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AUGMENTING GRAPHS TO MEET
EDGE-CONNECTIVITY REQUIREMENTS*

ANDRAS FRANKt

Abstract. What is the minimum number y of edges to be added 1o a given graph G so that in the resulting
graph the edge-connectivity between every pair {u, v} of its nodes is at least a prescribed value r(u, v)?

Generalizing earlier results of S. Sridhar and R. Chandrasekaran [ fnteger Programming and Combinatorial
Optimization, R. Kannan and W, Pulleybiank, eds,,' Proceedings of a conference held at the University of
Waterloo, University of Waterloo Press, Waterloo, Ontario, Canada, 1990, pp. 467-484] (when G is the empty
graph), of K. P. Eswaran and R. E. Tarjan [SI4M Journal on Computing, 5 {1976), pp. 653-665] (when
r(u, v) = 2}, and of G.-R. Cai and Y.-G. Sun [Networks, 19 (1989), pp. 151=172] (when r{u, v) = k = 2),
we derive a min-max formula for -y and describe a polynomial time algorithm to compute +. The directed
counterpart of the problem is solved in the same sense for the case when r{x, v) = k 2 1 and is shown to be
NP-complete if r{u, v) = 1 for u, v€ T, and r{u, v} = 0 otherwise where T is a specified subset of nodes.

A fundamental tool in the proof is the spiitting theorems of W. Mader [Annals of Discrete Mathematics,
3 (1978), pp. 145-164] and L. Lovész [lecture, Prague, 1974; North-Holland, Amsterdam, 1979]. We also
rely extensively on techniques concerning submodular functions, The method makes it possible to solve a
degree-constrained version of the problem. The minimum-cost augmentation problem can also be solved in
polynomial time provided that the edge-costs arise from node-costs, while the problem for arbitrary edge-costs
was known to be NP-complete even for r{u, v) = 2, ’
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1. Introduction. A typical problem in combinatorial optimization is to find a min-
imum number, or more generally, a minimum cost, of edges 1o be added to a graph so
that the resulting graph satisfies some prescribed properties. In this paper we are concerned
with edge-connectivity properties.

" Main problem. What is the minimum number vy (respectively, a minimum cost)
of edges to be added to a given directed or undirected graph & so that in the resuiting
graph the edge-connectivity A{u, v) between every pair {u, v} of nodes is at least a
prescribed value r(u, v)? :

Here, the edge-connectivity A{u, v} of u and v means the maximum number of
pairwise edge-disjoint {directed) paths from u to v. Note that A(u, v) can be interpreted
as the maximum flow value between u and v if the capacities of the edges of G are defined
to be I.

To distinguish between the two versions of the main problem, we will sometimes
refer to them as the ““cardinality case™ and *“the min-cost case.”

A capacitated version of the main problem is as follows.

Max-flow version. Suppose that g(u, v) is a nonnegative capacity function on the
pairs of nodes #, v (u, v € V), and let r(u, v) be another nonnegative finction on the
pairs of nodes that serves as a maximum flow requirement. The problem is to increase
the existing capacities so that in the resulting network the maximum flow value between
u and v is at least r(u, v) for each pair {u, v} of nodes, such that the sum of capacity
increments is minimum.
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Note that if g(u, v) and r(u, v) are integer-valued and the capacity increments are
required to be integer-valued, then the main problem is equivalent to the flow version
in the sense that a min-max result for one problem easily transforms to a min-max result
for the other. Namely, the main problem can be formulated as a max-flow version by
letting g(u, v) = 1 when (x, v) is an edge of G, and g(u, v) = 0, otherwise. Conversely,
if g is integer-valued, we can define a graph having g(u, v) parallel edges between each
pair of nodes # and v; then a solution to the main problem on G yields a solution to the
integer-valued max-flow problem.

This equivalence, however, does not mean algorithmic equivalence. We are going
to develop strongly polynomial time algorithms for the more difficult max-flow aug-
mentation problem.

(A polynomial time algorithm is called strongly polynomial if it uses, besides ordinary
data manipulation, only the basic operations like comparing, adding, subtracting, mui-
tiplying, and dividing numbers, and if the number of these operations is independent of
the numbers occurring in the input.)

Another useful observation is that in the flow version we may get better results if
fractional increments are allowed. For example, let ¥:= {a,b,c},g=0,and r= 1. If
only integers are allowed for the increments, then the value of the best solution is 2:
increase the capacity of edges ab and bc by 1. If we use fractional increments, then the
value of the best solution is 1.5: increase the capacity of each edge by 0.5. On the other
hand, we will see that, apart from some marginal cases, the integer-valued optimum is
at most one half larger than the fractional optimum,

It is natural to consider node-connectivity augmentation problems as well. That is,
given a prescribed value r(u, v) for each pair of nodes u, v, what is the minimum number
(respectively, a minimum cost) of edges to be added to a given directed or undirected
graph G so that in the resulting graph there are r(u, v) openly disjoint paths between
every pair of nodes u, v? Two paths connecting u and v are called openly disjoint if they
are node-disjoint, except for the end-nodes. No new contribution to this problem is given
here and we mention it merely for the sake of completeness.

We briefly summarize some known special cases for which the above augmentation
problems have been solved. Let us start with undirected graphs.

Gomory and Hu [19] algorithmically solved the fractional case of the max-flow
version of the augmentation problem where g = 0. See also [8]. The minimum cost
version of the same problem was solved by Bland, Goldfarb, and Todd {1] via the ellipsoid
method. Sridhar and Chandrasekaran [30] solved the main problem when the starting
graph is the empty graph. (Actually, they solved the integer-valued max-flow version
when g = 0.) Frank and Chou [9] solved the same problem under the additional re-
quirement that no parallel edges are allowed to be added. (Note that Frank and the
present author are different.)

Suppose now that r(u, v) is identically k. When k = 1, the min-cost case of the
main problem transforms into a minimum cost spanning tree problem, that is nicely
solvable. For k = 2, however, the min-cost problem turns out to be NP-complete, as the
Hamiltonian circuit problem can easily be formulated in this form {see Eswaran and
Tagan {71).

Eswaran and Tarjan described a polynomial time algorithm to find a minimum
number of new edges the addition of which makes a graph 2-edge-connected. Generalizing
this for arbitrary k 2 2, Watanabe and Nakamura {31] described a polynomial time
algorithm to find a minimum number of new edges v to be added to make a graph k-
edge-connected. The same problem was also solved by Cai and Sun [2] who, in addition,
provided a nice min-max formula for the minimum. Both solutions are rather compli-
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cated. Recently, Naor, Gusfield, and Martel [28] developed an efficient algorithm for
this edge-connectivity augmentation problem.

As for node-connectivity augmentation problems, we know much less. The problem
was solved by Harary [21] when r(u, v) is identically k and the starting graph is the
empty graph. For arbitrary starting graphs the case k = 2 was settled by Eswaran and
Tarjan [ 7] and the case k = 3 by Watanabe and Nakamura [32].

The following results concern directed graphs.

Suppose we are given a digraph G with a source s and a target ¢. Let r{u, v) = k if
u=gs,v=t,and r(u, v) = 0 otherwise. In this case the main problem requires adding
a minimum cost of edges so that in the resulting digraph there are k edge-disjoint paths
from s to ¢. This problem can easily be reduced to a minimum cost flow problem in the
union graph of the new and the original edges where the costs of the original edges are
defined to be zero. .

If we are interested in openly disjoint paths, rather than edge-disjoint, from a source-
node s to a target-node ¢, then the problem can easily be reduced to the edge-disjoint
case by using a simple node-duplicating device mentioned in [8, § I/11]. Unfortunately,
in more general cases, the node-duplicating technique does not seem to help in reducing
a node-connectivity augmentation problem to the corresponding edge-connectivity aug-
mentation problem. This is the case in the following situation.

Improve a digraph by adding a minimum cost of new edges so as to have k edge-
disjoint paths from a specified source-node to each other node. (That is, in the main
problem r(u, v) = kif u = s, and r(u, v) = 0 otherwise.) This problem can be reduced
to a weighted matroid intersection problem where the first matroid is k times the circuit-
matroid of the underlying undirected graph (that is, a subset of edges is independent if
it is the union of k forests) while the second matroid is a partition matroid where a subset
of edges is independent if it contains no more than k edges entering the same node. Since
there are good algorithms for the matroid intersection problem [5], this problem is also
solvable in polynomial time.

We consider the openly disjoint counterpart of the preceding problem; that is, we
improve a digraph by adding a minimum cost of new edges so as to have k openly disjoint
paths from a specified source-node to each other node. The problem was sotved in [14]
with the help of submodular flows (as we were unable to reduce the problem to the edge-
disjoint case by using the node-duplicating technique}.

Eswaran and Tarjan showed how to make a directed graph strongly connected by
adding a minimum number of new edges. They also showed that the minimum cost
version of the problem is NP-complete, as the directed Hamiltonian circuit problem can
be formulated this way. Note, however, that the problem is solvable in strongly polynomial
time if we are allowed to add a new edge (u, v) only if (v, u) is an original edge of the
digraph (see Lucchesi and Younger [25] and Frank [10]).

The main problem for directed graphs when r(u, v) = k was solved by Fulkerson
and Shapley [16] when the starting graph is G = (V, &), and by Kajitani and Ueno [22]
when the starting graph is a directed tree.

Finally, we mention a paper of Gusfield {20] in which a linear time algorithm is
described to make a mixed graph strongly connected by adding a minimum number of
new directed edges. (A mixed graph is one with possibly directed and undirected edges.
It is called strongly connected if, for every pair of nodes u, v, there is a path from u to v
that consists of directed edges in the right direction and arbitrary undirected edges.)

" The main purposes of the present paper are as follows. For undirected graphs we
completely solve the cardinality case of the main problem. Along the way we provide a
short proof of the theorem of Cai and Sun. For directed graphs, we solve the cardinality
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case if (i, j} = k. We also consider degree-constrained and minimum-cost augmentations
for both directed and undirected graphs. The proofs give rise to algorithms that are
strongly polynomial even in the max-flow version.

One basic tool in the proof is the so-called splitting technique. We are going to use
three theorems. One is due to Lovasz, while the other two are due to Mader. To make
the paper as self-contained as possible, we prove Lovasz’s theorem [24] here, as well as
one of the two Mader theorems [26], [27]. A relatively simple proof of Mader’s other
splitting-off theorem is given in a separate paper [12].

We consider whether there is a solution to the augmentation problem for directed
graphs when r(u, v) is arbitrary. Unlike the undirected case this problem turns out to
be NP-complete even for the following simple demand function. Let T be a subset of
nodes and s a specified node not in 7. Define r(s, v} = 1 ifve T, and r(s, v) =0
otherwise. (In other words, the problem of finding a minimum number of edges to be
added to G so that in the augmented digraph every element of T is reachable from s is
NP-complete.) .

For both the directed and the undirected case, the method makes it possible to solve
a degree-constrained version when, in addition, upper and lower bounds are imposed at
every node for the number of newly added edges incident to that node. We will show
that in the above cases the minimum-cost augmentation problem can also be solved in
polynomial time, provided that the edge-costs arise from node-costs. (As we mentioned
above, the problem for arbitrary edge-costs is NP-complete even for r(u, v) = 2.)

Another basic technique comes from the theory of submodular functions. (For a
survey, see [13].) We describe, however, the main results and proofs so that they can be
understood without any prior knowledge in this area. It will be clarified in a separate
section how some basic features of submodular functions and polymatroids are in the
background of our approach. 7

The structure of the paper is as follows. Section 2 comprises the necessary notations
and notions from graph theory. Section 3 describes the results on directed graphs. Fur-
thermore, a new proof of Mader’s directed splitting-off theorem is given. In § 3 we provide
a simple proof of a theorem of Cai and Sun, along with some degree-constrained versions.
A new proof of Lovasz’s splitting-off theorem is also presented. Section 5 contains the
general result for undirected graphs. Section 6 lists some notions and theorems from
polymatroid theory, while §§ 7 and 8 explain the relationship between polymatroids and
augmentation problems. In § 9 we consider the fractional augmentation problem and
algorithmic aspects.

