
series is the same (ϕ,Γ)-module of rank 1 regardless of the choice of `
(generic or not).

Proof By Lemma 4.2.1 and the right exactness of D∨ξ,` (Prop. 2.7(ii) in
[3]) it suffices to show that D∨ξ,`(C1(πP )) is isomorphic either to D∨ξ,`(πP ) or
o/$h((X))⊗̂o/$hOrdsZNLP (πP )∨. Moreover, the proof of Prop. 6.7 in [3] goes
through without modification so we have an isomorphism
D∨ξ,`(C1(πP )) ∼= D∨((IndN0

P−∩N0
πP )H0). Hence we are reduced to computing

D∨((IndN0

P−∩N0
πP )H0) in terms of πP . We further have an identification

IndN0

P−∩N0
πP ∼= C(NP,0, πP ) ∼= C(NP,0, o/$

h)⊗o/$h πP

by equation (40) in [3]. We need to distinguish two cases.
Case 1: Nα ⊆ LP . In this case we have NP,0 ⊆ H0. Hence we deduce

(C(NP,0, o/$
h)⊗o/$h πP )H0 = π

H0/NP,0
P = π

HP,0
P . So we have

D∨ξ,`
(
IndGP−πP

) ∼= D∨((IndN0

P−∩N0
πP )H0) ∼= D∨(π

HP,0
P ) ∼= D∨ξ,`(πP )

in this case as claimed.
Case 2: Nα ⊆ NP . In this case we have NLP ,0 ⊆ H0 and

NP,0/(NP,0 ∩H0) ∼= Zp. So we have an identification

C(NP,0, πP )H0 ∼= C(NP,0/(NP,0 ∩H0), π
NLP ,0
P ) ∼= C(Zp, π

NLP ,0
P ) .
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Here the Hecke action F = FG = TrH0/sH0s−1 ◦ (s·) of s on the right hand
side is given by the formula

FG(f)(a) =

{
FP (f(a/p)) if a ∈ pZp
0 if a ∈ Zp \ pZp

,

where FP = TrNLP ,0/sNLP ,0s−1 ◦ (s·) denotes the Hecke action of s on πNLP ,0P .

Now letM be a finitely generated o/$h[[X]][F ] submodule of C(Zp, π
NLP ,0
P )

that is stable under the action of Γ and is admissible as a representation of
Zp. By possibly passing to a finite index submodule of M we may assume
without loss of generality that the natural map M∨ →M∨[1/X] is injective
whence the map id⊗ F : o/$h[[X]]⊗o/$h[[X]],F M →M is surjective.

Let f ∈M be arbitrary. By continuity of f there exists an integer n ≥ 0
such that f is constant on the cosets of pnZp. Writing f =

∑pn−1
i=0 [i] · F n(fi)

(where [i]· denotes the multiplication by the group element i ∈ Zp) by the
surjectivity of id⊗F we find that each fi is necessarily constant as a function
on Zp satisfying F n

P (f0(0)) = f(0).
Put M∗ = {f(0) | f ∈ M} ⊆ π

NLP ,0
P . By the previous discussion FP

acts surjectively on M∗ and is generated by the values of elements in MZp

(ie. constant functions) as a module over o/$h[FP ]. By the admissibility
of M we deduce that MZp hence M∗ is finite (or, equivalently, finitely gen-
erated over o/$h). We deduce that in fact we have M = C(Zp,M∗), ie.
M∨ ∼= o/$h[[X]]⊗o/$h M∨

∗ .
Conversely, whenever we have a o/$h[FP ]-submodule M ′ ≤ π

NLP ,0
P that

is finitely generated over o/$h and on which FP acts surjectively (hence
bijectively as the cardinality of o/$h is finite) then for M = C(Zp,M ′) we
have M ′ = M∗, M ∈M(C(Zp, π

NLP ,0
P )), and M∨ ∼= o/$h[[X]]⊗o/$h (M ′)∨ is

X-torsion free. In particular, we compute
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D∨ξ,`(C1(πP )) ∼= lim←−
M∈M(C(Zp,π

NLP ,0

P ))

