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Summary

This dissertation deals with the conjectural functional equation of the

p-adic L-function attached to elliptic curves over p-adic Lie extensions of the

rationals unrami�ed outside a �nite set of primes. From arithmetic viewpoint

one of the most interesting p-adic Lie extensions is the GL2-extension de�ned

by adjoining all the p-power division points on the elliptic curve E. In this

case we implicitly assume that E has no complex multiplication so that the

Galois group is an open subgroup of GL2(Zp). Another interesting example

of p-adic Lie extensions is the false Tate tower which is the extension of Q
by adjoining all p-power roots of unity and all the p-power roots of a given

integer m. In both cases we construct a pairing over the tower extension F∞

on the dual Selmer group of the elliptic curve E with good ordinary reduc-

tion at a prime p whenever the dual Selmer satis�es certain�conjectured�

torsion properties. This gives a functional equation of the characteristic

element under the anti-involution of the Galois group Gal(F∞/Q) sending

elements to their inverses. This functional equation is compatible with the�

conjectural�functional equation of the p-adic L-function which would be,

by the Main Conjecture, a characteristic element for the dual Selmer.

As an application we reduce the parity conjecture inside the GL2-extension

for the p-Selmer rank and the analytic root number for Artin twists of elliptic

curves to the case when the Artin representation factors through the �nite

group Gal(Q(E[p])/Q). In particular this gives a new proof of the parity

conjecture in this case whenever the elliptic curve E has a p-isogeny over the

rationals.

Over the false Tate curve extension, however, much more is known. For

example, we can compute the characteristic elements of those modules�

arising naturally in Iwasawa-theory�which have rank 1 over the Iwasawa

algebra of the subgroup of the Galois group �xing the cyclotomic extension

of the ground �eld. There are no such examples known in the GL2-case.
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Chapter 1

Introduction

The main conjectures of Iwasawa theory usually state that (i) there exists

a p-adic L-function attached to the elliptic curve E over a p-adic Lie extension

of Q which interpolates the special values of the complex L-functions of E

twisted by Artin representations of the Galois group, and (ii), this p-adic L-

function is a characteristic element for the dual of the Selmer group. These

are the only tools known at present for studying the mysterious relationship

between the arithmetic properties of elliptic curves and the special values

of their complex L-functions, especially for attacking the conjecture of Birch

and Swinnerton-Dyer. From arithmetic viewpoint one of the most interesting

p-adic Lie extensions is the GL2-extension de�ned by adjoining all the p-

power division points on the elliptic curve E. In this case we will assume

that E has no complex multiplication so that the Galois group is an open

subgroup of GL2(Zp). Another interesting example of p-adic Lie extensions

is the false Tate tower which is the extension of Q by adjoining all p-power

roots of unity and all the p-power roots of a given integer m. This seemingly

much less natural extension is easier to understand as its Galois group is only

2-dimensional�being isomorphic to the semidirect product Zp oZ×
p �and at

certain primes q locally this tower is the extension of Qq with the p-division

points on the curve E. Moreover, the decomposition subgroup of the prime

above q is an open subgroup of the global Galois group of the tower. This

latter fact makes the behaviour of the curve E in this tower similar to its local

5



behaviour. In both cases the p-adic L-function lies in the algebraic K1-group

of Λ(G)S∗ , the Iwasawa algebra of the Galois group localized by a canonical

Ore set de�ned in [7] (also see section 1.2.2). In this thesis we will investigate

the Main Conjecture mostly from its algebraic side, however, in sections 2.4

and 3.4 we will see the compatibility of the results with the analytic theory.

In section 1.3 we formulate the conjectural functional equation of the p-adic

L-function over any p-adic Lie extension unrami�ed outside a �nite set of

primes and containing all the p-power roots of unities. In the second chapter

we deal with the false Tate curve extension, and in the third we generalize

some of the results to the GL2-extension.

In section 2.1.2 we investigate the integrality properties of characteris-

tic elements over the false Tate curve extension. In section 2.1.3 we con-

struct canonical characteristic elements for pseudo-null Λ(G)-modules. These

canonical characteristic elements are `positive' in the sense they reduce to

1 ∈ Fp modulo the Jacobson radical of the Iwasawa algebra and so they do

not in�uence the sign in any functional equation in K1(Λ(G)S∗) involving

them. This fact allows us to prove a formula for the sign in the algebraic

functional equation of an arbitrary element in the K1-group of the localized

Iwasawa algebra Λ(G)S∗ in terms of the Λ(H)-rank of the de�ned module

whenever such an equation exists.

The aim of the following sections is to investigate the conjectural func-

tional equation of the p-adic L-function from both the algebraic and analytic

side over the false Tate curve extension. The heuristics for the existence of

this functional equation is the following. The p-adic L-function LE conjec-

turally interpolates a certain modi�cation (see Conjecture 2.4.1 for precise

terms) of the special values L(E, τ, 1) of the complex L-functions of the

elliptic curve twisted by Artin representations τ when we substitute the con-

tragredient representation τ ∗ into it. Moreover, we have a conjectural func-

tional equation of the complex L-function relating the L-values L(E, τ, s)

and L(E, τ ∗, 2 − s) (see section 1.1.3 for precise statements). As LE(τ ∗),

and LE(τ) approximate the modi�cation of L(E, τ, 1), and L(E, τ ∗, 1), re-

spectively, we can relate LE(τ ∗) and LE(τ). Now if we de�ne L#
E to be

the element we get from LE by replacing elements of G with their inverses
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then LE(τ) = L#
E(τ ∗) is a tautology. So we get an equation involving the

values of LE and L#
E at arbitrary Artin representations τ ∗. This can ac-

tually be thought of as the functional equation of the values of the p-adic

L-function, therefore we can also predict a functional equation for the p-adic

L-function itself. Now the Main Conjecture of Iwasawa theory states that

the p-adic L-function is a characteristic element for the dual of the Selmer

group. This means that we also expect a `functional equation' on the stage

of modules in MH(G) relating the dual Selmer X(E/F∞) and its opposite

module X(E/F∞)#. This can actually be proved without using the Main

Conjecture or the functional equation of the p-adic L-function. More pre-

cisely, in section 2.2 we construct a pairing over the false Tate curve extension

on the dual of the p-Selmer group whenever the elliptic curve has good or-

dinary reduction at the prime p ≥ 5 and the dual Selmer X(E/F∞) is in

the category MH(G). This pairing is actually a map from X(E/F∞) to the

�rst extension group of X(E/F∞)# with the Iwasawa algebra Λ(G). The

methods used are similar to Perrin-Riou's [29]. We take the projective limit

of maps de�ned by the Cassels-Tate pairing. As a corollary we prove an

algebraic functional equation for the characteristic element which coincides

with the conjectural functional equation of the p-adic L-function (see section

2.4 for details). This is a good evidence for both the Main Conjecture and

the conjectural functional equation of the p-adic L-function.

In the next part of this thesis we compute the characteristic elements of

some modules in the category MH(G) (see de�nition in section 1.2.2) arising

naturally in Iwasawa theory for elliptic curves [17], [6] over the false Tate

curve extension. In section 2.5 the Heegner-like cases are the �rst examples

of elliptic curves whose characteristic elements in K1(Λ(G)S∗) can be deter-

mined. We call the two cases in Proposition 2.5.2 Heegner-like because the

upper bound for the algebraic rank of the elliptic curve in the �nite sub�elds

of the false Tate curve extension is the same as the lower bound for the an-

alytic rank which fact makes these cases similar to the ones when Heegner

points can be constructed. In fact, Darmon and Tian [14] have some results

towards constructing Heegner points in this case, as well.

As an application of the investigations of rank-1 Iwasawa-modules, in
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section 2.6 we show that the example of a non-principal re�exive left ideal of

the Iwasawa algebra does not rule out the possibility that all torsion Λ(G)-

modules are pseudo-isomorphic to the direct sum of quotients of Λ(G) by

principal ideals.

In the remaining part of this dissertation we generalize some of the re-

sults to the GL2-extension Q(E[p∞]) associated to elliptic curves without

complex multiplication. The problem is somewhat easier and has been dis-

cussed previously whenever the curve admits complex multiplication. Indeed,

in this case the Main Conjecture is true provided that X(E/F∞) belongs to

MH(G). This fact can be deduced from the proof by Yager [41] and Rubin

[32] of what is called the two variable main conjecture (recall that in this case

G is a p-adic Lie group of dimension 2). In section 3.2 we construct a pairing

on the dual Selmer X(E/F∞) similar to the one in section 2.2. One inter-

esting phenomenon is that while over the false Tate curve extension �nitely

generated Zp-modules have nontrivial characteristic elements unless they are

�nite, in the GL2-case these modules represent the trivial element in the

Grothendieck group K0(MH(G)). This fact�which is quite reasonable as G

is much bigger in this case�will be needed when we prove the negligibility of

the `global' part of the modifying factors in the `functional equation' of the

dual Selmer. By this we obtain a functional equation of the characteristic

element in section 3.3.

In section 3.4 we investigate the connections of our results to the ana-

lytic side of the picture. First, we prove that the functional equation of the

characteristic element of the dual Selmer group is compatible with the Main

Conjecture up to p-adic units. Then in section 3.4.2 we investigate the con-

sequences of the `algebraic' functional equation to the parity conjecture. We

prove that if the corank of the twisted Selmer group Sel(twτ (E)/Q) is the

same as what the analytic root number would suggest for all self-dual Artin

representations τ factoring through the maximal pro-p normal subgroup of

G (in other words whenever τ is a representation of Gal(Q(E[p])/Q)) then

the similar statement holds for any self-dual Artin representation of G. The

parity conjecture is an immediate consequence of this whenever E has a p-

isogeny over Q. The proof relies on that we can relate these parities from
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both the algebraic and analytic side to the sign in the functional equation of

the characteristic element of the dual Selmer group of E over F∞.

Finally we present the example of the curve X1(11) to illustrate our re-

sults. We provide a potential characteristic element for the dual Selmer

satisfying all the so far known properties.

The assumption we made for the whole thesis that the dual of the Selmer

group X(E/F∞) always lies in MH(G) is also conjectured [7] if the elliptic

curve E has good ordinary reduction at the prime p ≥ 5. In fact if the

dual Selmer X(E/Kcyc) is �nitely generated over Zp for some number �eld

K ⊂ F∞ such that the group Gal(F∞/K) is pro-p then we do know that

X(E/F∞) is in MH(G), moreover its p-torsion part is trivial [25]. This

assumption is equivalent to that the µ-invariant of X(E/Kcyc) vanishes.

Throughout the thesis all modules are assumed to be left modules, unless

otherwise stated. However, when we take the extension functors of modules

with the Iwasawa-algebra, to try to avoid confusion we do not invert the

group action. So these extension functors of left (right) modules will be right

(left) modules, respectively.

1.1 Analytic preliminaries and notations

Let p ≥ 5 be a prime and let F∞/k be a p-adic Lie extension (ie. it

is Galois and its Galois group is a p-adic Lie group) of a number �eld k

containing the cyclotomic Zp-extension kcyc of k. We are going to use the

following notations.

G := Gal(F∞/k), H := Gal(F∞/k
cyc), Γ := Gal(kcyc/k).

Now it is easy to see that Γ ∼= Zp and G ∼= HoΓ. Later usually k will be

Q and F∞ will be either the false Tate curve extension or the GL2-extension

(see the beginning of chapters 2 and 3 for de�nitions) associated to elliptic

curves. Moreover, we also assume for the whole of the thesis that G has no

element of order p.
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If v is a prime in the ground �eld L2 of a Galois extension then we denote

by Gal(L1/L2)v the decomposition subgroup of v (we choose once and for all

�xed embeddings Q ↪→ Qp and Q ↪→ C). I(L1/L2)v is the inertia subgroup

and Frobv is the arithmetic Frobenius element.

For an abelian group A we denote by A(p) the p-primary part of A.

1.1.1 Systems of l-adic representations

If E/k is an elliptic curve de�ned over a number �eld k and τ : Gal(Q/k)→
GLn(Q) is an Artin representation then both of them determine a compati-

ble system of l-adic representations for primes l of Q. In case of τ the l-adic

representation is Ml(τ) := τ ⊗ Ql. The l-adic representation of the elliptic

curve is Ml(E) := H1
et(E,Zl) ⊗Zl

Ql or, equivalently, the dual of the l-adic

Tate module Tl(E) with scalars extended to Ql. Further, we de�ne the sys-

tem of l-adic representations M of the elliptic curve twisted by the Artin

representations

Ml(E, τ) := Ml(E)⊗Ql
Ml(τ).

1.1.2 L-functions

To a system of l-adic representations and a number �eld k we associate

an L-function L(M,k, s) as follows. For a prime v of k the local polynomials

of L(M,k, s) are

Pv(M,T ) := det(1− Frob−1
v T |M Iv

l ) (1.1)

for any prime l 6= q. We de�ne the local L-factor

Lv(M, s) := Pv(M,Nk/Q(v)−s)−1 (1.2)

and the global L-function as an Euler-product

L(M, s) :=
∏

v

Lv(M, s). (1.3)
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We write

L(E/k, s) := L(M(E), k, s),

L(τ, s) := L(M(τ), k, s),

L(E, τ, s) := L(M(E, τ), k, s). (1.4)

The L-series L(τ, s) converges to an analytic function on the half plane <s >
1. The L-series L(E/k, s) and L(E, τ, s) de�ne analytic functions in the half

plane <s > 3/2 and are conjectured to have an entire continuation to the

whole complex plane. We de�ne

gE/k = rkZ(E(k)), rE/k = ords=1(L(E/k, s)).

The conjecture of Birch and Swinnerton-Dyer predicts that gE/k = rE/k

always holds.

Let us recall that the L-functions are multiplicative in the sense that

L(E, τ1 ⊕ τ2) = L(E, τ1)L(E, τ2).

1.1.3 Functional equations of complex L-functions

For the sake of simplicity let k = Q. The twisted L-functions L(E, τ, s)

conjecturally satisfy a functional equation of the following form. Let

L̂(E, τ, s) :=

(
N(E, τ)

π2 dim τ

)s/2

Γ
(s

2

)dim τ

Γ

(
s+ 1

2

)dim τ

L(E, τ, s),

where N(E, τ) is the conductor of the curve E twisted by τ . Then, conjec-

turally,

L̂(E, τ, s) = w(E, τ)L̂(E, τ ∗, 2− s), (1.5)

where τ ∗ denotes the contragredient representation of τ and w(E, τ) is an

algebraic number of complex absolute value 1. If τ ∼= τ ∗, then w(E, τ) = ±1

and we call it the sign in the functional equation.
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1.2 Algebraic preliminaries and notations

1.2.1 The dual Selmer and the Iwasawa algebra

If L ⊆ F∞ is any Galois extension of Q then we de�ne X(E/L) as the

Pontryagin dual of the Selmer group,

X(E/L) = Hom(Selp∞(E/L),Qp/Zp). (1.6)

If k is a number �eld, then tE/k,p denotes the Zp-rank ofX(E/k). Let Y (E/L)

be the factor of X(E/L) by its p-primary part. Then X(E/F∞)�and also

Y (E/F∞)�is a �nitely generated compact (left) module over the Iwasawa

algebra Λ(G), where for any pro�nite group G the Iwasawa algebra of G with

coe�cients in Zp is

Λ(G) = lim←−
NCoG

Zp[G/N ]. (1.7)

We denote the Iwasawa algebra with coe�cients in Fp�an epimorphic image

of the previous one�by

Ω(G) = lim←−
NCoG

Fp[G/N ]. (1.8)

1.2.2 K-theory and localization

Let S be the set of all f in Λ(G) such that Λ(G)/Λ(G)f is a �nitely

generated Λ(H)-module and

S∗ =
⋃
n≥0

pnS.

These are multiplicatively closed (left and right) Ore sets of Λ(G) [7], so we

can de�ne Λ(G)S, Λ(G)S∗ as the localizations of Λ(G) at S and S∗. We write

MH(G) for the category of all �nitely generated Λ(G)-modules, which are

S∗-torsion. A �nitely generated left module M is in MH(G) if and only if

M/M(p) is �nitely generated over Λ(H) [7]. It is conjectured that X(E/F∞)

always lies in this category. For a module M in MH(G) one can de�ne a
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characteristic element in the �rst K-group K1(Λ(G)S∗) [7]. It is a pre-image

of the class of M under the connecting homomorphism

∂G : K1(Λ(G)S∗)→ K0(MH(G)) (1.9)

in the long exact sequence of localization in K-theory

· · · → K1(Λ(G))→ K1(Λ(G)S∗)
∂G→ K0(MH(G))

→ K0(Λ(G))→ K0(Λ(G)S∗)→ 0, (1.10)

where K0(MH(G)) denotes the Grothendieck group of the category MH(G).

This de�nition makes sense because the connecting homomorphism ∂G is

surjective [7]. Further, if we denote by NH(G) the category of Λ(G)-modules

which are �nitely generated over Λ(H), then we get a similar exact sequence

· · · → K1(Λ(G))→ K1(Λ(G)S)
∂G→ K0(NH(G))

→ K0(Λ(G))→ K0(Λ(G)S)→ 0. (1.11)

As de�ned in [6] there is a C2-action, ie. the group of order 2, on the local-

ized K1-group induced by the anti-isomorphism # of Λ(G) and its opposite

ring Λ(G)# which sends the elements of G to their inverse. Recall that this

action on an [A] ∈ K1(Λ(G)S∗) represented by a matrix A ∈ GLn(Λ(G)S∗)

(for some positive integer n) is de�ned by applying # on each entries of

the matrix A and transposing the matrix in order to get a homomorphism

from GLn(Λ(G)S∗) to its opposite group. This de�nition makes sense and is

well-de�ned on K1(Λ(G)S∗), since the sets S and S∗ are invariant under the

action of # on Λ(G).

Further, if M is a left Λ(G)-module, then by M# we denote the right

module de�ned on the same underlying set with the action of Λ(G) via the

map #, i. e. for an m element in M and g in G, and the right action is

de�ned by mg := g−1m. By extending the right multiplication linearly to

the whole Iwasawa algebra we get mx = x#m.

13



1.2.3 Dimension �ltration of Iwasawa-modules

Let G be a p-adic Lie group without elements of order p. Following [10]

the grade of a left or right Λ(G)-module M is de�ned to be the smallest non-

negative integer j(M) = jΛ(G)(M) such that Ext
j(M)
Λ(G) (M,Λ(G)) 6= 0 (we let

j({0}) =∞). For any �nitely generated M 6= 0, the grade j(M) is bounded

above by the projective dimension ofM . We say thatM satis�es the Auslan-

der condition if, for each k ≥ 0 and any submodule N of Extk
Λ(G)(M,Λ(G))

we have j(N) ≥ k (note that if M is a right (left) Λ(G)-module then the

right (left) multiplication on Λ(G) makes Extk
Λ(G)(M,Λ(G)) into a right (left)

Λ(G)-module). The Iwasawa algebra Λ(G) of G is an Auslander regular ring

[37, 38], so every �nitely generated left or right Λ(G)-module satis�es the

Auslander condition.

Let

0→ Λ(G) µ0→ E0
µ1→ E1

µ2→ . . .
µi→ Ei

µi+1→

the minimal injective resolution of Λ(G), where Ei+1 is the injective hull ([35],

De�nition 1.5.1) of the cokernel of µi for any i ≥ 0. Moreover, we de�ne the

full subcategory

Cn
Λ(G) = Cn := {M | HomΛ(G)(M,E0 ⊕ · · · ⊕ En) = 0}. (1.12)

This subcategory Cn is `localizing' in the sense that it satis�es the following

conditions.

(i) In any short exact sequence 0 → M ′ → M → M ′′ → 0 of Λ(G)-
modules, M ′ and M ′′ lie in Cn if and only if so does M .

(ii) Any Λ(G)-module has a unique largest submodule contained in Cn.

It is called the hereditary torsion theory cogenerated by the injective module

E0 ⊕ · · · ⊕ En (see [35], Chapter VI).

We say that a module M is pure if Exti
Λ(G)(Exti

Λ(G)(M,Λ(G)),Λ(G)) = 0

for any i 6= j(M). Suppose that the Λ(G)-module M is �nitely generated

and its projective dimension is d. Then M carries [3, 10] a natural �ltration,
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called the dimension �ltration, by submodules

M = ∆0(M) ⊇ ∆1(M) ⊇ · · · ⊆ ∆d+1(M) = 0,

where the numbering corresponds to codimension as in [10]. This �ltration is

characterized by the property that a submodule N ⊆M has grade j(N) ≥ p

if and only if N ⊆ ∆p(M). In addition, one has

(i) j(M) = max{p ≥ 0 | ∆p(M) = M ;

(ii) if M is pure, then M = ∆j(M)(M) ⊃ ∆j(M)+1(M) = 0;

(iii) ∆p(M)/∆p+1(M) is zero or pure of grade p.

Moreover, since Λ(G) is Auslander regular, we have the following lemma

Lemma 1.2.1 (Lemma 2.4 in [10]). A �nitely generated Λ(G)-module M lies

in the category Cn if and only if j(M) > n.

This above lemma shows that the pseudo-null modules are exactly those

lying in C1. Throughout the thesis we are going to use the notation

ai
Λ(G)(M) := Exti

Λ(G)(M,Λ(G)). (1.13)

1.2.4 Galois representations and twists

As in [7], let O denote the ring of integers of some �nite extension L of

Qp, and let us assume that we are given a continuous homomorphism

ρ : G→ GLn(O) (1.14)

where n ≥ 1 is an integer. If M is a �nitely generated Λ(G)-module, put

MO = M ⊗Zp O, and de�ne the twist of M with ρ by

twρ(M) = MO ⊗O On.

We endow twρ(M) with the diagonal action of G, ie. if g is in G, g(m⊗ z) =

(gm) ⊗ (gz), where it is understood that G acts on On on the left via the
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homomorphism ρ. By compactness, this left action of G extends to an action

of the whole Iwasawa algebra Λ(G).

As explained in [7] ρ induces a homomorphism

Φ′
ρ : K1(Λ(G)S∗)→ K1(Mn(QO(Γ))) = QO(Γ)×, (1.15)

where QO(Γ) denotes the �eld of fractions of ΛO(Γ) = Λ(Γ) ⊗Zp O. Let

ϕ : ΛO(Γ) → O denote the augmentation map, and write p = Ker(ϕ).

Writing ΛO(Γ)p ⊂ QO(Γ) for the localization of ΛO(Γ) at p, ϕ extends to a

homomorphism

ϕ : ΛO(Γ)p → L,

and for ξ ∈ K1(Λ(G)S∗) we de�ne ξ(ρ) = ϕ(Φ′
ρ(ξ)) if Φ

′
ρ(ξ) belongs to ΛO(Γ)p,

and ξ(ρ) =∞ otherwise.

1.3 Conjectural functional equation of the p-

adic L-function

In this section we formulate the conjectural functional equation of the

p-adic L-function attached to elliptic curves E over p-adic Lie extensions F∞

of the rationals unrami�ed outside a �nite set of primes and containing all

the p-power roots of unity. For the sake of brevity we will also assume that

E is de�ned over Q. However, the conjecture could be generalized to any

number �eld and possibly to any motive other than elliptic curves.

Let us denote by Z the (�nite) set of primes in Q that ramify in�nitely in

the p-adic Lie extension F∞ and are not equal to the �xed prime p ≥ 5. Let

us denote by G the Galois group Gal(F∞/Q) and by G0 the maximal normal

pro-p subgroup of G, that is the intersection of all the pro-p Sylow subgroups

of G. As in section 1.2.2 we also de�ne H as the Galois group Gal(F∞/Qcyc)

and the canonical Ore-sets S and S∗ with respect to the subalgebra Λ(H) of

Λ(G). Further, let K be the �xed �eld of G0�this is a �nite extension of Q.

Let us de�ne the following subsets of Z.
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R1 := {q ∈ Z | E has split multiplicative reduction at uq} (1.16)

R2 := {q ∈ Z | E has good reduction at uq and E[p∞](Kcyc
uq

) 6= 0},

where uq is any prime in Kcyc = K(µp∞) above q. Put

R0 := R1 ∪R2, and R = R0 ∪ {p}. (1.17)

Proposition 1.3.1. The set of primes R0 de�ned above is exactly the set of

primes q 6= p satisfying the following two conditions:

(i) q rami�es in�nitely in F∞/Q;

(ii) Qq(E[p∞]) is contained in the completion F∞,vq at any prime vq of F∞

above q.