2. Notation and basic concepts. Typically, we work with a finite ground set V. We
will not distinguish between a one-element set {x} and its element x. The union of a
set X and an element y is denoted by X + y. For s, t € V a subset X of V is called an 75
setist€ X and s ¢ X. For two sets X, Y, X — Y denotes the set of elements in X, but
not in Y. X < Y denotes that X is a subset of ¥ and X # Y. Two subsets X, ¥ of V'
are called intersecting if none of XN Y, X — ¥, Y — X is empty. If, in addition, ¥ —
(XU Y)is nonempty, then X, Y are called crossing. A family of subsets is called laminar
if it includes no intersecting sets.

By a partition {X,, X, - -+ , X,} of a set X, we mean a family of disjoint subsets of
X whose union is X. By a subpartition of V, we mean a partition of a subset X of V.

Let # be the family of subsets of ¥ possessing a certain property p. We say that a
member X € F is maximal (with respect to p) if no member of & includes X as a proper
subset. For example, a maximal critical set means a critical set not included in any other
critical set (whatever critical means).
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Throughout, we use the term “graph” for an undirected graph and “digraph” for a
directed graph. Let G = (¥, E) be a graph with node set ¥ and edge st E. We denote
an edge e connecting nodes u and v by wv or vu. This is not quite precise since there
may be parallel edges between u and v. This ambiguity, however, will not cause any
trouble. Both parallel edges and loops are allowed.

For a digraph G = (V, E) a directed edge ¢ = uv is meant to be an edge from u to
v. In this case, tu means the oppositely directed edge.

For a graph or digraph G = (¥, E), E(:{') denotes the set of edges with both end-
nodes in X and is called the set of edges induced by X. For X, Y < V, d(X, Y) denotes
the number of edges between X — ¥ and ¥ — X (in any direction) and d(X, ¥) :=
d(V - X, Y). We denote d(X) := d(X, V — X). If Fc E and G is undirected, de{X)
stands for the number of edges in F entering X. The number of edges incident to a node
v is called the degree of v. The contribution of a loop vt to the degree of v is, by defini-
tion, two.

Deleting an edge e means that we leave out ¢ from E while the node set ¥ is un-
changed. For the resulting graph, we use the notation G — e. Deleting a subset C of nodes
means that we leave out the elements of C and all the edges incident to some elements
of C. The resulting graph is denoted by G — C. Splitting off a pair uv, vz of edges with
u # z means that we replace the two edges uv, vz by a new edge ¢ = uz. Note that if
u=z, eisaloop.

In a digraph G = (V, E} the in-degree p(X) (out-degree §(X)) is the number of
edges entering (leaving) X. If F ¢ E pr(X) stands for the number of edges from F
entering X. The contribution of a directed loop vv to the in-degree of v and to the out-
degree of v is, by definition, one.

We call an edge e (node v) of a graph G = (V, E) a cut edge (cut node) if G —
e (G — v) has more components than G.

A graph is called k-edge-connected if d(X) Z k for every & c X < V. A digraph is
called k-edge-connected if (X)) Z kforevery B c X V.

One fundamental resuit from graph theory is as follows.

MENGER’S THEOREM 2.1 (Edge-version in [8]). In a directed (respectively, un-
directed) graph G = (V, E) there are k edge-disjoint paths from s to t if and only if
o X) Z k (respectively, d(X) Z k) for every t5-set X c V.

In a graph or digraph A(u, v) denotes the maximum number of edge-disjoint paths
from u to v. AMu, v) is called the edge-connectivity from u to v. (In undirected graphs,
obviously A{u, v) = A(v, u).) The following identities are often used throughout
the paper.

PROPOSITION 2.2. Let G be an arbitrary graph G =(V,Edand X, Y < V. Then

(2.1) d(X)+d(Y)=d(XNY)+d(XUY)+2d(X,Y),
(2.2) dX)+d(Y)=d(X-Y)+d(Y—X)+2d(X,Y).
PROPOSITION 2.3. Let G be an arbitrary digraph G = (V,E)and X, Y < V. Then
(2.3) HX)+3Y)=3(XNY)+8(XUY)+d(X,Y),
(2.4) AX)+pY)=p(XNY)+p(XUY)+d(X,T).

If, in addition, (XN Y) = p(X " Y), then

(2.5) HX)+8(Y)=8X-Y)+HY-X)+d(X,Y),
(2.6) p(X)+p(Y)=p(X—Y)}+p(Y-X)+d(X,Y).
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Each formula can easily be proved by taking into consideration the contribution of
each type of edges to the two sides.

Let S be a finite ground-set and b : 25 -+ R U {cc } a set function. We call b fully
submodular or, briefly, submodular if (X)) + MY} Z b(X N Y) + (X U Y) holds for
every X, Y = §. If the inequality is required only for intersecting sets X, Y, then b is
called intersecting submodular.

A set function p is called supermodular if —p is submodular. A finite-valued set
function m is called modular it m(X) + m(¥Y) = m(X N Y) + m(X U Y) holds for
every X, Y € S. A modular function m with m(&f) = 0 is determined by its value on
the singletons, namely m(X) = Z(m(s):s€ X).

Suppose that m : V- R U {o0 } is a function and X < V. Generally, we will use
the notation m(X) := Z(m(s) : s € X') with the following exceptions: d(X) (see above)
is not Z{d(v) : v € X), and the case is the same with p and 5.

3. Directed graphs. Fulkerson and Shapley [16] described a method to construct
a k-edge-connected digraph on n nodes (k¥ < n) with a minimum number of edges.
Kajitani and Ueno {22] solved the problem of optimally augmenting a directed tree in
order to get a k-edge-connected digraph. Here we solve this problem for arbitrary directed
graphs.

THEOREM 3.1. Given a directed graph G = (V, E) and a positive integer k, G can
be made k-edge-connected by adding at most v new edges if and only if
(3.1) Zk—p(X; )=y and
(3.2) k-8 X )=y
hold for every subpartition {X,, X, -+, X,} of V.

Proof. Necessity. Suppose G’ = (V, EU F) is a k-edge-connected supergraph of G,
where F denotes the set of new edges. Then every subset X; of V has at least k — p(X;)
new entering edges. Therefore, the number of new edges in G’ is at least Z(k — p(X;))
and (3.1} follows. (3.2) is analogous. a

Let sbe anode notin ¥, and V':= V + 5. Let G’ = (", E') be a digraph with in-
and out-degree functions p’ and &, respectively.

PROPOSITION 3.2. Suppose for A, B< V' that p'(A) = p’(B) = k £ min (p'(4 N
B), p'(AYUB)). Then p' (AN B)Y= p'{AU B) = k and d'(4d, B) =0.

Proof. Applying (2.4) we obtain k+ k=p'(4)+p(B)=p'(4NB)+p'(4 U
B)+ d(A, By 2 k+ k + d'(4, B), from which k = p’(4 N B) = p'(4 U B) and
4'(4, B) = 0 follows. ]

We prove the sufficiency in two steps.

LEMMA 3.3. G can be extended to a digraph G' = (V + s, E') by adding a new node

8, v new edges entering s, and v new edges leaving s in such a way that for every subset
d+XecV

(3.3a) p(X)Zk and
(3.3b) ¥ X)zk

hold where p' and § denote the in-degree and out-degree function of G', respectively.

Note that by Menger’s theorem (3.3 ) is equivalent to saying that the edge-connectivity
in G’ between every pair of original nodes is at least k.

Proof. We are going to prove that it is possible to add v edges leaving s so that
(3.3a) is satisfied. This implies (by reorienting every edge) that it is possible to add
edges entering s so that (3.3b) is satisfied.

First, we add a sufficiently large number of edges leaving s so as to satisfy (3.3a).
(It certainly will do if we add k edges from s to v for every v & V.)
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Second, discard new edges, one by one, as long as possible without violating {3.3a).
Let &' denote the final extended digraph. The following claim implies the lemma.

CLAIM. §'(5) = 4.

Progf. Call a subset J <« X < V in-critical if p’(X) = k. Let S:= {ve ¥V, svisan
edge in G'}. An edge sv cannot be left out from G’ without violating (3.3a) precisely if
sv enters an in-critical set. Therefore, by the minimality of ', there is a family & =
{X), Xz, *++, X;} of in-critical subsets of ¥ covering §, and we can assume that ¢ is
minimal, \

Case 1. # consists of disjoint sets. Then we have kf = Z(p'(X;):i=1, -~ , t) =
F(s) + Z(p(X;): i = 1,---, 1) and, hence, by (3.1), &'(s) = Z(k — p(X;): i = 1,
SR 3 -

Case 2. There are two intersecting members A, Bof F. IfAU B+ V, then AU B
is in-critical by Proposition 3.2, and then replacing 4 and B in & by 4 U B we are in
contradiction with the minimal choice of ¢. Therefore, AU B =V,

LetYy:=V—Adand ¥,:= V— B.Then §(Y,) = p(4), and 8(¥3) = p(B). By {3.2)
wehave y 2 k—68(Y) )+ k-0 =k —pA)+k—p(BYZ k— p'(4) + k —
p'(B) + &(s) = §(s).

Therefore, the proof of Lemma 3.3 is complete. O

The theorem immediately follows by y repeated applications of the following theorem
of Mader [27].

THEOREM 3.4 ([27]). Suppose that for a node s of a digraph G' = (V + 5, E")
&(s5) = p'(s) and the edge-connectivity between any two nodes distinct from s is at least
k (thar is, (3.3) holds). Then for any edge st there is an edge vs such that vs and st can
be split off without violating (3.3).

Call a pair of edges vs, st splittable if they can be split off without violating (3.3).
Here we provide a (new) proof of Mader’s theorem that will be useful in § 9 to improve
the complexity of an algorithm arising from the naive implementation of Mader’s theorem.

Proof. We need the following proposition.

PROPOSITION 3.5. Suppose that 8'(s) = p'($) for a node s of a digraph G' and the
edge-connectivity between any two nodes distinct from s is at least k. If X, Y are intersecting
subsets of nodes for which {s} = XNYand §(X)=8¥) =k, then ¥(X - Y) =
F(Y-X)=k,andd'(X,Y)=0.

Proof. Applying (2.5) we obtain &£ + k = &(X) + &(Y) = §(X - Y) +
SY-X)+d(X,Y)zk+k+d(X,Y)from which (X - Y)=8(Y ~ X) =k
and &'(X, Y) = 0 follows. ]

Call a subset & < X < V in-critical if p'(X) = k and out-critical if §(X) = k. X is
called critical if it is either out- or in-critical. {Note that V" is never critical.)

PROPOSITION 3.6. Let A and B be two intersecting critical sets. Then either (i)
A\ B is critical or (ii) B — A is critical and &'(A, B) = 0.

Progf. If both 4 and B are in-critical and 4 U B c ¥, then Proposition 3.2 implies
alternative (i). If 4 U B = V, then Proposition 3.5, when applied to X := V' + 5 — 4,
Y := V + s — B, implies (ii}. The situation is analogous if both 4 and B are out-
critical. Finally, let A be in-critical and B out-critical. Proposition 3.2, when applied to
Aand V + s — B, implies (ii).

A pair {vs, st} of edges is not splittable precisely if there is a critical set containing
both v and f. Therefore, if there is no critical set containing ¢, any pair {vs, st} is
splittable.