M∨[1/X] ∼=

∼= lim←−
M∈M(C(Zp,π

NLP ,0

P )),

M∨↪→M∨[1/X]

o/$h((X))⊗o/$h M∨
∗
∼=

o/$h((X))⊗̂o/$h( lim−→
M∈M(C(Zp,π

NLP ,0

P )),

M∨↪→M∨[1/X]

M∗)
∨ =

= o/$h((X))⊗̂o/$hOrdsZNLP (πP )∨

as claimed. �

Remark For Nα ⊆ NP we have the equivalent description
D∨ξ,`

(
IndGP−πP

) ∼= lim←−M∈M(π′P )
o/$h[[X]][1/X]⊗o/$h M∨, where

π′P = (πH0
P )F∞P =0 = πH0

P /〈x ∈ πH0
P |∃n ∈ N : F n

Px = 0〉,

and the action of ϕ (resp. Γ) on o/$h[[X]][1/X] ⊗ M∨ is the unique
o/$h[[X]][1/X]-semilinear action such that ϕ(f)(m) = f(ξ(p−1)m) for
f ∈ M∨ and m ∈ M (resp. x(f)(m) = f(ξ(x−1)m) for x ∈ Z∗p ' Γ,
f ∈M∨ and m ∈M).

4.3 Compatibility with a reverse functor
In this section the results of [10], section 4 are presented without proofs.

In [18] the functor D 7→ Y is generalized to arbitrary Qp-split reductive
groups G with connected centre. Let D be an étale (ϕ,Γ)-module finitely
generated over OE and choose a character δ : Ker(α)→ o∗. Then we may let
the monoid ξ(Zp\{0})Ker(α) ≤ T (containing T+) act on D via the character
δ of Ker(α) and via the natural action of Zp \ {0} ∼= ϕN0 ×Γ on D. This way
we also obtain a T+-action on Λ`(N0)⊗uα D making Λ`(N0)⊗uα D an étale
T+-module over Λ`(N0). In [18] a G-equivariant sheaf Y on G/B is attached
to D such that its sections on C0 = N0w0B/B ⊂ G/B is B+-equivariantly
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isomorphic to the étale T+-module (Λ`(N0) ⊗uα D)bd over Λ(N0) consisting
of bounded elements in Λ`(N0)⊗uα D (see [18] section 9).

The construction of a G-equivariant sheaf on G/B with sections on
C0 = N0w0B/B ⊂ G/B isomorphic to a dense B+-stable Λ(N0)-submodule
D∨ξ,`,∞(π)bd of D∨ξ,`,∞(π) is not immediate from the work [18] as only the
case of finitely generated modules over Λ`(N0) is treated in there. However,
the most natural definition of bounded elements in D∨ξ,`,∞(π) works: The
Λ(N0)-submodule D∨ξ,`,∞(π)bd is defined as the union of ψ-invariant compact
Λ(N0)-submodules of D∨ξ,`,∞(π). The image of p̃r : D̃SV (π) → D∨ξ,`,∞(π) is
contained in D∨ξ,`,∞(π)bd and the constructions of [18] can be carried over
to this situation. The resulting G-equivariant sheaf on G/B is denoted by
Y = Yα,π.

Now consider the functors (·)∨ : π 7→ π∨ and the composite

Yα,·(G/B) : π 7→ D∨ξ,`,∞(π) 7→ Yα,π(G/B)

both sending smooth, admissible o/$h-representations of G of finite length
to topological representations of G over o/$h. There exists is a natural trans-
formation βG/B from (·)∨ to Yα,·. This generalizes Thm. IV.4.7 in [4]. The
proof of this relies on the observation that the maps
Hg : D∨ξ,`,∞(π)bd → D∨ξ,`,∞(π)bd in fact come from the G-action on π∨. More
precisely, for any g ∈ G and W ∈ B+(π) we have maps

(g·) : (g−1W ∩W )∨ → (W ∩ gW )∨

where both (g−1W ∩W )∨ and (W ∩ gW )∨ are naturally quotients of W∨.
These maps fit into a commutative diagram

D∨ξ,`,∞(π)bd resC0g−1C0∩C0(D∨ξ,`,∞(π)bd) resC0C0∩gC0(D∨ξ,`,∞(π)bd)

W∨ (g−1W ∩W )∨ (W ∩ gW )∨
g·

prW

g·
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allowing us to construct the map βG/B. The proof of this is similar to that
of Thm. IV.4.7 in [4]. However, unlike that proof we do not need the full
machinery of “standard presentations” in Ch. III.1 of [4] which is not available
at the moment for groups other than GL2(Qp).