Moreover, for any prime q in Z \ R0 the group of p-division points on E is

�nite over the completion of F∞ at any prime above q.

Proof. For potentially multiplicative primes q the statement follows from the

theory of the Tate curve noting that Fvq/K
cyc
uq

is the unique in�nite pro-p-

extension of Kcyc
uq

as it is in�nite since q is in Z and pro-p by the construction

of K.

For potentially good primes q note that if the reduction type of E over

Kcyc
uq

is additive then the group of p-division points must be �nite over this

�eld. Now if the reduction type of E at uq is good and E[p∞](Kcyc
uq

) = 0

then by the Nakayama lemma it also follows that E[p∞](F∞,vq) = 0 as

Gal(F∞,vq/K
cyc
uq

) is pro-p. On the other hand if E[p∞](Kcyc
uq

) 6= 0 then

Qq(E[p∞]) is contained in Kcyc
uq

as the latter �eld contains all the p-power

roots of unities.

This above Proposition motivates how one should formulate the Main

Conjecture of Iwasawa theory for elliptic curves over this p-adic Lie extension.

Fix a global minimal Weierstraÿ equation for E over Z. We denote by

Ω±(E) the periods of E, de�ned by integrating the Néron di�erential of
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this Weierstraÿ equation over the ±1 eigenspaces H1(E(C),Z)± of complex

conjugation. As usual, Ω− is chosen to lie in iR. Moreover, for any Artin

representation τ of the absolute Galois group of Q let d+(τ) (resp. d−(τ))

denote the dimension of the subspace of the vector space of ρ on which

complex conjugation acts by +1 (resp. −1). Deligne's period conjecture

[15]�which has already been proved [4] in the case when τ factors through

the false Tate curve extension�asserts that

L(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
∈ Q.

We de�ne the modi�ed L-function

LR(E, τ, s) :=
∏
q /∈R

Pq(E, τ, q
−s)−1 (1.18)

by removing the Euler-factors of primes in R. Finally, since E has good

ordinary reduction at p, we have

Pp(E, T ) = 1− apT + pT 2 = (1− bpT )(1− cpT ), bp ∈ Z×
p , (1.19)

where p+ 1− ap = #(Ẽp(Fp)) is the number of points on the curve reduced

modulo p.

Conjecture 1.3.2. Assume that p ≥ 5 and that E has good ordinary re-

duction at p. Then there exists LE in K1(Λ(G)S∗) such that, for all Artin

representations τ of G, we have LE(τ) 6=∞, and

LE(τ ∗) =
LR(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
· εp(τ) ·

Pp(τ
∗, b−1

p )

Pp(τ, c−1
p )
· b−fτ

p ,

where εp(τ) denotes the local ε-factor at p attached to τ , and pfτ is the p-part

of the conductor of τ .

This above conjecture is parallel to the one in the GL2-case (Conjecture

5.7 in [7]), however, there R consists of those primes q in Q besides p for which

ordq(jE) < 0, where jE is the j-invariant of the elliptic curve. Proposition
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1.3.1 shows that the set de�ned in (1.17) is the right generalization of this

set to arbitrary p-adic Lie extensions.

Now we can state the main conjecture of Iwasawa theory for elliptic curves

over p-adic Lie extensions which is a generalization of Conjecture 5.8 in [7].

Conjecture 1.3.3 (The main conjecture). Assume that p ≥ 5, E has good

ordinary reduction at p, and X(E/F∞) belongs to the category MH(G).

Granted Conjecture 1.3.2, the p-adic L-function LE in K1(Λ(G)S∗) is a char-

acteristic element of X(E/F∞).

Now we can state the conjectural functional equation of the p-adic L-

function.

Conjecture 1.3.4. Let E be an elliptic curve with good ordinary reduction at

p ≥ 5. Then the p-adic L-function LE in K1(Λ(G)S∗) satis�es the functional

equation

L#
E = LEε0

∏
q∈R0

γq,

where ε0 lies in K1(Λ(G)) and the local factors γq are in the image of the nat-

ural map from K1(Λ(Gq)Sq) to K1(Λ(G)S∗). Moreover, the modifying factors

satisfy the following interpolation properties for any Artin representation τ

of G.

ε0(τ) =
∏
q /∈R

εq(τ, E) and

γq(τ) = εq(τ, E)
Pq(E, τ, q

−1)

Pq(E, τ ∗, q−1)

where εq(τ, E) denotes the local epsilon factor attached to the twist of curve

E by the Artin representation τ at the prime q.
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Chapter 2

The false Tate curve extension

In this chapter we deal with the false Tate curve extension associated to

elliptic curves. Let p ≥ 5 be a prime and m be a p-power free integer, ie. not

divisible by the pth power of any integer. Let E denote an elliptic curve over

Q with good ordinary reduction at p and such that E does not have additive

reduction at any prime q dividing m. Furthermore, let us denote by

(i) K = Q(µp),

(ii) Kn = Q(µpn),

(iii) Fn = Q(µpn , pn√
m)

the �nite layers of the false Tate curve extension F∞ =
⋃∞

n=1 Fn. We denote

the Galois group of the following extensions by

(i) G = Gal(F∞/K) ∼= Zp o Zp,

(ii) G0 = Gal(F∞/Q) ∼= Zp o Z×
p ,

(iii) Γ = Gal(Kcyc/K) ∼= Zp,

(iv) ΓQ = Gal(Qcyc/Q) ∼= Zp,

(v) Γ0 = Gal(Q(µp∞)/Q) ∼= Z×
p ,

(vi) H = Gal(F∞/K
cyc) ∼= Zp,
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(vii) H0 = Gal(F∞/Qcyc) ∼= Zp o F×p ,

(viii) Gn = Gal(F∞/Fn),

(ix) Γn = Gal(F cyc
n /Fn),

(x) Hn = Gal(F∞/F
cyc
n ).

Now the Iwasawa algebra Λ(G) has a nice well-described structure. For

a �xed topological generator γ of Γ we choose a lift γ̃ ∈ G, put Y = γ̃ − 1,

X = h− 1 if h is a �xed topological generator of H and identify Λ(G) with

the skew power series ring [39]

Λ(G) ∼= Zp[[X]][[Y ;σ, δ]], (2.1)

where σ is the ring automorphism induced by

X 7→ (X + 1)χ(γ) − 1, (2.2)

δ = σ− 1 a σ-derivation, and χ is the cyclotomic character. We also identify

Λ(Γ) with Zp[[T ]] where the natural surjection from Λ(G) to Λ(Γ) sends Y

to T .

Moreover, there is a nice description of elements in the canonical Ore-set

S (see section 1.2.2 for the de�nition) in this case. An element of Λ(G) is

in S in this case if and only if it is a distinguished skew polynomial in the

variable Y up to a unit. We call a (skew) polynomial distinguished if its

leading coe�cient is a unit and all the other coe�cients are in the maximal

ideal of the coe�cient ring.

2.1 Iwasawa-modules

2.1.1 Further localizations

We are going to de�ne another action on the characteristic elements of

Iwasawa modules in NH(G), the category of left Λ(G)-modules that are

�nitely generated over Λ(H). Let R be the set of formal power series in
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Zp[[X]] = Λ(H) which are invariant under the action of γ up to multiplica-

tion by units, ie.

R = {r(X) ∈ Zp[[X]] | r(X)1−γ ∈ Zp[[X]]×}. (2.3)

Lemma 2.1.1. R is a canonical (left and right) Ore set in Λ(G)S as well as

in Λ(H).

Proof. The statement is trivial for the ring Λ(H). So it su�ces to prove

that for elements r(X) ∈ R, and s ∈ Λ(G)S we have that sr is divisible by

r from the left, as well. Indeed, since this assumption is true for s = γ by

the de�nition of R, it is also true for any element s in Λ(G) by linearity and

continuicity of sr in the variable s. Now if we have s−1r with s in S then

similarly we can choose an x in Λ(G) such that rx = sr. Moreover, x will

in fact be in S. This follows from the description of elements in S, namely

that a skew power series in Λ(G) lies in S if and only if it is a distinguished

skew polynomial in the variable Y up to an invertible element. So we may

assume that s is a distinguished polynomial. Now the leading coe�cient of x

is a unit times the leading coe�cient of s and all the other coe�cients di�er

by elements of the maximal ideal of Λ(H) because of the formula

r−1Y r = rγ−1Y + rγ−1 − 1.

Therefore x is in S and s−1r = rx−1 makes sense in the localized ring Λ(G)S,

so the Lemma follows.

Because of the above lemma we can localize by R and get rings Λ(G)S,R,

and Λ(H)R. Now there is a canonical inclusion of the multiplicative groups

(Λ(G)S)× ↪→ (Λ(G)S,R)×, and

(Λ(H)R)× ↪→ (Λ(G)S,R)×.

The elements in the image of (Λ(H)R)× are contained in the normalizer of

the subgroup (Λ(G)S)× by the de�nition of R. Moreover, K1(Λ(G)S) is the

abelianization of the latter subgroup [36], so there is an action of (Λ(H)R)×
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on the K1-group, since the commutator is a characteristic subgroup. We will

see in section 2.1.3 that the conjugation of the characteristic element by an

element in (Λ(H)R)× corresponds to a pseudo-isomorphism of modules as the

quotient of the characteristic elements is a commutator and by Proposition

2.1.8 these commutators correspond to pseudo-null modules. Since [27]

K0(MH(G)) = K0(NH(G))⊕ Z,

we can extend this action on the characteristic elements to K1(Λ(G)S∗) by

acting trivially on the p-part of the characteristic elements so that the action

still corresponds to pseudo-isomorphism of modules.

We also de�ne the similar notions for G and H replaced by G0 and H0,

respectively.

2.1.2 Integrality properties of characteristic elements

We will see in section 2.5 that the characteristic element of X(E/F∞) is

integral in the sense that it is in the image of the natural morphism

Λ(G) ∩ (Λ(G)S∗)
× → K1(Λ(G)S∗) (2.4)

in those Heegner-like cases and in fact this is true for all Λ(H)-torsion free

modules of rank 1 (compare to Conjecture 4.8. in [7]). Since the map

(Λ(G)S)×/[(Λ(G)S)×, (Λ(G)S)×]→ K1(Λ(G)S)

is an isomorphism [36], and the characteristic element can be induced from

K1(Λ(G)S) when the module has no p-torsion, one would expect that (2.4)

was true in general. A slightly weaker statement can be proved in general

for modules X(E/F∞) with Λ(H)-rank greater than 1, if the µ-invariant of

X(E/Kcyc) vanishes.

Lemma 2.1.2. If M is a left Λ(G)-module and a �nite index submodule

of Λ(H)d as a Λ(H)-module then the action of G can be extended from M

to Λ(H)d. In other words M is a �nite index Λ(G)-submodule of a module
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which is isomorphic to Λ(H)d as a Λ(H)-module.

Proof. Let γ̃ be a lift of the topological generator γ ∈ Γ. Note that it is

su�cient to extend the action of γ̃. Let us identify Λ(H) with Zp[[X]] and let

{ej}dj=1 be a Λ(H)-base of Λ(H)d. As M is a �nite index submodule, for all

1 ≤ j ≤ d there exist lj's for which p
ljej is in M ≤ Λ(H)d. So we can de�ne

a matrix A = (aij)
d
i,j=1 with entries in p−max(l1,l2,...,ld)Zp[[X]] by the equations

p−lj γ̃(pljej) =
d∑

i=1

aijei.

This matrix A determines the action of γ̃ on M , namely if
f1(X)

f2(X)
...

fd(X)

 ∈ M ≤ Zp[[X]]d then

γ̃


f1(X)

f2(X)
...

fd(X)

 = A


γ̃f1(X)γ̃−1

γ̃f2(X)γ̃−1

...

γ̃fd(X)γ̃−1

 . (2.5)

Since M is a �nite index submodule of Zp[[X]]d, there are distinct positive

integers k1 > k2 such that Xk1 −Xk2 is in M . Taking fj(X) = Xk1 −Xk2 ,

fj′(X) ≡ 0 if j′ 6= j for varying 1 ≤ j ≤ d and noting that Zp[[X]] is a

unique factorization domain, we conclude that the entries of the matrix A

are in Zp[[X]] because γ̃(Xk1 −Xk2)γ̃−1 has a unit leading coe�cient, so it is

not divisible by any positive integer power of p. Now the action of γ̃ can be

extended to the whole Λ(H)-module Λ(H)d by the formula (2.5) and we are

done.

Remarks. 1. In fact the matrix A cannot be arbitrary. The action of γ̃

is continuous provided that Apn → I as n → ∞ or equivalently A has

p-power order modulo the maximal ideal of Λ(H).
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2. The matrix A is determined by a Λ(G)-module which is free as a Λ(H)-

module up to conjugacy in the sense thatA is equivalent toBAγB−1γ−1

for any B matrix in GLd(Λ(H)). This gives a one-to-one correspon-

dence between the equivalency class of matrices and the isomorphism

class of these modules. An easy consequence of Lemma 2.1.2 that for

modules of Λ(H)-rank 1 the characteristic elements are also in one-

to-one correspondence with the isomorphism classes of modules if we

know a priori that the module is free over Λ(H). This is not true for

modules of higher rank. For example

(Y + 1)I −

(
1 0

0 1

)
and (Y + 1)I −

(
1 p

0 1

)

represent the same element in K1(Λ(G)S∗) (their Whitehead determi-

nant is the same), but the matrices(
1 0

0 1

)
and

(
1 p

0 1

)

de�ne non-isomorphic Λ(G)-modules.

Proposition 2.1.3. IfM is in the category NH(G) with no nontrivial pseudo-

null submodule then there exist a positive integer d and a matrix A in the

ring Zp[[X]]d×d such that M is a �nite index submodule of the Λ(G)-module

Λ(G)d/Λ(G)d((Y + 1)I − A),

where I is the identity matrix and the Λ(G)-submodule Λ(G)d((Y + 1)I −A)

is de�ned by

Λ(G)d((Y +1)I −A) := {(xt((Y +1)I −A)t)t | x ∈ Λ(G)d a column vector}.

In particular the characteristic element of M is the image of (Y + 1)I − A
under the natural map

Md(Λ(G)) ∩GLd(Λ(G)S∗) ↪→ GLd(Λ(G)S∗)→ K1(Λ(G)S∗).
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Proof. From Lemma 2.1.2 we get that the action of G can be extended to

Λ(H)d with a matrix A in Λ(H)d×d for which

γ̃


f1(X)

f2(X)
...

fd(X)

 = A


γ̃f1(X)γ̃−1

γ̃f2(X)γ̃−1

...

γ̃fd(X)γ̃−1

 .

Now the natural embedding Λ(H)d ↪→ Λ(G)d induces a Λ(G)-isomorphism

between Λ(H)d endowed with the above action of γ̃ and the factor module

Λ(G)d/Λ(G)d((Y + 1)I − A).

The following slightly more general theory of Λ(G)-modules gives another

application of Lemma 2.1.2.

Lemma 2.1.4. There exists a Λ(H)-projective resolution of Λ(G)-modules

which are �nitely generated as Λ(H)-modules such that the resolution can be

endowed with a compatible Λ(G)-action, so the modules are Λ(G)-modules

and the morphisms are Λ(G)-morphisms.

Proof. It is enough to prove that if M is a Λ(G)-module with minimal gen-

erating system a1, a2, . . . , ad ∈M over Λ(H) and

ϕ : Λ(H)d →M

is the corresponding surjection then Λ(H)d can be endowed with a Λ(G)-

action such that ϕ becomes a Λ(G)-homomorphism. We can pull back the

action of γ̃ from M to the base of Λ(H)d by choosing any lift and since the

kernel of ϕ is contained in the d-th direct power of the maximal ideal of Λ(H)

(it was a minimal resolution), the action can be extended continuously to the

whole Λ(H)d. Indeed, any lift works because the action of Y n converges to 0

if and only if for some n the image of Y n is contained in the maximal ideal

of Λ(H). This means that we need the matrix of Y to be nilpotent when

reducing it modulo (p,X). On the other hand the action of Y is continuous

on the factor moduleM and so it is continuous if we factor out with (p,X)M ,
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so it represents a nilpotent matrix on the Fp vector space M/(p,X)M and

we are done because M/(p,X)M ∼= Λ(H)d/(p,X)Λ(H)d as the kernel of ϕ

is contained in (p,X)Λ(H)d.

Proposition 2.1.5. If M is in the category MH(G) and has no p-torsion

then the following are equivalent.

(i) M has no nonzero pseudo-null submodule.

(ii) M is Λ(H)-torsion free.

(iii) M is a �nite index submodule of another Λ(G)-module which is free as

a Λ(H)-module.

(iv) The homology groups Hi(H
′,M) are trivial for all H ′ ≤ H open sub-

groups, and i ≥ 1.

Proof. The �rst three statements are certainly equivalent by applying Lemma

2.1.2 and the general theory for Λ(H)-modules. To prove the direction

(iii)⇒ (iv) it is easy to see that the third assertion holds for any free Λ(H)-

module. Moreover, it is hereditary with respect to submodules because of

the long exact sequence of homology.

The only direction for which we need the Λ(G)-structure of the module

M is (iv) ⇒ (ii). Let us assume indirectly that Hi(H
′,M) = 0 for all

H ′ ≤ H open subgroups, and i ≥ 1 and M does have a nontrivial Λ(H)-

torsion submodule. We may suppose without loss of generality that M itself

is Λ(H)-torsion because the assumption remains true for any submodule of

M . Now it is easy to see that each minimal projective resolution of M as a

Λ(H)-module has length 1 and the maps in it are Λ(G)-homomorphisms by

Lemma 2.1.4. So it is in the form

0 −→ Λ(H)d A−→ Λ(H)d −→M −→ 0,

where A ∈ Λ(H)d×d ∼= Zp[[X]]d×d is a matrix. Since H1(H
pn
,M) = 0 for all

n ≥ 0 we get that A has nonzero determinant modulo the ideal generated by

(X + 1)pn − 1. On the other hand since M is nontrivial, this determinant is
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not a unit in Zp[[X]], so it must have a root (in some �nite extension of Qp)

which is not in the form ζ − 1 where ζ is any root of unity of p-power order.

This means, however, that the ideal in Zp[[X]] generated by the determinant

is not invariant under the action of γ̃ by conjugation because the roots are

mapped by γ̃ as

z 7→ (z + 1)χ(γ̃−1) − 1

because f(z) = 0 if and only if

f

(((
(z + 1)χ(γ̃−1) − 1

)
+ 1
)χ(γ̃)

− 1

)
= 0.

This contradicts to the fact that the map A is a Λ(G)-homomorphism be-

tween some Λ(G)-modules, since γ̃ maps a generating system over Λ(H) to

another one and the determinant is independent of the choice of this sys-

tem.

Corollary 2.1.6. Assume that a Λ(G)-module M is �nitely generated over

Λ(H) and Hi(H
′,M) vanishes for all H ′ ≤ H open subgroups, and i ≥

1. Then its characteristic element is in the form ξ = (Y + 1)I − A for

some A ∈ Λ(H)d×d, where d is the rank of M . Moreover, for all continuous

representations of the form (1.14), ξ(ρ) is �nite and in O, and Φ′
ρ(ξ) is in

ΛO(Γ).

2.1.3 The sign in the functional equation

In section 2.2 we will see that the characteristic element of the dual Selmer

X(E/F∞) satis�es an algebraic functional equation in the groupK1(Λ(G)S∗).

In this section we prove that whenever such a functional equation exists for

an element of the K1-group of the localized Iwasawa algebra then the sign

is determined by the Λ(H)-rank of the module associated to the element in

K1(Λ(G)S∗).

Lemma 2.1.7. An element r(X) ∈ Zp[[X]] is in the Ore-set R if and only if

its zeros are in the form ζ − 1 where ζ is any root of unity of p-power order.
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Proof. By de�nition r(X) is in R if and only if its zeros are permuted by γ̃,

which means that z is a root of r exactly when so is (z + 1)χ(γ̃−1) − 1. Now

the orbit of an element in the ring of integers of Qp is �nite under this action

if and only if the element is a root of unity minus 1. Moreover, the value of

a formal power series is only de�ned at elements of the maximal ideal of the

ring of integers, so the root of unity must be of p-power order.

Proposition 2.1.8. M is a pseudo-null Λ(G)-module in the category MH(G)

if and only if its characteristic element is a product of commutators of the

form [f, r] = frf−1r−1 considered as elements of K1(Λ(G)S∗), where r is in

R and f is an invertible element of Λ(G)S.

Proof. Since pseudo-null p-torsion modules have trivial characteristic ele-

ments [1], we may assume without loss of generality that M has trivial

p-torsion. So M is a �nitely generated torsion Λ(H)-module with Λ(H)-

characteristic power series r0(X) in R, since it acquires an action of γ̃. By

Lemma 2.1.7, r0(X) is in the form

r0(X) =
n∏

i=0

Φpi(X)li

where Φpi is the pith cyclotomic polynomial. Since these cyclotomic poly-

nomials are in the Ore-set R, the Λ(H)-submodule of M annihilated by one

particular irreducible factor of r0 is a Λ(G) submodule of M . Therefore�by

induction�it is enough to prove the statement when the generator r1 | r0 of
the annihilator ideal is irreducible. So let r1(X) := Φpi(X) for some i ≥ 0.

Now M is isomorphic to

n⊕
j=1

(
Zp[[X]]/Φpi(X)

)
j

as a Λ(H)-module for some n, since Zp[[X]]/Φpi(X) is a principal ideal do-

main. This means that as a Λ(G)-module it is isomorphic to N/Φpi(X)N

for some Λ(G)-module N which is �nitely generated and free over Λ(H) (see

Lemma 2.1.4). This gives the required expression for the characteristic ele-
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ment of M as the characteristic element of Φpi(X)N is the conjugate of the

characteristic element of N by Φpi(X).

Corollary 2.1.9. If M is in MH(G) then its characteristic element can be

written in the form pµG(M)ξ1ξ
−1
2 , where ξ1 and ξ2 are skew-polynomials over

Zp[[X]] of degree deg(ξ1) and deg(ξ2) satisfying

deg(ξ1)− deg(ξ2) = rankΛ(H)(M/M(p))

in the variable Y .

Proof. The characteristic element of the p-torsion part equals pµG(M) by def-

inition [1]. For pseudo-null modules the statement follows from Proposition

2.1.8. So we may assume that M has trivial p-torsion and no nontrivial

pseudo-null submodule. The statement follows from 2.1.3 by taking the

Whitehead determinant of the characteristic element.

For the sake of simplicity for any ring R and (left or right) R-module M

put

ai
R(M) := Exti

R(M,R) (i ≥ 0). (2.6)

Proposition 2.1.10. Let M be in the category MH(G). Then we have the

following relation connecting the characteristic element ξM of M and the

characteristic elements ξai
Λ(G)

(M) of a
i
Λ(G)(M) for 1 ≤ i ≤ 3.

ξM =
3∏

i=1

ξ
(−1)i+1

ai
Λ(G)

(M)
. (2.7)

Proof. Because of the long exact sequence of ExtΛ(G)(·,Λ(G)) it is enough

to prove the statement separately for p-torsion modules and modules �nitely

generated over Λ(H).

For p-torsion modules it su�ces to show the statement for projective

Ω(G)-modules. For these modules we only have �rst extension groups. Fur-

thermore, ifM is a projective Ω(G)-module then a1
Λ(G)(M) ∼= Hom(M,Ω(G))

and so have the same characteristic element as M using the formula for the
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characteristic element of p-torsion modules [1] (the characteristic element is

pd in this case where d is the rank of this projective Ω(G)-module).

For modules �nitely generated over Λ(H) it su�ces to prove the statement

for Λ(H)-projective modules by Lemma 2.1.4. The Λ(G)-modules which are

projective as Λ(H)-modules are by Proposition 2.1.3 in the form

Λ(G)d/Λ(G)d((Y + 1)I − A),

where d is the Λ(H)-rank of the module, I is the identity matrix, and A is a

matrix in Λ(H)d×d. Moreover,

a1
Λ(G)

(
Λ(G)d/Λ(G)d((Y + 1)I − A)

) ∼= Λ(G)d/((Y + 1)I − A)Λ(G)d

and the higher extension groups vanish as this module has a projective Λ(G)-

resolution of length 1. The result follows.