For two intersecting critical sets 4, B containing ¢, only alternative (i) may hold in
Proposition 3.6 since the existence of edge st implies d'(A4, B) > 0. Therefore, the union
M of all critical sets containing { is critical again.
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We claim that there is an edge vs with v € V' — M. We indirectly suppose that no
such an edge exists. If M is in-critical, then §(V — M) < p'( M) = k, contradicting {3.3b).
If M is out-critical, then &(s) = p'(5) implies that p'(V - M) =&(M +5) < ¥(M) =k,
contradicting (3.3a).

By the choice of M, no critical set contains both v and #; therefore, vs and st are
splittable. O

Our next problem is to find an augmentation of minimum cardinality if upper and
lower bounds are imposed both on the in-degrees and the out-degrees of the digraph of
newly added edges. Let £, = g, and four £ gou be four nonnegative integer-valued func-
tions on ¥ (infinite values are allowed for g, and g,.). {Recall that g,(X) denotes
Z(gin(v): v X)) ,

THEOREM 3.7. Given a directed graph G = (V, E) and a positive integer k, G can
be made k-edge-connected by adding a set F of precisely v new edges so that

(3.4a) Jalv}Zpp(v) = gin(v) and

(3.4b) Joul©) S85(5) S gour(v)

hold for every node v of G if and only if

(3.5a) . k=p(X)Sgn(X) and

(3.5b) k—8(X)S goul(X)

hold for every subset & < X< V, and ,
(3.6a) S(k—p(Xi)i=1, - D+ fulXo) =y,

(3.6b) Zk=8(X)i=1, - D+ fom( X)) =

hold for every partition { X,, Xy, X, -+ , X,} of V where X, may be empty.

{ At this point we emphasize that both in this theorem and later theorems, degree-
constrained augmentations loops are allowed to be added to G. It may be interesting to
consider the problem when loops are not allowed.)

Proof of the necessity. Suppose that there is a required set F of new edges. Then
kS p(X)+ pp(X) = p(X)+ Z(pe(v): 0 € X) = p(X) + gu(X), and (3.5a) follows.
The proof of {3.5b) is analogous. Similarly, pr(X;) 2 k — p(X;) and pr(v) = £,(v) and
hence {F{ 2 Z(pAX;):i=0,1, - , )2 Zk—p(X;):i= 1, -+, D)+ fil X)), and
(3.6a) follows. {3.6b) is analogous again. O

To prove the sufficiency, we can apply the method of the proof of Theoremn 3.1.
Here, we only outline this, and a formal proof is postponed to § 8, where the use of
polymatroids make clear why such a proof works. The sketch below also indicates an
algorithm to find a desired augmentation.

Sketch of the proof of sufficiency. We can assume that g, and g, is finite, since if
&in(v), say, is infinite, then g;,(v) can be revised to be max (k, v, fin(v)). This modification
does not destroy the necessary conditions.

Extend G by a new node 5. For each node v € ¥, add g;,(v) parallel edges from s
to v, and g, (V) parallel edges from v to 5. (3.5) ensures that (3.3) holds for the extended
digraph G'. Since v = min (gi.(V), gom(¥)), we have p'(s) Z v and §(5) = v. Now
delete new edges, one by one, so that (3.3) continues to hold and each node v has at
least £, (v) newly entering and £,,,,(v) newly leaving edges. This deletion procedure stops
when the current in-degree and out-degree of s is v. If we can reach such a situation,
then Mader’s splitting-off theorem can be applied, and we are done.

The only trouble may arise if §'(s) > vy and no new edge leaving s can be left out,
or if p'(s) > v and no new edge entering 5 can be left out. Suppose that the first case
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occurs (the second is analogous). Now a new edge sv may not be left out because sv
either enters an in-critical set or p'(v) = fu(v). That is, the set {v: p'(v) > fi.(v)} can
be covered by a family # = { X, ---, X,} of in-critical sets. Suppose that ¢ is as small
as possible. If # consists of disjoint sets, then {X,, X1, ---, X,} violates (3.6a), where
Xe=V-UX;:i=1,---,1). If F includes two intersecting sets 4 and B, then A U
B = V and the partition {¥,, Y,, Y2} of ¥, where Y,:= AN B, ¥, := ¥V~ 4, and
Y; ;= V ~ B, violates (3.6b).

We are interested in degree-constrained augmentation when there is no requirement
for the number of new edges; see the following theorem.

THEOREM 3.8. Given a directed graph G = (V, E) and a positive integer k, G can
be made k-edge-connected by adding a set F of new edges satisfying (3.4) if and only if
(3.5) holds, and

(3.72) Zk—p(Xi)i=1, - 0} HfalXo) S e,
(3.7b) Dk-8(X;)i=1, - ) +Hfu(X) S e

hold for every partition {X,, X, Xa, -+ , X} of V where X, may be empty and a :=
min (gou( V), &a(V)).

Proof. (3.5} is clearly necessary. To see the necessity of (3.7), let F be a set of new
edges satisfying the requirements. Then Z(k — o(X;):i=1, -+ D+ fulX,) = | F| =
a, and (3.7a) follows. (3.7b) is analogous.

To see the sufficiency, observe that by choosing ¥ := o if « is finite and vy :=
V] +£a(V) + fou V) if o = 00, condition (3.6) follows from (3.7), and then Theorem
3.7 applies. 0 ‘

Let us consider the minimum cost k-edge-connected augmentations. As we men-
tioned in the Introduction, if costs are assigned to the edges, the problem is NP-complete
even if k = 1. Suppose now that ¢;, : ¥ = R, and ¢y, : V — R, are two nonnegative
cost functions on the node-set ¥ of G. Qur object is to find a k-edge-connected augmen-
tation of G for which Zpp(V)cin(V) + Z3p(V) Coue( V) Is minimum, where F is the newly
added edges. The algorithm is a version of the proof of Lemma 3.3, in which the selection
of new edges to be discarded is governed by the cost of the end-nodes in a greedy fashion.

ALGORITHM TO FIND A MINIMUM NODE-COST 4-EDGE-CONNECTED
AUGMENTATION OF A DIGRAPH
Add a new node sto V.

PART 1. Add k new parallel edges from s to v for every v € V. (For the resulting
digraph G, (3.3a) holds.) Assume that the new edges f;, f5, - - - are ordered according to
the decreasing order of the ¢, costs of their end-node u;. (The order of parallel edges
from s to u; does not matter.) Go through the new edges in the given order and discard
an f; if this can be done without destroying (3.3a). Let v, be the number of remaining
new edges.

PART 2. Add & new parallel edges from v to s for every v € V. (For the resulting
digraph ', (3.3b) holds.) Assume that the new edges f;, £, - - - are ordered according
to the decreasing order of the coy costs of their tail-node ;. ( The order of parallel edges
from u; to 5 does not matter.) Go through the new edges in the given order and discard
an f; if this can be done without destroying (3.3b). Let v, be the number of remaining
new edges.

Let v := max (v, v2). If ¥2 < vy, add v, — 7, parallel edges from « to s, where u

is a node and cou (%) is minimum. If ¥, < v,, add v, ~ v, parailel edges from s to u,
where u is a node and ¢;,{#) is minimum,
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PART 3. Let G’ denote the final digraph, In G’, §'(s) = p'(s) = v, and (3.3) holds.
Apply v times Mader’s Theorem 3.4 to G". Let G, = (V, E U F) denote the resulting
digraph.

THEOREM 3.9. The graph G,, constructed above, is a minimum cost k-edge-con-
nected augmentation of G,

The proof of this theorem is postponed until § 7, where the necessary tools from
polymatroid theory are already available. In § 8 we will make comments on algorithmic
aspects of the procedure above including its extension to the capacitated case.

Perhaps it is worth mentioning that, by the above algorithm, a minimum cost aug-
mentation is automatically 2 minimum cardinality augmentation.

We close this section by pointing out that the following two versions of the aug-
mentation problem answered by Theorem 3.1 are NP-complete.

Problem A. Let G = (V, E) be a directed graph, s a specified node of G, T Va
specified subset of nodes, and v a positive integer. Decide if it is possible to add at most
v new edges to & so as to have a path from s to every element of 7.

Problem B. Let G' = (V, E’) be a directéd graph, R < V a specified subset of nodes
and v a positive integer. Decide if it is possible to add at most v new edges so as to have
a path from every node of R to any other node of R.

THEOREM 3.10. Both problems A and B are NP-complete.

Proof. The following set covering problem is known to be NP-complete [17]: Given
k sets X,, - - -, X; and an integer -y, decide if there is a set X with cardinality at most v
that intersects all X;’s.

First we show that set covering can be solved in polynomial time if Problem A can
be solved in polynomial time. Let §:= X, U - - - U X,. For each X; let #; be a new element
and T:={#, -, #}. Letsbe an element notin SU T, and ¥:=SUTU {s]. Let

—(VE)bcadlrectedgraph where E:= {v; :ifve X;}.

It is easily seen that if Problem A has a solution, it has a solution in which every
new edge is of the form sv where v € S. Then there is a solution to set covering; namely,
the heads of new edges from a subset X of at most v elements intersecting all X;’s.
Conversely, if X is"a solution to set covering, then {sv: v € X } as the set of new edges
forms a solution to Problem A. Therefore, Problem A is NP-complete.

To sce that Problem B is NP-complete, suppose that it is solvable in polynomial
time. We then show that Problem A is also solvable in polynomial time. Indeed, a set F
of new edges is a solution to Problem A with input {G = (V, E), s, T, v} if and only if
F is a solution to Problem B with input {G’ = (¥, E’), R, v}, where E' := E U
{vs:veT}landR:=T+s. O

4. Undirected graphs. In this section we first provide a simpler proof of a theorem
of Cai and Sun [2]. One advantage of this proof is that it can be extended to the degree-
constrained case. Another one is that we use Lovasz’s splitting-off theorem [23], [24]
rather than Mader’s, which is much more difficult. This way, the proof becomes self-
contained as we provide a (new) proof of Lovisz’s theorem.

THEOREM 4.1 ([2]). Given an undirected graph G = (V, E) and an integer k Z 2,
G can be made k-edge-connected by adding at most v new edges if and only if

(4.1) Zk—-d(X))=2y

holds for every subpartition {X,, X,, -+, X,} of V.

Proof. The proof is analogous to that of Theorem 3.1.

Necessity. Suppose G' = (V, EU F) is a k-edge-connected supergiaph of ¢, where
F denotes the set of new edges. Then every subset X; of ¥ has at least k — d(X;) newly
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entering edges. Therefore, the number of new edges in G is at least Z(k — d(X,))/2,
and (4.1) follows.
We prove the sufficiency in two steps. Let s be a node not in V,and V' := V + 5.
LEMMA 4.2. G can be extended to a graph G' = (V + 5, E’Y by adding a new node
s, and 2y new edges berween V and s in such a way that Jor every subset G # X V

(4.2) d(X)zk

holds where d' denotes the degree function of G'.

Proof. First, we add a sufficiently large number of edges leaving 5 so as to satisfy
(4.2). (It certainly will do if we add & edges from s to v for every v e V)

Second, we discard new edges, one by one, as long as possible without violating
(4.2). Let G’ denote the final extended graph. The following claim implies the lemma,

CLAIM. d'(s) = 24.

Proof. Call asubset & < X  V critical if d'(X) = k.

PROPOSITION 4.3. If X and Y are intersecting critical, then both X - Y and.Y — X
are critical, and &'(X, Y) = 0.

Proof. Wehavek + k=d'(X)+ d'(Y)=d'(X - NN+d(¥-x)+2dx, V)=
k + k from which the proposition follows. (W

Let §:= {u€e V:sue E'}. An edge su cannot be left out without violating (4.2),
precisely if there is a critical set containing u. Let M, denote a minimal critical set
containing ¥ (u € 8 and let &F = {M,:ueS} LetX,, X,, ---, X, be the maximal
members of &F.

PROPOSITION 4.4, Sets X; (i= 1, --- , t) are pairwise disjoine.