4.4 Counterexamples
In [3] the Whittaker functional ` is assumed to be generic. However, even if
` is not generic, the functor D∨ξ,` (hence also D∨ξ,`,∞) is right exact. Here we
show that in this case D∨ξ,` is not faithful and the restriction of D∨ξ,` to the
category SPo/$h is not exact in general.

From now on let h = 1, thus we are over k = o/$, and G = GL3(Qp).
Then |∆| = 2, say ∆ = {α, β}, fix the parabolic subgroup P such that
LP ∼= GL2(Qp) × T ′ where T ′ is a torus and ` = `α. Let the superscript (2)

denote the analogous construction of the subgroups B, T,N, T0 and element
s of G in case G = GL2(Qp).

Proposition 4.4.1 Let πP ∼= π(2)⊗χ be the twist of a supercuspidal modulo
p representation π(2) of GL2(Qp) by a character χ of the torus. Then we
have

dimk((X))D
∨
ξ,`

(
IndGP−πP

)
=

{
0 if Nβ ⊂ LP

2 if Nα ⊂ LP
.

Proof We use the compatibility with parabolic induction (Proposition 4.2.2).
Note that the torus T (2) is generated by s(2) and T (2)

0 . So in the case when
Nβ ⊂ LP we have an isomorphism

OrdsZNLP (πP ) ∼= (OrdB(2)(π2)⊗ χ)|k[FP ] = 0

by the adjunction formula of Emerton’s ordinary parts (Thm. 4.4.6 in [7]).
In the other case we apply Thm. 0.10 in [4]. �

Now let χ = id and πP = π(2) ⊗ id be a representation of
LP ∼= GL2(Qp)× T ′ such that Nβ ⊂ LP .

By definition ([3], section 3) the k[[X]]-module structure of πH0
P is iso-

morphic to those of π(2), the Z∗p-actions are the same, and

FPm =

p−1∑
i=0

(1 +X)iF (2)m for m ∈ πH0
P = π

N
(2)
0

P .
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Let M (2) ∈ M(π(2)) and consider the k-vectorspace
(M (2))∨/X(M (2))∨ = (MH0)∨. MH0 is FP -invariant thus we have an ac-
tion of FP on the dual. We describe it with the ψ coming from the étale
(ϕ,Γ)-module structure of (M (2))∨[1/X] (cf. Lemma 2.6 and the part after
Lemma 3.1 in [3]):

FP (d+X(M (2))∨) = ψ

(
p−1∑
i=0

(1 +X)id

)
+X(M (2))∨ (d ∈ (M (2))∨).

Proposition 4.4.2 Let π(2) be an extension of principal series:

0→ π
(2)
1 = Ind

GL2(Qp)

B(2)− (χ1 ⊗ χ2)
i→ π(2) j→ π

(2)
2 = Ind

GL2(Qp)

B(2)− (χ′1 ⊗ χ′2)→ 0,

and D(π(2)) be the (ϕ,Γ)-module attached to π(2) by the classical Montréal
functor D. Then OrdsZNLP (πP )∨ is a quotient of

(Λ/XΛ)F∞P =0 = (Λ/XΛ)/〈d ∈ Λ/XΛ|∃n ∈ N : F nd = 0〉

for a certain lattice Λ containing the smallest ψ-invariant lattice
D\(π(2)) ⊂ D(π(2)).

Proof As before, we have OrdsZNLP (πP ) ∼= OrdB(2)(π(2))⊗id ∼= OrdB(2)(π(2)).
Let us denote it with Ord(2).