Theorem 2.1.11. Let us assume that M is in the category MH(G) and M

is pseudo-isomorphic to a1
Λ(G)(M

#). Then its characteristic element ξM in

K1(Λ(G)S∗) satis�es a functional equation of the form

ξ#
M = ε(M)ξM

n∏
i=1

[fi, ri]
ki , (2.8)

where ε(M) is an element coming from Λ(G)×, fi is in K1(Λ(G)S), ri is in

the Ore-set R, and the ki's are (possibly negative) integers. Moreover if we

reduce ε(M) modulo the Jacobson radical of Λ(G) we get an element ε(M)

in Fp ("the sign of the functional equation") which is −1 if the Λ(H)-rank of

M is odd, and +1 if the rank is even.

Proof. It is enough to prove the statement for modules in K0(NH(G)) since

p-torsion modules' characteristic elements are powers of p and they are �xed

by the action of #.

The existence of the functional equation follows from the fact that two

elements of K1(Λ(G)S) map to the same element in K0(NH(G)) if and only

if they di�er by an element in the image of K1(Λ(G)). Moreover, a1
Λ(G)(M

#)
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is pseudo-isomorphic to M , and by Proposition 2.1.10 we have

ξ#
M = ξM# =

3∏
i=1

ξ
(−1)i+1

ai
Λ(G)

(M#)
.

Now a2
Λ(G)(M

#) and a3
Λ(G)(M

#) are pseudo-null and pseudo-null modules'

characteristic elements are products of commutators by Proposition 2.1.8.

For proving the statement on the sign of the functional equation we may

choose ξM in the form ξ1ξ
−1
2 as in Corollary 2.1.9. Since the degree of ξ1ξ

#
2

has the same parity as the rank of M and it satis�es the same functional

equation, it is enough to prove the statement when ξM is integral. Now we

can multiply the both sides of equation (2.8) by the "denominators" of the

commutators and get an equation of the form

ξ#
M

n1∏
i=1

(r
li,1
i,1 f

ki,1

i,1 r
−li,1
i,1 )

n2∏
j=1

f
kj,2

j,2 = ε(M)ξM

n1∏
i=1

f
ki,1

i,1

n2∏
j=1

(r
lj,2

j,2 f
kj,2

j,2 r
−lj,2

j,2 ), (2.9)

where ki,1's and kj,2's are positive integers, li,1's and lj,2's are +1 or −1,

so all factors on both sides are integral in the sense that they are in the

image of Λ(G)∩Λ(G)×S in K1(Λ(G)S). Now we can reduce (2.9) modulo the

ideal generated by X and p and get an equation in K1(Fp((Y ))) = Fp((Y ))×.

Moreover, it is easy to see that

(r
li,1
i,1 f

ki,1

i,1 r
−li,1
i,1 ) ≡ f

ki,1

i,1 mod (X, p)

(r
lj,2

j,2 f
kj,2

j,2 r
−lj,2

j,2 ) ≡ f
kj,2

j,2 mod (X, p), and

ξM ≡ Y rankΛ(H)(M) mod (X, p).

So the reduced functional equation is in the form(
1

1 + Y
− 1

)rankΛ(H)(M)

= ε̃(M)Y rankΛ(H)(M).

Now if we divide both sides by Y rankΛ(H)(M) and reduce the equation modulo

Y we obtain ε(M) = (−1)rankΛ(H)(M).
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2.2 Pairings

Following the ideas of Perrin-Riou [29] in this section we construct a

generalized Cassels-Tate pairing for the dual Selmer group over the false Tate

curve extension. Let E be an elliptic curve with good ordinary reduction at

the prime p ≥ 5. Moreover, let us assume that the dual of the Selmer group,

X(E/F∞) lies in the category MH(G). The strategy is that we take the

projective limit of the homomorphisms

X(E/F cyc
n )→ a1

Λ(Γ)(X(E/F cyc
n )#)

constructed by Perrin-Riou [29] to get a map

X(E/F∞)→ a1
Λ(G)(X(E/F∞)#).

We will show that this homomorphism is a pseudo-isomorphism, and describe

the kernel and the cokernel. This provides us with a functional equation of

the characteristic element of X(E/F∞).

Perrin-Riou's [29] main idea was that she wrote the Cassels-Tate pairing

as an isomorphism

CF : X(E/L)(p)→ Sel(E/L)/div(Sel(E/L)) (2.10)

over a number �eld L where Sel(E/L) is the p-Selmer group of the elliptic

curve E, X(E/L) is its Pontryagin dual, and div(·) denotes the divisible part
of an abelian group. Moreover, a special case of a theorem of Flach [19] is

that there also is an isomorphism

CF : X(twτ (E)/L)(p)→ Sel(twτ−1(E)/L)/div(Sel(twτ−1(E)/L))

for any (not necessarily Artin) character τ of the Galois group Gal(Lcyc/L)

with values in Z×
p . So we have the choice of the character τ and it is easy

to see that it can be chosen so that it is admissible, ie. Sel(twτ−1(E)/M) is

�nite for any subextension L ⊆ M ⊂ Lcyc. The reason why we need these
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admissible representations is that in this case we have

Sel(twτ−1(E)/L)/div(Sel(twτ−1(E)/L)) = Sel(twτ−1(E)/L), and

X(twτ (E)/L) = X(twτ (E)/L)(p),

so we have a pairing on the Selmer group itself.

On the other hand, whenever X(E/Lcyc) is a torsion Λ(Gal(Lcyc/L))-

module we also have the restriction map

Sel(twτ−1(E)/M)→ Sel(twτ−1(E)/Lcyc)Gal(Lcyc/M) (2.11)

for any intermediate �eld L ⊆ M ⊂ Lcyc. By composing the two maps and

taking the projective limit we get another map

X(twτ (E)/Lcyc)→ lim←−
L⊆M⊂Lcyc

Sel(twτ−1(E)/Lcyc)Gal(Lcyc/M).

Moreover, we have an isomorphism [29]

lim←−
L⊆M⊂Lcyc

Sel(twτ−1(E)/Lcyc)Gal(Lcyc/M) ∼= Ext1
Λ(X(twτ−1(E)/Lcyc)#,Λ),

where Λ temporarily denotes Λ(Gal(Lcyc/L)). Therefore we get a map

X(E/Lcyc)⊗ τ = X(twτ (E)/Lcyc)→

→ Ext1
Λ(X(twτ−1(E)/Lcyc)#,Λ) = Ext1

Λ(X(E/Lcyc)#,Λ)⊗ τ.

So by taking the tensor product with τ−1 we obtain a map from X(E/Lcyc)

to its �rst extension group with the Iwasawa algebra which is in fact inde-

pendant of the choice of the admissible representation τ .

To investigate the kernel and cokernel of the map

X(E/Lcyc)→ Ext1
Λ(Gal(Lcyc/L))(X(E/Lcyc)#,Λ(Gal(Lcyc/L)))

is equivalent to the description of the kernels and cokernels of the restriction
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maps (2.11). This can be done using the usual diagrams

0→ Sel(E/M) → H1(FR/M,E[p∞])→
⊕
u∈R

Ju(M)→ 0yrM

ygM

y⊕ hM,u (2.12)

0→ Sel(E/Lcyc)ΓM → H1(FR/L
cyc, E[p∞])ΓM →

⊕
u∈R

Ju(L
cyc)ΓM ,

where ΓM = Gal(Lcyc/M), R is the set of `bad primes', FR is the maximal

Galois extension of L unrami�ed outside the primes in R,

Ju(M) := Ker(H1(M,E[p∞])→
⊕
u∈R

H1(Mu, E[p∞])/Im(κu)),

Ju(L
cyc) :=

⊕
uL|u

H1(LuL
, E(LuL

))[p∞],

and κu is the local Kummer map.

In this section we generalize this above idea from the commutative to the

noncommutative Iwasawa theory.

2.2.1 Control Theorems

In this section we put together the already known [25], [29] facts about

the kernels and cokernels of the homomorphisms

H0(X(E/F∞), Hn) −→ X(E/F cyc
n ), and (2.13)

X(E/F cyc
n ) −→ a1

Λ(Γ)(X(E/F cyc
n )#). (2.14)

As in [25] we de�ne the following sets of primes. Let P0 = P0(F∞/K
cyc)

the set of all primes of Kcyc which are not lying above p and rami�ed for

F∞/K
cyc (literally the primes dividing m and not dividing p). Further,

P1 := {u ∈ P0 | E/Kcyc has split multiplicative reduction at u} (2.15)

P2 := {u ∈ P0 | E has good reduction at u and E[p∞](Kcyc
u ) 6= 0},
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and we denote by P
(n)
1 , P

(n)
2 , P1(K), and P2(K) the corresponding sets of

primes in F cyc
n and K, respectively.

The cokernel of the homomorphism (2.13) and the kernel of (2.14) are

bounded by |E[p∞](F∞)|, which is �nite ([25] Lemma 3.12).

The kernel of (2.13) equals the Pontryagin dual of⊕
u∈P1∪P2, u|w

H1(Hn,w, E[p∞](F∞,w))

modulo �nite modules which are bounded by |E[p∞](F∞)| [25]. Moreover, as

Gal(F cyc
n /K)v-modules

H1(Hn,w, E[p∞](F∞,w)) ∼=

Qp/Zp(−1) if w corresponds to a prime v ∈ P1,

E[p∞](−1) if w corresponds to a prime v ∈ P2,

where M(−1) denotes the −1st Tate twist of the Galois module M . Indeed,

if v is in P1 there is an exact sequence of modules

0→ µp∞ → E[p∞]→ Qp/Zp → 0 (2.16)

and by taking its long exact sequence of Hn,w-cohomologies we get

0→ Qp/Zp → H1(Hn,w, µp∞)→ H1(Hn,w, E[p∞])→ H1(Hn,w,Qp/Zp)→ 0,

and as abelian groups all of them in the sequence are isomorphic to Qp/Zp,

however, as Gal(F cyc
n /K)v-modules

H1(Hn,w, µp∞) ∼= Qp/Zp, and

H1(Hn,w, E[p∞]) ∼= H1(Hn,w,Qp/Zp) ∼= Qp/Zp(−1).

When v is in P2 then the statement follows from the fact that Hn,w acts

trivially on E[p∞].

On the other hand, the cokernel of (2.14) equals the following modulo

36



�nite modules with order bounded by |E[p∞](F∞)| [23, 29]

Hom

 lim−→
k→∞

⊕
u∈P

(n)
1

H1(Γk, E[p∞](F cyc
n,u )),Qp/Zp

 .

Now since E[p∞](F∞,w) = E[p∞] for any prime w above a prime in P1 [25, 24]

(because F∞ is the maximal tame p-extension), we have the exact sequence

0→ µp∞ → E[p∞](F cyc
n,u )→ Z/prnZ→ 0

with some rn ≥ 0 integer, so H1(Γk, E[p∞](F cyc
n,u )) = Z/prnZ is �nite and

independent of k, Γ acts trivially on it, and its order is not bounded when

n tends to in�nity. The unboundedness is true because E(F∞,w) contains all

the p-division points on the curve.

Now we can state the following

Proposition 2.2.1. There exists a map

X(E/F cyc
n )

(
→ a1

Λ(Γ)(X(E/F cyc
n )#)

)
→ a1

Λ(Γ)(H0(Hn, X(E/F∞)#))

with �nite and bounded kernel for varying n. The cokernel di�ers from⊕
u∈P

(n)
2

Tp(E[p∞](F cyc
n,u ))v ⊕

⊕
u∈P

(n)
1

M (n)
u

by a �nite module with bounded order for varying n, where M
(n)
u �ts into a

short exact sequence

0→ Zp/p
rnZp →M (n)

u → Zp(−1)→ 0, (2.17)

where Tp(·) denotes the p-adic Tate module of a module and the superscript
v denotes the dual Hom(·,Zp).
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Proof. The quasi-exact sequence

0→
⊕

u∈P
(n)
1 ∪P

(n)
2 , u|w

Hom(H1(Hn,w, E[p∞](F∞,w)),Qp/Zp)
# →

→ H0(Hn, X(E/F∞)#)→ X(E/F cyc
n )# → 0

de�nes a quasi-exact sequence of extension functors

0→ a1
Λ(Γ)(X(E/F cyc

n )#)→ a1
Λ(Γ)(H0(Hn, X(E/F∞)#))→

→
⊕

u∈P
(n)
1 ∪P

(n)
2 , u|w

a1
Λ(Γ)(Hom(H1(Hn,w, E[p∞](F∞,w)),Qp/Zp)

#)→ 0,

since Ext2
Λ(Γ)(X(E/F cyc

n )#,Λ(Γ)) is trivial.

Now if u is in P
(n)
2 then

H1(Hn,w, E[p∞](F∞,w)) = E[p∞](−1)

and therefore

a1
Λ(Γ)(Hom(H1(Hn,w, E[p∞](F∞,w)),Qp/Zp)

#) ∼= Tp(E[p∞])v.

Moreover, in this case there is no u-part of the cokernel of the map

X(E/F cyc
n )→ a1

Λ(Γ)(X(E/F cyc
n )#).

On the other hand, if u is in P1 then

H1(Hn,w, E[p∞](F∞,w)) = Qp/Zp(−1)

and therefore

a1
Λ(Γ)(Hom(H1(Hn,w, E[p∞](F∞,w)),Qp/Zp)

#) ∼= Zp(−1).

Further, H1(Hn,w, E[p∞](F∞,w) = µp∞ and the u-part of the cokernel of the
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morphism

X(E/F cyc
n )→ a1

Λ(Γ)(X(E/F cyc
n )#).

di�ers from Z/prnZ with trivial Γ-action by a �nite module of bounded order

for varying n.

2.2.2 Main theorem

The following theorem is a generalization of pairings to non-commutative

Iwasawa theory. There are previous results for the cyclotomic, anticyclotomic

or Z2
p-case [22, 29]. Moreover, it is compatible with the main conjecture for

the false Tate curve extension, and the conjectural functional equation of the

p-adic L-function [6, 7, 20].

Theorem 2.2.2. If E has good ordinary reduction at the prime p ≥ 5 and

X(E/F∞) lies in the category MH(G) then there is an exact sequence

0→ X(E/F∞)
ϕ→ a1

Λ(G)(X(E/F∞)#)→ Coker(ϕ)→ 0,

where Coker(ϕ) represents the same element in K0(MH(G)) as⊕
v∈P1(K)∪P2(K)

Λ(G)⊗Λ(Gv) Tp(E[p∞](F∞,w))v,

where w is a (�xed) prime in F∞ above v.

Proof. First of all let us remark that each component of the above expression

for the cokernel is isomorphic to

Λ(G)⊗Λ(Gv) Tp(E[p∞](F∞,w))v ∼=
⊕

u∈P1∪P2, v|u|w

Tp(E[p∞](F∞,w))v (2.18)

as Λ(G)-modules with the natural action of Λ(G) on the right hand side (G

permutes the primes above a �xed prime v in K) since the primes in P1 ∪P2

ramify totally in the extension F∞/K
cyc. So it is enough to prove that the

cokernel in the theorem is isomorphic to the direct sum of the modules on

the right hand side of (2.18).
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We would like to take the projective limit of homomorphisms in Propo-

sition 2.2.1

X(E/F cyc
n )→ a1

Λ(Γ)(H0(Hn, X(E/F∞)#)).

For this we �rst remark that there is a canonical identi�cation

a1
Λ(Γ)(H0(Hn, X(E/F∞)#)) ∼= a1

Λ(Gal(F cyc
n /K))(H0(Hn, X(E/F∞)#))

as Λ(Γ)-modules [26]. Moreover the norm map from F cyc
n+1 to F cyc

n induces a

natural homomorphism

a1
Λ(Gal(F cyc

n+1/K))(X(E/F∞)#
Hn+1

)→ a1
Λ(Gal(F cyc

n /K))(X(E/F∞)#
Hn

),

so we can take the projective limit of these modules with the connecting

maps above. It is easy to see that the limit is a1
Λ(G)(X(E/F∞)#) so we get a

map from X(E/F∞) to this module. The kernel of this homomorphism is the

limit of the �nite and bounded kernels and so is �nite. However, X(E/F∞)

has no nontrivial pseudo-null submodule and �nite modules are obviously

pseudo-null, so the morphism we got is injective. Note that X(E/F∞) has

the same Λ(H)-rank as a1
Λ(G)(X(E/F∞)#), so this map is automatically a

pseudo-isomorphism. The cokernel is the limit of the cokernels in the �nite

layers and so it equals⊕
u∈P2, u|w

Tp(E[p∞](F∞,w))v ⊕
⊕
u∈P1

lim←−M
(n)
u

up to �nite modules. Because of (2.17) and the fact that rn → ∞ the

projective limit of the modules M
(n)
u �ts into the exact sequence

0→ Zp → lim←−M
(n)
u → Zp(−1)→ 0.

So does Tp(E[p∞](F∞,w))v and therefore they represent the same element in

K0(MH(G)).
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Remarks. 1. For any w above a prime in P1

Tp(E[p∞](F∞,w))v

represents the same element in K0(MHv(Gv)) as

Zp ⊕ Zp(−1)

because it �ts into the exact sequence of Λ(Gv)-modules

0→ Zp → Tp(E[p∞](F∞,w))v → Zp(−1)→ 0.

However, this exact sequence does not split.

2. If we de�ne P1(Q) and P2(Q) to be the set of primes q in Q such that

all primes in K above q are in P1(K) and P2(K), respectively then we

can investigate the Λ(G0)-structure of the above cokernel. Since the

reduction type of the elliptic curve at two primes in K over the same

prime in Q are the same, the Λ(G0) structure is the following⊕
q∈P1(Q)∪P2(Q)

Λ(G0)⊗Λ(Gq) Tp(E[p∞](F∞,w))v,

where w is a prime in F∞ above q.

2.3 Functional equations

2.3.1 Functional equation of the characteristic element

We are going to apply Theorems 2.2.2 and 2.1.11. Note that by Lemma

2.1.10 the characteristic element of

a1
Λ(G)(X(E/F∞)#)

is ξ#
X(E/F∞) as the higher extension groups of X(E/F∞)# are �nite since

X(E/F∞) has no nontrivial pseudo-null submodule [25]. We get the following
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corollary on the characteristic element.

Corollary 2.3.1. If E has good ordinary reduction at the prime p ≥ 5 and

X(E/F∞) is in MH(G) then the characteristic element ξX(E/F∞) of X(E/F∞)

in K1(Λ(G)S∗) satis�es a functional equation of the following form

ξ#
X(E/F∞) = ξX(E/F∞)ε0(X(E/F∞))

∏
v∈P1(K)∪P2(K)

αv,

where ε0(X(E/F∞)) is in K1(Λ(G)), and

αv =
Frob−1

v −
(X+1)

−NK/Qv−1
1

X+1
−1

Frobv − (X+1)
NK/Qv−1
X

if v is in P1(K), and

αv =

(
Frob−1

v −
(X+1)−bv−1

1
X+1

−1

)(
Frob−1

v −
(X+1)

−NK/Qv−1
1

(X+1)bv
−1

)
(
Frobv − (X+1)bv−1

X

)(
Frobv − (X+1)

NK/Qv−1
(X+1)bv−1

) if v is in P2(K),

where Frobv is the arithmetic Frobenius, and bv is a root of the polynomial

x2 − (NK/Qv + 1−#Ẽ(Fv))x+NK/Qv

in Zp, and #Ẽ(Fv)) is the number of points on the curve reduced modulo v.

Moreover, if we reduce ε0(X(E/F∞)) modulo the Jacobson radical of Λ(G)

we get an element in Fp that equals (−1)rankZp (X(E/Kcyc)).

Proof. SinceH = Hv for all v's in question (it is a totally rami�ed extension),

the characteristic element of a module in MH(G) of the form

Λ(G)⊗Λ(Gv) M

with M in MHv(Gv) is the image of the characteristic element of M in

K1(Λ(G)S). So in view of the �rst remark after Theorem 2.2.2, we only

have to verify the following statements. Firstly, there exists an element bv in

Zp with

b2v − (NK/Qv + 1−#Ẽ(Fv))bv +NK/Qv = 0

42



because the above is the characteristic polynomial of Frob−1
v acting on the

Tate module and Frob−1
v has p-power order when reducing modulo p, so its

eigenvalues are in Fp and can be lifted to Zp.

Secondly, that for v ∈ P2(K) the characteristic element of the dual of the

Tate module Tp(E[p∞](F∞,w))v is

(
Frob−1

v −
(X+1)−bv−1

1
X+1

−1

)(
Frob−1

v −
(X+1)

−NK/Qv−1
1

(X+1)bv
−1

)
(
Frobv − (X+1)bv−1

X

)(
Frobv − (X+1)

NK/Qv−1
(X+1)bv−1

) (2.19)

as a Λ(Gv)-module. This is true becauseH acts trivially on Tp(E[p∞](F∞,w))v

and we have an exact sequence of Λ(Gv)-modules

0→ X(Tp(E[p∞])v⊗Zp Zp[[X]])→ Tp(E[p∞])v⊗Zp Zp[[X]]→ Tp(E[p∞])→ 0.

Moreover, the numerator of (2.19) reduces to the characteristic polynomial

of Frob−1
v modulo X so it is a characteristic element to

Tp(E[p∞])⊗Zp Zp[[X]].

Now we have an isomorphism Tp(E[p∞])v(1) ∼= Tp(E[p∞]) and

X(Tp(E[p∞])v ⊗Zp Zp[[X]]) ∼= Tp(E[p∞])⊗Zp Zp[[X]],

so the denominator(
Frobv −

(X + 1)bv − 1

X

)(
Frobv −

(X + 1)NK/Qv − 1

(X + 1)bv − 1

)
=((

Frob−1
v −

(X + 1)−bv − 1
1

X+1
− 1

)(
Frob−1

v −
(X + 1)−NK/Qv − 1

1
(X+1)bv − 1

))#

is a characteristic element to

X(Tp(E[p∞])v ⊗Zp Zp[[X]]).
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Finally, the characteristic element of Zp ⊕ Zp(−1) is

Frob−1
v −

(X+1)
−NK/Qv−1
1

X+1
−1

Frobv − (X+1)
NK/Qv−1
X

as a Λ(Gv)-module when v ∈ P1(K). Indeed, since

Frobv(X + 1)Frob−1
v = (X + 1)NK/Qv

it is easy to see that the following sequences are exact

0→ Λ(Gv)
/(

Frobv −
(X + 1)NK/Qv − 1

X

)
→ Λ(G)/(Frobv − 1)→ Zp → 0,

0→ Λ(G)/(Frobv − 1)

→ Λ(G)
/(

Frob−1
v −

(X + 1)−NK/Qv − 1
1

X+1
− 1

)
→ Zp(−1)→ 0.

The �rst statement follows immediately from the fact that the characteristic

element of a module which is the factor of Λ(G) modulo a principal (left)

ideal is the generator of the ideal. The sign in this functional equation follows

from Theorem 2.1.11 and the formula [25]

rankΛ(H)(X(E/F∞)) = rankZp(X(E/Kcyc)) + |P1(K)|+ 2|P2(K)|,

because the v-part of the characteristic element of the cokernel reduces to

−1 modulo the Jacobson radical of Λ(G) if v is P1(K) and to +1 if it is in

P2(K).

Remarks. 1. The following functional equation of the characteristic ele-

ment ξQ,X(E/F∞) of X(E/F∞) in K1(Λ(G0)S∗Q
) can be proved similarly

ξ#
Q,X(E/F∞) = ξQ,X(E/F∞)ε0(Q, X(E/F∞))

∏
q∈P1(Q)∪P2(Q)

αq.
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Here ε0(Q, X(E/F∞)) is in K1(Λ(G0)), and

αq =
Frob−1

q −
(X+1)−q−1

1
X+1

−1

Frobq − (X+1)q−1
X

if q is in P1(Q), and

αq =

(
Frob−1

q −
(X+1)−bq−1

1
X+1

−1

)(
Frob−1

q −
(X+1)−q−1

1

(X+1)bq
−1

)
(
Frobq − (X+1)bq−1

X

)(
Frobq − (X+1)q−1

(X+1)bq−1

) if q is in P2(Q),

where Frobq is the arithmetic Frobenius, and bq is a root of the poly-

nomial

x2 − (q + 1−#Ẽ(Fq))x+ q

in Zp, and #Ẽ(Fq)) is the number of points on the curve reduced mod-

ulo q.

2. We chose a di�erent normalization of the characteristic element of the

cokernel in the above theorem from the one in section 2.1.3 because it

�ts more into the analytic theory in the following section. Moreover,

for each v and q, we have αvα
#
v = 1, and αqα

#
q = 1.

2.4 Connections to the analytic side

In this section we compare the algebraic functional equation we obtained

in the previous section for the characteristic element of the dual Selmer group

and the conjectural functional equation of the p-adic L-function.