Proof. We prove that # is laminar. If M,, M, € F are intersecting, then, by Prop-
osition 4.3, M, — M, is critical and &'(M,,, M, ) = 0, therefore v € M, — M, contradicting
the minimal choice of M,.

By (4.2) we have d'(s) = 2(d"(X;) —d(X;): i =1, -, 1) =k — d(X;):
i=1, -, 1) = 2v, as required for the claim.

Add one extra edge sv if d'(s) is odd to make it even, and let ¥ = d'(5)/2(=v).
Theorem 4.1 follows by 4’ repeated applications of the following theorem of Lovasz. [}

THEOREM 4.5 ([23], [24]). Suppose that in a graph G’ = (V+35, ENd(s)>0is
even, and for every subset & + X < V (4.2) holds. Then for every edge st there is an edge
su so that the pair {st, su} can be split off without violating (4.2).

Remark. Lovész announced this theorem in Prague | 23] and gave a proof in his
problem book [24]. There Lovasz broke up the problem into two parts. Problem 6.51
is the above statement (with different notation) formulated for Eulerian graphs while
Problem 6.53 in Lovész’s book sounds as follows, * Prove that, provided k 2 2, the
assertion of 6.51 holds for non-Eulerian graphs as well However, this formulation is
not completely precise since the evenness of the degree of 5 cannot be dropped, as is
shown by the complete graph on four nodes. The proof (which is otherwise correct)
given by Lovasz [24, p. 287] uses a “tripartite” submodular inequality. Here we provide
another proof that avoids this and will also be useful in § 9 to improve the efficiency of
an algorithm arising from the naive implementation of Theorem 4.5,

Progf. Call a set & < X c V dangerous if

(4.3) d(X)<k+1.

A pair {st, su} of edges is called splittable if they can be split off without violating
(4.2). This is the case precisely if there is no dangerous set X with t,ueX. Let §:=
{veV:isve E'}.
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CLAIM A. Let A and B be intersecting dangerous sets witht1 € AN B. Then

(i) d'(4,B)=1and

(ii) S 4U B (inparticular, AU B # V).

Proof. By (2.2) we have (k + 1) + (k + 1) Z d'(4) + d'(B) = d'(4 — B) +
d'(B — A)+ 2d'(A4, B) 2 k + k + 2 from which (i) follows.

Suppose that, indirectly, S 4 U B. Let a:= d"(s, A — B) and 8 := d'(s5, B — A).
By symmetry, we can assume that « Z 8. Since d'(A4, B) = | we have k < d(V-4)=
dAd+s)=dA)—a+f-12d(4) -1 = k from which « = 8, and thus « = 8
follows.'But this is impossible since, if S < X U Y, then d(s)=a+pB+1=2a+1,an
odd number. O

CLaM B. If 4 and B are intersecting dangerous sets with t € A N B, and A is
maximal dangerous, then d'(d) = d'(BYy=k+ l and (AN B) = k.

Proof. By Claim A, 4 U B # V, and by the maximality of 4, d'(4 U B) = k + 2.
From (2.1) we have (k+ 1) +(k+ 1) 2 d'(4) + d(B) Z d{AUB) + d'(A N Bz
(k + 2) + k, from which the statement follows. a

If there is at most one maximal dangerous set X with ¢ € X, then for any edge sv
with v ¢ X the pair s¢, sv is splittable. Such an edge exists since otherwise dV-X)=
dX+s)y=dX)~d(s)=2k+1)-2=k-1, contradicting (4.2).

Suppose that X and Y are two distinct maximal dangerous sets with ¢ € X N ¥ for
which M := XN Yis maximal. Then X and Y are intersecting, and Claim A implies that
there is an edge sv withv g X U 7.

CLAIM. The pair sv, st is splittable.

Froof. Suppose that, indirectly, there is a maximal dangerous set Z with t,LveZ.
Applying Claim B to 4 := X and B := Y we have &'(M) = k. Z and M must not be
intersecting for otherwise Claim B could be applied to 4 :== X and B := M implying
d'(M) = k + 1. Therefore M < Z and by the maximal choice of M we have XN Z =
YNZ=M.ByClaimAd(X,Y)=d(Z,Y)= d(Z, X) = 1, and therefore no other
edge than st can leave M, contradicting k = 2. (N

Theorem 4.1 can be extended to a degree-constrained case when upper and lower
bounds are imposed on the degrees of the graph of newly added edges. Let / = gbe two
nonnegative integer-valued functions on ¥ (infinite values are allowed for 2).

THEOREM 4.6. Given an undirected graph G = (V, E) and an integer k= 2, G can
be made k-edge-connected by adding a set F of precisely v new edges so that

(4.4) Avy=de(v)=g(v)

holds for every node v of G if and only if 2y < g(V) and

(4.5) k—d(X)sg(X),

holds for every subset & < X < V and

(4.6) Zk—d(X;)i=1, - D)+ X,)S2y

holds for every partition { X,, X\, X, -+ -, X,} of V where X, may be empty.

Remark. This theorem, when applied to f= 0, £ = oo, immediately implies the
theorem of Cai and Sun and, therefore, it would not have been necessary to prove first
Thecrem 4.1, We did so to exhibit the simplicity of the idea behind the proof. The next
proof uses the very same idea along with some technicalities.

Proof. The necessity of the conditions is straightforward. To see the sufficiency,
first, add a new node s to ¥ and min (g(v), f(v) + k) new parallel edges between s and
v for every v € V. For the enlarged graph G’, the number d'(v) — d(v) of new edges
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incident to v is at most g(v) for every v € ¥ and, by (4.5), (4.2) holds. If d'(s) < 2v,
add 2y — d'(s) appropriate edges leaving s in such a way that d'(v) — d(v) is still at
most g{v) (v € V). This is possible because we have assumed that 2y = g(V').

Second, discard new edges, one by one, as long as possible without violating (4.2)
and the following inequalities: d'(s) 2 2v, d'(v) — d(v) 2 f(v) (v € V). Let G’ denote
the final extended graph. By Proposition 4.4 the set 4 := {v € V: d'(v) ~ d(v) > f(v)}
can be covered by disjoint critical sets Xy, X5, -+, X, Let X, := V= U(X;: i = |,
-+« , t). Applying (4.6) we have 2y = d'(s) = 2(d' (X)) —d(X)): i=1,---, 1)} +
X)) =2k —d(X;):i=1,--,1) +f(X,) £ 2. Hence d'(s) = 2v, and by v
applications of Theorem 4.5 we obtain the desired augmentation of G. Ll

We are interested in degree-constrained augmentations where the number of new
edges does not matter; see the following theorem.

THEOREM 4.7. Given an undirected graph G = (V, E) and an integer k Z 2, G can
be made k-edge-connected by adding a set F of new edges so that (4.4) holds for every
node v of G if and only if (4.5) holds for every subset & < X < V and (=) there is no
partition F = {X,, Xy, Xz, -+, X;} of V, where only X, may be empty, with the
Jollowing properties: f( X,) = g(X,), g(X;) = k — d(X;), and g(V') is odd.

Progf. The necessity of (4.5) is clear. To see the necessity of (#) let # be a partition
with the given properties, and F a set of new edges satisfying the requirements, Then
de(v)y=g(v¥forve X, d(X;)=k—d(X;)=g(X;)fori=1, - - - , ¢, and, furthermore,
no X; induces elements of F. Therefore g(V) = Z(g(X): X € ) = 2| F|, an even
number.

To see the sufficiency, extend the graph with a new node s and add min (g{(v),
f() + k) new parallel edges fromstovforeveryve V. Let ¥ := V+ sand let G' =
(¥, E’) denote the extended graph. The number of new (parallel ) edges between s and
vis d'(v) — d(v).

By this construction f(v) = d'(v) — d{v) = g(v), and (4.5} implies that (4.2 ) holds
for every subset & < X < V. Therefore, if d'(s) is even, then Lovisz's Theorem 4.5
implies the theorem.

Suppose that d'(s) is odd. If there is a node v € ¥ with &'(v) — d(v) < g{(v), then
by adding one more edge sv to G’ we are at the case of d'(s) even.

Therefore, we can assume that 4'(v) — d{v) = g(v) for every v € V. If there is an
edge e = su for which f(u) < g(u«) and su does not enter any criticai set, then ¢ can be
deleted without destroying {4.4) and f{v} = d'(v) — d(v), and then d'(s) becomes again
even. So suppose that there is no such an edge; that is, every edge sv either enters a
critical set or has f(v) = g(v).

Then, by Proposition 4.4, there are disjoint critical sets X, X3, - -+ , X; for which
k=d(X;) = d(X;) + g(X;) so that UX; contains all nodes v with f(v) < g(v). Let
Xo = {veV: f(v) = g(v), vgUX;}. We obtain that f( X,) = g(X,), g(X;) = k —
diX;Yfori=1,---,¢t, and g(V) = Z(g(X) : X € F) = d'(5) is odd, contradicting
(»). 0O

5. Generalization. In this section we exhibit a natural generalization of results from
the preceding section. Let & = (V, E) be an undirected graph and r(u, v) (y,ve V) a
nonnegative integer-valued function on the pair of nodes that serves as the demand for
edge-connectivity between u and v, When can & be extended by adding v new edges so
that in the extended graph G’ the edge-connectivity number X (u, v) is at least r(u, v)
for every pair of nodes u, v7 Such an augmentation is called good (with respect to the
demand r(u, v)). It will be convenient to assume (and this can be done without loss of



38 ANDRAS FRANK

generality) that

(5.0a) r(u,v)Z Mu,v) forevery u,ve¥, and
{5.0b) r(u,x)21 and r(v,x)=1 imply that r(u,v)2 L.

By Menger’s Theorem 2.1, G' is a good augmentation of G if
(5.1) d{X)}ZR(X)

holds for every set & < X « ¥ where R(X) ;= max (r(u, v): ueX,ve V — X). {(The
maximum on the empty set is defined to be 0.)

In order to obtain more general results on optimal augmentations, we need stronger
theorems about splitting-off.

Inagraph G' = (V+5,E'), let N(X):= max (N(u,v): ueX,ve V= X). Obviously
d'(X) 2 N(X). We call a pair {su, sv} of edges of G’ splinable if after splitting off
{su, sv} the edge-connectivity between every two nodes distinct from s remains the
same. Obviously, {su, sv} is splittable precisely if there is no subset X < V with u,
v € X for which d'(X') £ N(X) + 1. We call such a set X dangerous.

Mader [26] proved the following extremely powerful result.

THEOREM 5.1 ([26]). Let G’ = (V + s, E') be a connected undirected graph with
d'{s)#+3orl.

(2) If s is not a cut-node (that is, G' — s is connected), then there is a splittable
pair of edges { su, sv}.

(b) Ifs is a cut-node but there is no cut-edge incident to s, then any pair of edges
{su, sv} is splittable provided that u and v belong to distinct components of G’ — 5.

Remarks. The original proof of this theorem is rather difficult. In [12] a relatively
simple proof is given. It is not necessarily true that, under the above assumptions, for a
given edge st there is an edge su so that st and su are splittable. Furthermore, the theorem
does not hold in general if d'(s) = 3, as is shown by a complete graph on four nodes.
Note that Theorem 4.5 is a special case of Mader's theorem.

COROLLARY 5.2. Suppose that in an undirected graph G' = (V + 5, E') degree d'(s)
is even and there is no cut-edge incident to s. Then the edge incident t0 s can be paired
in such a way that splitting off each pair results in a graph with vertex set V in which the
edge-connectivity between every two nodes u, v is equal to the original edge-connectivity
Au, ).

Proof. Apply Theorem 5.1 d'(s)/2 times and observe that after a splitting no edge
incident to s becomes a cut-edge. O

Let us turn back to the augmentation problem. We introduce the following notation:
q(4):= R(A4) — d(A). That is, g(4) is the deficiency of 4 < V. The following condition
is clearly necessary for the existence of a good augmentation using at most -y new edges:

(5.2) Zq(X;) =2y

for every subpartition { X, --- , X,} of V. Theorem 4.1 of Cai and Sun asserted that, in
the special case when r(u, v) = k = 2, (5.2) is sufficient as well. However, it is not
sufficient, in general, as is shown by the empty graph on four nodes with ru,vy=1.