We have dimk(Ord(2)) ≤ 2, because the ordinary parts of the principal
series are 1 dimensional over k (Theorem 4.2.12 in [8]), and the functor
π 7→ Ord(π) is left exact (Proposition 3.2.4 in [7]).

For a principal series representation π
(2)
0 , if M ∈ M(π

(2)
0 ) such that

M∨[1/X] is nontrivial, then we have OrdB(2)(π
(2)
0 ) ≤ MN

(2)
0 . The minimal

generating B+-subrepresentation M0 ∈ M(π
(2)
0 ) of the Steinberg represen-

tation is of that kind. Assume indirectly that MN
(2)
0 does not contain the

ordinary part for some M ∈ M(π
(2)
0 ). We have dimk((X))(M

′∨[1/X]) ≤ 1

for all M ′ ∈ M(π
(2)
0 ). But then by Lemma 2.1 in [3] we would have

M ′ = M +M0 ∈M(π
(2)
0 ) and dimk((X))(M

′∨[1/X]) ≥ 2.

We show, that there exists M ′ ∈M(π(2)) such that Ord(2) ≤M ′.
If dimk(Ord(2)) = 1, then Ord(2) ∼= OrdB(2)(π

(2)
1 ) which is contained in the

Steinberg representation M1 ≤ π
(2)
1 . Thus Ord(2) ≤M ′ = i(M1) ∈M(π(2)).
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If dimk(Ord(2)) = 2, we use the fact that OrdB(2) is the right adjoint of
Ind

GL2(Qp)

B(2)− ([7] Theorem 4.4.6). We have

0→ χ1 ⊗ χ2 → U ∼= Ord(2) → χ′1 ⊗ χ′2 → 0.

Thus the isomorphism U → Ord(2) gives an isomorphism
Ind

GL2(Qp)

B(2)− (U)→ π(2).
LetM ′ be the k[[X]][F ]-representation generated by Ord(2). M ′ ∈M(π(2)),

because any f ∈ M viewed as a function G → U has support in N (2)
0 B(2)−,

thus M ′∨ is admissible.

Moreover we can choose M such that M∨[1/X] ∼= D(π(2)): let
M ′′ ∈ M(π(2)) be such that M ′∨[1/X] ∼= D(π(2)). Then we also have
M = M ′ +M ′′ ∈M(π(2)) (cf Lemma 2.1 in [3]).

Set Λ = M∨ ≤M∨[1/X]. This is ψ-invariant and generates D(π(2)), thus
it contains D\(π(2)). We got that OrdsZNLP (πP )∨ is a quotient of Λ/XΛ.
Moreover since FP acts surjectively on OrdsZNLP (πP ), the dual is a quotient
of (Λ/XΛ)F∞P =0. �

Corollary 4.4.3 Let χ1 6= χ2, χ′1 = χ2ε
−1 and χ′2 = χ1ε with χ1 6= χ′1 and

ε : Q∗p ∼= pZ × Z∗p → Z∗p → F∗p denoting the modulo p cyclotomic character.
Then we have an exact sequence

0→ IndGP−(π
(2)
1 ⊗ id)→ π = IndGP−(π(2) ⊗ id)→ IndGP−(π

(2)
2 ⊗ id)→ 0,

but the natural map D∨ξ,`(IndGP−(π
(2)
2 ⊗ id)) → D∨ξ,`(IndGP−(π(2) ⊗ id)) is not

injective.

Proof The above sequence is exact, because both −⊗ id and IndGP−(−) are
exact.

By Proposition 4.2.2 we haveD∨ξ,`(IndGP−(π
(2)
2 ⊗id)) ∼= k((X))⊗OrdB(2)(π

(2)
2 )

and D∨ξ,`(IndGP−(π(2) ⊗ id)) ∼= k((X))⊗OrdB(2)(π(2)) (here we also used that
OrdsZNLP (π) ∼= OrdB(2)(π(2)) as before).