2.4.1 The Main Conjecture

Let R denote the following set of rational primes

R := {p} ∪ {q ∈ Q prime : q | m and E[p∞] ⊆ F∞,w for a w ∈ F∞ above q}.
(2.20)

When we specialize Conjecture 1.3.2 to the false Tate curve case we obtain

the following
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Conjecture 2.4.1. Assume that p ≥ 5 and that E has good ordinary re-

duction at p. Then there exists LE in K1(Λ(G0)S∗Q
) such that, for all Artin

representations τ of G0, we have LE(τ) 6=∞, and

LE(τ ∗) =
LR(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
· εp(τ) ·

Pp(τ
∗, b−1

p )

Pp(τ, c−1
p )
· b−fτ

p ,

where εp(τ) denotes the local ε-factor at p attached to τ , and pfτ is the p-part

of the conductor of τ .

Let us also recall the main conjecture of Iwasawa theory for elliptic curves

over the false Tate tower which is a special case of Conjecture 1.3.3.

Conjecture 2.4.2 (The main conjecture). Assume that p ≥ 5, E has good

ordinary reduction at p, and X(E/F∞) belongs to the category MH0(G0).

Granted Conjecture 2.4.1, the p-adic L-function LE in K1(Λ(G0)S∗Q
) is a

characteristic element of X(E/F∞).

2.4.2 Compatibility of the functional equations

We begin this section with investigating the values of the modifying fac-

tors αq of the algebraic functional equation at the irreducible Artin repre-

sentations of G0. The irreducible Artin representations of G0 are in the form

ρnχ or χ, where ρn is a representation of Gal(Fn/Q) induced by any charac-

ter of Gal(Fn/Q(µpn)) of exact order pn, and χ is a 1-dimensional character

of Gal(Q(µp∞)/Q). It is enough to deal with irreducible representations be-

cause both the modi�ed L-values and the values of elements in K1(Λ(G0)S∗Q
)

are multiplicative with respect to direct sums of representations.

Proposition 2.4.3. The values of αq at irreducible Artin representations of

G0 are as follows.

αq(χ) =
Pq(E, χ, q

−1)

Pq(E, χ, q−1)
, and

αq(ρnχ) =


(

q
p

)
Pq(E,ρnχ,q−1)

Pq(E,ρnχ,q−1)
χ(Frob−1

q )pn−1(p−1), if q ∈ P1(Q)

Pq(E,ρnχ,q−1)

Pq(E,ρnχ,q−1)
, if q ∈ P2(Q),
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Where
(

q
p

)
denotes the Legendre symbol.

Proof. This is a simple computation using that det ρn(Frobq) =
(

q
p

)
.

Since L#
E(τ) = LE(τ ∗) for any Artin representation τ of G0, this above

proposition shows that the functional equation of the characteristic element of

X(E/F∞) is compatible with the Main Conjecture up to p-adic units because

they modify the same way when changing τ to τ ∗. Indeed, by conjecture 2.4.1

we have

LE(τ ∗) =
LR(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
· εp(τ) ·

Pp(τ
∗, b−1

p )

Pp(τ, c−1
p )
· b−fτ

p , and (2.21)

L#
E(τ ∗) = LE(τ) =

LR(E, τ ∗, 1)

Ω+(E)d+(τ∗)Ω−(E)d−(τ∗)
· εp(τ

∗) ·
Pp(τ, b

−1
p )

Pp(τ ∗, c−1
p )
· b−fτ∗

p .

Moreover, the functional equation of the complex L is

L̂(E, τ, s) = w(E, τ)L̂(E, τ ∗, 2− s),

where

L̂(E, τ, s) :=

(
N(E, τ)

π2 dim τ

)s/2

Γ
(s

2

)dim τ

Γ

(
s+ 1

2

)dim τ

L(E, τ, s).

From this we obtain

L(E, τ, 1) = w(E, τ)L(E, τ ∗, 1) (2.22)

as the modifying factors are the same for τ and τ ∗ at s = 1 since τ and τ ∗

have both the same dimension and conductor. Moreover, d±(τ ∗) = d±(τ) and

the local factors at p cancel each other as they do in the functional equation

over the cyclotomic extension, so by combining (2.21) and (2.22) we obtain

LE(τ ∗)∏
q∈R\{p} Pq(E, τ, q−1)

and
L#

E(τ ∗)∏
q∈R\{p} Pq(E, τ ∗, q−1)

are equal up to p-adic units. So Proposition 2.4.3 shows that the functional

47



equation of the characteristic element of the dual Selmer is compatible with

the conjectural functional equation of the p-adic L-function up to p-adic

units.

In the following proposition we prove that for any self-dual Artin rep-

resentation τ the signs in the algebraic and analytic functional equations

coincide, as well. This is also a good evidence for both the Main Conjecture

and the conjectural functional equation of the p-adic L-function.

Proposition 2.4.4. The signs when substituting self-dual Artin represen-

tations of G0 into the the functional equation of the characteristic element

ξQ,X(E/F∞) of the dual Selmer group X(E/F∞) are as follows. All of them

are equal to the signs of the functional equations of the twisted L-functions

of the elliptic curve with the Artin representations in question.

walg(E, τ) =



(−1)tE/Q,p if τ is the trivial representation,

(−1)tE/Q,p+tE/K,p if τ is the real character of order 2,

(−1)tE/K,p
∏

q∈P1(Q)

(
q
p

)
if τ = ρn for some n,

1 if τ = χ⊕ χ or ρn ⊗ (χ⊕ χ) for some n and

χ character of Gal(Q(µp∞)/Q),

where tE/k,p is the Zp-rank of the dual Selmer X(E/k) for any number �eld

k.

Proof. It is enough to prove that modulo squares in Zp[[Z×
p ]]× the factor

ε0(Q, X(E/F∞)) reduces to (−1)tE/Q,p γ̃
tE/K,p

0 because then the statement fol-

lows by substituting the Artin representations into this epsilon factor and

applying Proposition 2.4.3. The statement regarding the sign in the analytic

functional equation follows from the formulae for the root numbers [16], and

from the fact that the parity conjectures tE/Q,p ≡ rE/Q and tE/K,p ≡ rE/K

are true due to Neková° [28]. For this let us reduce the equation

ξ#
Q,X(E/F∞) = ξQ,X(E/F∞)ε0(Q, X(E/F∞))

∏
q∈P1(Q)∪P2(Q)

αq
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modulo X. After multiplying by the denominators we get the following

ξ̃#
∏

q∈P1(Q)

(Frobq − q)
∏

q∈P2(Q)

(Frobq − bq)(Frobq − q/bq) = (2.23)

= ξ̃ε̃0

∏
q∈P1(Q)

(Frob−1
q − q)

∏
q∈P2(Q)

(Frob−1
q − bq)(Frob−1

q − q/bq),

where ξ̃ and ε̃0 denote the reduction of ξQ,X(E/F∞) and ε0(Q, X(E/F∞)) mod-

ulo X, respectively. Now ξ̃ is a polynomial in the variable γ̃0�which is the

generator of the Galois group Gal(Q(µp∞)/Q)�of degree rankΛ(H)(X(E/F∞))

and Frobq equals γ̃0 to some even power if
(

q
p

)
= 1 and to some odd power

if
(

q
p

)
= −1. Since

(−1)tE/K,p = (−1)rankΛ(H)(X(E/F∞))
∏

q∈P1(Q)

(
q

p

)
,

on the right hand side of the equation (2.23) there is a polynomial in γ̃0 of

degree the same parity as tE/K,p. Moreover, the roots of this polynomial are

in pairs, except when they are ±1 because if a (p-adic) number is a root

of this polynomial then so is its reciprocal. We get a −1 in the functional

equation for each multiplicity of the root 1 and this number is exactly tE/Q,p.

We also get a γ̃0 to the power of the degree in the functional equation and

we are done.

2.5 Heegner-like cases

Throughout this section we shall need the following hypotheses on p and

the elliptic curve E imposed in [6].

Hypothesis 1. E has good ordinary reduction at p.

Hypothesis 2. X(E/F∞) belongs to the category MH(G).

Recall that a �nitely generated module M over the Iwasawa algebra of

the cyclotomic Zp-extension is always pseudo-isomorphic to a module of the
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form ⊕
i

Zp[[T ]]/pµi ⊕
⊕

j

Zp[[T ]]/f
mj

j ,

where the fj's are distinguished polynomials. Its characteristic power series

is de�ned to be

fM =
∏

i

pµi

∏
j

f
mj

j

and its µ-invariant is µ(M) =
∑

i µi. If L is any number �eld and E an

elliptic curve satisfying the above hypotheses, let us denote by µE/L the µ-

invariant of X(E/Lcyc). Note that Hypothesis 2 is automatic if µE/K = 0

[25].

Since G is a pro-p group without p-torsion, the pseudo-null p-primary

�nitely generated Λ(G)-modules are exactly those whose classes are trivial

in the Grothendieck group K0(MH(G)), or equivalently if its characteristic

element vanishes [1]. It also follows that if M is a p-primary module in the

category MH(G) then its characteristic element is the image of

prankΩ(G)grp(M)

in the group K1(Λ(G)S∗), where grp(M) denotes the graded module of M

with respect to the p-adic �ltration of M [1]. Moreover, by de�nition the

rank of the graded module is equal to the µ-invariant µG(M) of the Λ(G)-

module M .

Proposition 2.5.1. If E is an elliptic curve and p ≥ 5 is a prime satisfying

Hypotheses 1 and 2 then the characteristic element of X(E/F∞)(p) is the

image of pµE/K in the group K1(Λ(G)S∗). Moreover, if K ≤ L ≤ F∞ is an

intermediate number �eld then µE/L = p[L:K]µE/K.

Proof. The �rst statement immediately follows from the fact that

µG(X(E/F∞)) = µE/K

whenever we assume Hypotheses 1 and 2 [9]. We can obtain the second

statement by applying the �rst one for the extension F∞/L and comparing
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the rank of the module grp(X(E/F∞)(p)) over Λ(G) and Λ(Gal(F∞/L)).

If v is a prime in K, we write kv for the residue class �eld of K at

v. Further, Ẽv denotes the reduction of E mod v. Recall our standing

hypothesis that m is p-power free and not divisible by any rational prime

q such that E has additive reduction at q. Consider the following sets of

rational primes:

P1 = {q | split multiplicative reduction at all primes v of K above q}(2.24)

P2 = {q | q 6= p, good reduction at q, Ẽv(kv)(p) 6= 0 for a v ∈ K above q.}

The following proposition can be found in [6].

Proposition 2.5.2. Assume Hypotheses 1 and 2. Then X(E/F∞) has Λ(H)-

rank 1 if and only if m has no prime divisor in the set P2 and either (i)

X(E/Kcyc) has Zp-rank zero and m has precisely one prime divisor q in P1

which is inert in Kcyc or (ii) X(E/Kcyc) has Zp-rank 1 and m has no prime

divisor in P1.

The following sections deal with these two cases.

2.5.1 The classical case

In this section let us assume the second case of Proposition 2.5.2. There-

fore we have gE/Fn ≤ pn ≤ rE/Fn for any positive integer n (see the Appendix

A of [17]). Moreover, the characteristic power series for Y (E/F cyc
n ) is T pn

and the p∞-Selmer rank tE/Fn,p = pn for all n ≥ 1 [6]. Since there is an

injective Λ(H)-homomorphism

Y (E/F∞) ↪→ Λ(H)

with �nite cokernel [25], we can investigate the action of G on this �nite

index submodule of Λ(H). Let us at �rst identify the Iwasawa algebra Λ(H)

with the ring of formal power series Zp[[X]] so that a topological generator

h ∈ H is mapped to the power series 1 +X. Now we can consider Y (E/F∞)
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as a �nite index submodule of Zp[[X]], hence it contains a constant power

series pl for some l ∈ N. Since Y (E/F∞) admits an action of G, we can

de�ne a power series f(X) ∈ p−lZp[[X]] as f(X) = p−lγ̃pl where γ̃ ∈ G is

a lift of the topological generator γ ∈ Γ to G such that it �xes the sub�eld

Q(µp, p∞
√
m). We are going to show that in fact f(X) is in Zp[[X]] and

satis�es some functional equation. This will be the image of 1 ∈ Λ(H) when

we extend the action of γ to the whole Zp[[X]].

Lemma 2.5.3. Under the Hypotheses 1 and 2 and the second case of Propo-

sition 2.5.2 we have the following functional equation for the power series

f(X):

pn−1−1∏
j=0

f(ζ1+jp
pn − 1) = 1, and

f(0) = 1 (2.25)

where ζpn is an arbitrary primitive pnth root of unity (n ≥ 1 integer). In

particular f(0) = f(ζp − 1) = 1.

Proof. First of all let us remark that in fact f(X) determines the action

of G on Y (E/F∞) because if f1(X) ∈ Y (E/F∞) ≤ Zp[[X]] then γ̃f1(X) =

γ̃f1(X)γ̃−1γ̃1 = (γ̃f1(X)γ̃−1)f(X) where γ̃f1(X)γ̃−1 is the conjugation by γ̃

on the group ring Λ(H). Since the kernel and the cokernel of the restriction

homomorphism

Y (E/F∞)Hn → Y (E/F cyc
n )

are �nite [25] and the characteristic element of Y (E/F cyc
n ) is T pn

, the Akashi

series (ie. the characteristic element of Y (E/F∞)Hn as a Γn-module since the

higher homology groups of Y (E/F∞) are �nite because Y (E/F∞) is a �nite

index submodule of a free Λ(H)-module) of Y (E/F∞) is also T pn
, namely

γ̃pn−1
(and γ̃ when n = 0) has the unique eigenvalue 1 when acting on

Qp ⊗Zp

(
Y (E/F∞)/

(
(X + 1)pn − 1

)
Y (E/F∞)

)
.

and we immediately get f(0) = 1 when n = 0. However, the latter action
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can be computed in a di�erent way. For any f1(X) ∈ Y (E/F∞) we have

γ̃pn−1

f1(X) = γ̃pn−1

f1(X)γ̃−pn−1

pn−1−1∏
j=0

γ̃jf(X)γ̃−j.

Since the commutator [γ̃pn−1
, H] is equal to Hn, we have

pn−1−1∏
j=0

f(ζ γ̃−j

pn − 1) =

pn−1−1∏
j=0

f(ζ1+jp
pn − 1)

is an eigenvalue of γ̃pn−1|Y (E/F∞)Hn⊗Qp and we are done.

Remark. This condition on f(X) actually means that the relative norm of

f(ζpn − 1) is 1 in the extension Qp(ζpn)/Qp(ζp).

Let ρn be the Artin representation of G obtained by inducing any char-

acter of exact order pn of Gal(Fn/Q(µpn)) to Gal(Fn/K).

Proposition 2.5.4. Under the Hypotheses 1 and 2 and the second case of

Proposition 2.5.2, the Akashi series of the twisted module twρn(Y (E/F∞)) is

(T + 1)pn−1 − 1.

Proof. Since in the standard basis of ρn

ρn(γ̃) =



0 1 0 · · · 0

0 0 1 · · · 0
... 0

. . .
...

0
...

...
. . . 1

1 0 0 · · · 0


, ρn(h) =



ζ 0 0 · · · 0

0 ζ γ̃ 0 · · · 0
... 0 ζ γ̃2 . . .

...

0
...

. . . . . . 0

0 0 · · · 0 ζ γ̃pn−1−1


,

where ζ is a primitive pnth root of unity, we have that the matrix of γ̃ is

0 f(ζ−1 − 1) 0 · · · 0

0 0 f(ζ−γ̃ − 1) · · · 0
... 0

. . .
...

0
...

...
. . . f(ζ−γ̃pn−1−2 − 1)

f(ζ−γ̃pn−1−1 − 1) 0 0 · · · 0


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when we restrict it to twρn(Y (E/F∞))H , since h acts on Y (E/F∞) ⊗ Vρn

(where Vρn is the vector space of ρn) by multiplying the term in Y (E/F∞)

by X + 1, and the term in Vρn by the above matrix. So if we take the H-

coinvariants then we get a vector space over Qp(ζ) of dimension pn−1 and γ̃

acts by the above matrix because 1⊗bj is equivalent to (X+1)⊗ζ γ̃j−1
bj where

bj is the jth basis vector of Vρn , therefore we need to substitute ζ−γ̃j−1 − 1

into X in the jth component. The result follows by Lemma 2.5.3.

Applying the Artin-formalism for Akashi series (Theorem A.44. in [17],

see also [6]) and Proposition 2.5.1 we get the following corollary.

Corollary 2.5.5. Under the Hypotheses 1 and 2 and the second case of

Proposition 2.5.2, the characteristic element of the X(E/Q(µp, pn√
m)cyc) is

T
n−1∏
j=0

(
(T + 1)pj − 1

)p−1

ppnµE/K .

In particular if gE/Fn = rE/Fn then gE/Q(µp, pn√
m) = rE/Q(µp, pn√

m) = (p−1)n+1,

the order of vanishing of the above expression at T = 0.

We will need the following rather technical lemmata for the proof of

Proposition 2.5.8.

Lemma 2.5.6. The element γ̃0 acts by conjugation trivially on a power series

h(X) ∈ Zp[[X]] modulo the ideal ((X + 1)pk − 1) if and only if it is in the

form

h(X) ≡
k∑

i=0

ai
(X + 1)pk − 1

(X + 1)pi − 1
mod ((X + 1)pk − 1),

where ai is in Zp for each 0 ≤ i ≤ k.

Proof. Since Zp[[X]]/((X+1)pk−1) is isomorphic to the group ring Zp[H/Hk]

and the image of (X+1)pk−1

(X+1)pi−1
in Zp[H/Hk] is the sum of elements of order

at most pk−i, it follows that γ̃0 acts trivially on these elements. The other

direction is also true because if γ̃0 acts trivially on some element in Zp[H/Hk]

then the coe�cient of elements of the same order must be the same, so it
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can be written in the required form, since the sum of elements of exact order

pk−i is (X+1)pk−1

(X+1)pi−1
− (X+1)pk−1

(X+1)pi−1−1
.

Lemma 2.5.7. If xk+1 is an element in Zp[ζpk+1 ] such that it is congruent

to 1 modulo the maximal ideal (ζpk+1 − 1) and x1−γ̃0

k+1 ≡ 1 (mod (ζpk+1 − 1)pk
)

then it is congruent modulo (ζpk+1 − 1)pk
to an element in the form

1 +
k−1∑
i=0

ai(ζpk+1 − 1)pk−pi

with ai in {0, 1, 2, . . . , p− 1} for 0 ≤ i ≤ k − 1.

Proof. At �rst note that the ring Zp[ζpk+1 ]/(ζpk+1 − 1)pk
is isomorphic to the

group algebra Fp[Cpk ] of the cyclic group Cpk of pk elements since p is divisible

by (ζpk+1 − 1)pk
. Moreover, the induced action of γ̃0 is the generator of the

automorphism group Aut(Cpk) ∼= Cpk+1−pk as acting on Fp[Cpk ]. The �xed

points of this action are those elements in the group algebra in which the

elements of Cpk having the same order also have the same coe�cient. These

correspond to the elements described in the statement via the isomorphism

Zp[ζpk+1 ]/(ζpk+1 − 1)pk ∼= Fp[Cpk ].

The following proposition is a generalization of Hilbert's 'Satz 90' and

plays an important role in determining the structure of Y (E/F∞) as a Λ(G)-

module.

Proposition 2.5.8. For a formal power series f0(X) ∈ Zp[[X]] the following

are equivalent.

(i) NQp(µpn )/Qp(f0(ζpn− 1)) = 1 for all n ≥ 0 and ζpn a primitive pn-th root

of unity and we have

f0(X)f0(1/(X + 1)− 1) = ĝ(X)1−γ̃0

for some ĝ(X) in 1 +XZp[[X]].
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(ii) f0(X) is in the form g∞(X)1−γ̃0 for some g∞(X) ∈ 1 +XZp[[X]].

Proof. The direction (ii)⇒(i) is trivial, since the norms of g(ζpn − 1) and

g(ζpn − 1)γ̃0 are the same and if f0(X) is in this form then so is the power

series f0(X)f0(1/(X + 1)− 1). For the other direction we are going to prove

that for all k ≥ 0 there exists a gk(X) ∈ 1 +XZp[[X]] such that

f0(X) ≡ gk(X)1−γ̃0 mod ((X + 1)pk − 1). (2.26)

The statement will follow from this, since the set of such gk's for a given k

is compact and the projective limit of compact spaces is nonempty. So there

exists a limit g∞ of such gk's which is also in 1 + XZp[[X]]. Let us remark

here that g∞ is unique because if g1−γ̃0
∞ = h1−γ̃0

∞ then g∞/h∞ is �xed under

the conjugation by γ̃0, so it is constant, and the constant term of both g∞

and h∞ are 1 which means they are equal.

Now we prove (2.26) by induction on k. For k = 0 it is easy to see

that the condition (i) implies that f0(0) = 1 (applying (i) with n = 0), so

g0 ≡ 1 is good. Let us assume now that we know the statement for some

�xed k ≥ 0. So we may assume without loss of generality that f0(X) ≡ 1

mod ((X + 1)pk − 1) because f0(X) satis�es condition (i) if and only if so

does f0(X)/g1−γ̃0

k (applying (ii)⇒(i)). Now we apply (i) for n = k+ 1. From

Hilbert's Theorem 90 we get that there is an element xk+1 in Zp[µpk+1 ] such

that x1−γ̃0

k+1 = f0(ζpk+1−1) and p does not divide xk+1 (because we can multiply

xk+1 by any integer power of p and x1−γ̃0

k+1 does not change). It is obvious

that there exists some hk+1 ∈ Zp[[X]] such that hk+1(ζpk+1 − 1) = xk+1.

Furthermore, we have that this hk+1(X) can be chosen in 1 + XZp[[X]].

Indeed, by the second assumption of (i) we have

hk+1(ζpk+1 − 1)hk+1(ζ
−1
pk+1 − 1) = k0ĝ(ζpk+1 − 1),

for some k0 in Zp since their quotient is �xed by γ̃0. Now the vk+1-valuation

of hk+1(ζpk+1 − 1) and hk+1(ζ
−1
pk+1 − 1) are the same, so this valuation must

be divisible by (pk+1 − pk)/2 because ĝ(ζpk+1 − 1) is a unit. On the other

hand this valuation must be divisible by p−1 because otherwise hk+1(ζpk+1−

56



1)1−γ̃0 would not be 1 modulo the maximal ideal. Therefore it is divisible by

pk+1 − pk, and dividing hk+1(ζpk+1 − 1) by a number in Zp we can normalize

it such that hk+1(0) equals 1. Now it is well-known and also easy to see that

the ideal generated by

(X + 1)pk − 1 and
(X + 1)pk+1 − 1

(X + 1)pk − 1

(the latter is the minimum polynomial of ζpk+1) is equal to the ideal generated

by p and Xpk
in the power series ring Zp[[X]]. This means that if two power

series q1 and q2 in Zp[[X]] are equal modulo the ideal generated by p and Xpk

then by the Chinese Remainder Theorem there exists another power series q

in Zp[[X]] such that q is congruent to q1 modulo the ideal ((X+1)pk−1) and

to q2 modulo ( (X+1)pk+1−1

(X+1)pk−1
). Now if we apply Lemma 2.5.7 and notice that

(X + 1)pk − 1

(X + 1)pi − 1
≡ Xpk−pi

(mod p)

we get that hk+1(X) is congruent modulo the ideal generated by p and Xpk

to some element in the form

1 +
k−1∑
i=0

ai
(X + 1)pk − 1

(X + 1)pi − 1
.

This means that there is a formal power series gk+1(X) in Zp[[X]] such that

it is congruent to hk+1(X) modulo ( (X+1)pk+1−1

(X+1)pk−1
) and to some element in the

form
k∑

i=0

ai
(X + 1)pk − 1

(X + 1)pi − 1

modulo ((X+1)pk−1) which element is in fact �xed under the conjugation by

γ̃0 (see Lemma 2.5.6). Moreover, gk+1(X) is invertible because so is hk+1(X).

In other words, by the choice of hk+1(X), and since f0(X) is congruent to

1 modulo ((X + 1)pk − 1) by inductive assumption, we have that f0(X) is

congruent to gk+1(X)1−γ̃0 both modulo ( (X+1)pk+1−1

(X+1)pk−1
) and modulo ((X+1)pk−

57



1), ie. modulo ((X + 1)pk+1 − 1). Now since gk+1(X) is invertible in Zp[[X]],

we can normalize it by its constant term to get a required element.