Let C'(#V') be a component of G. We call C a marginal component ( with respect
to the demand function r(u, v}) if ¢{(X) = 0 for every X < Cand g(C) = 1. This is
equivalent to saying that r(u, v) = A(u, v) for u, v € C and r(u, v) = Mu, v)+ 1 for
ueC,veV-_.

Our solution to the problem of finding a good augmentation consists of two steps.
First, we show that marginal components can be easily eliminated; second, we prove
that if there are no marginal components, then (5.2) is sufficient.
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Let v( G, r) denote the minimum number of edges the addition of which to G results
in a graph G’ satisfying (5.1). Let C be a marginal component of G, and G, := G ~ C.
Let r, denote the function r restricted on the pairs of nodes of V' — C.

THEOREM 35.3. For a marginal component C of G ¥(G, r) = ¥(G\, n) + g{C).

Proof. Let v := 4(G, r) and v, := ¥(G,, ). First, we show that v = v, + g(C).
Let G, denote a minimal augmentation of G,. If g(C) = 0, then clearly G, along with
C, vields a good augmentation of G and hence v £ v, = v, + ¢(C). If ¢(C) = 1, then
there is a pair a, b with a € C and b € ¥ — C for which r(a, b) = 1. We claim that adding
C and an edge ab to G| yields a good augmentation G' of G. Indeed, if this were not
true, there would be a pair s, ¢ of nodes of G for which r(s, ¢) > N'(s, £). Then precisely
.oneof sand ¢, say s, is in C and t in ¥ — C (because C is marginal and G| is good with
respect to r,). Since C is marginal, r(s, t) = 1 and then X'(s, ¢} = 0. Hence in ] there
is no path between ¢ and b, and therefore 7, (¢, b) = r(¢, b) = 0. (5.0b) shows that # and
5 must be distinct. Then, by (5.0a) r(s, a) 2 1. Applying (5.0b) twice, we obtain that
r(a,t)= 1 and r(b, t) 2 1, a contradiction. Therefore ¥ = v, + g(C).

To see the other direction let G, = (V,, E,) be a graph obtained from G by replacmg
C with a new node v,. Define r,{u, v) := r{u, v)ifu, ve V- Cand r,(v., v} := g(C).
Let v, := ¥{G,, r,). Obviously, v, = 7.

Let G, = (V,, E, U F) be a minimal augmentation of &, good with respect to r,
such that the number ¢ of elements in F incident t0 v, is as small as possible. If t = 0,
then g(C) = 0 and the elements of F are induced by G — C. Hence v, = |F| = v, =
v = v — g(C), as required. If ¢ = 1, then, by the minimality of F, g(C) = 1. Let fe€ F
be the edge incident to v,. Adding F — fto G, we obtain a good augmentation of G,
and then v, = [F| — | = y,— 1 =4 — g(C), as required.

Finally, suppose that ¢ Z 2 and let v, - - -, V4, be the ¢ edges in F incident to v..
Let F' be obtained from F by replacing v, by wyu; (i = 2,3, ---, t). It is not hard to
see that G, + F'is also a good (and minimal) augmentation of G,, contradicting the
minimal choice of ¢. a

By Theorem 5.3 we can easily reduce the augmentation problem to a case when

there is no marginal component. Namely, proceed as follows. Let €y, Gz, *-+, C be
components of G such that C; is a marginal component of G — (C; U -++ U (1)
(i=1,--+,t)and G — (C, U --- U () has no marginal components. Leave out each

C, and find a minimal augmentation of the remaining graph (as to be described below).
Take back the components C;, and for each component C; add ¢(C; )} (whichisQor 1)
new edges, as described in the first part of the proof of Theorem 5.3.
Before formulating the main result of this section we prove the following.
PROPOSITION 5.4. For arbitrary X, Y < V at least one of the following inequali-
ties holds:

(5.3a) R(X)+R(Y)SR(XNY)+R(XUY),
(5.3b) R(X)+R(Y)SR(X-Y)+R(Y—X).

Proof. Suppose that R(X) = r(x, x') and R(Y) = r(y, ¥'), where X separates x
and x', and Y separates y and y'. Assume first that one of the two pairs, say x, X, is
separated by both X and Y. By taking the complement of Y, if necessary, we can assume
that xe X — Yand x' € Y — X. (If Y is replaced by its complement, then (5.3a) and
(5.3b) transform into each other.) If y, 3’ are separated by X, then R(Y) = R(X) =
min {R(X - ¥), R(Y — X)), and (5.3b) follows.

If y, ¥ are not separated by X, then either one of y and )/, say y, isin X " Y and
yeX—Y;orelseoneof yand y',say y,isin Y — Xand y' € ¥V — (X U Y). In the first
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case, R(X — Y) = R(Y) and R(Y — X) 2 R(X), and (5.3b) follows. In the second
case, R(Y — X)Z R(Y)and R(X — ¥) = R(X), and (5.3b) follows again,

Finally, assume that neither x, x’ are separated by ¥ nor are y, )’ separated by X.
Again, we can assume that x¢ ¥, Then x’ € ¥ — (X U Y). Now either one of y and y/,
say ¥, isin XM Yand y € X ~ ¥; or else one of y and y,sayy,isin ¥ — Xand y' €
V= (XU Y). In the first case, R(X) = R(XU Y)and R(Y) < R(X N Y), from which
{5.3a) follows. In the second case, R(X) < R(X — ¥)and R(Y)Z R(Y—X),and (5.3b)
follows. O

The main result of this section is as follows.

THEOREM 35.5. If G has no marginal components, there is a good augmentation
using at most v new edges if and only if (5.2) holds for every subpartition { X;, - - - , X}
of V.

Proof. The following lemma and Corollary 5.2 imply the theorem.

LEMMA 5.6. G can be extended to a graph G' = (V + 5, E') by adding a new node
s, and 2y new edges between V and s so that none of the new edges is a cut-edge of G'
and for every subset o Xc V

(5.4) d'(X)ZR(X)

holds where &' denotes the degree function of G'.

Proof. First, add a sufficiently large number of edges leaving s 50 as to satisfy (5.4).
Second, discard new edges, one by one, as long as possible without violating (5.4). Let
G’ denote the final extended graph.

Claim. d'(s) = 2.

Proof. We call aset & « X < V eritical ifd'(X)= R(X).

PROPOSITION 5.7. If X and Y are critical sets, then at least one of the following
statements holds:

(5.5a) both XN Y and XU Y are critical;
(5.5b) both X~ Y and Y —X are critical and &'(X,Y)=0.

Proof. 1f (5.3a) holds, then R(X) + R(Y) = d'(X) + &'(Y) = dXNY)+
dXUY)ZR(XNY)+RXUY)ZR(X)+ R(Y) and (5.52) follows.

If(5.3b) holds, then R(X) + R(Y) = (X)) + d(¥) = (X - Y} + d'(Y — X)+
X, Y)ZRX-Y)+R(Y - X) + 2d'(X, Y)Y = R(X) + R(Y) + 2d'(X, Y) and
{3.5b) follows.

Let §:= {u € V:sueE'}. An edge su cannot be left out without violating (5.4)
precisely if there is a critical set containing u. Let & := {X1, X2, -+, X} be a family
of critical sets that cover S so that ¢ is minimal and, given this minimal ¢, Z|X;| is
minimal. We claim that the sets X;’s are disjoint,

Indeed, for X, ¥ € # their union X U Y cannot be critical by the minimality of 7.
Therefore { 5.5b) must apply, Hence X — Y and ¥ — X are both critical and d(X,Y)=
0, from which SN (X N Y) = &. This means that if we replace X and Y by X — Y and
Y — X, then we obtain another family of ¢ eritical sets covering S. By the minimal choice
of 21 X;| wehave that | X| = |[X— Y| and | Y| = | Y~ X|;that is, X and Y are disjoint.

By (5.2) we have &'(s) = Z(d'(X;)) —d(X,):i=1,---, 1) = Z(g(X):i=1,
+++, 1) = 2v, which proves the claim.

By adding one extra edge (parallel to an existing edge su), if 4'(5) is odd, we can
assume that d'(s) = 2y’ (£2v). We claim that no edge incident to s is a cut edge of G,
Indeed, if e = sv were a cut-edge, then let C be the component of G’ — ¢ containing v
but not s. There is precisely one edge in G’ leaving C and therefore C must be a marginal
component of & contradicting the assumption.
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This way the proof of Lemma 5.6 is complete and so is the proof of the
theorem. O

We mention two degree-constrained versions of Theorem 5.35. Their proofs are anal-
ogous, respectively, to those of Theorems 4.6 and 4.7, and we do not repeat them here.
However, a proof will be provided in § 7 relying on a relationship between good aug-
mentations and polymatroids.

THEOREM 5.8. Suppose that f(C) 2 2 for every marginal component C of G. There
is a good augmentation of G using a set F of precisely v new edges so that (4.4) holds if
and only if 2v = g(V) and g

(5.6) g(X)=g(X),
holds for every subset & < X < V and
(5.7) Z(g(X)i= 1, - (X)) S 2y

holds for every partition { X,, X\, X2, -+, X, } of V where X, may be empty.

THEOREM 5.9. Suppose that f(C) Z 2 for every marginal component C of G.There
is a good augmentation of G using a set F of new edges so that (4.4) holds if and only if
(5.6) holds for every subset & < X < V and (+) there is no partition F = { X,, X,, X2,

, Xi} of V, where only X, may be empty, with the following properties: f(X,) =
&(X,), 8(X;) = g(X;), and g(V') is odd.

To close this section we consider minimum cost augmentations. As we mentioned
in the Introduction, if costs are assigned to the edges, the problem is NP-complete even
if r = 2. Suppose now that ¢ ;: ¥ = R, is a nonnegative cost function on the node-set V'
of G. Our object is to find a good augmentation of & for which Zdr(v)e(v)is minimum,
where F is the set of newly added edges.

We are concerned only with the case when & has no marginal components. If &
does have marginal components, a reduction analogous 10 the one described in Thecrem
5.3 can be applied.

Assume that the elements of V are ordered in suchawaythat ¢, Z2 ;2 -+ Z ¢,
where ¢; := c(v;). Let k:= max (g(X): X < V). .

ALGORITHM TO FIND A GOOD AUGMENTATION OF MINIMUM NODE-
COST

First, add a new node 510 ¥, and k new parallel edges between s and v for every
v € V. For the resulting graph ', (5.1) holds; that is, d'(X) = R(X) forevery X c V.

Assume that the new edges fi, /2, - - - are ordered according to the decreasing order
of their end-node ;. That is, first come the parallel edges from s to ,, then the parallel
edges from 5 to w,, and so on. (The order of paralle] edges between s and #; does not
matter.)

Next, go through the new edges in the given order and discard an f; if this can be
done without destroying (5.1). If at the end of the procedure there is an odd number of
edges incident to 5, add one further edge between s and v, and let G' = (V + s, E')
denote the final graph. Note that the newly added edge is not a cut-edge of G’, as we
assumed that G has no marginal components.

Therefore we can apply Corollary 5.2 to . Let G, = (V, E U F) denote the result-
ing graph.

THEOREM 5.10. The graph G, constructed above is a minimum-cost good augmen-
tation of .

This theorem will be proved in § 7, where the necessary tools from polymatroid
theory are already available.
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6. Generalized polymatroids. Before going into the details, let us indicate how
polymatroid theory became involved in this research. The starting point was the paper
of Cai and Sun [2]. We were trying to find a simple proof of their theorem when we
realized that the degree vectors of good augmentations span a (generalized } polymatroid.
This observation led to the desired proof and almost immediately to a proof of the
directed version. The nice properties of polymatroids gave rise to the solution of the
degree-constrained and the minimum node-cost augmentation problems.