For any extension D of the (ϕ,Γ)-modules D(π
(2)
1 ) and D(π

(2)
2 ) there

exists an extension π(2) of the two principal series with D(π(2)) = D, since
the functor D is essentially surjective (see Thm 0.17(iii) in [4]) and we have
dimFp(Ext(π

(2)
2 , π

(2)
1 )) = 1 (see [8] Prop. 4.3.15(2)).
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Thus it suffices to prove, that there exists a nontrivial extension D and
that for any lattice Λ ⊇ D\ the action FP on Λ/XΛ has nontrivial kernel.
This is done in the following section. �

4.5 Extensions of 1 dimensional (ϕ,Γ)-modules
The most part of the following is folklore, however I could not find it
anywhere, so I wrote it down. Let p be an odd prime and
γ ∈ Γ = Gal(Qp(µp∞)/Qp) be a topological generator. Let
χ : Gal(Qp(µp∞)/Qp)→ Z∗p be the cyclotomic character.

For f(X) =
∑

n λnX
n ∈ Fp((X))∗, write deg(f(X)) = min{n|λn 6= 0}.

Proposition 4.5.1 Let D be a one dimensional (ϕ,Γ)-module over Fp((X)).
Then there exists a basis {e} of D and λ, µ ∈ F∗p such that the ϕ(e) = λe and
γ(e) = µe.

Proof Let e0 be any generator of D. Then ϕ(e0) = f(X)e for some
f ∈ Fp((X)). We can write f(X) = λ0X

nf ′(X) with λ0 ∈ F∗p, n ∈ Z
and f ′(X) ∈ 1 +XFp[[X]].

If we change the basis to e = h(X)e0 for any h(X) ∈ Fp((X))∗, we
have ϕ(h(X)e) = h(Xp)ϕ(e) = (h(Xp)/h(X) · λ0X

nf ′(X))(h(X)e). After
choosing h(X) = Xbn/pc

∏∞
j=0 f

′(Xpj) (which is convergent in Fp((X)), since
f ′(0) = 1), we have that ϕ(e) = λ0X

me, where 0 ≤ m < p and p|n−m.
Let γ(e) = g(X)e = µ0X

lg′(X)e with µ0 ∈ F∗p, l ∈ Z and
g′(X) ∈ 1 + XFp[[X]]. Then we have ϕ(γ(e)) = γ(ϕ(e)), where on the
left hand side we have:

ϕ(γ(e)) = ϕ(µ0X
lg′(X)e) = λ0µ0X

plg′(Xp)Xme.

On the right hand side

γ(ϕ(e)) = γ(λ0X
me) = λ0µ0((1 +X)χ(γ) − 1)mX lg′(X)e.

Thus we have Xpl+mg′(Xp) = ((1 + X)χ(γ) − 1)mX lg′(X), comparing the
degrees and the leading coefficients gives l = m = 0, g′(X) = 1 and we have
the proposition. �

Recall the following definitions of Colmez (cf [5]): For a (ϕ,Γ)-module D
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• we define Dnr = ∩n∈Nϕn(D) ≤ D,

• D\ ≤ D to be the smallest ψ-invariant lattice and

• D# ≤ D to be the biggest ψ-invariant lattice on which ψ acts surjec-
tively.

Corollary 4.5.2 If D is one dimensional with a basis e as above, we have
Dnr = Fpe, D\ = k[[X]]e and D# = X−1k[[X]]e.

Proof The first two statements are clear, the last comes from the facts that
ψ(X−1e) = ψ(

∑p−1
i=0 (1 + X)iϕ(X−1e)) = X−1e and that

ψ(Xme) ∈ Xm+1k[[X]]e if m < −1. �

Remark For any λ0, µ0 ∈ F∗p there exists a one dimensional (ϕ,Γ)-module,
such that the matrix of ϕ (respectively γ) is λ0 (respectively µ0). It is easy
to see that in this case the action of ϕ is étale and the action of γ extends
continuously to Γ.

Altogether there are (p−1)2 one dimensional (ϕ,Γ)-modules over Fp((X)).

Now let D1 and D2 be one dimensional (ϕ,Γ)-modules over Fp((X)). We
determine the extensions of D2 by D1. By the previous proposition we might
choose a basis {e′i} in Di such that ϕ(e′i) = λie

′
i and γ(e′i) = µie

′
i for i = 1, 2

and λi, µi ∈ F∗p.