Note that G0 also acts on Y (E/F∞), so the action of γ̃ is the p − 1-st

power of the action of γ̃0 (we choose the topological generator γ0 of Γ0 such

that its p− 1-st power is γ). This means that if p−l(γ̃0p
l) = f0(X) then

f(X) =

p−2∏
i=0

γ̃i
0f0(X)γ̃−i

0 .

This motivates the following Corollary.

Corollary 2.5.9. For a formal power series f(X) ∈ p−lZp[[X]] the following

are equivalent.

(i) It satis�es the condition (2.25) and is in the form

f(X) =

p−2∏
i=0

γ̃i
0f0(X)γ̃−i

0

for some f0(X) ∈ p−lZp[[X]] satisfying

f0(X)f0(1/(X + 1)− 1) = ĝ(X)1−γ̃0

with a ĝ(X) in 1 +XZp[[X]].

(ii) It is in Zp[[X]] and can be written in the form g(X)1−γ̃ where g(X) is

in 1 +XZp[[X]].

Proof. For the direction (ii)⇒ (i) it is easy to see that f0(X) = g(X)1−γ̃0 is

suitable and by the remark after Lemma 2.5.3 g(X)1−γ̃ satis�es the condition

(2.25).

The other direction follows from Proposition 2.5.8 once we note that the

condition (2.25) implies that both f(X) and f0(X) are integral since if we

substitute any number in the form (ζpn − 1) into them we get numbers with

norm 1 in some extension (by the remark after Lemma 2.5.3), so they are

integral. Now if f(X) (or similarly f0(X)) was not integral then we take the
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�rst index i such that the ith coe�cient has the least (negative) p-valuation

and get that f(ζpn − 1) would not be integral for n such that pn − pn−1 (the

valuation of p in Zp[ζpn ]) is greater than i.

Theorem 2.5.10. Under the Hypotheses 1 and 2 and the second case of

Proposition 2.5.2, Y (E/F∞) is a �nite index submodule of

Λ(G)/Λ(G)(γ̃ − 1)

as a Λ(G)-module, which means that they represent the same element in the

Grothendieck group K0(MH(G)). The characteristic elements of Y (E/F∞)

and X(E/F∞) are Y = γ̃−1 and Y pµE/K , respectively, considered as elements

of K1(Λ(G)S∗).

Proof. Since f(X) is integral we can extend the action of G to the whole

Zp[[X]] as γ̃f1(X) = (γ̃f1(X)γ̃−1)f(X). We would like to use Corollary

2.5.9. The action of G extends to an action of G0, and by the second

remark after Theorem 2.2.2 we get a homomorphism from X(E/F∞) to

a1
Λ(G0)(X(E/F∞)#) with �nite kernel and cokernel. This means that there is

a morphism

Λ(G0)/Λ(G0)(γ̃0− f0(X))→ Λ(G0)/Λ(G0)(γ̃
−1
0 − f0(1/(X +1)− 1)) (2.27)

with �nite kernel and cokernel. Therefore there is an element ĝ0(X) in

Λ(G0)/Λ(G0)(γ̃
−1
0 − f0(1/(X + 1)− 1))

such that γ̃0 multiplies it to its f0(X)-times. Indeed, ĝ0(X) is the image of

1 under the map (2.27). Moreover, since the cokernel of this morphism is

�nite, ĝ0(X) must be an invertible power series when identifying

Λ(G0)/Λ(G0)(γ̃
−1
0 − f0(1/(X + 1)− 1))

with Zp[[X]] as a Λ(H)-module (there are no �nite index principal ideals in
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Zp[[X]] other than Zp[[X]] itself). This means that

f0(X)ĝ0(X) = (γ̃0ĝ0(X)γ̃−1
0 ) · (γ̃01), and (2.28)

γ̃−1
0 1 = f(1/(X + 1)− 1). (2.29)

Applying γ̃0 on (2.29) we get

1 = γ̃0f(1/(X + 1)− 1)γ̃−1
0 · (γ̃01)

γ̃01 = γ̃0f(1/(X + 1)− 1)−1γ̃−1
0 (2.30)

and substituting (2.30) into (2.28) we have

ĝ(X)1−γ̃0 = f0(X)f0(1/(X + 1)− 1) with

ĝ(X) = ĝ0(X)−1f0(1/(X + 1)− 1).

Lemma 2.5.3 implies the equation for the formal power series f(X), therefore

the assumption (i) in Corollary 2.5.9 is satis�ed, ie. so is (ii). Now if we apply

the automorphism of the Λ(H)-module Zp[[X]] which sends 1 to g(X) we get

that Y (E/F∞) is pseudo-isomorphic to the module Zp[[X]] on which γ̃ acts

by conjugation. This module is clearly isomorphic to Λ(G)/Λ(G)(γ̃−1).

We can also determine the characteristic element of Y (E/F∞) as a Λ(G0)-

module.

Corollary 2.5.11. Under the Hypotheses 1 and 2 and the second case of

Proposition 2.5.2, Y (E/F∞) is a �nite index submodule of

Λ(G0)/Λ(G0)(γ̃0 − α)

as a Λ(G0)-module, where γ̃0 is a lift of the topological generator γ0 of Γ0 to G0

such that γ̃ = γ̃p−1
0 and α is −1 if the Zp-corank of the p

∞-Selmer group over

Q is 0, and +1 if this rank is 1. So they represent the same element in the

Grothendieck group K0(MH0(G0)). The characteristic element of Y (E/F∞)

is γ̃0 − α considered as an element of K1(Λ(G0)S∗).
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Proof. Note that the topological generator γ̃0 of G0 commute with γ̃, so

this element can only act by multiplying by a constant on the power series

identically 1 in Zp[[X]] = Λ(H) because the image is �xed by the action of

γ̃ and this element �xes only the constant power series in this module. This

constant α is forced to be of order dividing p − 1, since γ̃p−1
0 acts trivially.

Moreover, the restriction map

H0(Gal(Q(µp,
pn√
m)cyc/Q( pn√

m)cyc), Y (E/Q(µp,
pn√
m)))→ Y (E/Q( pn√

m))

has �nite kernel and cokernel [6, 25], so it can be easily seen that for any

intermediate �eld Q ≤ k ≤ Q(µp) the characteristic power series is

T εk

n−1∏
j=0

(
(T + 1)pj − 1

)
for the module Y (E/k( pn√

m)cyc) where εk = 1 if the order of α divides the

degree of k over Q and εk = 0 otherwise. On the other hand εk equals the

rank of the p∞-Selmer group over the �eld k. Since the parity conjecture is

known in this case [28], εk ≡ rE/k modulo 2. Now the root number for any

elliptic curve with good reduction at p is the same over Q(µp) and over the

unique quadratic �eld contained in it [16], so the p∞-Selmer rank over this

quadratic �eld must be 1, too, which means that α has order at most 2.

Remark. It can be seen from the proof of the above corollary that in fact

the Λ(G)-structure of a module M determines the Λ(G0) structure up to a

constant in Z×
p of �nite order whenever the module M is free of rank 1 over

Λ(H).

The functional equation. We obtain the following functional equation for

the characteristic element of X(E/F∞), as conjectured in [6], by applying

the automorphism # (see section 1.2.2 for the de�nition) and noting that

α = ±1.

(pµE/K (γ̃0 − α))# = −γ̃−1
0 pµE/K (γ̃0 − α)α−1.

The sign of the functional equation is negative if and only if α is +1, or

in other words the analytic rank of E over Q is odd. So the sign in this
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functional equation is equal to the sign in the functional equation of the

complex L-function of E over Q, since the parity conjecture is known in this

case [28].

Example. It is not easy to verify that X(E/Kcyc) is a free Zp-module of

rank 1. However, C. Wuthrich has shown that the elliptic curve 79A1 of

Cremona's tables given by the equation

y2 + xy + y = x3 + x2 − 2x

satis�es the conditions of the second case of Proposition 2.5.2 with m = q =

79 and p = 3. Moreover, in this case P = (0, 0) ∈ Q2 is the generator of

E(Kcyc), so X(E/Qcyc) is also a free Z3-module of rank 1. This means that

in this case the characteristic element of the dual Selmer group X(E/F∞) as

a Λ(G0)-module is γ̃0 − 1 viewed as an element of K1(Λ(G0)S∗).

2.5.2 The non-classical case

In this section we assume the �rst case of Proposition 2.5.2. Then we

have gE/Fn ≤ pn − 1 ≤ rE/Fn . Moreover, the characteristic power series for

Y (E/F cyc
n ) is T pn−1 for all n ≥ 1 [6]. If, in addition, E has a prime conductor,

Darmon and Tian [14] have some results in this direction, too. As in the

previous section we can identify Y (E/F∞) with a �nite index submodule

of Λ(H) ∼= Zp[[X]] as a Λ(H)-module. So we can de�ne f(X) similarly, ie.

f(X) = p−lγ̃pl if pl ∈ Y (E/F∞) ≤ Zp[[X]].

Lemma 2.5.12. Under the Hypotheses 1 and 2 and the �rst case of Propo-

sition 2.5.2, the following functional equation holds:

pn−1−1∏
j=0

f(ζ1+jp
pn − 1) = 1, (2.31)

where ζpn is an arbitrary primitive pnth root of unity (n ≥ 1 integer). In

particular f(ζp − 1) = 1, but f(0) is not necessarily 1, we only know that

f(0) ≡ 1 (mod p).
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Proof. As in the previous section we know that

pn−1−1∏
j=0

f(ζ1+jp
pn − 1)

is an eigenvalue of γ̃pn−1|Y (E/F∞)Hn⊗Qp and that γ̃pn−1
has the unique eigen-

value 1 when acting on Y (E/F cyc
n )⊗Qp, but the restriction homomorphism

from Y (E/F∞)Hn to Y (E/F cyc
n ) does have a kernel of rank 1 over Zp. So the

multiplicity of the eigenvalue 1 of γ̃pn−1|Y (E/F∞)Hn⊗Qp is at least pn − 1. On

the other hand, the numbers

pn−1−1∏
j=0

f(ζ1+jp − 1)

are eigenvalues of γ̃pn−1|Y (E/F∞)Hn⊗Qp for any ζ not necessarily primitive pn-

th root of unity as shown in the proof of Lemma 2.5.3. So at least all but

one of these numbers are 1 and if this expression is 1 for some primitive pkth

root of unity then it is also 1 for all the other primitive pk-th roots of unity

(1 ≤ k ≤ n). So the exception can only be the �rst root of unity 1 and the

result follows.

Proposition 2.5.13. If f(X) ∈ p−lZp[[X]] is a formal power series in the

form

f(X) =

p−2∏
i=0

γ̃i
0f0(X)γ̃−i

0

for some f0(X) ∈ p−lZp[[X]] satisfying f(0) = χ(γ̃) and

f0(X)f0(1/(X + 1)− 1) = ĝ(X)1−γ̃0

(
(X + 1)χ(γ̃0) − 1

X

)2

(2.32)

with a ĝ(X) in 1 +XZp[[X]] then the following are equivalent.

(i) It satis�es the condition (2.31).
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(ii) It is in Zp[[X]] and can be written in the form

f(X) = g(X)1−γ̃ (1 +X)χ(γ̃) − 1

X
,

where g(X) ∈ 1 +XZp[[X]].

Proof. It is easy to check that

NQp(ζpn )/Qp(ζp)

(
ζ

χ(γ̃)
pn − 1

ζpn − 1

)
=
NQp(ζpn )/Qp(ζp)

(
ζ

χ(γ̃)
pn − 1

)
NQp(ζpn )/Qp(ζp) (ζpn − 1)

= 1,

hence a function in the form

g(X)1−γ̃ (1 +X)χ(γ̃) − 1

X

satis�es the condition (2.31). Moreover, (1+X)χ(γ̃)−1
X

|X=0 = χ(γ̃) = f(0), so

f(X)

(
(1 +X)χ(γ̃) − 1

X
|X=0

)−1

satis�es the condition (i) in Corollary 2.5.9 because

p−2∏
i=0

γ̃i
0

(X + 1)χ(γ0) − 1

X
γ̃−i

0 =
(1 +X)χ(γ̃) − 1

X
, and

(1 +X)χ(γ̃) − 1

X

1/(1 +X)χ(γ̃) − 1

1/(X + 1)− 1
=

(
(X + 1)χ(γ̃0) − 1

X

)2

(X + 1)1−γ̃0 ,

hence it can be expressed in the form g(X)1−γ̃.

One gets the following Theorem the same way as Theorem 2.5.10.

Theorem 2.5.14. Under the Hypotheses 1 and 2 and the �rst case of Propo-

sition 2.5.2 Y (E/F∞) is a �nite index submodule of

Λ(G)
/

Λ(G)

(
γ̃ − (1 +X)χ(γ̃) − 1

X

)
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as a Λ(G)-module, which means that they represent the same element in the

Grothendieck group K0(MH(G)). The characteristic elements of Y (E/F∞)

and X(E/F∞) are

Y + 1− (1 +X)χ(γ̃) − 1

X
= γ̃ − (1 +X)χ(γ̃) − 1

X
and

pµE/K

(
Y + 1− (1 +X)χ(γ̃) − 1

X

)
= pµE/K

(
γ̃ − (1 +X)χ(γ̃) − 1

X

)
,

respectively, considered as elements of K1(Λ(G)S∗).

Proof. We would like to apply Proposition 2.5.13. The condition (2.32) fol-

lows from the existence of the map

X(E/F∞)
ϕ→ a1

Λ(G)(X(E/F∞)#)

with trivial kernel, and cokernel killed by X2 (We use Theorem 2.2.2 and

the fact there is only one prime in P1 and P2 is empty, and the local Tate

module is killed by X2 for this split multiplicative prime). So we only have

to show that f(0) = χ(γ̃) in this case. Since now we have a prime of split

multiplicative reduction for E ramifying in�nitely in this false Tate curve

extension, it follows from the proof of Proposition 2.2.1 that the kernel of

the corestriction homomorphism

Y (E/F∞)H → Y (E/Kcyc)

is the Pontryagin dual of Qp/Zp(−1) up to a �nite module, so its characteris-

tic element is T +1−χ(γ) where χ is the cyclotomic character. Furthermore,

as we saw in the proof of Lemma 2.5.3, f(0) is an eigenvalue of γ̃|Y (E/F∞)H
,

so f(0) = χ(γ̃).

Proposition 2.5.4 remains unchanged in this case. However, its corollary

is a bit di�erent from the one in Section 2.5.1 because in this case X(E/Kcyc)

has rank zero. By applying the Artin-formalism for Akashi-series we get the

following analogue of Corollary 2.5.5.
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Corollary 2.5.15. Under the Hypotheses 1 and 2 and the �rst case of Propo-

sition 2.5.2, the characteristic element of the Γ-module X(E/Q(µp, pn√
m)cyc)

is

ppnµE/K

n−1∏
j=0

(
(T + 1)pj − 1

)p−1

.

In particular if gE/Fn = rE/Fn then gE/Q(µp, pn√
m) = rE/Q(µp, pn√

m) = (p − 1)n,

the order of vanishing of the above formula at T = 0.

Remark. A similar computation shows that assuming the standing hypothe-

ses for this curve the characteristic element of Y (E/Q( pn√
m)cyc) is

n−1∏
j=0

(
(T + 1)pj − 1

)
.

As in the previous section if one looks at the possible actions of the

elements of order p− 1 of G0 on Y (E/F∞), one gets the following corollary.

Corollary 2.5.16. Under the Hypotheses 1 and 2 and the �rst case of Propo-

sition 2.5.2, Y (E/F∞) is a �nite index submodule of

Λ(GQ)
/

Λ(GQ)

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

)
as a Λ(GQ)-module, where γ̃0 is a lift of the topological generator γ0 of Γ0

to GQ, and χ is the cyclotomic character. So they represent the same ele-

ment in the Grothendieck group K0(MHQ(GQ)). The characteristic element

of Y (E/F∞) is

γ̃0 −
(X + 1)χ(γ0) − 1

X

considered as an element of K1(Λ(GQ)S∗Q
).

Proof. By comparing the action of γ̃p−1
0 and γ̃ it is easy to see that the

characteristic element is in the form

γ̃0 − α
(X + 1)χ(γ0) − 1

X
,
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where α is an element of �nite order in Z×
p . The constant α can also be

determined in the following way. It is easy to see that if Q ≤ k ≤ Q(µp) is

any intermediate �eld then the homology group

H0(Gal(F∞/k
cyc), X(E/F∞))

has rank 1 over Zp if the order of αχ(γ0) modulo p divides the degree of k

over Q, and rank 0 otherwise. On the other hand, the short exact sequence

0→ µp∞ → E[p∞]→ Qp/Zp → 0

and a little Kummer theory shows [6] that the restriction map from the above

homology group to the cyclotomic Selmer groupX(E/kcyc) has in�nite kernel

if and only if the group µp∞ is contained in the multiplicative group of the

localized �eld kcyc
w at a prime w above q in kcyc, where q is the unique prime

dividing m in P2. So αχ(γ0) and q have the same order modulo p, since

X(E/kcyc) has rank 0. Now q is a primitive root modulo p, since it is inert

in Q(µp). This means α can always be chosen 1.

The functional equation. As in the previous section we can deduce some

sort of functional equation for the characteristic element of the dual Selmer

group X(E/F∞). The only di�erence is that the characteristic element in

this case is not �xed by the automorphism # modulo the image of K1(Λ(G))

which means that the modules X(E/F∞) and Ext1
Λ(G)(X(E/F∞)#,Λ(G))

do not represent the same element in the Grothendieck group K0(MH(G)).

However, they are still pseudo-isomorphic and the characteristic elements

are conjugates under the action of (Λ(H)R)×. The functional equation is the

following

pµE/K

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

)#

= (2.33)

= − X

(X + 1)χ(γ0) − 1

(
X + 1

X2
pµE/K

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

)
X2

X + 1

)
γ̃−1

0

This means that the sign is negative as in the functional equation for the

complex L-function of curve the curve twisted by the representations ρn, ie.
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by all but �nitely many self-dual irreducible Artin representations of the false

Tate curve extension.

Proof of the equation (2.33). The right hand side of (2.33) equals

−pµE/K

(
X

(X + 1)χ(γ0) − 1

X + 1

X2
γ̃0

X2

X + 1
γ̃−1

0 − γ̃−1
0

)
=

= pµE/K

(
γ̃−1

0 −
X

(X + 1)χ(γ0) − 1

X + 1

X2

(
γ̃0

X2

X + 1
γ̃−1

0

))
=

= pµE/K

(
γ̃−1

0 −
X

(X + 1)χ(γ0) − 1

X + 1

X2

(
(X + 1)χ(γ0) − 1

)2
(X + 1)χ(γ0)

)
=

= pµE/K

(
γ̃−1

0 −
(X + 1)χ(γ0) − 1

X

X + 1

(X + 1)χ(γ0)

)
=

= pµE/K

(
γ̃−1

0 −
1

(X+1)χ(γ0) − 1

1
X+1
− 1

)
=

= pµE/K

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

)#

. (2.34)

This above form of the functional equation of the characteristic element

is what we get from section 2.1.3. However, we can formulate another form

of the functional equation in terms of section 2.2 which is more useful for the

analytic connections.

pµE/K

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

)#

=

= pµE/K

(
γ̃0 −

(X + 1)χ(γ0) − 1

X

) Frob−1
q −

(X+1)−q−1
1

X+1
−1

Frobq − (X+1)q−1
X

.

Indeed, we may choose γ̃0 to be Frobq because q is inert in the �eld K (hence

so is inKcyc), and rami�es totally in F∞/K
cyc, so its decomposition subgroup

is the whole Galois group Gal(F∞/Q) = G0. Moreover, χ(Frobq) = q.

We end this section by giving a numerical example illustrating our results.
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Example. Take the elliptic curve E = 17A1 given by the equation

y2 + xy + y = x3 − x2 − x− 14.

This has good ordinary reduction at the prime p = 7 and the calculations in

[17] show that it satis�es the conditions in the �rst case of Proposition 2.5.2

with m = q = 17. Since 17 is a primitive root modulo 7, in Corollary 2.5.16

α equals 1. This means that the characteristic element of the dual Selmer

group X(E/F∞) of this curve is

γ̃0 −
(X + 1)χ(γ0) − 1

X

as an element of K1(Λ(G0)S∗), since the µ-invariant vanishes.

2.6 On Vogel's counterexample

Coates, Schneider and Sujatha proved [10] that for any �nitely generated

torsion Λ(G)-module M there exist re�exive left ideals of Λ(G) and a Λ(G)-

injection
r⊕

i=1

Λ(G)/Li →M/M0

with pseudo-null cokernel, where M0 is the maximal pseudo-null submodule

of M . They asked whether the re�exive left ideals can always be chosen

principal. In the appendix of [39] there is an example of a nonprincipal

re�exive left ideal of Λ(G). That ideal was

L = Λ(G)

(
Q(G)

(
Y + 1− (X + 1)1+p − 1− p

X − p

)
∩ Λ(G)

)
,

where Q(G) denotes the formal skew power series ring (with the same ring-

automorphism and derivation as in Λ(G)) over the �eld of fractions of Λ(H).

It is shown in the Appendix of [39] that L contains a (skew) polynomial of

degree 2 in the variable Y . So Λ(G)/L is generated by the elements (1 + L)
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and (Y + 1 + L) over Λ(H). Moreover, the relation

(X − p)(Y + 1 + L) =
(
(X + 1)1+p − 1− p

)
(1 + L)

is satis�ed, therefore the map

ψ : Λ(G)/L → Zp[[X]]

Y + 1 + L 7→ (X + 1)1+p − 1− p

1 + L 7→ X − p

is an injective Λ(H)-homomorphism with a cokernel of order p. It is easy to

see that (X − p) divides ((X + 1)1+p − (1 + p)1+p) in Zp[[X]], so

ψ

(
(X + 1)1+p − (1 + p)1+p

X − p
(1 + L)− (Y + 1 + L)

)
= 1 + p− (1 + p)1+p.

Further,

(Y + 1)

(
(X + 1)1+p − (1 + p)1+p

X − p
− Y − 1

)
+

+Y + 1− (X + 1)1+p − (1 + p)1+p

X − p
=

= −
(
Y + 1− (X + 1)1+p − (1 + p)1+p

(X + 1)1+p − 1− p

)
×

×
(
Y + 1− (X + 1)1+p − 1− p

X − p

)
∈ L,

which means that if we push out the action of Λ(G) to Zp[[X]] via the map

ψ then

(Y + 1)(1 + p− (1 + p)1+p) = 1 + p− (1 + p)1+p,

which means Zp[[X]] with this action is isomorphic to the module Λ(G)/Y .

So there exists an injective Λ(G)-homomorphism with �nite cokernel between

Λ(G)/L and Λ(G)/Y and the characteristic element of Λ(G)/L is Y viewed

as an element of K1(Λ(G)S∗).

This means that there is still a hope that all Λ(G)-modules are pseudo-
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isomorphic to the direct sum of quotients of Λ(G) by principal ideals.
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Chapter 3

The GL2-extension

In this chapter we are going to deal with the GL2-extension associated to

elliptic curves.

Let E be an elliptic curve de�ned over Q and without complex multipli-

cation, and E[p∞] the group of all p-power division points on E. We de�ne

F∞ := Q(E[p∞]).

By the Weil pairing this �eld contains all the p-power roots of unity. Hence

Qcyc ⊂ F∞ and we put

G = Gal(F∞/Q), H = Gal(F∞/Qcyc), Γ = Gal(Qcyc/Q).

By a classical result of Serre [34], G can be identi�ed with an open subgroup

of

GL2(Zp) = Aut(E[p∞])

as E does not admit complex multiplication.

3.1 Finitely generated Zp-modules

Our goal in this section is to prove that the modules which are �nitely

generated over Zp represent the trivial element in the Grothendieck group

of the category MH(G). Our key lemma is a consequence of the work of
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Ardakov and Wadsley [2].

Lemma 3.1.1. Let H be an open subgroup of the group

Ĥ = {A ∈ GL2(Zp) | det(A)p−1 = 1}.

Then all �nite Ω(H)-modules represent the trivial element in the category

K0(Ω(H)).

Proof. This follows from Theorem B in [2] as all the p-regular elements have

centralizers of dimension at least 1 in H.

Now we can state the main result of this section.

Proposition 3.1.2. If M is a Λ(G)-module and it is �nitely generated

over Zp then it represents the trivial element in the Grothendieck group

K0(MH(G)).