Since there may be those who are interested in the augmentation problem but have
no prier knowledge in polymatroid theory, some of the original proofs are converted
here to avoid polymatroids. These proofs are included in the preceding sections. However,
we do not want to hide this relationship, so this and the next two sections have been
inserted.

First, we collect some results from polyhedral combinatorics. This environment
helps us understand the background behind the results oceurring in earlier sections. It
also gives rise to possible generalizations and a proof of the two algorithms described at
the end of §§ 3 and 5. .

Generalizing the concept of matroid polyhedra, Edmonds [4] defined a polymatroid
to be a polyhedron P(b) := {x € R¥ : x Z 0, x(A) < b(A) for every A = V' }, where b
is 2 submodular, monotone-increasing, finite-valued set-function with 5({ &) = 0. There
are other classes of polyhedra of similar type. For example, Shapley [29] introduced, as
we call it here, contrapolymatroids. Submodular polyhedra and basis polyhedra have
been defined and investigated by Fujishige. For a general account, see [15]. Generalized
polymatroids (in short, g-polymatroids) [11] serve as a common framework for all of
these polyhedra.

Throughout this section we assume that any function in question is integer-vatued
(allowing +c0).

Let p:2¥ =+ Z U {~cc } be a supermodular function, and b: 2" — Z U {c}a
submodular function with p( &) = (@) = 0 for which

(6.1) . H(X)~p(Y)ZH(X-Y)—p(Y—-X)

holds forevery X, Y V.

A pair (p, b) with the above properties is called a strong pair. A polyhedron
O(p, b):= {x € R": p(4) = x(A) = b(A) forevery A < V1 is called a g-polyma-
troid. For technical convenience, we consider the empty set a g-polymatroid. For a detailed
account on properties of g-polymatroids, see {13]. Here we cite some without proof.

PROPOSITION 6.1. 4 g-polymatroid Q = Q(p, b) is nonempty and is spanned
by its integral points. Q uniquely determines its defining strong pair, namely, p(A4) =
min (x(4): x € Q) and b(A) = max (x(A): x € Q).

A pair (p', b') is called a weak pairif p’ (respectively, ) is supermodular (respectively,
submodular}) only on intersecting sets, and (6.1) is required only for intersecting X
and Y.

PROPOSITION 6.2. For a weak pair (p', b') the polyhedron Q = Q(p', b') is a g-
polymatroid. Q is nonempty if and only if

(6.2a) ZP(ZH=b(VZ) and
{6.2b) - b (Z)zp'(UZy)

hold for every subpartition {Z,, --- , Z,} of V. If Q is nonempty, it contains an inte-
ger point.
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‘Let @ = Q(p, b) be a g-polymatroid defined by a strong pair (p, b). Let f: V' =
ZU{—oo}and g: V> ZU {0} be two functions with f=gandlet—co =a =8 =
co be two integers.

PROPOSITION 6.3. The intersection Q, of a plank {x€ R": a £ x(V) = B} and a
g-polymatroid Q(p, b) is a g-polymatroid. If Q, is nonempty, its unigue strong pair
(Ps, b,) is given by

(6.3a) Po(X}=max (p(X),a—b(V— X)),
(6.3b) by(X)=min (b(X),8—p(V - X)).

PROPOSITION 6.4. The intersection (), of abox {x € R". f S xS g} and a g-
polymatroid Q(p,, b,) is a g-polymatroid, If Q, is nonempty, its unique strong pair
{(p:, b1) is given by

(6.4a) p(X)=max (p(Y)+/(X-Y)-g(Y-X):YeV),
(6.4b) H(X)=min(b,(Y)+g(X—-Y)—f(Y-X):Yc V).

PROPOSITION 6.5. For a g-polymatroid Q = Q(p, b) if x £ y = z are vectors 5o that
x,z€Q, thenye Q.

The greedy aigorithm can also be extended to work on g-polymatroids . We need
it only in the special case when the objective function ¢ : V' — R, is nonnegative (¢ need
not be integer-valued ) and Q is bounded from below. ( By Proposition 6.1 this is equivalent
to requiring p to be finite.) The objective is to minimize cx over Q.

Suppose that the elements of Vare ordered sothat ¢, 2 ¢, 2 -+ - Z ¢,

PROPOSITION 6.6. If Q is given by a strong pair (p, b), then min {cx: x € Q) is
attained by a vector z where z, = p(v,, - ,v) ~—p(v, -+, 0. ){E=1, -+, n).

This proposition has a useful corollary, which shows that the greedy algorithm may
be applied even if O is not given by its strong patr.

COROLLARY 6.7. Let O be a g-polymatroid bounded from below. Define iteratively

the components of a vector z as follows. Suppose z,, z2, * -+, z,-, have already been
defined. Let z, be the smallest number for which (zi, -+, z,, X, 41, * ==, Xn) belongs
to Q for some appropriateé X, i1, "', Xa. Then z is an integer-valued solution to

min {cx: x € Q). :

Note that the procedure in the corollary has nothing to do with the form in which
O is given. Therefore, it becomes a usable algorithm only if there is a way to compute
the current z,.

Actuaily, we will use the properties listed above mainly for the special case of con-
trapolymatroids. Let p be a supermodular, monotone-increasing (integer-valued) set-
function with p(&) = 0. A polyhedron C(p) := {x € R : x(4) Z p(A4) for every
A < V'} is called a contrapolymatroid. A contrapolymatroid is a g-polymatroid, since
C{(p) = O(p, b) where b := o (except 5() = 0}, and this (p, b) is a strong pair.

In applications we will encounter contrapolymatroids that are not given by their
unique monotone supermodular function. Let g: 2¥ — Z, be a nonnegative integer-
valued function. Suppose that Q := {x € R": x(4) = g(4) for every A < V} is a con-
trapolymatroid, Let & := max (g(X): X <= V). Then, obviously, (k, k, --- , k)€ Q. For
Q the greedy algorithm can be formulated as follows.

COROLLARY 6.7'. Define iteratively the components of a vector y as follows. Sup-
pose Yy, Va, '+, Ye— have already been defined. Ler y, be the smallest number for
which (y, **+, Vi, k, *+-, k) belongs to Q. Then y is an integer-valued solution to
min (cx: x € ).
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Proof. We show that z = y where z is the vector constructed in Corollary 6.7, If
this were not true, then there is a smallest subscript ¢ for which z, # y,. Obviously, z, <
YoLet ¥Vi={v;, -, v,}. By the definition of Y1, there is a set A that prevented y, from
being smaller. This means that v, € A and fA)=y(ViNA)+k|A—V,|. Nowifd c
Vi, then g(A) = y(V, N 4) > z(V, N A) = z(A), contradicting that z€ Q. If 4 & Vi,
then g(A4) = y, + k < g(A4) (by the definition of k). Hence 0 < z, < y, = 0, a contra-
diction. O

Let (2 be the same as before. We will have to be able to soive the following opti-
mization problem:

() min (cx:xe€ @, x(V) is even).

By applying the greedy algorithm, compute an integer vector z' € {J that minimizes
cx over Q. If z'(V) is even, let z := 2/ If 2'(VF) is odd, revise z' by increasing z'(v,) by
1. Let z denote the resulting vector.

PROPOSITION 6.8. Vector z is an optimal solution to ().

Proaf. Suppose that Q = C(p), where pis the unique supermodular function defining
Q.If p(V) is odd, modify p by increasing p(V) by 1. The resulting p, is fully supermodular
and monotone increasing. The proposition follows by observing that the greedy algorithm
described in Corollary 6.7', when applied to C(p,), outputs vector z constructed
above., O :

Let @ := C(p) be a contrapolymatroid, let f: ¥ — Z and g:V—>ZU {w}
be two functions with f < g, and let 0 < o < 8 = o be two integers. Let O, :=
{xeQ: fExZ2g, a2 x(V)s58).

PROPOSITION 6.9. Q, is a g-polymatroid. O is nonempty if and only if

(6.5) a=g(V)and
(6.6) p(X)+f(V-X)smin (8,g(V)),
(6.7) p(X)=g(X)

hold for every subset X < V.

Proof. By Propositions 6.3 and 6.4, it follows that 0, is a g-polymatroid,

Let b(X):= o0 if X # & and (@) = 0. By applying Proposition 6.3 to this p and
b, we obtain that Q, := {x € Q: a =< x(V) S B} is a g-polymatroid with strong pair
(Po, b,), where p,(X) := p(X)if X < V, p,(V) := max (p(V), «), and bo(X):=p —
p(V—-X)if X+ &,

Define p’ and 5’ as follows. p'(X) := max (P (X)), (X)), B'(X) := min (b (X),
£(X)). By Proposition 6.4 (p", #') is a weak pair, and @, = Q(p’, b'). Therefore, Proposition
6.2 applies, and (6.2) in this case is equivalent to (6.5)-(6.7). O

Let (p, b1) denote the strong pair defining Q. From (6.3) and (6.4) we can read
off that

(6.8a) n(V)=max [a, max (p(Y)+f(V— YXY=V¥)] and
{6.8b) by(V)=min (8,g(V)).

PROPOSITION 6.10. Suppose that Oy is nonempty. Q, contains no integer vector y
with y(V') even if and only if p,(V) = b (V) is odd.

Froof. Obviously, if m:= p,(V) = bi(V), then x(V") = m for every x € (,; therefore,
if m 1s odd, x(V} is odd as well. Conversely, if p; # b,, then, by Proposition 6.1, there
is an integer vector x € Q, with x(V) = pi(V), and there is an integer vector z € el
with 2(V) = b (V). By applying Proposition 6.5, we obtain that there is an integer
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vector y € Q with y(V) even. If p; (V) = b,(V) is even, then any integer vector of Q,
will do. 0

Finally, we mention one more result from [13].

PROPOSITION 6.11. The intersection Q of two g-polymatroids Q(p,, b)) and
O(p;, by) defined by strong pairs is nonempty if and only if p, £ b, and p, £ b,. Moreover,
O is spanned by its integer points.

7. Undirected augmentations and G-polymatroids. In this section we reveal a re-
lationship between augmentations and g-polymatroids. First, let us consider the aug-
mentation problem analysed in § 5 and recall the definition of a good augmentation. In
Lemma 5.6 we showed how to extend G by a new node s and some new edges incident
to 5 so as to satisfy ( 5.4). Given such an extension, let z(v) denote the number of parallel
edges between v € V and 5. (5.4) is clearly equivalent to

(7.1) z{A)Z g(A) for every A=V,

Note that g(4) := R(A) — d(A4) denotes the deficiency of A < V. Also note that g
is not intersecting supermodular, in general. Still, the following theorem asserts that g
defines a contrapolymatroid.

THEOREM 7.1. Q := {z€ R":z 2 0 and z satisfies (7.1)} is a contrapolymatroid
C(p), where the unique supermodular function defining Q is

(7.2)  p(A):=max (2q(4,): { 41,42, - -+ , A} a subpartition of A, 4; ¥ ).

Proof. First, we show that C(p) = Q. Indeed, C(p) < O since { 4 } is a subpartition
of 4. On the other hand, let z € Q and assume that p(4) = Z;9(4,) for some subpartition
(A, Az, -+, A} of 4 (A; # &). Since z satisfies (7.1) and is nonnegative, we have
2(A) = Z;z(4)) + z(A — UA;) = Z,9(A4;) = p(4), and therefore z € C(p).

As p is clearly monotone increasing, all we have to show is that p is supermodular.
Let 4 and B be two arbitrary subsets of V. Assume that p(4) = Tq(4;) for some
subpartition {4, Az, -+, A} of 4, and let p(B) = Zq(B;) for some subpartition
{B,, -, By} of B. '

: Let # := {4, "+, 4k, By, -*, By}. Then F satisfies the following:

(7.3) every veA M B is covered at mdst twice,
every ve(d — BYU(B—A) is covered at most once by #.