Proposition 4.5.3

• If D is an extension of D2 by D1, then in an appropriate basis
{e1, e2} ⊂ D we have ϕ(e1) = λ1e1, ϕ(e2) = f(X)e1 + λ2e2,
γ(e1) = µ1e1, γ(e2) = g(X)e1 + µ2e2, with f(X) =

∑
i αiX

i and
g(X) ∈ Fp((X)), such that αi = 0 if a) i > 0 or b) i < 0 and p|i,
and

µ1f((1 +X)χ(γ) − 1)− µ2f(X) = λ1g(Xp)− λ2g(X).

If λ1 6= λ2 we can also have α0 = 0.

• Let f(X), g(X) ∈ Fp((X)) as above. Then there exists a 2 dimensional
(ϕ,Γ)-module D, for which the above statements hold. If
f ′(X) 6= αf(X) for any α ∈ F∗p and g′(X) are as above with a (ϕ,Γ)-
module D′, then D 6' D′.
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Proof

• We may choose a basis {e1, e2} in D such that e1 is the image of e′1 and
e2 is a preimage of e′2. Then there exist f(X), g(X) ∈ Fp((X)) such
that ϕ(e2) = f(X)e1 + λ2e2 and γ(e2) = g(X)e1 + µ2e2.
We have ϕ(γ(e2)) = ϕ(g(X)e1+µ2e2) = (λ1g(Xp)+µ2f(X))e1+λ2µ2e2

and γ(ϕ(e2)) = γ(f(X)e1 +λ2e2) = (µ1f((1+X)χ(γ)−1)+λ2g(x))e1 +
λ2µ2e2, thus

µ1f((1 +X)χ(γ) − 1)− µ2f(X) = λ1g(Xp)− λ2g(X).

Now we look at the basis {e1, e2 + h(X)e1} for h(X) ∈ Fp((X))∗. We
have ϕ(e2 +h(X)e1) = (f(X)+λ1h(Xp)−λ2h(X))e1 +λ2(e2 +h(X)e1)
and γ(e2 + h(X)e1) = (g(X) + µ1h((1 + X)χ(γ) − 1) − µ2h(X))e1 +
µ2(e2 + h(X)e1).
Let i0 = pj0 < 0 minimal such that αi0 6= 0. Then setting
h(X) = −λ−1

1 αi0X
j0 and e2 = e2 + h(X)e1 we can change λi0 = 0.

Thus we may assume, that αpj0 = 0 for j0 < 0.
If λ1 6= λ2, then change e2 to e2−α0(λ1−λ2)−1, then λ0 = 0. For i > 0
we can set αi = 0 inductively.

• It is clear, that the action of ϕ is étale. (the matrix of ϕ is upper
triangular)
We need that the action of γ extends continuously to Γ. We claim that

it is always true if γ has matrix
(
µ1 g(X)
0 µ2

)
. Let kn ∈ N such that

γkn converges in Γ. It suffices to verify, that for all j ∈ Z there exists
N(j) such that for n,m > N(j) in γkn(e2) − γkm(e2) the coefficient of
Xj′ for j′ ≤ j is 0. We have

γk(e2) =

( k−1∑
i=0

µi1µ
k−1−i
2 g((1 +X)χ(γ)i − 1)

)
e1 + µk2e2,

Let d = deg(g) and l = max{j − d, j + 1}. The convergence of γkn
yields that there exists N ′(j) such that for all n,m > N ′(j) we have
(p − 1)pl|kn − km. If n,m > N ′(j) then for any i ∈ N we have
µkn−i2 = µkm−i2 and

Xj|g((1 +X)χ(γ)i − 1)− g((1 +X)χ(γ)kn−km+i − 1).
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Suppose that kn ≥ km. Then for q = (p − 1)pj and for some
h(X), h′(X) ∈ Fp[[X]] we have

γkn(e2)− γkm(e2) =

=

( kn−km−1∑
i=0

µi1µ
kn−1−i
2 g((1 +X)χ(γ)i − 1) +Xjh(X)

)
e1 =

=

(
kn − km

q

( q−1∑
i=0

µi1µ
kn−1−i
2 g((1 +X)χ(γ)i − 1)

)
+Xjh′(X)

)
e1 =

= Xjh′(X)e1,

since pq|kn − km. Thus N(j) = N ′(j) is a convenient choice.