Proof. We may assume that M is p-torsion free because its p-torsion part is

�nite and so represent the trivial element in K0(MH(G)). Moreover, we may

also assume that M is isomorphic to Zp with the trivial G-action on it, since

we can take the tensor product of exact sequences with M over Zp and it

remains exact since M is a �nitely generated free Zp-module. We can make

the tensor products Λ(G)-modules by the diagonal action and we get that

M is also trivial in K0(MH(G)).

Since G acts trivially on Zp, it su�ces to prove that Zp represents the

trivial element in K0(Λ(Ĥ)) because if we take the projective resolution of

Zp as a Λ(Ĥ)-module, then we can extend the action of Ĥ to an action of

GL2(Zp) to the whole projective resolution of Zp by taking the trivial action

of Γ̂ = GL2(Zp)/Ĥ. This works because we have

GL2(Zp) ∼=

{(
a 0

0 a

)
∈ GL2(Zp) | a ∈ 1 + pZp

}
× Ĥ.

Now the map from K0(Λ(Ĥ)) to K0(Ω(Ĥ)) sending a projective Λ(Ĥ)-

module P to the projective Ω(Ĥ)-module P/pP is an isomorphism (since
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the ideal generated by p is contained in the Jacobson radical of Λ(Ĥ)). Zp

is p-torsion free, therefore the class of Zp maps to Zp/pZp = Fp under this

map and we are done by lemma 3.1.1.

3.2 Pairings

In this section we are going to construct a pairing map

ϕ : X(E/F∞)→ Ext1(X(E/F∞)#,Λ(G)).

The method used is similar to the one in section 2.2. For this we will need

the following lemma which is a slight generalization of Proposition 1.3.1 of

Perrin-Riou [29] to this non-commutative situation.

Lemma 3.2.1. If the Λ(G)-module M lies in MH(G) then we have

Ext1
Λ(G)(M,Λ(G)) ∼= lim←−

L

Ext1
Λ(ΓL)(H0(HL,M),Λ(ΓL))

where L runs through the �nite Galois subextensions of F∞, HL is the Galois

group Gal(F∞/L
cyc), and ΓL equals Gal(Lcyc/L).

Proof. It is a theorem of Jannsen [26] that since ΓL is a �nite index subgroup

of Γ∗L := Gal(Lcyc/Q) we have

Exti
Λ(ΓL)(M,Λ(ΓL)) ∼= Exti

Λ(Γ∗L)(M,Λ(Γ∗L)).

Now since M is in MH(G) we have a long exact sequence

0→ Ext1
Λ(G)(M, IL)→ Ext1

Λ(G)(M,Λ(G))→

→ Ext1
Λ(G)(M,Λ(Γ∗L))→ Ext2

Λ(G)(M, IL)→ · · ·

induced by the natural surjection

Λ(G)→ Λ(Γ∗L)
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with kernel IL C Λ(G). Now the projective limit of Exti
Λ(G)(M, IL) is trivial

for i = 1, 2 since if l is any �xed element in IL and L ⊂ L′ large enough then

l is not in the image of the map

IL′ ↪→ IL.

So we obtain

Ext1
Λ(G)(M,Λ(G)) ∼= lim←−

L

Ext1
Λ(G)(M,Λ(Γ∗L)). (3.1)

On the other hand let P be the Λ(G)-projective cover of M with short exact

sequences

0→M1 → P →M → 0, and

0→M2 → H0(HL, P )→ H0(HL,M)→ 0.

Then by de�nition of M2 we have a short exact sequence

0→ H1(HL,M)→ H0(HL,M1)→M2 → 0.

Note that if N is any Λ(G)-module then we have a natural identi�cation

HomΛ(G)(N,Λ(Γ∗L)) = HomΛ(Γ∗L)(H0(HL, N),Λ(Γ∗L)).
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So we have the following commutative diagram with exact rows and columns

0 0y y
a0

Λ(Γ∗L)(MHL
) HomG(M,Λ(Γ∗L))y y

a0
Λ(Γ∗L)(PHL

) HomG(P,Λ(Γ∗L))y y
0 −−−→ a0

Λ(Γ∗L)(M2) −−−→ HomG(M1,Λ(Γ∗L)) −−−→ a0
Λ(Γ∗L)(H1(HL,M))y y

a1
Λ(Γ∗L)(MHL

) −−−→ Ext1
G(M,Λ(Γ∗L))y y

0 0
(3.2)

where for the sake of simplicity HomG, and ExtG denotes HomΛ(G), and

ExtΛ(G), respectively. Now since M is in MH(G), H1(HL,M) is a torsion

Λ(ΓL)-module and so its a0 vanishes. This means that in (3.2) all the modules

corresponding to each other in the two rows are isomorphic and so we have

a1
Λ(Γ∗L)(MHL

) ∼= Ext1
Λ(G)(M,Λ(Γ∗L)).

The result follows from the isomorphism (3.1).

Our main Theorem is the following.

Theorem 3.2.2. Let E be an elliptic curve without complex multiplication

and with good ordinary reduction at the prime p ≥ 5. Then there is a map

ϕ : X(E/F∞)→ Ext1(X(E/F∞)#,Λ(G))

such that Ker(ϕ) is �nitely generated over Zp (so it represents the trivial
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element in MH(G)) and Coker(ϕ) represents the same element in MH(G) as⊕
q|vq(jE)<0

Λ(G)⊗Λ(Gq) Tp(E)v.

Proof. As explained earlier we are going to take the projective limit of the

maps

X(E/Lcyc)
ϕ2,L−→ a1

Λ(ΓL)(X(E/Lcyc)#)
ϕ1,L−→ a1

Λ(ΓL)(H0(HL, X(E/F∞)#))

(where ϕ2 has been de�ned by Perrin-Riou [29]) with respect to �nite Galois

subextensions L ⊂ F∞ where HL := Gal(F∞/L
cyc) and ΓL := Gal(Lcyc/L).

Since by Lemma 3.2.1

lim←−
L

X(E/Lcyc) = X(E/F∞), and

lim←−
L

a1
Λ(ΓL)(H0(HL, X(E/F∞)#)) = a1

Λ(G)(X(E/F∞)#),

we certainly get a map

X(E/F∞)
ϕ−→ a1

Λ(G)(X(E/F∞)#)

where ϕ = limL(ϕ1,L ◦ ϕ2,L) and we only need to describe its kernel and

cokernel.

We shall begin with the investigation of ϕ1,L. Let R denote the set of

primes with potential multiplicative reduction for E together with the prime

p and let

Ju(L
cyc) :=

⊕
uL|u

H1(LuL
, E(LuL

))[p∞], and

Ju(F∞) := lim←−
L

Ju(L
cyc).

77



We will use the following fundamental diagram

0→ Sel(E/Lcyc) → H1(FR/L
cyc, E[p∞])→

⊕
u∈Rcyc

Ju(L
cyc)→ 0yrL

ygL

y⊕ hL,u (3.3)

0→ Sel(E/F∞)HL → H1(FR/F∞, E[p∞])HL →
⊕

u∈Rcyc

Ju(F∞)HL

to analyze the kernel and cokernel of the map

H0(HL, X(E/F∞)#)→ X(E/Lcyc)#.

By (3.3) and the snake lemma we have an exact sequence

0→ Ker(rL)→ Ker(gL)→
⊕

u∈Rcyc

Ker(hL,u)→ Coker(rL)→ Coker(gL).

On the other hand, by the in�ation-restriction exact sequence we have

Ker(gL) ∼= H1(HL, E[p∞]), and Coker(gL) ↪→ H2(HL, E[p∞]).

These cohomology groups are �nite, and their number of generators is also

bounded since the number of generators of HL is bounded and E[p∞] is

co�nitely generated (by 2 elements). So the projective limit of the Pontryagin

dual of the kernel and cokernel of gL are �nitely generated over Zp and so

represent the trivial element in K0(MH(G)) by Proposition 3.1.2. Now we

have a quasi-exact sequence (up to �nite modules with bounded number of

generators)

0→
⊕
u∈R

Hom(Ker(hL,u),Qp/Zp)
# →

→ H0(HL, X(E/F∞)#)→ X(E/Lcyc)# → 0
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and since Ext2
Λ(Γ)(X(E/Lcyc)#) is trivial we get another quasi-exact sequence

0→ a1
Λ(Γ)(X(E/Lcyc)#)→ a1

Λ(Γ)(H0(HL, X(E/F∞)#))→

→
⊕
u∈R

a1
Λ(Γ)(Hom(Ker(hL,u),Qp/Zp)

#)→ 0. (3.4)

If u does not divide p then by Shapiro's lemma we obtain

Ker(hL,u) =
⊕
uL|u

H1(HL,w, E(F∞,w))[p∞]

and by a standard argument using Kummer theory [8, 25] we have that if w

does not divide p then

H1(HL,w, E(F∞,w))[p∞] ∼= H1(HL,w, E(F∞,w)[p∞]).

Moreover, E has potential multiplicative reduction at the primes in R \ {p},
and for some �nite subextension L0 of F∞/Q it becomes split multiplicative

[8]. Further, as we are taking inverse limit we may assume that L contains

L0, so we have a short exact sequence

0→ A→ E[p∞]→ B → 0

where as Gal(F∞/L)w-modules A is isomorphic to µp∞ and B is isomorphic to

Qp/Zp. However, they have an additional structure of a Gal(F∞/Q)u-action

which group is slightly bigger than Gal(F∞/L)w. By taking HL,w-homology

for L su�ciently large we get the exact sequence

0→ B → H1(HL,w, A)→ H1(HL,w, E[p∞])→ H1(HL,w, B)→ 0,

and noting that H1(HL,w, µp∞) ∼= Qp/Zp as Gal(F∞/L)w-modules we obtain

H1(HL,w, E[p∞]) ∼= H1(HL,w, B) ∼= Hom(HL,w, B).

Moreover, since Gal(F∞/Q)u acts on HL,w via the cyclotomic character we
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have

Hom(HL,w, B) ∼= B(−1),

where M(−1) denotes the (−1)st Tate twist of the Galois module M . On

the other hand if u divides p then Ker(hL,u) is �nite and has bounded order

[25, 8], so it is negligible. Therefore from (3.4) we obtain the quasi-exact

sequence

0→ a1
Λ(Γ)(X(E/Lcyc)#)→ a1

Λ(Γ)(H0(HL, X(E/F∞)#))→

→
⊕

u∈R\{p}

Zp(−1)→ 0

as we have

a1
Λ(Γ)(Hom(Qp/Zp(−1),Qp/Zp)

#) ∼= Zp(−1).

Now we turn to the investigation of ϕL,2. The kernel of ϕL,2 is �nite

and bounded by Hom(H1(L,E[p∞]),Qp/Zp), so its projective limit is �nitely

generated over Zp and so trivial in K0(MH(G)). However, the cokernel of

ϕL,2 is [23, 29]

Hom

 lim−→
k→∞

⊕
u∈R\{p}

⊕
uL|u

H1(Γk, E(Lcyc
uL

)[p∞]),Qp/Zp

 (3.5)

up to �nite modules bounded by Hom(H i(L,E[p∞]),Qp/Zp) for (i = 1, 2).

Now for L large enough (so that all potentially multiplicative primes become

split multiplicative) we have the exact sequence

0→ µp∞ → E(Lcyc
uL

)[p∞]→ Z/prLZ→ 0.

By the long exact sequence of Γk-cohomology we obtain H1(Γk, E(Lcyc
uL

)) ∼=
Z/prLZ independently of k where rL tends to in�nity as the �eld L grows

since F∞ contains the whole E[p∞]. So the projective limit of each local

factor in (3.5) is Zp.

We saw that the cokernel of lim←−L
ϕL,1 is the direct sum of local terms

which are isomorphic to Zp(−1) and the cokernel of lim←−L
ϕL,2 is the sum of
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local Zp's up to modules �nitely generated over Zp. The kernels of both are

�nitely generated over Zp. So the statement follows by the exact sequence

0→ Zp → Tp(E)v → Zp(−1)→ 0

as G permutes the primes above a prime q.

3.3 Functional equations

In this section we are going to investigate the consequences of Theorem

3.2.2 on the characteristic element of the dual Selmer groupX(E/F∞). What

one would expect is a functional equation relating the characteristic element

ξX(E/F∞) and ξ
#
X(E/F∞). For this we would need that the characteristic ele-

ments ofX(E/F∞)# and a1(X(E/F∞)#) are the same. (Note thatX(E/F∞)

is a right module and a1(X(E/F∞)#) is a left module over Λ(G).) This was

more or less trivial in the false Tate curve case, however, in the GL2-case one

has to be a bit more careful.

3.3.1 The negligibility of higher extension groups

The following general proposition is the �rst step towards proving that

the modules X(E/F∞)# and a1(X(E/F∞)#) have the same characteristic

element. It is a generalization of Proposition 2.1.10.

Proposition 3.3.1. Let M be in the category MH(G). Then we have the

following relation connecting the characteristic element ξM of M and the

characteristic elements ξai(M) of a
i(M) for 1 ≤ i ≤ 5.

ξM =
5∏

i=1

ξ
(−1)i+1

ai(M)
. (3.6)

Proof. Because of the long exact sequence of ExtΛ(G)(·,Λ(G)) it is enough

to prove the statement separately for p-torsion modules and modules �nitely

generated over Λ(H).
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For p-torsion modules it su�ces to show the statement for projective

Ω(G)-modules. For these modules we only have �rst extension groups. Fur-

thermore, if M is a projective Ω(G)-module then a1(M) ∼= Hom(M,Ω(G))

and so have the same characteristic element as M using the formula for the

characteristic element of p-torsion modules [1].

Now if M is �nitely generated over Λ(H) then its characteristic element

is in the image of the map [7, 36]

Λ(G)×S → K1(Λ(G)S∗).

Moreover, any element in Λ(G)S can be written in the form x1x
−1
2 with x1, x2

in Λ(G). Now it can be easily seen that

a1(Λ(G)/Λ(G)xi) ∼= Λ(G)/xiΛ(G) for i = 1, 2

and their higher extension groups vanish as these modules have a projective

resolution of length 1. So the equation (3.6) is true for modules Mi with

characteristic elements xi and therefore it is also true for M with character-

istic element x1x
−1
2 as both sides of (3.6) are multiplicative with respect to

short exact sequences.

This above lemma shows that we only need to prove the vanishing of the

characteristic elements of ai(X(E/F∞)#) for i ≥ 2 which is equivalent to

that they represent the trivial element in K0(MH(G)). The key observation

is that since we have a map

ϕ# : X(E/F∞)# → Ext1(X(E/F∞),Λ(G))

constructed in Theorem 3.2.2 we can relate the extension functors of the

modules X(E/F∞)# and Ext1(X(E/F∞),Λ(G)). This is why the following

lemma is of interest to us.

Lemma 3.3.2. Exti(Ext1(X(E/F∞),Λ(G)),Λ(G)) is in the category C3 for

i ≥ 2.
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Proof. Let

0→ P5 → · · · → P0 → X(E/F∞)→ 0

be the projective resolution of X(E/F∞) as a Λ(G)-module (it has length

5 at most as G has dimension 4 as a p-adic Lie group). For the sake of

simplicity let us introduce the notations

ai(N) := Exti
Λ(G)(N,Λ(G)), and

N∗ := HomΛ(G)(N,Λ(G))

for any �nitely generated Λ(G)-module N . Moreover, let Mi be the image

of the map from Pi+1 to Pi for i = 0, . . . , 4. Now since X(E/F∞) has trivial

Ext0 we have a short exact sequence

0→ P ∗
0 →M∗

0 → a1(X(E/F∞))→ 0.

By taking long exact sequence of Ext(·,Λ(G)) and noting that P ∗
0 is a pro-

jective module we obtain ai(a1(X(E/F∞))) ∼= ai(M∗
0 ) for i ≥ 2. By using

the short exact sequence

0→M1 → P1 →M0 → 0

we get an exact sequence

0→M∗
0 → P ∗

1 →M∗
1 → a2(X(E/F∞))→ 0 (3.7)

that we can split up into two short exact sequences

0→M∗
0 → P ∗

1 → A→ 0, and

0→ A→M∗
1 → a2(X(E/F∞))→ 0 (3.8)

with some Λ(G)-moduleA. From the �rst exact sequence in (3.8) and because

P ∗
1 is a projective module we get that

ai(a1(X(E/F∞))) ∼= ai(M∗
0 ) ∼= ai+1(A).
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And from the second exact row we get a long exact sequence

· · · → ai+1(M∗
1 )→ ai+1(A)→ ai+2(a2(X(E/F∞)))→ · · · (3.9)

On the other hand, similarly to (3.7) and (3.8) we have two short exact

sequences

0→M∗
1 → P ∗

2 → B → 0, and

0→ B →M∗
2 → a3(X(E/F∞))→ 0 (3.10)

with some Λ(G)-module B. So by the same trick ai+1(M∗
1 ) ∼= ai+2(B) (with

i ≥ 1, although, we only need it for i ≥ 2) and we have a long exact sequence

· · · → ai+2(M∗
2 )→ ai+2(B)→ ai+3(a3(X(E/F∞)))→ · · · (3.11)

Now ai+2(M∗
2 ) vanishes for i ≥ 2 because as explained above this extension

group is isomorphic to ai+3(C) where C is de�ned by the short exact sequence

0→ C →M∗
3 → a4(X(E/F∞))→ 0,

and even a5(C) equals 0. Indeed, since C is torsion-free as a module over

the Iwasawa algebra of a pro-p normal subgroup G′ of G as so is M∗
3 , its

projective resolution as a Λ(G′)-module has length at most 4 and so its 5th

extension functor vanishes and we have [26]

Exti
Λ(G)(C,Λ(G)) = Exti

Λ(G′)(C,Λ(G′)).

By (3.11) this means that ai+2(B) ∼= ai+3(a3(X(E/F∞))). So replacing iso-

morphic modules in (3.9) we get a long exact sequence

→ ai+3(a3(X(E/F∞)))→ ai(a1(X(E/F∞)))→ ai+2(a2(X(E/F∞)))→ · · ·

Now since Λ(G) is Auslander regular [37, 38], we get that the �rst 3 extension

groups of ai+3(a3(X(E/F∞))) and ai+2(a2(X(E/F∞))) vanish for i ≥ 2 which

means they are in the category C3 and then so is ai(a1(X(E/F∞))).
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The following is a slight generalization of Lemma 3.1.1. When a p-adic

Lie group is commutative, pseudo-null Iwasawa-modules have trivial charac-

teristic elements. However, one of the biggest di�culties of non-commutative

Iwasawa-theory is that pseudo-null modules (those lying in C1) no longer rep-

resent trivial elements in the Grothendieck group of the category MH(G).

Contrarily, for this GL2-case we do have a positive statement in this direction.

Lemma 3.3.3. Any element in the category MH(G)∩C3 represents the trivial

element in the Grothendieck group K0(MH(G)).

Proof. At �rst we prove the statement for p-torsion modules with the same

property. By the formula for the characteristic element of p-torsion modules

[1] we only need to prove that for such modules their G-Euler characteristics

vanish. These modules have dimension at most 1 as Ω(G)-modules (as their

dimension is at most 1 as Λ(G)-modules and these dimensions are equal)

and so their Euler characteristics is 1 because in GL2(Zp) every p-regular

element has at least a 2-dimensional centralizer in GL2(Zp) and it is proven

by Wadsley and Ardakov [2] that if the dimension of the centralizer of all

p-regular elements in a group is bigger than the dimension of a module then

the module has trivial Euler characteristics.

So it remains to prove the statement for modules M without p-torsion.

Now these modules are �nitely generated over Zp. Indeed, their image in

K0(Ω(G)) under the map sending projective modules P to P/pP is on one

hand equal to M/pM (since it has no p-torsion) and on the other hand this

is a 0-dimensional Ω(G)-module (as its ai vanishes for 0 ≤ i ≤ 3) and so

�nite because both conditions are equivalent to the Poincaré series of M

being a polynomial [2]. Now M/pM is �nite which means that M is �nitely

generated over Zp and so it has trivial characteristic element by Proposition

3.1.2.

The above lemma leaves open the following natural question.

Problem 1. Is there a module in the category MH(G)∩C2 which represents

a nontrivial element in the Grothendieck group K0(MH(G))?
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Now we have established the necessary tools to our main goal in this

section.

Proposition 3.3.4. Let E be an elliptic curve without complex multiplication

and with good ordinary reduction at the prime p ≥ 5. Then the characteristic

element of Ext1(X(E/F∞)#,Λ(G)) is the same as the characteristic element

of X(E/F∞)#.

Proof. By Proposition 3.3.1 we only need to check that the extension groups

Exti(X(E/F∞)#,Λ(G)) have trivial characteristic element for any i ≥ 2. By

Theorem 3.2.2 (and taking inverted action) we have a map

ϕ# : X(E/F∞)# → Ext1(X(E/F∞),Λ(G))

such that its kernel has trivial characteristic element and its cokernel is equiv-

alent to ⊕
q|vq(jE)<0

Λ(G)⊗Λ(Gq) Tp(E)v#.

in K0(MH(G)). Now Tp(E)v# is a free Zp-module of rank 2 and Λ(G) is a

�at Λ(Gq)-module, so

Λ(G)⊗Λ(Gq) Tp(E)v#.

only has a nontrivial Ext2 and its higher and lower Ext functors are trivial,

since Tp(E)v# is pseudo-null Λ(Gq)-module of projective dimension 2. We

are done by Lemmata 3.3.2, and 3.3.3, and the long exact sequence of the

functor Ext(·,Λ(G)).

3.3.2 Functional equation of the characteristic element

In order to prove a functional equation for the characteristic element of

X(E/F∞) we need to construct the characteristic elements of the modules

Λ(G)⊗Λ(Gq) Tp(E)v (3.12)

for each prime q in Q with potentially multiplicative reduction for E. It can

be easily seen that the characteristic element of (3.12) is the same as the
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image of the characteristic element of Tp(E)v under the natural map

K1(Λ(Gq)Sq)→ K1(Λ(G)S)

where Sq is the canonical Ore-set in the Iwasawa algebra Λ(Gq) (see section

1.2.2). So from now on we focus on determining the characteristic element of

Tp(E)v as a Λ(Gq)-module for each q potentially multiplicative prime for E.

The reduction type becomes split multiplicative over a �nite subextension of

F∞ [8], hence there exists an open subgroup I
(1)
q ≤o Iq of the inertia subgroup

such that we have an exact sequence of Λ(Gq)-modules

0→ Aq → Tp(E)v → Bq → 0, (3.13)

where both Aq and Bq are free Zp-modules of rank 1 and I
(1)
q acts trivially on

them. Indeed, I
(1)
q can be chosen to equal the (unique) pro-p Sylow subgroup

of Iq and Aq := H0(I
(1)
q , Tp(E)v) is a Λ(Gq)-submodule of Tp(E)v since I

(1)
q

is normal in Gq as it is a characteristic subgroup of the normal subgroup Iq.

In fact by the theory of the Tate curve we have

(i) If E has multiplicative reduction at q then Iq = I
(1)
q .

(ii) If E has additive (but potentially multiplicative) reduction at q then

Iq/I
(1)
q = 2.

Moreover, because of the Tate duality of the Galois-representation Tp(E)v,

we have the following isomorphisms of Λ(Gq)-modules.

Aq
∼= Bq(1),

Bq(2) ∼= Hom(Bq,Zp), and

Aq
∼= Hom(Aq,Zp),

where M(i) denotes the ith Tate twist of a Galois-module M . We de�ne the

module Cq by the exact sequence of Λ(Gq)-modules

0→ Xq

(
Aq ⊗Zp Λ(I(1)

q )
)
→ X−1

q

(
Aq ⊗Zp Λ(I(1)

q )
)
→ Cq → 0,
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where Xq = iq − 1 and iq is a topological generator of the group I
(1)
q
∼= Zp.

Then Cq represents the same element in the Grothendieck group K0(MH(G))

as Tp(E)v since we have an exact sequence

0→ Aq → Cq → Bq → 0

similar to (3.13) as Aq and Bq by the above properties satisfy the exact

sequences

0→ Xq

(
Aq ⊗Zp Λ(I(1)

q )
)
→ Aq ⊗Zp Λ(I(1)

q )→ Aq → 0,

0→ Aq ⊗Zp Λ(I(1)
q )→ X−1

q

(
Aq ⊗Zp Λ(I(1)

q )
)
→ Bq → 0.