By Propositions 2.2 and 5.4, ¢ satisfies at least one of the following inequalities for
every two subsets X, Y of I;

(7.4a) g X)+q(Y)=q(XNY)+g(XUY),
(7.4b) XV +g{Y)Sg(X - T)+g(Y-X).

Denote g(F ) := Z(g(X): X € F). Assume that there are two intersecting sets A;
and B;in #. If X := 4, and Y := B, satisfy (7.4a) (respectively, (7.4b)), revise F by
replacing 4; and B; by X N Y and X U Y (respectively, X — Y and Y — X). Then the
new family &, satisfies (7.3), and by (7.4), ¢(F ) Z q(#).

Apply this “uncrossing” operation as long as there are intersecting sets. Since in
every step (| X |2 — 2| V| | X|: X € F) strictly increases, after a finite number of steps
we obtain an &, satisfying (7.3), for which g(F,) = ¢(F ) and F, is laminar. Let 2,
consist of the minimal members of &, that are subsets of A N B, and #, = F,— P,.
Then 9, is a subpartition of 4 N B, and #, is a subpartition of 4 U B. By definition,
p(4 N B) = g(#,) and p(4A U B) Z g(P,) so we have p(4) + p(B) = ¢(F) =
W F)=q(P)+q(P) =p(4AN B)+ p(4AU B}, as required. O
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Theorem 7.1, with the help of Theorem 5.2, provides the following relation between
good augmentations of G and integer vectors in C(p).

COROLLARY 7.2. Let F be a set of new edges and define a vector zp € ZV by
zp(v) = dp(v) (for v € V). If (V, E U F) is a good augmentation, then zr € C(p) and
z(V) is even. If z € C(p) is an integer-valued vector with z(V) even and

(7.5) z(C)# 1 for every component C of G,

then there is a set F of new edges for which z(v) = de(v) (for v € V') and for which
(V, EU'F) is a good augmentation.

Proof. The first part is clear from the definitions. To see the second part, let z €
C(p) be a vector having the required properties. Extend G by a new node s and by z(sv)
new parallel edges between s and v (v € V). By the hypotheses, the extended graph G’
satisfies the hypotheses of Corollary 5.2, and therefore the required augmentation
exists. O .

Corollary 7.2 ensures that the results of §  concerning g-polymatroids can be utilised
for augmentations. Let us first prove Theorems 5.8 and 5.9,

Proof of Theorem 5.8. The necessity of the conditions is clear, and we concentrate
only on their sufficiency. Let p be the set-function defined in (72),and let o := B 1=
2v. We claim that the hypotheses of Theorem 5.8 imply (6.5)-(6.7). Indeed, 2y < g(V)
implies (6.5). Since g is modular, (5.6) and (7.2) imply (6.7). Similarly, (5.7) and (7.2)
imply p(X) + f(¥ — X) £ 8, and by J= gwealso have p(X) + f(V — X) 5 g(V); that
is, (6.6) follows.

By Propositions 6.1 and 6.9, (0, contains an integer point 2, the hypotheses of
Corollary 7.2 hold, and therefore the required augmentation exists. 0

Proof of Theorem 5.9. Again we are concerned only with the sufficiency. Let p be
the set-function defined in (7.2) and let « := 0 and 8 := co. Now (6.5) holds. (5.6)
and (7.2) imply (6.7) and (6.6). Therefore Proposition 6.9 applies, and @, is non-
empty. We claim that Q; contains an integer vector z with z(V') even. If this were not
the case, then by Proposition 6.10, ,(V) = g(V) is odd, and b;(V) = p,(V). That is,
by (7.2) and (6.82) we would have g(V') = Zq(X;) + SV —UX,) for some subpartition
{X1, Xz, -++, X,} of ¥, contradicting (+) in Theorem 5.9.

We finish by applying Corollary 7.2 to this vector z. Note that (7.5) is satisfied
because f{C) = 2 for every marginal component C of G. O

Using the same technique, a good characterization can be derived from Propositions
6.9 and 6.10 for the existence of a set F of new edges for which (V, EU F) is a good
augmentation, f(v) = dr(v) = g(v) for every v e V and = |F] 2. '

Proof of Theorem 5.10. The theorem follows if we put together Corollaries 7.2 and
6.7 and Proposition 6.8. [

8. Directed augmentations and G-polymatroids. Let G = (¥, E) be a digraph. Sup-
pose that G can be extended by v new edges to a k-edge-connected digraph: that is, (3.1)
and (3.2) hoid.
_ THEOREM 8.1. @i, :={z€R": 220, z(V)2 v, 2(X) 2 k — p( X} for every & =
X < V} is a contrapolymatroid C(p.), where

{8.1) Pin(A)=max (Z(k—p(A4;)):{4,, -~ ,4,} a subpartition of A)

ifA < Vandp,(V) = v.

Proof. In the proof we will abbreviate p,, by p, and Qi by Q. First, we show that
C(p) = Q. Indeed, C(p) = Q since {A} is a subpartition of 4. On the other hand, let
z €  and assume that p(4) = Z,9(4,) for some subpartition {4, A, -+, 4,} of
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A(A4; # &). Since z(X) = ¢g(X)} for X = V and z is nonnegative, we have z(A4) =
Ziz(A) + z(A — UA) 2 Z:9(A;)) = p(A4), and therefore z € C(p).

By the definition of ¥ we have v 2 max (Z(k — p(X;)): { X, - - - , X, } a subpartition
of V), and hence p is monotone increasing. We are going to show that p is fully super-
modular. Let g{X):=k — p(X)f F c X c V, and g(&) := g(V) := 0. Then g is
supermodular on crossing sets.

Let A and B be two arbitrary subsets of V. Suppose that p(A4) = Zg(4;) for some
subpartition {A4;, 4z, +--, Ax} of A, and let p(B) = Zq(B;) for some subpartition
{B,, -+, By} of B. ‘

Let # := {A, -, A, Bi, - -+, By}. Then # satisfies the following:

(8.2) every t€ AN B is covered at most twice,
every ve(A4— BYU(B —A) is covered at most once by #.

Denote g(#F ) := Z(g(X}: X € F). If there are two crossing sets 4, and B, in #,
revise & by replacing 4; and B; by 4; N B; and 4; U B;. The new family &, satisfies
(8.2) and, since g is supermodular on crossing sets, g(F ) = g(F). ’

Apply this “uncrossing” operation as long as there are crossing sets. Since in every
step 2(| X |%: X € # ) strictly increases, after a finite number of steps the procedure stops
with an &, satisfying (8.2) for which ¢{F,) = g(F ).

Assume first that F, includes no intersecting sets; that is, &, is laminar. Let 97,
consist of the minimal members of &, that are subsets of A N B, and &, := F,— P,.
Then 2, is a subpartition of 4 N B, and 2, is a subpartition of 4 U B. By defini-
tion, p{4 N B)Y Z g( P, }yand p(AU B) Z q( #;),s0 we have p(A) + p(B) = g(F ) =
g(Fo) = q( P} + g(P;) = p(4 1 B) + p(4 U B), as required.

Second, assume that # , includes two intersecting sets X and Y. They are not crossing,
therefore X U Y = V. By (8.2), the other members of %, are pairwise disjoint subsets
of A M B. Therefore p(A N BYZ g{F,) — g(X) ~ q(Y).

By the assumption, (3.2} holds. Hence k — 6(V —X)+ k — 6(V — Y) = +; that is,
HqX)+q(¥Y)=k—p(X)+k—p(Y)=y.Wehave p(4d) + p(B) = g(F )= q(F,) =
pANBY+ g X)+g(Y)= p(ANB)+ v = p(AN B) + p(4 U B), as required. O

By interchanging 6 and p in Theorem 8.1 we obtain the following result.

THEOREM 8.1°. Qo = {z € RV:z20,z2(V)Z v, z(X) Z k — 8(X) for every
& = X = V} is a contrapolymatroid C(pow), where

(8.1) Pou{A)=max (Z(k—8(4)): { A, - -+ ,A,} a subpartition of A}

ifAc Vand peu(V) = ~.

COROLLARY 8.2. If F is a set of v new edges and (V, E U F) is k-edge-connected,
then z € C(pin) (z € C(Pou)) where z € Z is defined by z(v) 1= pe(0) (z(v) := 8(0)) Jor
every v € V. Conversely, if zi, € C(py) and zo € C(pow) are integer-valued vectors with
v = Zw(V) = zou(V'), then there is a set F of v new edges for which (V, EUF)isa k-
edge-connected and zi,(v) = pp(0) and 2., (v} = d(v) hold for everyve V.,

Proof. The first part is clear from the definitions. To see the second part, let z;, and
Zon be two vectors having the required properties. Extend G by a new node s, by z,(v)
new parallel edges from s to v, and by z,.(v) new parallel edges from vto s(v € V). By
the hypotheses the extended graph G’ satisfies the hypotheses of Theorem 3.4, and therefore
the required augmentation exists. O

By now we are in a position to prove Theorems 3.7 and 3.9.

Proof of Theorem 3.7. By Corollary 8.2 and Theorem 3.4 all we have to prove is
that there is an integer vector z, in C(p;,) for which f, = z, = g, zia(V) = v, and that
there is an integer vector zqy, in C(pgy) for which £, £ Zow £ Zows Zow(V) = 7. Apply
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Proposition 6.9 10 C(pi,) and to C{p,) (separately) with the choice « := 8 := . The
assumption ¥ = min (gin(¥), gou(V')) implies (6.5). Equation (6.6 follows from (3.6)
and (8.1). Equation (6.7) follows from (3.5). {

Proof of Theorem 3.9. The proof is immediate if we observe that the algorithm in
question is nothing but two (separate) applications of the greedy algorithm described in
Corollary 6.7' to @, and Q. O

9. Max-flow version and algorithmic aspects. This section is offered to make some
comments on the complexity of algorithms implied by the proofs. It is certainly not our
purpose to describe a detailed algorithm with data structure and precise time-bound.
Instead, we briefly indicate the idea of a strongly polynomial algorithm.

Basically, we encountered two types of problems. Problem A consists of finding an
appropriate enlargement of a starting graph or digraph using a new node s. Problem B
consists of performing algorithmically the splitting operation.

We will consider these algorithms concerning the max-flow version. Let G = (V,E)
be a graph or a digraph, and g : £ - Z, an integer-valued capacity function. Let
r(u, v) be an integer-valued demand function so that there is no marginal component
in the undirected case and r = k in the directed one. Recall that the max-flow version of
the augmentation problem is as follows. Extend G by adding new edges with suitable
capacities so that in the enlarged digraph the maximum flow value from every node u
to any other node v is at least r(u, v), and 50 that the sum of capacities of the newly
added edges is minimum. (The algorithms below work with the same time complexity
if g and r are not necessarily integer-valued.)

By replacing every edge e by g(e) parallel edges, we can see that this max-fiow
version is theoretically equivalent to its noncapacitated case analyzed in §§ 3 and 5. We
do not formulate the corresponding theorems but only mention a corollary of Theorems
5.5and 3.1.

COROLLARY 9.1. (a) Let G = (¥, E) be an undirected graph, r(u, v) an integer-
valued demand.-function such that G has no marginal components, and g an integer-
valued capacity furiction on E. There is an optimal solution to the undirected max-flow
augmentation problem that is half integral. Furthermore, an optimal integer-valued so-
lution is either optimal among the real-valued augmentations or its total increment is one
half bigger than that of a (real-valued) optimal solution.

(b) If G is a directed graph and r(u, v} = k, then there is an optimal solution to the
directed max-flow augmentation problem that is integer-valued.