To see that for different choices of f(X) we get different modules let
{d1, d2} be an other basis in D, such that the matrix of ϕ (and γ) is
upper triangular. We will show, that then d1 = αe1 with α ∈ F∗p, unless
f(X) = 0, which is sufficient for the proposition.

Let d1 = a(X)e1 + b(X)e2. λd1 = ϕ(d1) = (λ1a(Xp) + f(X)b(Xp))e1 +
λ2b(X

p)e2, thus we have λ2b(X
p) = λb(X), meaning either λ = λ2 and

b(X) = β ∈ F∗p or b(X) = β = 0. We also have λ1a(Xp) + f(X)β =
λa(X). Then by the properties of f(X) we have that the coefficients
of X i in a(X) with i > 0 is 0, and deg(a) = 0, because otherwise the
coefficient of Xp deg(a) is nonzero on the left hand side and 0 on the
right. Thus a(X) = α and f(X) = δ with α, δ ∈ Fp. If λ1 6= λ2, then
f(X) = 0 (see the last statement in the first part of the proposition).
If λ1 = λ2, then λ1α + δβ = λ1a(Xp) + f(X)β = λa(X) = λ1α, thus
either δ = f(X) = 0 or β = 0 hence d = αe1.

�

Corollary 4.5.4 If λ1 6= λ2, then there exists a nontrivial extension of D2

by D1.

Proof Let (1 +X)χ(γ)− 1 = X(ρ+Xh(X)), and n with 1− p ≤ n < 0 such
that µ1ρ

n = µ2. We can choose f(X) =
∑−1

i=n αiX
i such that

µ1f((1+X)χ(γ)−1)−µ2f(X) ∈ Fp[[X]], because for i > n we have µ1ρ
i 6= µ2,

and we can choose the αi-s inductively in increasing order. Thus there exists
g(X) such that the condition for f(X) and g(X) is satisfied. �
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Remark By the modulo p Langlands-correspondence for GL2(Qp) these
2-dimensional (ϕ,Γ)-modules (which are the extension of two 1-dimensional
ones) correspond to extension of principal series representations of GL2(Qp).

Let π = IndGB(χ1 ⊗ χ2) and π′ = IndGB(χ′1 ⊗ χ′2) (with χi, χ
′
j : Q∗p → F∗p

characters) be principal series of GL2(Qp). By [6], Proposition 4.3.15. there
exists nontrivial extension of π′ by π if and only if either χ1 = χ′1 and
χ′2 = χ2, or χ1 = χ′2χ

−1 and χ2 = χ′1χ (where χ is the modulo p reduction of
the cyclotomic character).

The (ϕ,Γ)-module D(π) attached to π is not D1 or D2. Di contains
information only of χi. However from D we can recover π and π′ (and the
other way around): χi|1+pZp = χ′j|1+pZp = 1 we have χ′1(p) = λ1, χ′1(γ) = µ1,
χ1(p) = λ2 and χ1(γ) = µ2 (cf. the part before Thérorème 0.9 in [4]). If
χ′1 6= χ1, then χ2 = χ′1χ and χ′2 = χ1χ.

Proposition 4.5.5 Let D be as in the previous proposition. Then

dimFp(D
nr) =

{
2, if f(X) ∈ Fp ⊂ Fp((X)),
1, otherwise.

Proof We have

ϕn(a(X)e1 + b(X)e2) =(
λn1a(Xpn) +

n−1∑
i=0

λi1λ
n−1−i
2 f(Xpi)b(Xpn)

)
e1 + λn2b(X

np)e2.

If d = a0(X)e1 + b0(X)e2 ∈ Dnr, and pr : D → D2, then
pr(d) ∈ Dnr

2 = Fpe′2, hence if d = ϕn(a(X)e1 + b(X)e2) ∈ Dnr, then
b(X) = β ∈ Fp.