Now Aq
∼= Hom(Aq,Zp) hence we have

Aq ⊗Zp Λ(I(1)
q ) ∼= Hom(Aq ⊗Zp Λ(I(1)

q ),Λ(I(1)
q )).

This means that the characteristic element βq of Aq ⊗Zp Λ(I
(1)
q ) satis�es the

functional equation β#
q = εqβq with an εq ∈ K1(Λ(Gq)). Moreover, we have

the following lemma.

Lemma 3.3.5. The characteristic element of the Λ(Gq)-module Aq⊗ZpΛ(I
(1)
q )

is

βq =

1 + eqFrobq (non-split multiplicative reduction at q)

1− eqFrobq otherwise,

where eq is the idempotent element in Λ(Iq) ⊂ Λ(Gq) corresponding to the

projective module

Pq := Λ(Gq)⊗Λ(Iq) (Aq ⊗Zp Λ(I(1)
q )).

Moreover, e#q = eq.

Proof. Indeed, Frobq acts on Aq trivially if the reduction is split multiplica-

tive over the �eld where multiplicative reduction realizes, and by −1 if the
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reduction is non-split multiplicative. So

Aq ⊗Zp Λ(I(1)
q ) ∼= Pq/Pq(1± Frobq) ∼= Λ(Gq)/Λ(Gq)(1± eqFrobq)

and the �rst statement of the result follows. For the second statement note

that

Aq ⊗Zp Λ(I(1)
q ) ∼= Hom(Aq ⊗Zp Λ(I(1)

q ),Λ(I(1)
q )),

so they have the same idempotent element.

Remark. It can be easily seen that

εq = 1 + eq(Frob−1
q − 1) if βq = 1 + eqFrobq, and

εq = 1− eq(Frob−1
q + 1) if βq = 1− eqFrobq.

On the other hand the characteristic element of

X±1
q

(
Aq ⊗Zp Λ(I(1)

q )
)

is X±
q βqX

∓
q . Moreover, as # reverses the order of multiplication,

(
XqβqX

−1
q

)#
=

1
1

Xq+1
− 1

β#
q

(
1

Xq + 1
− 1

)
=
Xq + 1

Xq

εqβq
Xq

Xq + 1

is also a characteristic element for the module

X−1
q

(
Aq ⊗Zp Λ(I(1)

q )
)

because εq and Xq + 1 are in K1(Λ(Gq)) and so they map to the trivial

element in K0(MH(G)). Putting

αq :=

(
XqβqX

−1
q

)#
XqβqX−1

q

(3.14)

and denoting its image under the map

K1(Λ(Gq)S∗q )→ K1(Λ(G)S∗)
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by the same letter we have

∂G(αq) ∼= Λ(G)⊗Λ(Gq) Tp(E)v. (3.15)

So we obtain the following

Corollary 3.3.6. Let E be an elliptic curve without complex multiplication

and with good ordinary reduction at the prime p ≥ 5 and assume that the

dual Selmer X(E/F∞) over the the GL2-extension F∞ = Q(E[p∞]) is in

the category MH(G). Then the characteristic element ξX(E/F∞) of the Λ(G)-

module X(E/F∞) in the group K1(Λ(G)S∗) satis�es the functional equation

ξ#
X(E/F∞) = ξX(E/F∞)ε0(X(E/F∞))

∏
q∈R\{p}

αq (3.16)

where the modifying factors αq are de�ned in (3.14), ε0(X(E/F∞)) is in

K1(Λ(G)) and R is the set of rational primes at which the elliptic curve has

potentially multiplicative reduction. Moreover, we have αqα
#
q = 1 for each q

in R.

Proof. We use Theorem 3.2.2 and the fact that two elements in K1(Λ(G)S∗)

de�ne the same class in the Grothendieck group K0(MH(G)) if and only

if they di�er by an element in K1(Λ(G)). The characteristic element of

Λ(G)⊗Λ(Gq) Tp(E)v is αq, and

αqα
#
q =

(
XqβqX

−1
q

)#
XqβqX−1

q

((
XqβqX

−1
q

)#
XqβqX−1

q

)#

= 1.

3.4 Connections to the analytic side

In this section we investigate the compatibility of Corollary 3.3.6 with the

GL2 Main Conjecture [7] for elliptic curves without complex multiplication

and the conjectural functional equation of the p-adic L-function. We will

also investigate its consequences towards the parity conjecture.
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3.4.1 Compatibility up to p-adic units

Let us recall at �rst the Main Conjecture over the GL2-extension.

Let R0 denote the set of rational primes at which E has potentially mul-

tiplicative reduction. Further, put R := R0∪{p}. The conjecture concerning
the existence of a p-adic L-function over the GL2-extension is the following

special case of Conjecture 1.3.2.

Conjecture 3.4.1 (Conjecture 5.7 in [7]). Assume that p ≥ 5 and that E

has good ordinary reduction at p. Then there exists LE in K1(Λ(G0)S∗Q
) such

that, for all Artin representations τ of G0, we have LE(τ) 6=∞, and

LE(τ ∗) =
LR(E, τ, 1)

Ω+(E)d+(τ)Ω−(E)d−(τ)
· εp(τ) ·

Pp(τ
∗, b−1

p )

Pp(τ, c−1
p )
· b−fτ

p ,

where εp(τ) denotes the local ε-factor at p attached to τ , and pfτ is the p-part

of the conductor of τ .

The Main Conjecture of the Iwasawa theory for elliptic curves without

complex multiplication over the GL2-extension is the following (see also Con-

jecture 1.3.3).

Conjecture 3.4.2 (Conjecture 5.8 in [7]). Assume that p ≥ 5, E has good

ordinary reduction at p, and X(E/F∞) belongs to the category MH0(G0).

Granted Conjecture 3.4.1, the p-adic L-function LE in K1(Λ(G0)S∗Q
) is a

characteristic element of X(E/F∞).

The only evidence known so far supporting Conjecture 3.4.2 is that it

is true whenever E admits complex multiplication and X(E/F∞) is in the

category MH(G) [7], [41], and [32].

In order to investigate the connections between Corollary 3.3.6 and Con-

jecture 3.4.2 we need the values of the local factors αq at Artin representa-

tions.

Proposition 3.4.3. Let τ be an Artin representation of the Galois group

G = Gal(F∞/Q). Then we have

αq(τ) = εq

(
τ

(1)
Gq

) Pq(E, τ, q
−1)

Pq(E, τ ∗, q−1)
, (3.17)
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where τ
(1)
Gq

is the maximal subrepresentation of the restriction of τ to the

decomposition subgroup Gq of G on which the eigenvalues of the generator iq

of I
(1)
q are not equal to 1.

Proof. As both sides of (3.17) depend only on τGq and are multiplicative

with respect to direct sum of Artin representations we only need to prove

the statement separately for Artin representations τGq with eigenvalues of

τGq(iq) being 1 and di�erent from 1.

If 1 is not an eigenvalue of τGq(iq) then the image of Xq = iq − 1 under

τGq is invertible. This means that τGq maps βq and XqβqX
−1
q to conjugate

matrices and so

αq(τGq) =
(XqβqX

−1
q )#(τGq)

(XqβqX−1
q )(τGq)

=
β#(τGq)

β(τGq)
= εq(τGq).

On the other hand, in this case Pq(E, τ, q
−1) = Pq(E, τ

∗, q−1) = 1 as (Tp(E)v⊗
τ)Iq is trivial. Therefore the statement is true whenever 1 is not an eigenvalue

of τGq(iq).

Now let τGq(iq) be equal to the identity matrix as this is the case when

all its eigenvalues are equal to 1. It is enough to prove that

(XqβqX
−1
q )#(τGq) =

(
Xq + 1

Xq

β#
q

Xq

Xq + 1

)
(τGq) = Pq(E, τ, q

−1)

since (XqβqX
−1
q )(τGq) = (XqβqX

−1
q )#(τ ∗Gq

). Now(
Xq + 1

Xq

β#
q

Xq

Xq + 1

)
(τGq) =

=

(
Xq + 1

Xq

(1± eqFrob−1
q )

Xq

Xq + 1

)
(τGq) =

= det(1± τGq(X
−1
q eqXq)τGq(

(Xq + 1)1/q − 1

Xq

)τGq(Frob−1
q ) | WτGq

) =

= det(1± τGq(eq)q
−1τGq(Frob−1

q ) | WτGq
)

as X−1
q eqXq = eq since Iq is commutative. Moreover, eq is the idempotent

element in Λ(Iq) ⊂ Λ(Gq) corresponding to the projective cover of Aq. This
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means that�using a suitable basis�τGq(eq) is a diagonal matrix with entries

0 or 1 and the 1's correspond to the generators of the subspace W ′
τGq

of WτGq

on which Iq/I
(1)
q acts the same way as on Tp(E)vI

(1)
q . Now by the self-duality

of the Galois representation Aq this space is spanned by the vectors occuring

in (Tp(E)v ⊗WτGq
)Iq . Hence we have

det(1± τGq(eq)q
−1τGq(Frob−1

q ) | WτGq
) =

= det(1± q−1τGq(Frob−1
q ) | W ′

τGq
) =

= det(1− q−1Frob−1
q | (Tp(E)v ⊗WτGq

)Iq) = Pq(E, τ, q
−1)

because we have the equality

(Tp(E)v ⊗WτGq
)Iq = (Tp(E)vI

(1)
q ⊗W I

(1)
q

τGq
)Iq/I

(1)
q

and Frob−1
q acts on Tp(E)vI

(1)
q by ∓1. The statement follows.

Remarks. 1. It is easy to see that the part of the statement of Proposi-

tion 2.4.3 dealing with the primes of split multiplicative reduction is a

special case of this above Proposition. The (potentially) good primes,

however, do not ramify in�nitely in this GL2-extension, that is why we

do not deal with them in this chapter.

2. As in section 2.4.2 the above Proposition shows that the functional

equation of the characteristic element of the dual Selmer is compatible

with conjectural functional equation of the p-adic L-function up to p-

adic units.

3.4.2 Root numbers

In this section we are going to investigate the sign in the functional equa-

tion of the characteristic element when we substitute a self-dual Artin rep-

resentation τ . We assume that τ is realized over O, the ring of integers of

a �nite extension L of Qp with maximal idealM. Moreover, let Wτ be the

O-representation space of τ . We de�ne the following quantities.
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(i) rE(τ) := the multiplicity of τ in E(F ) ⊗ L where τ factors through

Gal(F/Q);

(ii) sE(τ) := the O-corank of Sel(twτ (E)/Q) which is by de�nition the

Selmer group associated to the Galois representation Tp(E)⊗Zp Wτ ;

(iii) λE(τ) := the O-rank of the dual Selmer X(twτ (E)/Qcyc);

(iv) wE(τ) := the analytic root number associated to the complex L-function

L(E, τ, s).

The parity conjecture�which is a consequence of the generalized Birch�

Swinnerton-Dyer conjecture�asserts that

(−1)rE(τ) = (−1)sE(τ) = (−1)λE(τ) = wE(τ) (3.18)

for all irreducible self-dual Artin representations τ .

Our main goal in this section is to prove some special cases of this con-

jecture when τ factors through the GL2-extension associated to the elliptic

curve E. The strategy is to relate the sign in the functional equation of

the characteristic element of X(E/F∞) to these quantities. We substitute

the self-dual Artin representation τ into (3.16) in order to get a functional

equation of the twisted Akashi-series of X(E/F∞) by τ . Whenever we have

a functional equation

f(1/(T + 1)− 1) = εf (T )f(T )

in the ring Qp ⊗ O[[T ]] with εf in O[[T ]]× we can de�ne its sign by the

reduction of εf (0) modulo the maximal idealM. Moreover, it is easy to see

that this sign is equal to (−1)deg(g) when we decompose f by the Weierstraÿ-

preparation theorem in the form f(T ) = pku(T )g(T ) where k is an integer,

u(T ) is in O[[T ]]×, and g(T ) is a distinguished polynomial of degree deg(g).

Further, the roots of g(T ) are in pairs (z, 1/(z + 1)− 1) except for the root

T = 0 so deg(g) has the same parity as its order of vanishing at T = 0.

Note that any irreducible self-dual Artin representation admits a non-

degenerate pairing on its representation space. This pairing can either be
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orthogonal or symplectic and we call then the representation itself orthogo-

nal or symplectic, respectively. The following theorem of Greenberg makes

orthogonal representations easier to handle. We will use this later on.

Theorem 3.4.4 (Greenberg [21]). Let τ be an orthogonal Artin representa-

tion of the group G. Then the order of vanishing of the characteristic power

series of the module X(twτ (E)/Qcyc) has the same parity as the rank of the

dual Selmer X(twτ (E)/Q).

The following proposition shows that the sign in the functional equation

of the characteristic element of the dual Selmer X(E/F∞) naturally contains

all the information about the signs in the residue functional equations of

the characteristic elements of the twisted dual Selmers over the cyclotomic

extension.

Proposition 3.4.5. Let τ be a self-dual Artin representation of the group

G. Then we have

ε0(X(E/F∞))(τ)
∏
q∈R0

αq(τ) ≡ (−1)ordT=0ξX(twτ (E)/Qcyc) = (−1)λE(τ) (mod M)

(3.19)

where ξX(twτ (E)/Qcyc) is the characteristic power series (in O[[T ]]) of the Pon-

tryagin dual of the Selmer group Sel(twτ (E)/Qcyc). This is the sign in the

functional equation we get when we substitute τ into the functional equation

of ξX(E/F∞).

Proof. The sign in the functional equation of ξX(E/F∞)(τ) is by de�nition the

reduction of the left hand side of equation (3.19) modulo the maximal ideal

M of O. So it su�ces to prove the �rst statement.

The value of an element ξ in K1(Λ(G)S∗) at the Artin representation τ is

by de�nition

ϕ(Φ′
τ (ξ)) ∈ O

whenever it is de�ned, and ∞ otherwise (see section 1.2.4). Moreover, by

Lemma 3.7 in [7] Φ′
τ (ξX(E/F∞)) is the Akashi series of the module X(E/F∞)⊗

Wτ which is isomorphic to the module X(twτ∗(E)/F∞) = X(twτ (E)/F∞) by
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Lemma 3.4 in [6]. As the higher homology groups Hi(H,X(twτ (E)/F∞)) for

i ≥ 1 are p-torsion by Lemmata 3.9 and 5.3 in [7] this Akashi series actually

lies in O[[T ]][1/p]. The sign in question is

(−1)ordT=0AkO(X(twτ (E)/F∞)).

Indeed, the sign in a functional equation satis�ed by an element f(T ) in

O[[T ]][1/p] relating f(T ) and f(1/(T + 1) − 1) equals −1 to the order of

vanishing of the power series at T = 0 as all the other roots of the power

series are in pairs (z, 1/(z + 1)− 1).

Since the characteristic elements for p-torsion modules are powers of p

and these do not vanish at T = 0 the order of vanishing of the Akashi

series of X(twτ (E)/F∞) equals the order of vanishing of the characteristic

power series of X(twτ (E)/F∞)H at T = 0. On the other hand we have the

restriction homomorphism

X(twτ (E)/F∞)H → X(twτ (E)/Qcyc)

with �nite cokernel. The characteristic power series of the kernel of this

homomorphism is Φτ (XqβqX
−1
q β−1

q ) and it does not vanish at T = 0. Indeed,

otherwise τ(Frobq) would not have �nite order (as it would have an eigenvalue

equal to q−1, the inverse of the eigenvalue of Frobenius acting on the kernel

of the untwisted restriction homomorphism) which is impossible. The result

follows.

Now we turn to the description of ε0(X(E/F∞)). Let {Pi | 1 ≤ i ≤ r}
be the the set of indecomposable projective Λ(H)-modules. These projective

modules correspond to the irreducible �nite dimensional modular representa-

tions of H in characteristic p. Further, we choose orthogonal idempotents ePi

in Λ(H) such that Pi = Λ(H)ePi
. These are lifts of orthogonal idempotents

of the semisimple artinian ring Λ(H)/Jac(Λ(H)) where Jac(Λ(H)) is the Ja-

cobson radical of the Iwasawa algebra Λ(H). These lifts exist by Theorem 6.7

in Volume I of [13] as Λ(H) is complete with respect to its Jac(Λ(H))-adic

�ltration�in other words it is a complete semi-local ring.
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Proposition 3.4.6. Let [X(E/F∞)/X(E/F∞)(p)] =
∑r

i=1 ni[Pi] be the de-

composition of the class of X(E/F∞)/X(E/F∞)(p) in the Grothendieck group

K0(Λ(H)) where ni ∈ Z. Then for each self-dual Artin representation τ of

G over O, the ring of integers of a �nite extension of Qp we have

ε0(X(E/F∞))(τ) ≡
r∏

i=1

(1− 2ePi
)(τ)ni

∏
q∈R0

εq(χq,cycτ) (mod M)

where χq,cyc is the character of Hq acting on µp∞ andM is the maximal ideal

of O.

Proof. By Corollary 3.3.6 we have

ξ#
X(E/F∞) = ξX(E/F∞)ε0(X(E/F∞))

∏
q∈R

αq, so(
ξX(E/F∞)

∏
q∈R

(XqβqX
−1
q )#

)#

= ε0(X(E/F∞))ξX(E/F∞)

∏
q∈R

(XqβqX
−1
q )#.

Now for each self-dual representation τ of G we de�ne a homomorphism

signτ : K0(Λ(H)) → {±1}

[M ] 7→ (−1)
P∞

i=0(−1)irkO(Hi(H,twτ|H (M)))
. (3.20)

Note that the summation is always �nite in (3.20). It is easy to see that

this a well-de�ned homomorphism as the right hand side is multiplicative

with respect to short exact sequences. Moreover, let M be a module in the

category MH(G) with characteristic element ξM in K1(Λ(G)S∗) satisfying a

functional equation ξ#
M = εMξM with εM in K1(Λ(G)). Then we have

εM(τ) ≡ signτ ([M/M(p)]) (mod M) (3.21)

because both are the sign in the functional equation of the Akashi series of

twτ (M) as the Akashi series of p-torsion modules are powers of p and so they

do not in�uence the sign of the functional equation. Note that this means

that the Λ(H)-structure of M already determines the sign in the functional
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equation.

Now we can apply (3.21) on

∂G

(
ξX(E/F∞)

∏
q∈R

(XqβqX
−1
q )#

)
.

On the other hand, we have

signτ (Pi) = (1− 2ePi
)(τ)

since ePi
maps to an idempotent matrix of rank mi(τ) via τ where mi(τ) is

the number of copies of τ in the representation space (O ⊗ P0)Hn where Hn

is contained in the kernel of τ . So it equals the Zp-rank of (twτ (P0))H and

(1− 2ePi
)(τ) = det(τ(1− 2ePi

)) = (−1)mi(τ) = signτ (Pi). (3.22)

Hence it remains to show that for q ∈ R we have

signτ (∂G(XqβqX
−1
q )) ≡ εq(χq,cycτ) (mod M).

For this let us notice that

∂G(XqβqX
−1
q ) ∼= Λ(G)⊗Λ(Gq) ∂Gq(XqβqX

−1
q ) (3.23)

since XqβqX
−1
q lies in Λ(Gq), so we can work over Λ(Gq). Moreover, as

Λ(Hq)-modules we have the isomorphisms

∂Gq(XqβqX
−1
q ) ∼= χq,cyc ⊗ ∂Gq(βq) and so

τ ⊗ ∂Gq(XqβqX
−1
q ) ∼= (χq,cycτ)⊗ ∂Gq(βq)

because Hq acts on Xq + 1 via χq,cyc. Thus we have

signτ (∂G(XqβqX
−1
q )) ≡ signχq,cycτ (∂G(βq)) ≡ εq(χq,cycτ) (mod M)

as β#
q = εqβq.
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For each prime q in R0 we de�ne the character χq of Gq with χ2
q = 1 as

follows. If E has split multiplicative reduction at q then χq := 1; if E does

not have split multiplicative reduction then χq is the nontrivial character of

the Galois group of the quadratic extension of Qq over which E achieves split

multiplicative reduction. Note that χq can indeed be viewed as a character

of Gq as E always achieves split multiplicative reduction over Qq(E[p∞]).

Combining Propositions 3.4.3, 3.4.5, and 3.4.6 we get the following

Theorem 3.4.7. If τ is any self-dual Artin representation of G then we have

(−1)λE(τ) =
r∏

i=1

(1− 2ePi
)(τ)ni

∏
q∈R0

(−1)〈χqχ−1
q,cyc,τGq 〉 (3.24)

where 〈χqχ
−1
q,cyc, τGq〉 is the multiplicity of the character χqχ

−1
q,cyc in the repre-

sentation τGq .

Proof. First of all note that both sides of (3.24) are a priori ±1 by equation

(3.22). Since τ is self-dual, by Proposition 3.4.3 we have

αq(τ) = εq(τ
(1)
Gq

)
Pq(E, τ, q

−1)

Pq(E, τ ∗, q−1)
= εq(τ

(1)
Gq

) = εq(χq,cycτ
(1)
Gq

).

as the dimension of τ
(1)
Gq

is even and so χ
dim τ

(1)
Gq

q,cyc = 1. Hence we only need to

verify that for any q 6= p in R

(−1)〈χqχ−1
q,cyc,τGq 〉 ≡ (XqεqX

−1
q )(τ

(2)
Gq

) = εq(χq,cycτ
(2)
Gq

) (mod M) (3.25)

where τ
(2)
Gq

is the maximal subrepresentation of τGq on which the generator iq

of I
(1)
q acts trivially. Indeed, τGq clearly equals τ

(1)
Gq
⊕ τ (2)

Gq
. For the proof of

(3.25) we apply our remark after Lemma 3.3.5,

εq = 1 + eq(Frob−1
q − 1) (non-split multiplicative reduction at q)

εq = 1− eq(Frob−1
q + 1) otherwise.

Moreover, recall that eq is the idempotent element in Λ(Iq) corresponding to

the projective Λ(Iq)-module Tp(E)I
(1)
q ⊗ Λ(I

(1)
q ). Now we distinguish three
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cases.

Case 1. E has split multiplicative reduction at q. Then Iq = I
(1)
q , so eq = 1,

χq = 1 and

εq(χq,cycτ
(2)
Gq

) = −Frob−1
q (χq,cycτ

(2)
Gq

) = (−1)〈χ
−1
q,cyc,τGq 〉

because both sides are equal to (−1) to the dimension of the sub-

representation of τ on which Iq acts trivially and Frobq via χ
−1
q,cyc.

Case 2. E has split multiplicative reduction at q. Then Iq = I
(1)
q , so eq = 1,

χq(Frobq) = −1 and εq = Frob−1
q . Thus

εq(χq,cycτ
(2)
Gq

) = Frob−1
q (χq,cycτ

(2)
Gq

) = (−1)〈χqχ−1
q,cyc,τGq 〉

because both sides are equal to (−1) to the multiplicity of the eigen-

value −χq,cyc(Frobq) of τ
(2)
Gq

(Frobq).

Case 3. E has additive (but potentially multiplicative) reduction at q. Then

we have

εq(χq,cycτ
(2)
Gq

) = det(χq,cycτ
(2)
Gq

(1−eq(Frob−1
q +1))) = det(−Frob−1

q | W )

whereW is the subrepresentation of χq,cycτGq on which Iq acts via the

character χq because χq,cycτ
(2)
Gq

(eq) is the projection onto this space.

Now this is (−1) to the dimension of the subspace of τ on which Gq

acts via χqχ
−1
q,cyc as this is exactly the tensor product of χ−1

q,cyc and

the subspace of W on which Frobq acts trivially.

So the result follows in each case.

We also have the following version of the above Theorem as a Corollary.

We call a subgroup of GL2(Zp) an Iwahori subgroup if it reduces modulo p

to a Borel subgroup of GL2(Fp). Recall that the Borel subgroups of GL2(Fp)

are the conjugates of the subgroup containing upper triangular matrices in

GL2(Fp).
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Corollary 3.4.8. Let τ be a self-dual representation of G which does not

factor through the maximal pro-p normal subgroup G0 of G. Then we have

(−1)λE(τ) =
r∏

i=1

(1− 2ePi
)(τ)ni

∏
q∈R0

(−1)〈χq ,τGq 〉.