Proof. Let y and v* denote the minimum total increment of an integer-valued and
a real-valued augmentation, respectively. By Theorem 5.5, v =14 max Z¢g(X;)1. Let us
consider the augmentation problem concerning capacity function g = 2g and demand
function 7' := 2r. Let ¢’ (=2¢) denote the deficiency function and v’ the minimum total
increment of an integral augmentation x'. Clearly, x‘/2 is a fractional solution to the
original augmentation problem, Therefore v* =< 4'/2. On the other hand, by Theorem
5.5 again, we have ¥’ =1} max Z¢'(X;)1 = } max 2¢'(X;) = max Zq(X;) S 2y* < +".

Hence x'/2 is an optimal solution to the original augmentation problem and v =
lv*1 from which part (a) follows.

Part (b) follows directly from Theorem 3.1. |

Gomory and Hu [[%] described a very simple solution method to the undirected
max-flow augmentation problem when the starting graph G is the empty graph. Their
algorithm provides only a half-integer solution. For the same problem, Sridhar and Chan-
drasekaran {30] described a polynomial time algorithm that finds an integer-valued op-
timal augmentation. Bland, Goldfarb, and Todd [1] showed how to apply the ellipsoid
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method to find in polynomial time an optimal fractional solution to the minimum cost
augmentation problem when the starting graph is arbitrary. (Recall that the min-cost
integer-valued augmentation problem is NP-complete.)

From an algorithmic point of view, the capacitated augmentation problem is more
difficult than the noncapacitated one. Intuitively, the situation is analogous to that of
computing a maximum flow from a source node s to a sink node  in the sense that Ford
and Fulkerson’s augmenting path algorithm [8] runs in polynomial time when every
capacity is 1, while the general case needs more sophisticated methods to obtain a
(strongly) polynomial time algorithm. g

We mention the max flow-min cut {in short, MFMC) problem not only for sake
of analogy, but because it will be needed as a subroutine as well. The first strongly poly-
nomial algorithm to compute a flow of maximum value is due to Dinits [3] and to
Edmonds and Karp [6]. This algorithm constructs not only a maximum flow, but also
a subset S of nodes, s € § and ¢ S, for which §,(S) is minimum.

During the past twenty years a great number of more efficient MFMC algorithms
have been developed. For a recent survey, see [18]. ’

Before considering the two algorithmic problems, we make some preparations con-
cerning the general augmentation problem for undirected graphs. A demand function
r(u, v) (1, v € V) can be given by n(n — 1)/2 numbers. Gomory and Hu [19], however,
showed that r can be encoded by O(n) data, namely, with the help of a tree T = (V, F),
called a dominant requirement tree.

THEOREM 9.2 ([19]). Let T = (V, F) be a maximum cost tree with respect to the
cost function r. For any graph G X(u, v) Z r{u, v) for every pair {u, v} of nodes if and
only if Ag{u, v) Z r(u, v) holds for the edges uv of T

For a proof, see [8]. Such a tree can be easily computed by the greedy algorithm,
and henceforth we assume that T is available.

Let us turn to Problem A. Suppose that G = (V' + 5, E") is a graph or a digraph,
and g : E’ - Z, is an integer-valued function on the edges satisfying

(9.1a) pp(X)2k forevery c XV,
if G’ is directed, and
(9.1b) d{X)ZR(X)forevery XV,

if ¢ is undirected, where R(X) was introduced in § 5. We will refer to the special case
R(X) = k as the cas¢ of uniform demands.

Since we are considering the capacitated case, we may also assume that there are
no parallel edges in G

Problem A. Let f,, f5, - - - be the set of edges leaving s. Proceeding edge by edge in
the given order, decrease the capacity of the current edge as much as possible without
violating {9.1).

Problem A can be solved by n (:=| V|) subsequent applications of the following
subproblem. For a specified edge sz, compute the largest value z such that z = g(s¢) and
such that reducing g(st) by z does not destroy (9.1).

For directed graphs (where the demands are uniform), we have z = min(Zz’,
g{(s, 1)), where z' ;= min (m(u, t} — k: u€ V — t), where m(u, 1) := min (pi(T): Tc
V—uteT).

Value m(u, t) can be computed as follows. Introduce a new edge su with co capacity.
From the MFMC theorem, it follows that m(u, t) is the maximum value of a flow from
sto tin this revised network. Hence z can be computed by » — { MEMC computations,
and Problem A, for directed graphs, can be solved by at most n* MFMC computations.



50 ANDRAS FRANK

For undirected graphs, one has z = min (7, g(s, 1)), where z’ := min (m(u, v} —
r(u,v): u, v€ V), where m(u, v} := min (dg(X): X separates {s, 1} and {u, v}). By
Theorem 9.2, 2’ = min (m(u, v} — r(u, v):wweF),

Value m{u, v) can be computed as follows. First, introduce new edges sv and ¢
with infinite capacity, and compute the max flow value m, from s to ¢. Second, introduce
new edges su and vt with infinite capacity, and compute the max flow value m, from s
to ¢. Then m(u, v) = min (m,, m,). Therefore m(u, v) can be computed by two MEFMC
computations, and hence z can be computed by 2n? MFMC computations.

Let us turn to our second algorithmic problem.

Let G’ =(V + 5, E') be a directed or undirected graph endowed with a nonnegative
integer capacity function g. Let {us, sv} be a pair of edges and z an integer with 0 =
z = min (g(us), g(sv)). We call the following operation a weighted splitting of vatue z.
Reduce g(us) and g(sv) by z and increase gluv) by z.

Problem B. Assume that for directed graphs g satisfies py(s) = 8;(s5) > 0 and

(9.2a) pe(X)Zkforevery FcXcV,
(9.2b) 8(X)Z kfor every =X V.
For undirected graphs d,(s) is even, and

{9.3) dy(X)Z R(X) for every Sc X V.

We call a weighted splitting feasible if it does not destroy (9.2) or (9.3). We call a
sequence of feasible splittings complete if, in the final digraph, no edge leaving s has
positive (revised) capacity.

The problem consists of computing in strongly polynomial time a complete sequence
of feasible splittings. Theorems 3.4 and 5.2 ensure that such a sequence always exists.

Consider first the directed case. For a given pair {us, sv} of edges, the biggest value
z(u, v) of a feasible splitting is the minimum of g(us), g(sv), m,, and m,, where

(9.4a) my=min (pp(X)—k):{u,p}cX<V) and
(9.4b) . my=min (8,(X)—k): {u,0) S X V).

m, can be computed by 7 — 2 MFMC computations as follows. First, shrink w and v
into one node ¢, then introduce an edge from s to a node w € V with infinite capacity,
and, finally, compute the maximum flow value from s to {. m, is the smallest among
these values over the possible choices of node w & V. Value m; can be computed anal-
ogously. We will also need a set 4, computed by the MFMC algorithm, where the min-
imum in (9.4) is attained. .

Depending on which one is the smallest value among g(us), g(sv), my, and ms, a
weighted splitting-off { us, sv } with value z(, v) either reduces g(us) 100, reduces g{sv)
to 0, creates an in-critical set 4 containing ¥ and v, or creates an out-critical set A containing
u and v. We refer to the first two possibilities as Case 1 and to the second two possibilities
as Case 2,

The algorithm to solve Problem B consists of a sequence of splitting steps. One
splitting step consists of choosing a pait {us, sv} with u # v, g{us) > 0, g(sv) > 0,
computing z{u, v} as indicated above, and performing a weighted splitting-off operation
of value z(u, v).

The algorithm stops when there is no more edge sv with positive revised capacity.
Since there may be at most n? possible pairs to be split off, the algorithm halts after at
most n* splitting steps when the subsequent pairs are chosen in an arbitrary order.
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“This bound can be reduced to 47 if an appropriate ordering of the pairs is chosen.
To this end, we maintain a family & of disjoint critical sets. At the beginning, ¥
is empty. .

In an intermediate step of the algorithm let the next pair {us, sv} be chosen in
such a way that g{us) > 0, g(sv) > 0 and u, v do not belong to the same member of
. Such a pair always exists since otherwise there would be a critical set Y (in F ) such
that g(ws) = g(sw) = 0 forevery we V' — Yand then X := V' — Y would violate (9.2).
Perform the splitting step on {us, sv}. :

If Case 1 occurs, leave # unchanged and iterate. Clearly, Case 1 may occur at most
2n times.

If Case 2 occurs (and Case 1 does not), let 4 be a new critical set (found by the
MFMC algorithm) containing z and v. Define &, := {X € #: X — 4 critical }, 4" :=
AUUW:XeF - F),and F = (X —A: XeF JU {4}

PROPOSITION 9.3. #' consists of disjoint critical sets. Furthermore,

9.5) JUF| - | F > UF| - | F,

where USF stands for U(X: X e F).

Proof. For the first part, we must show that 4’ is critical. Let X,, X, -+,
X, be theelements of F — F . Let Y,:=dand V;:=AU X, U XL U - U X
(j=1, -, h). Clearly, A' = ¥,. By induction on j, we prove that ¥ is critical. This is
true, by definition, for j = 0. Suppose we have already proved for a certain j (<h) that
Y, is critical. Since Xj+; — ¥; = Xj+; — 4 is not critical, by Proposition 3.6, X;.\ U
Y; = Y}, is critical, as required.

To see (9.5) we distinguish some cases. If u, v € 4 — U, then |UF'| =
|UF| +2and |F'| = |F| + 1, and (9.5) follows.

fued— UF, veX, e F, then |UF'| 2 |UF| + 1. Furthermore, since the
revised g{sv) is still positive (as we are not at Case 1}, in Proposition 3.6 alternative (ii)
cannot hold for 4 and X;, and therefore X;¢ # ;. Hence | F'| = | # |, and (9.5) follows.
The case when v € 4 — U#F, uc X; € # is analogous.

Finally, assume that ue X; € F,ve X;€ F (i # j). Then |UF'| = jUF 1. By an
argument similar to the one used before, we have X; ¢ # and X;¢ . Hence |F'| =
|#| — 1, and (9.5) follows. 0

PROPOSITION 9.4. The algorithm for solving Problem B halts afier at most 4n split-
ting steps.

Proof. In Case 1 the capacity of an edge incident to s becomes 0. This can happen
at most 27 times. By (9.5) Case 2 may occur at most 2n times. O

Since one splitting step can be carried out by 2n MFMC computations, Problem B
can be solved by 8n2 MFMC computations. The time complexity of other calculations
is inferior to that of n* MFMC computations.

Problem A was solved by n? MFMC computations. Since there are MEMC algorithms
of order O(n®) (see the survey paper of Goldberg, Tardos, and Tarjan [18]), we can
conclude that the overall complexity of the max-flow version of the directed augmentation
problem is O(n°).

Consider now Problem B for undirected graphs. By Theorem 9.2 for a given pair
{su, sv} of edges the biggest value z(u, v) of a feasible splitting is the minimom of
g(su), g(sv), and  m/2], where

(9.6) m:=min (m(ww')—r(ww’): ww' an edge of T'),

where T is the dominant requirement tree, and m(ww') ;= min (d,(X}: X separates w
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andw', u,vekX, s¢x ). Value m(ww') can be computed as follows. Shrink # and v into
a node ¢. Introduce edges sw and tw' of infinite capacity and compute the maximum
flow value m, between s and 1, Likewise, compute the maximum flow valye m; when
the role of w and w' is interchanged. We have m = min (m,, m,).

z(u, v) is computed by O(n) MFMC computations. Since there may be n? pairs 1o be

split off and there is an MFMC algorithm of complexity O(n?), the flow version of the

undirected augmentation problem can be solved in O(n*) time. (Note that the number
of steps is independent on the demand function r.) ‘

In case of uniform demands, the proof of Theorem 4.5 can be used to reduce the
number of splitting steps from »2 1o O(n), similarly to the directed case where Proposition
3.6 was used. Therefore, the overall complexity in this special case reduces to O(n®).
We omit the details.
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