In f the coefficients of Xpj with j < 0 are 0, hence in the above sum
the coefficient of Xpn−1 deg(f) is not 0. Thus if d ∈ ϕn(D), then either
deg(a0) ≤ pn−1 deg(f) or deg(a0) ≥ 0. Hence if d ∈ Dnr, we have
deg(a0) = 0, and a(X) = α ∈ Fp.

If deg(f) < 0, then we must have β = 0. �

Proposition 4.5.6 Let D be as in Lemma 4.5.3 such that −p < deg(f) < 0.
Then D\ = X−1Fp[[X]]e1 + Fp[[X]]e2.

Proof Let Λ = X−1Fp[[X]]e1 +Fp[[X]]e2. It is a k((X))-generating submod-
ule, we show that it is ψ-invariant as well. Let d ∈ Λ. We can write it in
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the form d =
∑p−1

i=0 (1 + X)iϕ(αi(X)e1 + βi(X)e2), and a simple computa-
tion shows that αi(X) ∈ X−1Fp[[X]] and βi(X) ∈ Fp[[X]] for all i. Then
ψ(d) = α0(X)e1 + β0(X)e2 ∈ Λ. Thus D\ ⊆ Λ.

Fp[[X]]e1 ⊂ D\, because if D′ → D is injective, then so is D′\ → D\

(cf [5] Prop. II.5.17(ii).), and Fp((X))e1 ↪→ D as a (ϕ,Γ)-module, with
D\(Fp((X))e1) = Fp[[X]]e1.

We also have that if D → D′ is surjective, then so is D\ → D′\ (cf [5]
Prop. II.5.17(iii).), thus we have an element in the form d = λX−1e1 + λ2e2

in D\ with some λ ∈ Fp because Fp[[X]]e1 ≤ D\. Then we have

d = ϕ(e2) + (λX−1 − f(X))e1 = ϕ(e2) +

p−1∑
i=0

(1 +X)iϕ(αi(X)e1)

with αi(X) ∈ X−1Fp[[X]]. We have αi(X) ∈ Fp[[X]] for i < p+ deg(f).
If λX−1 6= f(X), then we also have αp+deg(f)(X) /∈ Fp[[X]], thus

ψ((1 +X)−(p+deg(f))d) = αp+deg(f)e1, meaning Λ ⊆ D\.
If λX−1 = f(X), then ψ(d) = e2 ∈ D\ and also λ−1(d − λ2e2) =

X−1e1 ∈ D\, and we again have Λ ⊆ D\. �

Corollary 4.5.7 If D is as above, then the action FP defined in the previous
section has a nontrivial kernel for any Λ ⊇ D\.

Proof Recall that FP : d+XΛ = ψ(
∑p−1

i=0 (1 +X)id) +XΛ.
Let d = Xme1 ∈ Λ ∩ D1 such that m = min{m|m ∈ Z, Xme1 ∈ Λ}. By

the Proposition 4.5.6 we have m ≤ −1. Then d + XΛ /∈ XΛ, hence it is
enough to prove that ψ(

∑p−1
i=0 (1 +X)id) ∈ Xm+1Fp[[X]]e1 ⊂ XΛ.

If m < −1, then it is clear, because then Λ ∩ D1 ) D#
1 , hence ψ is

not surjective on it, meaning ψ(d′) ∈ Xm+1Fp[[X]]e1 for any d′ ∈ Λ ∩ D1,
especially for d′ =

∑p−1
i=0 (1 +X)id.

If m = −1, then

ψ

(
p−1∑
i=0

(1 +X)i
1

X
e1

)
= ψ

(
p−1∑
i=0

(1 +X)i

(
p−1∑
j=0

(1 +X)jϕ

(
1

X

))
e1

)
=

= ψ

(
p−1∑
i,j=0

(1 +X)i+jϕ

(
1

X

)
e1

)
= λ1(1 + (p− 1)(1 +X))

1

X
e1 =

= λ1(p− 1)e1 ∈ Fp[[X]]e1.

�
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