Proof. This is a consequence of Lemma 6.18 in [6]. We only need to verify

that if τ does not factor through the maximal pro-p normal subgroup G0 of

G then for all q in R we have

〈χq, τGq〉 = 〈χqχ
−1
q,cyc, τGq〉 = (〈χqχ

−1
q,cyc, τGq〉+ 〈χqχq,cyc, τGq〉)/2. (3.26)

Since Gq ⊂ G is always contained in an Iwahori subgroup of GL2(Zp) we

may restrict τ to the Iwahori subgroup containing Gq and decompose the

restriction into irreducible representations. If all these irreducible compo-

nents have dimension at least 2 then the statement follows from Lemma 6.18

in [6]. Note that we may assume that these irreducible subrepresentations

of the restriction to the Iwahori subgroup are also self-dual as otherwise we

would have their contragredient representation as a constitute, too and we

could just cancel both of them by the second equality of (3.26). Moreover,

if we have a self-dual irreducible 1-dimensional representation of an Iwahori

subgroup then it has to be trivial on its pro-p-Sylow subgroup (which is the

same as the pro-p-Sylow of G) as these elements cannot map to −1. Now

the statement follows noting that if τ does not satisfy (3.26) then its repre-

sentation space has to have a 1-dimensional subspace on which the maximal

pro-p normal subgroup acts trivially and the subspace on which a normal

subgroup acts trivially is a subrepresentation, so it has to be the whole τ as

τ is irreducible.

Now we can state our main result in this section.

Theorem 3.4.9. Let us assume that E is an elliptic curve de�ned over Q,

without complex multiplication, with good ordinary reduction at the prime

p and good or potentially multiplicative reduction at the primes 2 and 3.
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Moreover, assume that X(E/F∞) is in the category MH(G). Then if

(−1)λE(τ) = wE(τ) (3.27)

holds for all self-dual representations τ of G/G0 then it is also true for any

self-dual representation τ of G.

Proof. Let τ be an Artin representation of G which does not factor through

G/G0. We would like to prove that both sides of (3.27) depend only on

the semisimpli�cation τ̃ ss of the reduction τ̃ of τ modulo the maximal ideal

M of O. From this the statement follows by noting that the irreducible

modular representations of G in characteristic p factor through G/G0 and

it is a theorem of Brauer (see [33], theorem 1 of part III) that we have a

surjection

K0(Rep(G/G0))→ K0(Repmod−p(G/G0))

from the Grothendieck group of the �nite dimensional representations of

G/G0 in characteristic zero to Grothendieck group of �nite dimensional mod-

ular representations of G/G0. This surjection is in fact the reduction map

modulo the maximal ideal M of O. Moreover, Greenberg [21] (see also

[30]) showed that the analytic root number only depends on the image of τ

in K0(Repmod−p(G/G0)). So it remains to show the same for the parity of

λE(τ). Since χqχ
−1
q,cyc is a 1-dimensional representation which is trivial on the

pro-p-Sylow subgroup of Gq it is clear that

〈χqχ
−1
q,cyc, τGq〉

depends only on τ̃ ss. On the other hand by de�nition for each undecompos-

able projective module Pi of Λ(H) we have

(1− 2ePi
)(τ) = (−1)mi(τ)

where mi(τ) is the multiplicity of the irreducible modular H-representation

corresponding to the projective module Pi in the modular representation τ̃ ss

and by nature depends only on τ̃ ss. The result follows.
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Remarks. 1. The Theorem above is closely related to Proposition 11.3

in [21]. However, Greenberg's assumptions are a bit di�erent. He does

not investigate the Selmer group over F∞, but he works always over a

�nite extension of Qcyc. Moreover, we do not need the �niteness of the

p-Selmer group over any �nite extension of Qcyc. However, we do need

the (weaker) assumption that X(E/F∞) is in MH(G) and that E has

good ordinary reduction at p.

2. The assumptions on the reduction type of E at 2 and 3 should be

unnecessary, but the formulas of Rohrlich [30] for the local root numbers

do not cover all the cases. For example, if G is contained in an Iwahori

subgroup of GL2(Zp)�or equivalently if E has a p-isogeny over Q�

then these assumptions are removable.

We end this section by proving a purely group theoretical statement and

its consequences when G is contained in an Iwahori subgroup of GL2(Zp).

Proposition 3.4.10. Let A be an open subgroup of the Iwahori subgroup

B =

{
M ∈ GL2(Zp) |M ≡

(
∗ ∗
0 ∗

)
(mod p)

}

of GL2(Zp) such that the determinant map

det : Ã→ F×p

is surjective on the image Ã of A in GL2(Fp) under the natural reduction

map GL2(Zp)→ GL2(Fp). Then A does not have any irreducible symplectic

Artin-representation (in characteristic zero).

Proof. We prove the statement indirectly. Let us assume that

τ : A→ GLk(Q)

is an irreducible symplectic Artin-representation. Now writeA0 := A/Ker(τ).

Since τ is Artin, A0 is a �nite group. Moreover, note that the centre Z(A0)
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of A0 has order at most 2 because by Schur's lemma central elements map to

diagonal matrices under irreducible representations and the entries in these

diagonal matrices must equal ±1 as τ is self-dual. Now τ is faithful on A0

by construction and the centre of the image has order at most 2. Further,

we claim that A0 is either abelian or can be written in the form

(P o S)× C (3.28)

where P 6= 1 is a �nite p-group, C is cyclic of order at most 2 and S is also

cyclic of order dividing p− 1.

Proof of the claim. As the normalizer of the pro-p-Sylow subgroup of GL2(Zp)

is exactly the Iwahori subgroup we immediately get that the p-Sylow sub-

group P of A0 is normal in A0. Moreover, the p-Sylow subgroup has a

complement in A0 which is a factor of a subgroup of the diagonal matrices

in GL2(Fp). So this complement is generated by 2 elements both of order

dividing p−1 as this diagonal subgroup of GL2(Fp) is isomorphic to F×p ×F×p .
We may assume without loss of generality that P 6= 1 because otherwise A0

would be abelian. Now let n ≥ 1 be the smallest integer such that Ker(τ)

contains the intersection of A with the nth congruent subgroup

In := {M ∈ GL2(Zp) |M ≡ id (mod pn)}.

Let us denote by I0 the pro-p-Sylow subgroup of B. By the construction

the image of A ∩ In−1 is a nontrivial normal p-subgroup in A0 and so has a

nontrivial intersection with the centre of P . Let us denote this intersection

by P0 = Z(P ) ∩ Im(A ∩ In−1). Now A0/P does not act trivially on any

nontrivial subgroup of P0 because otherwise that subgroup would be in the

centre of A0 which contradicts to the fact that it has odd order by our remark

before the claim. It also follows that Ker(τ) cannot contain an element x of

order dividing p − 1 which is not a scalar matrix. Indeed, this would mean

that Ker(τ) contained a nontrivial element in P0, namely the commutator of

x and an arbitrary nontrivial element in P0. Now A/(A∩ I0) is generated by

2 elements g1 and g2 and we may assume that g2 is (the image of) a scalar

104



matrix of order dividing p − 1. On the other hand, since the determinant

map is surjective on Ã, g1 has to be the image of a diagonal matrix

(
α 0

0 β

)
such that one of α and β has to be a quadratic residue modulo p and the

other one a quadratic nonresidue as otherwise the image of the determinant

map would only contain quadratic residues. It is easy to see from this that

if a power of g1 is a diagonal matrix then this power has to have odd order.

This means that the intersection of the subgroups generated by the image of

g1 and g2 in A0/P is just the trivial element, moreover the image of g2 has

at most order 2 as it is in the centre of A0. The claim follows by putting S

and C to be the image of the group generated by g1 and g2, respectively.

Now the proof of the proposition is as follows. Abelian groups have only 1-

dimensional irreducible representations and these cannot be symplectic since

those have even dimension. So we may assume that A0 is in the form (3.28).

The restriction of τ to P oS is also irreducible and symplectic as C maps to

scalar matrices under τ . Now as in the proof of the claim S acts faithfully

on P0. Moreover, P0 is an abelian group of exponent p so it can be viewed as

a vectorspace over Fp and so we can pick up a nontrivial eigenvector v ∈ P0

of the S-action (S is cyclic). This means that the subgroup generated by v

is normal in P o S so the eigenvalues of τ(v) are di�erent from 1 because

otherwise v would either be in the kernel of τ or the subspace on which

τ(v) acts trivially would be a nontrivial invariant subspace of the underlying

vectorspace of τ . Now S permutes regularly the eigenspaces of v because S

acts faithfully on the subgroup generated by v. In other words τ is induced

from P . Now since τ is self-dual the eigenvalues of τ(v) are in pairs (ζ, ζ−1)

where ζ is a primitive pth root of unity so there must be an element s of

order 2 in S such that svs−1 = v−1. This means that in a suitable basis τ(s)
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is in the block matrix form

0 id 0 0 . . . 0 0

id 0 0 0 . . . 0 0

0 0 0 id . . . 0 0

0 0 id 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 id

0 0 0 0 . . . id 0


.

This means that the matrix of the invariant bilinear symplectic form also has

to be in the form 

0 X1 0 0 . . . 0 0

X1 0 0 0 . . . 0 0

0 0 0 X2 . . . 0 0

0 0 X2 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 Xl

0 0 0 0 . . . Xl 0


.

because if u is an eigenvector of v with eigenvalue ζ then if its inner product

with w is nonzero then w has to be an eigenvector with eigenvalue ζ−1 and the

matrix of the invariant symplectic form commutes with τ(s). Now this form

is symplectic if and only if Xi = −XT
i for each 1 ≤ i ≤ l where ·T denotes the

transpose matrix. This is a contradiction because Xi has p-power dimension

because its dimension is equal to the degree of an irreducible representation

of P .

Remarks. 1. The statement of Proposition 3.4.10 remains true if we re-

place the assumption of the surjectivity of the determinant map with

the weaker assumption that there exists a quadratic non-residue in the

image. Moreover, if p is congruent to 3 modulo 4 then we do not even

need this assumption. We omit the proof of these as they are similar

to the proof of Proposition 3.4.10.
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2. On the other hand the following example shows that the statement fails

to be true if we drop both the conditions in the previous remark. Let A

be the subgroup of the Iwahori subgroup generated by the pro-p-Sylow

subgroup and the element (
i 0

0 −i

)

of order 4 where i is an element of Zp with i2 = −1. There is such an

element if p is congruent to 1 modulo 4. Now let σ the 2-dimensional

representation of A which is trivial on the congruent subgroup,

σ

((
1 1

0 1

))
=

(
ξ 0

0 ξ−1

)
, and σ

((
i 0

0 −i

))
=

(
0 1

−1 0

)
,

where ξ is a primitive pth root of unity. This is clearly an irreducible

representation admitting the symplectic pairing with matrix

(
0 1

−1 0

)
.

Our next corollary has essentially been proved independently by Coates,

Fukaya, Kato, and Sujatha [6], too. Their method was completely di�erent.

Corollary 3.4.11. Let E/Q be an elliptic curve with good ordinary reduction

at the prime p. Let us assume that X(E/F∞) is in the category MH(G) and

that E has a p-isogeny over Q. Then for any self-dual Artin representation

τ we have

(−1)sE(τ) = wE(τ).

Proof. Since E has a p-isogeny over Q, G is contained in an Iwahori subgroup

of GL2(Zp), so we can conjugate it into the particular Iwahori subgroup B

in Poroposition 3.4.10. Moreover, by the Weil pairing the determinant map

on the reduction of G to GL2(Fp) is surjective onto F×p so by Proposition

3.4.10 we conclude that G does not have symplectic representations and so

τ is orthogonal. For orthogonal representations the statement follows from

Greenberg's Theorem (Theorem 3.4.4) and Theorem 3.4.9 (see also Theorem

6.2 in [6]) by noting that if τ factors through G/G0 then τ is actually a 1-

dimensional character and in this latter case the parity conjecture has already
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been proven [18]. Formally it only follows when we assume that the reduction

of E is either semistable or potentially multiplicative at the primes 2 and 3,

but we only need to check that the local analytic root numbers at 2 and

3 only depend on the semisimpli�cation τ̃ ss of the reduction of τ modulo

the maximal ideal M in O. By Proposition 3 in [31] it follows that if E

has potentially multiplicative reduction at the prime q then the local root

number at q is

det τGq(−1)χq(−1)dim τ ,

where χq is a certain �xed character of Gal(Qq/Qq) associated to E. Now

since −1 has order prime to p we have that det τGq(−1) depends only on τ̃ ss

and the other term only depends on dim τ = dim τ̃ ss and we are done.

3.5 Example

We end this chapter by giving an example of an elliptic curve illustrating

our results. Let E be the elliptic curve 11A3 in Cremona's tables [12], of

conductor 11. It has a minimal Weiestraÿ equation

E : y2 + y = x3 − x2

and is also denoted by X1(11). It does not admit complex multiplication

and thus is relevant to us. Let p = 5 at which X1(11) has good ordinary

reduction. Moreover, it has a rational point of order 5 and we have that E[5]

�ts into the exact sequence

0→ Z/5Z→ E[5]→ µ5 → 0.

Now it is easy to see [8] that in this case Gal(F∞/Q) can be identi�ed

with the subgroup G of GL2(Zp) consisting of all matrices

(
a b

c d

)
with c ≡ 0

mod 52 and a ≡ 1 mod 5. This means that the Galois group Gal(F∞/Q(µ5))

is pro-p. Now the only bad prime for E is 11 and the reduction type is split
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multiplicative. So X(E/F∞) has rank 4 over the Iwasawa algebra

Λ(HK) := Λ(Gal(F∞/Q(µ5∞)))

as the prime 11 splits completely in the �eld Q(µ5) and X(E/Q(µ5∞)) = 0

[11], so X(E/F∞) is in MH(G). Moreover, the corestriction map

X(E/F∞)HK
→ X(E/Q(µ5∞)) = 0

has kernel of Zp-rank 4. Four elements of this kernel�which are independent

over Zp�correspond to the four primes vi (i = 1, 2, 3, 4) above 11 in Q(µ5)

as they are the images of the generators of

Hom(H1(HK,vi
, E[5∞]),Qp/Zp)

for i = 1, 2, 3, 4. Therefore the element of order 4 in G acts regularly on these

elements. Now let ξ be a characteristic element of X(E/F∞) in K1(Λ(G)S∗).

Further, Frob11 =

(
11 0

−50 1

)
is a topological generator of the group G/H.

Now we can apply Corollary 3.3.6. The functional equation of the character-

istic element is in the form

ξ# = ξε0
(X11(1− Frob11)X

−1
11 )#

X11(1− Frob11)X
−1
11

, (3.29)

where X11 =

(
6 1

−25 −4

)
− 1 as an element of Λ(H). As

X11(1− Frob11)X
−1
11 = 1− X11

(X11 + 1)11 − 1
Frob11,

the simplest example for ξ would be Frob11− (X11+1)11−1
X11

because it certainly

satis�es a functional equation in the form (3.29). However, this element is in

the image ofK1(Λ(G11)S11) and so it would give the same characteristic power

series of X(E/Lcyc
1 ) and X(E/Lcyc

2 ) where L1 = Q(E[p]), L2 = Q(µ11)
+(µ5),

and Q(µ11)
+ denotes the maximal real sub�eld of Q(µ11). (Note that L2 is
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contained in F∞.) Indeed, the completions L1,11 and L2,11 at primes above

11 are isomorphic and so the Gal(F∞/L1)- and Gal(F∞/L2)-Akashi-series

of X(E/F∞) would be the same in this case. This would contradict to the

Birch�Swinnerton-Dyer conjecture as the complex L-function of the curve

over L1(µ5n) does not vanish for any n and the order of vanishing of the

complex L-function over L2(µ52) is exactly 4 by a result of Matsuno's (see

the end of [5] for details). Now let

γ :=

(√
11 0

0
√

11

)
,

α :=

(
i 0

0 1

)
,

δ := γFrob−1
11

(
(1 +X11)

3 +X2
11(α+ 1)X11

)
,

ξ0 := γ2 − δ(δ#)−1, and

ξ∗ := γ2 −X11δ(δ
#)−1X−1

11

where
√

11 and i are �xed elements in Z5 with
√

11
2

= 11 and i2 = −1.

We are going to prove that ξ∗ satis�es all the conjectural properties of

the characteristic element of X(E/F∞) known so far. The �rst step is that

it satis�es the required functional equation.

Proposition 3.5.1. The element ξ∗ in K1(Λ(G)S∗) satis�es the functional

equation

ξ#
∗ = ξ∗ε∗

(X11(1− Frob11)X
−1
11 )#

X11(1− Frob11)X
−1
11

with some element ε∗ in K1(Λ(G)).

Proof. At �rst note that ξ0 satis�es a functional equation without a modifying

term outside K1(Λ(G)). Indeed, we have

ξ#
0 = −γ4δξ0(δ

#)−1

as γ is in the centre of Λ(G). Moreover, it is easy to see that δ(δ#)−1 lies in
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the set γ2Frob−2
11 + Λ(H)X11. This means that the modules

∂G(ξ0/ξ∗) = (Λ(G)/Λ(G)ξ0) / (Λ(G)X11/(Λ(G)ξ0 ∩ Λ(G)X11)) and

∂G

(
(Frob11 − 1)

(
Frob11 −

(X11 + 1)11 − 1

X11

)−1
)

=

(Λ(G)/Λ(G)(Frob11 − 1)) / (Λ(G)X11/(Λ(G)(Frob11 − 1) ∩ Λ(G)X11))

are isomorphic since they are trivially isomorphic as Λ(H)-modules and γ acts

the same way on them. Now ξ0 and Frob11 − 1 satisfy functional equations

of the same type therefore so do ξ∗ and Frob11 − (X11+1)11−1
X11

.

Let us remark that satisfying the above type of functional equation is

equivalent to a condition on the characteristic elements of the kernels of the

corestriction maps

X(E/F∞)Hn → X(E/F cyc
n ).

Apart from the functional equation the characteristic element has to sat-

isfy we also know some information about the behaviour of the curve E over

the following three Galois-extensions of degree 20 of Q

L1 = Q(E[5]), L2 = Q(µ11)
+(µ5), L3 = Q(E ′[5])

where E ′ is the unique elliptic curve which is 5-isogenous to E. These Galois-

extensions all contain Q(µ5). Let us denote by P the unique pro-p Sylow

subgroup of H. It is easy to see that as an abstract group P/P 5 is isomorphic

to F3
5. It has 3 generators, namely a1 =

(
1 1

0 1

)
(mod P 5), a2 =

(
6 0

0 1/6

)

(mod P 5), and a3 =

(
1 0

25 1

)
(mod P 5). These are all eigenvectors of the

generator of Gal(Q(µ5)/Q) corresponding to di�erent eigenvalues. Moreover,

the image of ai are trivial in Lj if and only if i 6= j.

The next step is that ξ∗ gives the required [5] Mordell-Weil rank over the

�elds contained in Lcyc
2 .

Proposition 3.5.2. Assume that ∂G(ξ∗) = X(E/F∞). Then the order of
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vanishing of the characteristic power series of X(E/Lcyc
2 ) is zero at T = 0

and 1 at T = ζ5 − 1 where ζ5 is any �xed primitive �fth root of unity. In

other words this would conjecturally imply that the Mordell-Weil rank is zero

over L2 but 4 over L2(µ52).

Proof. The Galois group Gal(L2/Q) is cyclic of order 20. It can be easily

seen that the image of α in this Galois group is an element of order 4 and

the images of X11 + 1 and γFrob−1
11 are elements of order 5 (and are in fact

each other's reciprocal). The characters of Gal(L2/Q) of order dividing 4

correspond to the kernel of the restriction map

X(E/F∞)HL2
→ X(E/Lcyc

2 )

and so they do not give any zero at T = 0 or T = ζ5 − 1. Now consider a

�xed character χ which takes X11 + 1 to ζ3
5 and α to some power of i. Then

we have

ξ∗(χ) =

(T + 1)2 − ζ−1
5

(
ζ−1
5 + (χ(α) + 1)(ζ−1

5 − 1)3
) (
ζ5 + (χ(α) + 1)(ζ5 − 1)3

)−1
.

This power series does not have a root at T = 0 and has a root of multiplicity

1 at T = ζ5 − 1 if and only if χ(α) = −1. The result follows.

Finally we prove that if the characteristic element of X(E/F∞) was ξ∗

then there would be no points over the �elds Q(E[5])cyc and Q(E ′[5])cyc

where E ′ is the elliptic curve with conductor 11 and no 5-torsion point over

Q which result is compatible with the previously known facts about this

curve [5]. Note that this latter �eld is also contained in F∞ as E and E ′ are

5-isogenous.

Proposition 3.5.3. Assume that ∂G(ξ∗) = X(E/F∞). Then the character-

istic power series of X(E/Lcyc
i ) (i = 1, 3) do not vanish at T = ζ − 1 where

ζ is any root of unity of 5-power order, L3 = Q(E ′[5]) and E ′ is the unique

elliptic curve with the isogeny E → E ′ of degree 5. In other words this would

conjecturally imply that the Mordell-Weil rank is zero over Lcyc
1 and Lcyc

3 .
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Proof. The Galois groups Gal(L1/Q) ∼= Gal(L3/Q) are isomorphic to the

group (Z/5Z) o (Z/5Z)×.

Let us begin with the description of Gal(L1/Q). The images of α, X11+1,

and γFrob−1
11 are an element of order 4, an element of order 5, and trivial,

respectively. The group (Z/5Z) o (Z/5Z)× has four 1-dimensional charac-

ters and one irreducible representation ρ of dimension 4. The 1-dimensional

representations correspond to the kernel of the restriction maps

X(E/F∞)HLi
→ X(E/Lcyc

i ) i = 1, 3

again. So it remains to prove that characteristic power series we get by

substituting the irreducible 4-dimensional representation into ξ∗ does not

vanish at T = ζ − 1 for any ζ 5-power root of unity. As ρ(X11) is invertible

ρ(ξ0) equals ρ(ξ∗). Moreover,

ρ(ξ0) = det
(
(T + 1)id− A(A∗)−1

)
where

A =



f1(ζ5) g1(ζ5) 0 0

0 f1(ζ
2
5 ) g1(ζ

2
5 ) 0

0 0 f1(ζ
4
5 ) g1(ζ

4
5 )

g1(ζ
3
5 ) 0 0 f1(ζ

3
5 )


,

f1(x) = x3 + (x − 1)3, g1(x) = (x − 1)2(x2 − 1), and A∗ denotes `the com-

plex conjugate' (the unique Galois-automorphism of the extension Q5(µ5)/Q5

which takes ζ5 to ζ−1
5 ) of the transpose matrix of A. It is easy to see that

if the order of ζ is at least 25 then the polynomial ρ(ξ0) does not vanish at

T = ζ−1 as its degree is 4 and ζ is not contained in any extension of Q5(µ5)

of degree 4. In order to prove that ρ(ξ0) does not vanish at T = 0 note that

the entries in the diagonal of the matrix A∗−A have ζ5−1-valuation 1 and all

the other entries have bigger valuations. This means that the determinant of

A∗−A has valuation 4 and in particular it is not equal to zero. It follows that
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1 is not an eigenvalue of the matrix A(A∗)−1 and the polynomial in question

does not vanish at T = 0. So it remains to show that ζ − 1 is not a root of

ρ(ξ0) where ζ is a �fth root of unity or equivalently that det(ζA∗ − A) 6= 0.

For any �fth root of unity ζ the entries of the matrix ζA∗−A have valuations

at least 3 except for three of the four diagonal elements which have valuation

1. Moreover, the remaining element in the diagonal has valuation exactly 3.

This means that the valuation of the determinant of this matrix is exactly 6

as all but one of the terms in its expansion have valuation bigger than 6 and

the term coming from the diagonal has valuation exactly 6. In particular

this determinant is nonzero.

The case of Gal(L3/Q) is quite similar. The only di�erence is that the

image of γFrob−1
11 is not trivial in this group but the third power of the image

of X11 + 1. So the matrix A has the form

A =



f2(ζ5) g2(ζ5) 0 0

0 f2(ζ
2
5 ) g2(ζ

2
5 ) 0

0 0 f2(ζ
4
5 ) g2(ζ

4
5 )

g2(ζ
3
5 ) 0 0 f2(ζ

3
5 )


in this case where f2(x) = x + x3(x − 1)3 and g2(x) = x3(x − 1)2(x2 − 1).

The result follows similarly as above.

Remark. The characteristic element ξ∗ described above is by far not the

only one satisfying all the requirements. The proofs of the Propositions

3.5.1, 3.5.2, and 3.5.3 show that we had a lot of freedom in choosing this

particular ξ∗. This still leaves the following question open.

Problem 2. What is the asymptotic rank of X1(11) inside the GL2-extension?

Is the rank of X1(11)(F∞) modulo torsion �nite or in�nite?
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